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CHAPTER 1

Introduction: A Critique of Minkowski 
Spacetime

In 1908, three years after Einstein first published his special theory of rela-
tivity, the mathematician Hermann Minkowski introduced his four- 
dimensional “spacetime” interpretation of the theory. Einstein initially 
dismissed Minkowski’s theory as a “piece of mathematical trickery,” 
remarking wryly that “[s]ince the mathematicians have invaded the theory 
of relativity I do not understand it myself anymore.”1 Yet Minkowski’s 
theory soon found wide acceptance among physicists, including eventually 
Einstein himself—his conversion to Minkowski engendered principally by 
the realization that he could profitably employ it for the formulation of his 
theory of gravity (the general theory of relativity). Thus in his popular 
book on the theory of relativity published in 1916, Einstein famously 
remarks that general relativity “would perhaps have gotten no farther than 
its long clothes” if it had not been for Minkowski’s innovation.2

The physical validity of Minkowski’s concept of merged spacetime has 
rarely been questioned by physicists or philosophers since Einstein incor-
porated it into his theory of gravity. This is strange in one sense, for there 
is no general agreement on the physical meaning of Minkowski’s theory. 
Indeed, one can only sympathize with Vesselin Petkov’s complaint that 
while physicists and philosophers of science routinely endorse and employ 
Minkowski’s four-dimensional formal apparatus, at the same time they 
habitually speak about the world as if it were really three-dimensional in 
the usual sense, giving back to themselves with one hand, as it were, what 
they have just taken away with the other.3 Physicists in fact often employ 
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Minkowski spacetime with little regard to the whether it provides a true 
account of the physical world as opposed to a useful mathematical tool in 
the theory of relativity, while philosophers, for their part, sometimes treat 
the philosophy of space and time as if it were merely an appendix to 
Minkowski’s theory. The purpose of this book, then, is to subject the con-
cept of spacetime to a much overdue critical examination, with a view 
toward a more physically intelligible interpretation of Einstein’s special 
and general theories of relativity. For I believe that Einstein’s initial assess-
ment of Minkowski was essentially correct.

Anyone conversant with the theory of relativity knows, or at least thinks 
they know, that Minkowski “merged” space and time into a single four- 
dimensional geometrical continuum. However, the precise character of 
the intended merging of space and time is not always clear in the literature 
on spacetime. One often reads, for example, that from our present vantage 
point we can see that even Newton and Galileo employed a “four- 
dimensional spacetime continuum,” even if they treated time and space 
independently of one another. Einstein himself, for instance, suggests that 
the idea of a four-dimensional continuum is not something newly intro-
duced by the theory of relativity, since classical mechanics also employed a 
four-dimensional continuum which, however, “falls naturally into a three- 
dimensional and one-dimensional (time), so that the four-dimensional 
point of view does not force itself upon one as necessary.”4

It would be helpful at the outset, then, to note briefly some of the 
senses in which it may be said that space and time are “unified” in a given 
theory of physics. The minimal notion of such unification is a mere 
“n-dimensional manifold” in which each point event can be associated 
with n numbers (coordinates). This amounts to saying that every event 
happens at a time and place. In this minimal sense, Newton’s physics 
indeed may be said to employ a four-dimensional spacetime manifold, 
something naturally suggested by diagrams in which time is symbolically 
represented by the length of a line in space (usually in Cartesian coordi-
nates). But there is no single continuum of space and time in Newtonian 
physics, since space and time intervals are independent of one another, 
with no four-dimensional interval between events defined and therefore 
no metrical unification effected. While it is commonplace today to recon-
struct Newtonian physics using the mathematical apparatus of differential 
geometry, as Michael Friedman notes, “We effect a relativistic unification 
of space and time only if we view space-time as a four-dimensional semi- 
Riemannian manifold.”5

 J. K. COSGROVE
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Einstein’s 1905 special theory of relativity introduces a new kind of 
metrical entanglement of space and time. Here the measure of a time 
interval between two events in some inertial frame A depends, through 
the Lorentz transformation, on both the time and distance between those 
events as measured in an inertial frame B in motion relative to A, and like-
wise for a distance in A as a function of time and distance measured in B. 
As Einstein formulates it, the “necessity” of the four-dimensional point of 
view in special relativity, unlike the situation in Newtonian dynamics, lies 
in the “formal dependence between the way the space coordinates, on the 
one hand, and the temporal coordinates, on the other, have to enter into 
the natural laws.”6 By contrast, in pre-relativity mechanics, metrical inter-
vals of time and distance are the same for all inertial reference frames.

Nevertheless, Einstein 1905 special relativity in no sense merges space 
and time into a single continuum. That is to say, even though in pre- 
Minkowski special relativity we regard the metrical properties of space and 
time as interdependent or entangled, space and time themselves remain 
distinct continua with no metrical unification per se. Thus, while in dif-
ferential geometry, for instance, a metric continuum is defined by its dis-
tance function or line element (quadratic differential form), in Einstein 
1905 there is no such distance function for time and space taken together. 
This point is easily obscured by the standard use in special relativity of 
Minkowski diagrams (which would be much more aptly termed “special 
relativity diagrams,” since they in no wise distinguish Minkowski’s theory 
conceptually from Einstein 1905), and the associated jargon of “world 
lines,” “light cone structure,” and so forth.

At the very least, then, it seems the term “spacetime” is associated with 
a number of distinct conceptions of the unification of space and time. But 
it is only with Minkowski’s introduction of the invariant “interval” or 
four-dimensional displacement vector that we encounter anything that 
could be properly termed the unification of space and time into a single 
continuum. By “spacetime” in this study, then, I shall always intend spe-
cifically “Minkowski spacetime” or the idea, set forth most famously by 
Minkowski in his Cologne lecture of 1908, that space and time as they 
physically exist are merged into a single continuum, geometrically deter-
mined by a four-dimensional line element analogous to the Pythagorean 
line element of standard differential geometry.7 To be sure, today we often 
speak of spacetime in a wider sense. However, the present terminological 
restriction is not at all arbitrary, for only with the advent of Minkowski’s 
theory do we find the essential condition for a metric continuum of space 
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and time: a distance function. Clearly there is no such notion in Galileo or 
Newton, and therefore it is misleading to say that either of them employed 
a “four-dimensional continuum.”

It is unfortunate, in view of the very radicalness of Minkowski’s pro-
posal, that Einstein’s 1905 special theory of relativity has come to be 
regarded as virtually synonymous with Minkowski’s 1908 theory, as if the 
latter simply elaborated what was already implicit in the former. Such an 
identification, which forecloses the possibility that one might wish to avail 
oneself of Einstein 1905 while abstaining from Minkowski 1908, reflects 
a kind of whiggish view of the history of relativity, according to which 
Minkowski’s theory represents the inevitable disclosure of the deep geo-
metrical structure of Einstein’s 1905 theory, originally overlooked by 
Einstein himself. But the proposition is a dubious one. For even if 
Minkowski’s theory yields the same empirical results as Einstein 1905, the 
former nevertheless posits a new set of absolute geometrical objects that 
have no role whatsoever in the ontology of Einstein’s original theory—the 
absolutes of which are rather the laws of nature. Thus, unless we wish to 
insist that theories making the same empirical predictions are equivalent, 
regardless of their respective ontologies and conceptual structures, 
Einstein 1905 and Minkowski 1908 are clearly different theories.

The weightiest argument on behalf of the physical reality of Minkowski 
spacetime has always been Einstein’s general relativity. For in general rela-
tivity the metrical properties of the gravitational field find expression, at 
least in the usual version, through a “semi-Riemannian” generalization of 
the Minkowski spacetime interval. It would thus appear that save for the 
concept of the Minkowski interval, Einstein’s formulation of the 
 gravitational field in terms “curved spacetime” could hardly begin. 
However, an additional category of evidence for Minkowski’s theory is 
primarily philosophical. Minkowski spacetime is often regarded as resolv-
ing a set of philosophical paradoxes, regarding time in particular, engen-
dered by Einstein’s 1905 special theory of relativity. According to a 
popular textbook presentation, for example,

[A]lmost all of the “paradoxes” associated with SR [special relativity] result 
from a stubborn persistence of the Newtonian notions of a unique time 
coordinate and the existence of “space at a single moment in time.” By 
thinking in terms of spacetime rather than space and time together, these 
paradoxes tend to disappear.8

 J. K. COSGROVE
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To be sure, it would redound greatly to the favor of Minkowski’s theory if 
the concept of spacetime truly resolved such paradoxes.

However, we shall find on the contrary that the concept of Minkowski 
spacetime actually plays no vital role in Einstein’s theory of gravity and can 
be of no utility whatsoever in resolving paradoxes of time in either special 
or general relativity. Nevertheless, as Julian Barbour observes, “Minkowski’s 
ideas have penetrated deep into the psyche of modern physicists … [who] 
find it hard to contemplate any alternative to his grand vision.”9 
Minkowski’s ideas arguably have concentrated the minds of philosophers 
even more. Indeed, Minkowski’s merging of space and time into a single 
entity has been a veritable boon to philosophy, providing endless oppor-
tunity for metaphysical speculation about the true nature of reality beyond 
the naive deliverances of subjective human experience. Moreover, it is not 
just physicists’ and philosophers’ “psyches” that have been penetrated by 
Minkowski’s ideas, but the very language and mathematical notation by 
means of which relativity theory is formulated. Thus one can hardly open 
a textbook on general relativity without running across the assertion that 
a tensor, for instance, is an “inner product of vectors” or a “mapping of 
vectors onto to real numbers,” the theory of spacetime dealing exclusively 
with associated “geometrical objects.” This even though a tensor was not 
regarded as a geometrical object by Ricci and Levi-Civita, creators of the 
absolute differential calculus, nor is the quadratic differential “line 
 element” of general relativity actually derived from geometry (it is rather 
derived from the Lorentz transformation).10

Rarely has it been remarked in this connection that while Minkowski’s 
theory is set forth in vector form, by evident contrast with Einstein’s alge-
braic methods in the 1905 special relativity paper, Minkowski spacetime is, 
in fact, an essentially algebraic entity.11 In this respect Minkowski space-
time is quite unlike its alleged analogue the Pythagorean Theorem, which 
can be but need not be represented algebraically; for Minkowski spacetime 
can only be represented algebraically. In this regard, there has been insuf-
ficient scholarly attention to the historical process by which modern sym-
bolic algebra was assimilated into mathematical physics, a development 
which, against much opposition, spanned the second half of the seven-
teenth century and most of the eighteenth century. As the physicist and 
historian John Roche observes, in his valuable study The Mathematics of 
Measurement (1998), the clarification of concepts in mathematical physics 
requires just such a historically informed approach:

 INTRODUCTION: A CRITIQUE OF MINKOWSKI SPACETIME 
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Physicists, mathematicians or philosophers who study the foundations of a 
concept … with this end in view sometimes attempt its reconstruction with 
little investigation of its historical derivation. This, I believe, is difficult to 
carry through successfully given the many questions the concept was 
designed to answer, and the multiple layers, shifting meanings and elements 
of incoherence which a concept commonly accumulates in the course of its 
history. Most if not all of this can be invisible without historical 
excavation.12

The need for such “historical excavation,” which some phenomenologists 
have aptly termed “desedimentation,” may well find its very example in 
the concept of Minkowski spacetime. For up until now historical analyses 
of Minkowski’s theory have in general taken for granted the 
 symbolic- algebraic structure and representation of the concept. By con-
trast, Newton’s concept of force, for example, both can be and in fact was 
represented non-algebraically by Newton himself, and has in this respect 
been subjected to thorough historical analysis. Central to the argument of 
this study, then, and developed primarily in Part II, is the thesis that the 
conceptual structure of Minkowski spacetime can be adequately under-
stood solely in terms of mathematical developments in the sixteenth and 
seventeenth centuries, assimilated into mathematical physics in the seven-
teenth and eighteenth centuries, by means of which the Euclidean method 
of ratio and proportion traditionally regarded up to the time of Newton 
and beyond as the form of mathematical representation proper to the sci-
ence of physics was transformed into algebraic equations or “formulas.” 
The specific critique of Minkowski spacetime set forth in Part II thus 
serves also as a case study in symbolic-algebraic representation and its 
influence on modern science’s conception of nature.

I am guided throughout this study by the example of Socrates, for 
whom the pertinent question is always the one suggested by what appears 
on the surface (eidos) of things. Indeed, much of what I have to say should 
strike the reader as more or less obvious and hardly worth pointing out. 
Nevertheless, it is just the surface of things that we most tend to overlook. 
Deep structures have their interest, to be sure, but if we miss the surface 
we will be unlikely to find our way through the depths.

 J. K. COSGROVE
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Notes

1. Quoted in Sommerfeld 1970 [1949], 102. I have been unable to locate 
the source of Einstein’s remark about “mathematical trickery.” Perhaps it 
is apocryphal.

2. Einstein 1961 [1916], 63.
3. Petkov 2012, 3–4.
4. Einstein 1979 [1949], 55.
5. Friedman 1983, 34.
6. Einstein 1979 [1949], 55.
7. That is, the Minkowski “spacetime interval” or quadratic differential form 

c2dt2 − dx2 − dy2 − dz2. For our purposes it will almost always suffice to give 
this expression in terms of just one spatial dimension x and omit the dif-
ferential symbol d; thus c2t2 − x2.

8. Sean Carroll, “Lecture Notes on General Relativity,” 1997, accessed July 
3, 2017, https://arxiv.org/pdf/gr-qc/9712019.pdf.

9. Barbour 1999, 138.
10. Ricci and Levi-Civita’s original paper (1901) on the subject, entitled 

“Methods of the Absolute Differential Calculus and their Applications,” 
regarded geometry as just one possible application of the calculus. A tensor 
(“system”) was defined analytically in terms of the invariant transformation 
properties of quadratic differential forms. On this point see Norton 1992, 
Appendix, 302–310.

11. An exception is Martínez 2009, 383–384: “In Minkowski’s interpretation, 
the concept of a vector summarized coordinate-analytic notions. Previously, 
vector theorists had advocated the priority of vectors by conceiving them 
as consisting fundamentally of direction and magnitude and only inciden-
tally as expressible in terms of Cartesian coordinates” (384–385).

12. Roche 1998, 5–6.
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CHAPTER 2

Minkowski’s “Space and Time”

Although by comparison with his two other published talks on the same 
subject Minkowski’s Cologne lecture “Space and Time” remains at a less 
technical level of exposition, the Cologne lecture is entirely sufficient for 
our purposes and comes with the additional advantage of wider familiarity. 
Minkowski saw himself not merely as offering a more elegant mathemati-
cal formalism for what we now call the special theory of relativity, but 
more importantly as unveiling the deeper geometrical structure of that 
theory in terms of what he called the “absolute world.” The principal 
question is the precise form of unification of space and time Minkowski 
achieves in the Cologne lecture, beyond what Einstein himself had already 
accomplished in 1905.

2.1  Minkowski and GöttinGen science

Historians of science have situated Minkowski’s approach to relativity the-
ory in the context of an early twentieth century movement toward formal-
ism in physics.1 For example, Leo Corry has shown that Minkowski’s 
endeavors in relativity theory must be in understood from the perspective 
of David Hilbert’s program for the axiomatization of physics. Scott Walter 
emphasizes disciplinary aspects of the movement, such as the rivalry in 
German universities in the latter decades of the nineteenth century 
between mathematics and the newly constituted field of “theoretical 
 physics.” The formal turn in early twentieth century physics is epitomized 
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by the aims and activities of the group surrounding Hilbert at Göttingen, 
prominent among which was Hermann Minkowski (1864–1909).

Hilbert’s program was animated above all by the idea, most famously 
mentioned by Minkowski in the last sentence of his Cologne lecture, of a 
pre-established harmony between mathematics and physics, as well as the 
conviction that left to itself physics tends to progress in too haphazard a 
fashion and, consequently, should not be “left to physicists”:

… Hilbert believed that physicists tended to solve disagreements between 
existing theories and newly found facts of experience by adding new hypoth-
eses, often without thoroughly examining whether such hypotheses 
accorded with the logical structure of the existing theories they were meant 
to improve. In many cases, he thought, this had led to problematic situa-
tions in science which could be corrected with the help of an axiomatic 
analysis of the kind he had masterfully performed for geometry.2

Such would be the service that a resurgent mathematical physics, a sub- 
discipline of mathematics exclusively concerned with the formal structure 
of physical theory, could render the discipline of theoretical physics. Or, in 
the words of Poincaré: “[T]o disclose to the physicist the concealed har-
monies of things by furnishing him with a new point of view.”3

The formal program of “Göttingen science” raises a number of issues 
for the interpretation of Minkowski’s foray in relativistic physics.4 For 
instance, is Hilbert’s program essentially heuristic, with mathematics 
merely revealing the deep formal structure of physical theories and on that 
basis suggesting new avenues of investigation? Or are we to take the notion 
of “pre-established harmony” more literally, and more radically, as poten-
tially effacing the very distinction between mathematics and physics such 
that one could meaningfully speak, for instance, of the reduction of  physics 
to geometry? Einstein himself, even after he embraced Minkowski’s the-
ory, stopped short of endorsing such a reduction.5

In Minkowski’s case, the dramatic opening of the Cologne address is 
often highlighted in favor of the latter interpretation (“Henceforth space by 
itself, and time by itself, are doomed to fade away into mere shadows ….”6). 
However, the independent existence of space and time or their existence 
“by themselves” is already ruled out by Einstein 1905, with its metric 
“entanglement” of space and time. Damour suggests that the interpretation 
of Minkowski in terms of what we today call block time or “eternalism” is 
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chiefly the work of others and not Minkowski himself, arguing there is no 
evidence that Minkowski believed spacetime rendered the flow of time itself 
an “illusory shadow.”7 Instead, according to Damour, Minkowski’s impor-
tance lies in his realization of the revolutionary significance of a set of deep 
mathematical structures in special relativity, largely discovered already by 
Poincaré: “Without fully understanding what Einstein had done, nor (at 
least initially) what Poincaré had achieved … [Minkowski] was lucky to 
unearth elegant and deep mathematical structures that were implicitly con-
tained in their (and others’) work, and had the boldness to embrace with 
enthusiasm their revolutionary character.”8 This is less than a ringing 
endorsement of Minkowski’s significance, though, since the revolutionary 
character of these formal structures in special relativity was already explicit 
in Einstein’s 1905 theory, whether Minkowski realized it or not. Formal 
talk of “four-dimensionality” in itself does not constitute anything revolu-
tionary about Minkowski’s theory.

What is truly revolutionary, rather, is the concept of the four- dimensional 
displacement vector or “spacetime interval”—and the whole apparatus of 
four-vectors in spacetime erected upon it—taken not merely as a formal 
structure but as physically real. For otherwise the theory amounts to no 
more than a formal reworking of Einstein 1905, perhaps analytically more 
powerful and elegant than Einstein’s formulation, but not of surpassing 
theoretical significance so far as physics itself is concerned. But if the 
Minkowski spacetime interval is a real quantity in nature, then space and 
time as we experience them must be illusions of some kind, and quite fun-
damental ones at that: for in that case there exist in nature itself no 
 distances in space or intervals of time. In Minkowski spacetime, as 
Friedman stresses, “there are no such entities as temporal intervals (or 
spatial intervals).”9

Minkowski does appear to have understood his four-vectors as physi-
cally real, although sometimes it can be difficult to tell for sure, as when 
he fails to distinguish clearly between his four-dimensional apparatus itself 
and other specific results in physics he wants to claim neither Lorentz nor 
Einstein were able to achieve. (Minkowski erroneously asserts that Einstein 
“made no attack on the concept of space,” for example.10) In what fol-
lows, though, I shall not be interested in the question of Minkowski’s 
exact intentions. For the last century, Minkowski’s theory, however inter-
preted in specifics, has been generally regarded as a true description of the 
physical world and, above all, as an essential component of the conceptual 
structure of Einstein’s general theory of relativity. I shall challenge that 
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consensus on both counts. To do so convincingly, of course, will require 
an explanation of why Minkowski’s theory, if it does not provide a true 
account of the physical world, works so well in general relativity.

2.2  “space and tiMe,” sections i and ii
Minkowski launches the Cologne address with the suggestion that it 
might be possible by “purely mathematical” considerations to arrive at 
“changed ideas of space and time.”11 Noting that Newtonian mechanics 
exhibits a two-fold invariance, corresponding in the first place to changes 
in position of the spatial coordinate system and in the second to changes 
in its state of motion, Minkowski observes that these two groups of trans-
formations (the familiar displacements and rotations of Euclidean geom-
etry, on the one hand, and the so-called “Galilean transformations” 
between inertial frames on the other) have not previously been brought 
together into one. It is his intention to do just that.

The purely spatial transformation group yields the familiar invariant x2 + 
y2  +  z2 for any rectangular coordinate system. However, Minkowski 
remarks, the aforementioned Galilean transformation permits our assign-
ing to the time axis of our coordinate system any direction we please, 
 corresponding to the different inertial motions of the Galilean system of 
reference (77). How shall we combine these two transformations, the first 
with its requirement of orthogonality in space and the second with its 
directional freedom for the time axis? Minkowski continues, “To establish 
the connection, let us take a positive parameter c, and consider the graphi-
cal representation of c2t2 − x2 − y2 − z2 = 1.” This graphical representation 
(see Fig. 2.1 below) depicts the famous hyperbolic coordinate rotation, in 
which the rotation angle of the coordinate axes corresponds to the veloc-
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Fig. 2.1 Spacetime coordinate rotation
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ity of some coordinate system in uniform motion relative to the original 
coordinate system.

For the spacetime coordinate rotation depicted above, the time axis t rotates 
clockwise to become oblique axis t′while the space axis x′rotates counter- clockwise 
to become oblique axis x′. The Lorentz equation c2t ′2 − x′2 = c2t2 − x2 holds for 
any point on the hyperbola drawn through A, each such point representing the 
distance and time from the event represented at the origin of coordinates.

Of course, in itself the figure above is simply a graph of the Lorentz covari-
ant equation c2t′2 − x′2 = c2t2 − x2; so let us concentrate rather on that 
equation itself, by which Minkowski proposes to treat time and space 
together geometrically by formal analogy to the invariant Pythagorean line 
element for space. Clearly, we cannot at the outset construe the parameter 
c in Minkowski’s formula as the velocity of light. For such a procedure 
would not qualify as the derivation of new ideas about space and time by 
means of a “purely mathematical line of thought.” Rather, Minkowski 
proposes to derive the Lorentz transformation in a purely mathematical 
way by means of an analogy with the Pythagorean Theorem.12

What initially would suggest itself as a “spacetime” analogue to the 
Pythagorean line element, though, would be t2 + x2 + y2 + z2. But this 
most obvious candidate presents an immediate impediment, namely, the 
heterogeneous dimensionality of the time and space variables. Clearly, the 
Pythagorean line element as a sum of squares is governed by the homoge-
neity requirement for addition as an arithmetical operation: quantities of 
unlike dimension do not add. Necessarily, then, if homogeneity is to be 
satisfied, Minkowski’s “positive parameter c” must carry units of velocity 
(or distance per unit of time); for otherwise the algebraic expression for 
the interval would be arithmetically incoherent. We take careful note of 
the units of Minkowski’s positive parameter c, for there exists a tendency 
in the literature to drop those units as if c were a dimensionless number. 
However, the units cannot be dropped if the expression is to remain physi-
cally intelligible. Thus adjusted, and with the signs of the spatial variables 
reversed (of which more below), the quantity c2t2 − x2 − y 2 − z 2 is ren-
dered invariant under what is called a “hyperbolic rotation” of the space-
time coordinate system, just as the Pythagorean x2 + y2 + z2 is invariant 
under the familiar Euclidean rotation.13 (An obvious difference, of course, 
is that the hyperbolic rotation is merely formal and cannot actually be 
physically performed as can the Pythagorean rotation.) This very group of 
hyperbolic transformations Minkowski designates Gc.
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The value of the parameter c remains to be determined. Were c infi-
nitely large the group Gc would reduce to the Galilean group. Much more 
intelligible, Minkowski suggests, is a finite and determinate, albeit very 
large, value for c (79).14 Therefore, Minkowski concludes,

[T]he thought might have struck some mathematician, fancy-free, that after 
all, as a matter of fact, natural phenomena do not possess an invariance with 
the group G∞, but rather with the group Gc, c being finite and determinate, 
but in ordinary units of measure, extremely great. Such a premonition would 
have been an extraordinary triumph for pure mathematics. Well, mathemat-
ics, though it now can display only staircase-wit, has the satisfaction of being 
wise after the event, and is able, thanks to its happy antecedents, with its 
senses sharpened by an unhampered outlook to far horizons, to grasp forth-
with the far-reaching consequences of such a metamorphosis of our concept 
of nature. (79)

Thus, with no prior inkling of the empirically determined velocity of light, 
the mathematician might well have derived the Lorentz transformation 
and with it the special theory of relativity itself.

Minkowski’s preceding line of argument is the first in a long succession 
of what could be called formal derivations of the Lorentz transformation. 
By a “formal derivation” I mean a derivation that, unlike Einstein 1905, 
does not rely on the empirical light postulate but deduces the Lorentz 
transformation by means of formal mathematical considerations. 
Introductory presentations of the theory of relativity as a rule go the other 
way, deriving the Lorentz transformation on the basis of the light postu-
late and the special principle of relativity; and then, with the “three- 
dimensional” version of special relativity in hand, they introduce the 
Minkowski four-dimensional spacetime formalism. We must also distin-
guish between the geometrical derivation proposed by Minkowski above 
and derivations of the Lorentz transformation based on the formal con-
straints of the principle of relativity, with no prior appeal to empirically 
contingent facts about light propagation. Such derivations, which have 
much to recommend them, I set aside here.15

Eddington (1923) presents a disarmingly simple, if utterly misleading, 
formal derivation of the Lorentz transformation starting with the  
generally covariant “fundamental quadratic form” of spacetime: 
ds g dx g dx g dx g dx g dx dx2

11 1
2

22 2
2

33 3
2

44 4
2

12 1 22= + + + +  …16 On the basis of this 
expression, we forthwith recover the spacetime line element for “flat” 
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spacetime in a small region (where the g’s can be regarded as constant):  
ds2 = dx1

2 + dx2
2 + dx3

2 + dx4
2. Designating the x 1, 2, 3 coordinate differentials 

as spatial, Eddington observes, yields the standard Euclidean metric of 
space ds2 = dx2 + dy2 + dz2. The x4 coordinate differential must then have 
something to do with time, although it may not actually be the coordinate 
time t. If our clock is at rest we shall have ds dx2

4
2= . Accordingly, dx4 

should be proportional to t, corresponding as it does to equal lapses of t 
on our rest clock. Therefore, “we express this proportion by writing 
dx4 = icdt,” where i = −1  and c is “a constant” (14).17 Our equation for 
the interval is now ds2 = dx2 + dy2 + dz2 − c2dt2. Finally, since experiment 
reveals a real velocity with the remarkable property of invariance in all 
inertial frames, we can regard our constant c as the velocity of light in a 
vacuum. The Lorentz transformation then follows in the usual way.

This is all quite breathtaking on Eddington’s part. We wonder where 
the “fundamental quadratic form” came from in the first place, since if we 
do not yet possess even special relativity we can hardly assume, with respect 
to space and time taken together, a fundamental quadratic form imported 
from differential geometry. We also wonder how −1  and the constant c 
found their way into the equation, given that in the original form all four 
variables were symmetrical. That is, what is it about time in this hypotheti-
cal “spacetime manifold” that it merits such special treatment a priori? 
Eddington remarks only, “Historically this transformation was first 
obtained for the particular case of electromagnetic equations,” as if the 
original non-geometrical derivation is to be regarded as a mere historical 
contingency. In Einstein’s 1905 theory, of course, the Lorentz transfor-
mation applies to all processes, not just electromagnetic ones. Moreover, 
it is only based on the Lorentz transformation already in hand, from 
Einstein’s 1905 theory, that Eddington has been able to construct his 
“time-related” term icdt. For no other justification is as much as hinted at 
with respect to interpreting the “fundamental quadratic form” as a space-
time metric in the first place, much less for inserting icdt for the time- 
related variable. Thus, if Eddington has derived the Lorentz transformation 
from the general notion of a four-dimensional spacetime manifold, that 
derivation is surely a circular one.

Michael Friedman presents a more careful, but in the end I think no 
more convincing case for our deriving the Lorentz transformation from 
Minkowski spacetime instead of the other way around.18 “The surest and 
clearest way to derive the Lorentz transformations,” writes Friedman, is to
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start by postulating the geometrical structure of Minkowski space-time. We 
then look for the group of transformations of Minkowski space-time onto 
itself that will preserve the geometrical structure: this turns out to be the 
Lorentz group …. Finally, using the geometrical structure of Minkowski 
space-time, we define the class of inertial frames and show that any two 
inertial frames are related by a Lorentz transformation.19

It is no doubt true that if we initially “postulate” the structure of Minkowski 
space-time we have a clear and sure way to derive the Lorentz transforma-
tion. But on what basis would we postulate such structure if we do not yet 
possess the Lorentz transformation from Einstein’s 1905 theory? Clearly, 
Friedman is dissatisfied with derivations of the Lorentz transformation 
based jointly on the special principle of relativity, the light postulate, and 
various and vague assumptions about the “homogeneity” of space and 
time.20 However, if we initially postulate the geometrical structure of 
Minkowski spacetime, as Friedman recommends, we have ipso facto postu-
lated the flatness of spacetime as well, and along with it the very assump-
tions he so frowns upon in standard derivations. In Friedman’s account, 
that is, we have no more reason to initially “postulate” the geometrical 
structure of Minkowski spacetime than we did in Eddington’s above.21 
The most one could say is that Minkowski spacetime might function as a 
“hypothesis” which, once experimentally confirmed, could be employed, 
according to the ordo essendi, to derive the Lorentz transformation. But a 
hypothesis is not a postulate, and apart from the prior possession of the 
Lorentz transformation it is utterly implausible to imagine anyone advanc-
ing, even as a hypothesis, the notion of an “interval in spacetime” described 
by the equation ds2 = c2dt2 − dx2 − dy2 − dz2. As Minkowski admits, here 
the mathematician can exhibit only “staircase wit.” Instead one first 
notices, as did Minkowski, the formal analogy between the Pythagorean 
Theorem (when written down algebraically) and the already in hand 
Lorentz expression above. We thus conclude that there is no intelligible 
way to derive formally the Lorentz transformation from the structure of 
Minkowski spacetime that does not in some way presuppose the Lorentz 
transformation itself.

Nevertheless, it is fair to raise some questions as to the physical coher-
ence of Minkowski’s geometrical approach, even when taken merely as a 
hypothesis. To make a convincing case for Gc, without invoking Einstein’s 
light postulate, the first challenge is to show that the geometrical approach 
to relativistic physics could represent anything beyond merely a formal- 
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mathematical analogy between two algebraic expressions (x2 + y2 + z2 and 
c2t2 − x2 − y2 − z2). And here we straightaway encounter an awkward dis-
analogy between the two. Observe that the variables x, y, and z in the 
Pythagorean line element carry the same dimension (spatial length) as the 
line element ds itself. Otherwise, the line element could not resolve into 
components, since such resolution presupposes homogeneity of dimen-
sion between the quantity in question and its components. The analogy 
with the Pythagorean line element, accordingly, would suggest that the 
spacetime line element ds also should be dimensionally homogeneous with 
each of the variables t, x, y, and z, such that all carry the dimension of 
spacetime. In the event, however, not only do we lack for any intelligible 
conception of such a physical dimension or units as “spacetime,” but the 
actual units of the so-called spacetime interval are in fact units of spatial 
length. After all, that very fact is the whole point of Minkowski’s “positive 
parameter c,” which renders the expression for the spacetime interval 
arithmetically coherent by transforming the time variable t into a spatial 
distance ct. But by introducing, through the addition of the constant c, 
the formula c2t2 − x2 − y2 − z2, Minkowski is left with simply the difference 
between the square of the spatial distance between two events and the 
square of the distance that would be traversed at velocity c in the time 
interval between those two events. It is all space, not “spacetime.” On the 
hypothesis that the spacetime interval is physically real, however, it should 
carry the dimension and units of spacetime, in which case each of the vari-
ables t, x, y, and z should carry the dimension and units of spacetime as 
well, which they do not.

In the end, if Minkowski proposes to derive the Lorentz transformation 
by purely formal or mathematical considerations he must adduce some 
rationale for believing that the expression c2t2 − x2 − y2 − z2 can intelligibly 
be regarded as a physical quantity in its own right. But the very physical 
sense of the expression c2t2 − x2 − y2 − z2 is wholly determined by the trans-
formation equation from which it is originally derived. Independently of 
that transformation equation the expression carries no physical meaning 
whatsoever. Furthermore, while the transformation equation 
x′2 + y′2 + z′2 = x2 + y2 + z2 can indeed be applied when the Pythagorean 
Theorem is represented in Cartesian coordinates and written down algebra-
ically, the Pythagorean Theorem itself concerns relations between geometri-
cal squares, and makes no essential reference to any transformation equation 
at all. The Greeks themselves gave the theorem in “component- free” form, 
as it were, simply as a sum of geometrical squares. Minkowski’s derivation, 
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by contrast, seems infected by a kind of circularity. For in order for the deri-
vation to make sense, we must already be convinced that c2t2 − x2 − y2 − z2 
is meaningfully construed as a physical quantity (“interval” in spacetime). 
But we have been given no reason to think so other than the derivation 
itself.

As has so often been observed, Minkowski’s derivation of the Lorentz 
transformation in “Space and Time” is in keeping with the aims of Felix 
Klein’s Erlanger program, with Minkowski in this case interpreting the set 
of “invariant objects” under the Lorentz group of transformations in 
terms of a “rotation” of the spacetime coordinates x, y, z, and t.22 But what 
we are given in the first two sections of Minkowski’s “Space and Time” is 
merely a geometrical representation of the Lorentz transformation. At the 
end of Section I, for instance, Minkowski notes that for a change in refer-
ence system we obtain a new instantaneous space, concluding on this basis 
that “three-dimensional geometry becomes a chapter in four-dimensional 
physics” (80). That is true enough, but that result is contained already in 
Einstein 1905 and implies no unification of space and time beyond 
Einstein’s; certainly not any “merging” of space and time into a single 
continuum.23 That is to say, the whole exercise thus far in Minkowski’s 
paper involves no more than the interdependence or entanglement of space 
and time, inherent in the Lorentz transformation itself and physically 
interpreted by Einstein 1905, quite apart from a four-dimensional 
geometry.

2.3  “space and tiMe,” section iii
Minkowski’s real innovation, which does go beyond Einstein 1905, comes 
at the outset of section III, where we meet with the assertion that “the 
world-postulate permits the identical treatment of the variables x, y, z, and 
t” (83). Minkowski forthwith introduces the notion of “four-vectors” in 
spacetime: “We now, on the analogy of vectors in space, call a directed 
length in the manifold of x, y, z, and t a vector …” (84). In accordance 
with this conception, and by formal analogy with the Pythagorean 
Theorem, the magnitude of the invariant “displacement vector” in space-
time will be given by the Lorentz invariant c t x y z2 2 2 2 2− − − .  To be 
more precise, the preceding expression applies specifically to “space-like 
vectors” for which the quadratic expression assumes a negative value, 

reducing to − − −x y z2 2 2  for a suitable reference frame in which events 
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occur simultaneously. For “time-like” vectors, on the other hand, we 

employ 
c t x y z

c

2 2 2 2 2− − −
,  corresponding to the possible trajectory of a 

physical particle traveling at less than the speed of light. Thus, for a suit-
ably chosen inertial frame in which a clock is at rest, the expression for the 

time-like vector reduces to 
c t

c

2 2

 or simply dτ. Clearly, the otherwise 
anomalous divisor c appended to the time-like vector represents a conces-
sion to the desideratum of treating x, y, z, and t “identically” as vector 
components. Otherwise, the time-like component would be cτ (with units 
of length), conflicting with the claim that the world postulate enables 
“identical treatment of the four variables.”

Further developing the notion of the time-like vector, Minkowski des-

ignates the integral ∫
− − −c dt dx dy dz

c

2 2 2 2 2

 along the path of a particle 
the “proper time” (τ), which, as we know, is also the time read off a clock 
traveling with the particle (85). Therefore, the proper time interval 
between two events, registered by an inertial clock present at both those 

events, is proportional to c t x y z2 2 2 2 2− − − .  This fact, nota bene, has 

nothing to do with the expression c t x y z2 2 2 2 2− − −  representing a 
spacetime interval or with proper time “measuring” such an interval. It is 
simply an algebraic manipulation of the Lorentz transformation. The con-
cept of “proper time” thus has no relation per se to “four-vectors” or 
spacetime intervals, being simply the time interval registered on a clock, 

related to the time on some other clock (regarded as at rest) by τ = −t
v

c
1

2

2
.  

This result, once again, is already explicitly contained in special relativity 
1905, where Einstein notes that if a clock moves in a closed curve with 
constant velocity, it will be retarded compared to an initially synchronous 
clock at rest.24

Minkowski concludes Section III of “Space and Time” with definitions 
of the four-velocity and four-acceleration as the first and second derivatives 
(with respect to proper time) respectively of the four-displacement, noting 
that these two vectors are “normal” to one another (that is, their scalar 
product is equal to zero) (85). It follows that the “four-force” is also nor-
mal to the four-velocity, which leads to some noteworthy results in 
Minkowski’s treatment of special relativistic mechanics in Section IV.25
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We would be remiss, however, if we proceeded to Section IV without 
pausing over the ambiguous status, noted above, of the time component 
of the four-displacement vector; for this ambiguity necessarily accrues to 
the rest of Minkowski’s four-vectors. Employing the t convention for the 
time component of the four-displacement renders the time component 
dt

dτ
 of the four-velocity simply the dimensionless number 

1

1
2

2
−
v

c

,  an 

unsettling prospect for a vector component in the physical sense (and a 
physical sense it must have in Minkowski’s “absolute world”). By contrast, 
if we use the ct convention, writing for the time component of the four- 

velocity 
d ct

d

( )
τ

 rather than 
dt

dτ
,  we are left wondering why the distance 

light would travel during an interval of proper time should have anything 
to do with a particular component of a body’s four-dimensional velocity. 
One can always defend Minkowski’s approach, of course, by saying that 
we should not take the term “velocity” so literally, that what we have here 
is simply with the rate of change of the time component with respect to 
proper time. However, if we are not really talking about “velocity” in a 
physical sense or at least something like it, why construct the quantity in 
the first place and call it the “four-velocity”? It is no wonder that one text-
book admits the only reason for calling the “four-velocity” a velocity is 
that its spatial components are “closely related to the particle’s ordinary 
velocity … which is called the three-velocity.”26

A further problem with respect to finding a physically intelligible inter-
pretation of the four-velocity and, mutatis mutandi, all the other four- 
vectors constructed upon the four-velocity, is the mixing of quantities 
measured in different reference frames. The proper time τ is, we must not 
forget, the time measured relative to the frame in which our clock is at 
rest, whereas the coordinate time t is measured relative to some other rest 
frame.27 But what justification there could be for regarding as a physical 
quantity in its own right the rate of change of a coordinate quantity with 
respect to proper time? Rather, such unnatural structure in a vector com-
ponent simply is forced upon Minkowski by the requirement that all 
admissible quantities be invariant “geometrical objects.” The only way to 
obtain the requisite invariance is through hybrid quantities like the 
four-velocity.
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It might seem attractive, and would certainly be in accord with accepted 
usage of the term vector, to regard Minkowski’s four-dimensional vectors 
as strictly analytical entities or “vectors” in a mathematical sense alone—
simply sets of numbers related by a transformation equation. Einstein 
himself so regards them in his Princeton lectures of 1921, noting that

[t]he ensemble of three quantities, defined for every system of Cartesian 
coordinates, and which transforms as the components of an interval, is called 
a vector…. We can thus get at the meaning of the concept of a vector with-
out referring to a geometrical representation.28

Clearly, however, the fact that a set of quantities transforms as an interval 
does not mean that it is an interval in the physical or geometrical sense. 
Moreover, with regard to the notion of “four-vectors” in spacetime it is 
worth recalling that a “vector” in the usual sense is a single directed quan-
tity which, if we so desire, we may resolve into “components” in some 
coordinate system. A transformation law will then govern the derivation of 
the components in one frame as a function of the components in another. 
However, such a resolution into components is optional: the concept of a 
“vector” as a directed quantity does not depend on it. Moreover, given a 
set of quantities related by a transformation law, it is not necessarily the 
case that these quantities may be regarded as components of some single 
directed quantity (vector). The quantities appearing in a transformation 
equation, after all, are simply algebraic variables related one to another in 
a prescribed way.

Notwithstanding his pronouncements about the absolute world, then, 
Minkowski’s four-vectors in spacetime give every appearance of being 
merely analytical or, if you will, “symbolic” vectors. That is, Minkowski’s 
vectors are “directed” solely in the symbolic or configuration space he has 
constructed: the so-called direction (angle) of the four-velocity vector, for 
instance, is simply an index of the magnitude of a body’s three- dimensional 
velocity as represented on a spacetime graph. Furthermore, in the four- 
dimensional vector calculus, no single directed four-dimensional quantity 
in spacetime is identifiable such as could be subsequently resolved into 
components. Rather, Minkowski’s four-vectors are and can only be con-
structed out of Cartesian components—or perhaps better, they exhibit 
“components” in a purely analytical sense but no directed resultant—and 
so they are coordinate-analytic in their very essence. From this perspective, 
it is surely ironic that Minkowski is often regarded as having departed 
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from Einstein’s algebraic approach in favor of a geometric or vectorial 
conception in mathematical physics. Minkowski employs the language of 
geometry, but his four-vectors are essentially analytical.

2.4  “space and tiMe,” section iV
Up to the present point in Minkowski’s presentation, all four-vectors have 
been constructed as kinematical entities, as it were, determined by formal- 
mathematical analogy with their three-dimensional counterparts. Thus, for 
the four-dimensional displacement vector, by analogy with the Pythagorean 

line element dx dy dz2 2 2+ + ,  we obtain c dt dx dy dz2 2 2 2 2− − − .  Similarly, 

for the four-velocity vector we have, by analogy with 
dx

dt

dy

dt

dz

dt
, , ,  the four-

velocity 
dx

d

dy

d

dz

d

dt

dτ τ τ τ
, , , ;  and similarly for the four-acceleration. Minkowski 

devotes the remaining two sections (IV and V) of “Space and Time” to 
establishing that the four-vector approach can be consistently applied 
beyond kinematics to mechanics (Section IV) and electrodynamics (Section 
V); and furthermore, that his theory supplies a superior theoretical under-
standing in both these branches. For our purpose, since special relativity has 
no more essential connection to electrodynamics than to mechanics or any 
other branch of physics, and since the proposed explanatory superiority of 
Minkowski’s theory applies equally to both or neither, let us, with a view 
toward our eventual discussion of the energy tensor in general relativity, 
concentrate on Minkowski’s treatment of mechanics in Section IV.

We may, on the preceding pattern of defining four-dimensional vectors 
by analogy with their three-dimensional counterparts, write f = m0a for 
the four-force (m0 designating the rest mass or “proper mass”), yielding 
what Minkowski terms the “force vector of motion” (Kraftvektor der 
Bewegung) (87). The latter may be regarded as the four-dimensional 
“effect” of the applied force or “motive force vector” (bewegender 
Kraftvektor). Minkowski now introduces his four-dimensional law of 
motion fmotive = fmotion. The suggested analogy with Newton’s law of motion 
is inescapable. Newton writes, “A change of motion is proportional to the 
motive force [vi motrici] impressed,”29 (Newton’s “change of motion” 
corresponding to our change of momentum), such that our version of 
Newton’s law likewise can be written Fmotive = Fmotion or F

dp

dtmotive = .  Clearly, 
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Newton’s law of motion relates “motive force” as cause to change of 
motion as effect (Definition 4: “Impressed force [vis impressa] is the action 
exerted upon a body to change its state …”30). In Newtonian terms, then, 
given the definition of force as an action on a body that changes its state 
of motion, we have two ways of quantifying force or saying how much of 
it there is in a given instance.31 With respect to the acting cause, we select 

some particular force such as gravity and then write F
Gm m

rg =
1 2
2

 (or, in 

non-algebraic terms such as Newton employed himself: the ratio of gravi-
tational forces is proportional to the ratio of masses and inversely propor-
tional to the duplicate ratio of the distance between those masses32). 
Likewise, with respect to the effect we can quantity force in terms of the 
magnitude of the effect produced, thus f = ma (or “the force is as the mass 
and the acceleration conjointly”). Based on the proposed analogy with 
Newton’s law of force, then, we would expect Minkowski to offer an intel-
ligible account of the four-dimensional “motive force vector” as an acting 
cause, comparable to Newton’s motive force (or “impressed” force).

Minkowski commences his discussion of the four-dimensional law of 
motion by asking, “When a force with the components X, Y, Z parallel to 
the axes of space acts [my italics] at a world-point P (x, y, z, t) … what 
must we take this force to be when the system of reference is in any way 
changed?” (86). I take Minkowski here to be speaking of the “relativistic 
force,” which is clear for a couple of reasons: In the first place, since only 
spatial components are listed, it cannot be the four-force. Moreover, the 
group Gc is explicitly assumed and so Minkowski cannot be referring to 
Newtonian force.33 Since the relativistic force is not invariant, though, the 
four-force must be obtained by multiplying the components of the relativ-

istic force by 
dt

dτ
 (the relativistic factor γ or 

1

1
2

2
−
v

c

), yielding an invariant 

vector γX, γY, γZ, γT for the motive force vector. Then for the “force vec-
tor of motion” the analogy with the right-hand side of Newton’s law 
yields fmotion = dp/dτ. Finally, we obtain for Minkowski’s law of motion 

Fγ = dpi/dτ or, in terms of rest mass, f
d m v

dtmotion =
( )0 2γ . Clearly, Minkowski 

is seeking more than merely a relativistic transformation law for the force 
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vector components X, Y, Z, in which case standard Lorentz covariance 
would be sufficient.

The genuine beauty of Minkowski’s four-vector calculus begins to 
emerge fully when we more closely examine the time component of the 
motive four-force γT. Minkowski continues:

When the system of reference is changed, the force in question transforms 
into a force in the new space coordinates in such a way that the appropriate 

vector with the components γX, γY, γZ, γT, where T
c

v X v Y v Zx y z= + +( )1
2

 

is the rate at which work is done by the force at the world-point P divided 
by c2, remains unchanged.34

(Minkowski obtains T in the passage above by setting to zero the scalar 

product of the four-force and the four-velocity, such that f
Fv

ct =
γ
2

; and 

since ft = Tγ, we obtain T
Fv

c
=

2
.35)

Adepts in relativity will recognize Minkowski’s introduction of what we 
know today as the “energy-momentum four-vector.” Yet Minkowski never 
says that the time component of the four-momentum is energy, but that 

the time component divided by c2 is energy. Since Fv
dE

dt
k=  (Ek designat-

ing relativistic kinetic energy), it follows that the time component of the 

motive four-force is equal to 
1
2c

dE

dt
k







 .36 If we then multiply the time 

component of the four-momentum by c2, we obtain the relativistic kinetic 

energy or mc2γ, which yields the approximation mc
mv2

2

2
+  for velocities 

small in comparison to c. Minkowski thus calls his fourth equation 

(
1
2

2

c
mc matγ = ) the “law of energy,” by which he presumably means that 

just as the Newtonian second law of motion gives the rate of change of 
momentum as a function of the motive force, the time component of his 
four-dimensional law of motion gives the rate of change of energy as a 
function of the motive force vector. Moreover, since the four-acceleration 
vector is normal to the four-velocity, the fourth equation can be regarded 
simply as a consequence of the other three. Accordingly, Minkowski 
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observes, the fourth equation implicitly contains “the whole system of the 
equations of motion” (87). Indeed, this point is more easily appreciated 
without any reference to operations on four-vectors: Since 

γ =

−

= ( )1

1
2

2

v

c

f v , it follows that m
d

d
m
d f v

d

γ
τ τ
=

( )  . And since the spa-

tial part of the four-force is m
dv

dτ
, the time component is determined 

entirely by the spatial components. One could therefore be forgiven for 
wondering whether the real lesson of Minkowski’s cogitations on the four- 
dimensional law of motion is rather that the time component of the four- 
momentum (or any other four-vector) is simply redundant, with no 
additional insight into relativistic mechanics thereby achieved.

It is difficult to ignore the carefree manner in which expositors of the 
four-momentum, unlike Minkowski himself, toss around the constant c; 
and not simply as a function of the convention chosen for the time com-
ponent of the four-displacement (that is, t or ct). This is all the more 
remarkable if we recall that it was only the “positive parameter c,” with its 
units of velocity, that got the whole four-dimensional apparatus off the 
ground, as it were, in Section I of “Space and Time.” Obviously, the con-
stant c affects the physical meaning of any algebraic expression in which it 
appears, and if the time component of the four-momentum is to be 
regarded as energy (as per the expansion above for mc2γ), then a factor of 
either c or c2 must be simply thrown in to obtain the proper relativistic 
expression for energy; for the time component of the four-momentum 
itself, depending on your convention, is either mγ or mcγ.

What physical justification is there for simply inserting c or c2 in order 
to obtain energy? None that I can see. And the anomaly is in no wise obvi-
ated by our freedom to adopt the convention c = 1, even if some of the 
better authors seem to suggest just that. In his excellent introductory text-
book on general relativity, for instance, James Hartle remarks that for a 
relativistic particle at rest, the energy mγ expressed by the time component 
of the four-momentum “reduces to E = mc2 in more usual units.”37 But 
this is simply untrue. If we are licensed to insert the factor c2 merely based 
on having previously stipulated that c  =  1, then we have just as much 
license to insert c3 or c4 or any other power of c we choose, obtaining for 
energy E  = mc3 or E  = mc4 and so forth as we please. In reality, using 
Hartle’s convention mγ for the time component of the four-momentum, 
the restoration of the “usual units” yields mcγ for the time component of 
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the four-momentum, not mc2γ; and in that case the expansion for relativ-

istic energy is mc
mv

c
+

2

2
, not the desired mc

mv2
2

2
+ . Similarly, Nerlich in 

his otherwise lucid account of Minkowski’s theory informs the reader that 
for a particle at rest, the total energy, “when we restore the constant c2 to 
remind ourselves of the conventional ratio between seconds and meters,” 
is mc2.38 But the constant c2 was never removed in the first place in Nerlich’s 

own account, since Nerlich earlier gives the four-velocity as 
ds

d
c

τ
= , which 

means he is employing the ct convention. Once again, the ct convention 
yields mc for the time component of the four-momentum rather than mc2.

Petkov, on the other hand, correctly writes 
1

2
2

2

c
mc

mv
+









  for the 

expansion of the four-momentum, such that on the ct convention the time 

component of the four-momentum is 
E

c
.39 Awkwardly, though, he then 

concludes that the proportionality of energy to the time component of the 
four-momentum reveals that the time component is energy. But the pro-
portionality of two quantities in no wise implies they are forms of the 
“same thing.” Force is proportional to acceleration in Newtonian mechan-
ics, for instance, but that does not make force a form of acceleration 

(rather it is a cause of acceleration). After all, with 
1
7c

 as our constant of 

proportionality, mc2 is proportional to mc9 (mc
c

mc2
7

91
= ), but surely we 

would hesitate to conclude on that basis that mc9 is “really” a form of 
energy (or a form of any physical quantity at all).

It is, to be sure, merely a convention whether light velocity c enters our 
equations in special relativity with units of “meters per second” or “miles 
per hour” or anything else you please. But just as clearly, the fact that c 
enters our equations with units of velocity or “distance per unit of time” is 
not a convention. No physical velocity is merely a dimensionless number, 
after all, and, as we just recalled, Minkowski’s geometrical approach is 
rendered feasible in the first place solely through his introduction of the 
“positive parameter c” in units of space and time; for otherwise the whole 
theory would be incoherent on purely arithmetical grounds. Consequently, 
to regard c as a “dimensionless constant” is something supporters of 
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Minkowski spacetime are least of all in a position to do.40 In truth, the 
necessity of restoring c when it has been dropped has nothing to do with 
“reminding” ourselves of the convention we chose for the units of c (be 
those units meters, yards, seconds, light years, or anything else). As long 
as t stands for time and x stands for distance, there is no physical sense, in 
any units, to the algebraic expression t2 − x2. That is why the units of c 
must be restored, even if we require no reminder of the convention we 

have adopted because we have adopted the simplest one: c =
1

1

unit distance

unit time
. 

And, even were we for some physically inexplicable reason (aside from 
notational convenience), to drop the units of light velocity and treat the 
velocity of light itself as a dimensionless constant, there still is nothing 
special about the number 1. We could with as much justification stipulate 
that the velocity of light is the “dimensionless number” 300,000 or 
186,000 or 3.14 or any other dimensionless number we choose. Surely it 
would be extraordinary if special relativity, which so famously eschews 
privileged inertial reference frames or coordinates, singled out a privileged 
system of units with c = 1!

There is no denying the elegance of Minkowski’s derivation of the “law 
of energy” from the time component of the four-momentum. But has he 
succeeded in providing a four-dimensional analogue to Newton’s second 
law of motion? Or has he simply summarized with a strikingly new formal-
ism what is already contained in the 1905 special relativistic version of the 
relativistic force law F = maγ? It appears to me to be the latter. Newton 
defines force as “an action on a body to change its state of motion,” and 
even if we do not know the nature of the force, as is the case for Newton 
in his theory of gravity, the definition is still intelligible in terms of the 
concept of causality. No mere quantification of force, for instance with 
Gm m

r
1 2
2

 as cause and ma as effect, can substitute for such a qualitative defi-

nition: for these very quantifications are physically intelligible only on the 
condition that we already possess a qualitative concept of force, however 
inadequate it might ultimately prove to be. By contrast, Minkowski sup-
plies quantifications, but no physical concepts. For what could it mean for 
a four-dimensional force to “act” at a world-point? What concept of 
“action” has been defined for the absolute world in which “nothing 
moves” and thus nothing changes? It is not surprising, then, that 
Minkowski’s four-dimensional “law of motion” is rarely if ever mentioned 
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either in textbook accounts of special relativity or philosophical defenses of 
the Minkowski’s theory. For a law of motion presupposes the reality of 
motion and in Minkowski spacetime, “[t]hese new four-dimensional 
objects do not move ….”41 By contrast, Einstein’s 1905 special relativity 
maintains a physically intelligible concept of force, since f = m0aγ holds in 
any inertial frame provided the acceleration remains parallel to the force. 
Seen in this light, it would appear that in the context of the special theory 
of relativity, at least, all Minkowski’s mechanics accomplishes is to replace 
a coherent concept of force with an incoherent one. However, Minkowski’s 
four-vector calculus does provide an invariant expression for energy and 
momentum taken together, neither of which is so formulated in Einstein’s 
1905 special relativity. Moreover, as we know, in his theory of gravity 
Einstein will avail himself of Minkowski’s energy-momentum four-vector 
as the basis for the stress-energy tensor, just as he will employ the four- 
displacement vector as the basis for the metric tensor. These points we will 
have to address at the appropriate point in Chap. 7.

notes

1. See for instance Pyenson 1977, Corry 1997 and 1998, and Walter 1999.
2. Corry 1997, 274–275. Such focus on logical consistency is indeed exem-

plified by Minkowski’s address, as when, after introducing his “world pos-
tulate,” Minkowski sets out to demonstrate that “the assumption of the 
group Gc for the laws of physics never leads to a contradiction ….” 
(Minkowski 1952 [1909], 86).

3. Quoted in Pyenson 1977, 89.
4. On Göttingen science in general during the period in question, see Heelan 

1987, sec. 2, 371–373.
5. See Lehmkuhl 2014.
6. Minkowski 1952 [1090], 75.
7. Damour 2008, 626–628.
8. Damour 2008, 629.
9. Friedman 1983, 306.

10. Minkowski 1952 [1909], 83.
11. Minkowski 1952 [1909], 75. Page references otherwise unidentified in 

this section are to Minkowski’s “Space and Time” (Minkowski 1952 
[1909]).

12. Various authors have noted Minkowski’s failure in the Cologne lecture to 
mention Poincaré’s contributions. Since it is Minkowski’s formulation that 
was taken up into subsequent history of mathematical physics, for our pur-
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poses we can regard Minkowski as the “inventor” of four-dimensional 
spacetime. On Poincaré’s contributions to special relativity in relation to 
Minkowski see, for instance, Damour (2008), section II, and Walter 
(1999), section 2.2.

13. A hyperbolic rotation sweeps out angles on a hyperbola rather than on a 
circle as in regular trigonometry. In “Space and Time,” Minkowski declines 
to use the hyperbolic functions sinh and cosh, although presumably he 
knew how to employ them. The hyperbolic functions leave the minus signs 
for the spatial variables intact and are in that respect less hospitable to the 
desired formal analogy with the Pythagorean Theorem.

14. Presumably a finite value is more intelligible because if c were infinitely 

large, then 
dx

dt
 would reduce to dx

0
. For an infinitely large velocity, that 

is, no time elapses during the traversal of any distance.
15. See, for instance, Mermin 1984.
16. Eddington 1965 [1923], 10.
17. Eddington actually writes for the time component dy4

2, but for consistency 
I will adopt dx4

2.
18. Friedman 1983, 138–142.
19. Friedman 1983, 138–139.
20. Friedman 1983, 142.
21. Friedman is not explicit that the structure of Minkowski spacetime is the 

only sure way to the Lorentz transformation, as opposed to simply the best 
way, although that is certainly the impression I get.

22. The prominence of Klein’s program in Minkowski’s approach to relativity 
is somewhat downplayed by Scott Walter (Walter 2014).

23. Einstein’s definition of the length of a moving rod as the distance between 
the simultaneous coordinates of its endpoints essentially defines an instan-
taneous relative space.

24. Einstein 1952a [1905], 49–50.
25. The derivation can be found in any beginning textbook on relativity. Since 

the value of the four-velocity is c, it follows that u2 = c2. If we then differ-
entiate with respect to τ, we obtain using the chain rule 2(u ∙ du/dτ) = 0 
or u ∙ a = 0, and so u ∙ f = 0. As a rule, I shall identify four-vectors by 
boldface type.

26. Schutz 1985, 44.
27. Nerlich (2013, 188–122) argues that the proper time should be under-

stood as a frame-independent quantity rather than as a quantity relative to 
any particular reference frame (or all of them). I shall address the distinction 
between frame invariance and frame independence in Chap. 3 below. Here I 
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simply observe that even on Nerlich’s interpretation the four-velocity is a 
hybrid construction, since we take the derivative of a relativistic quantity 
(coordinate time) with respect to an “absolute” quantity (proper time).

28. Einstein 1953 [1922], 11.
29. Newton 1999 [1726], 416.
30. Newton 1999 [1726], 405.
31. Newton does not similarly distinguish between a qualitative definition of 

“quantity of motion” and the quantification of the same in a law of motion: 
“Quantity of motion is the measure of motion that arises from the velocity 
and the quantity of matter jointly” (Definition 2 of Newton 1999 [1726], 
404). Presumably, the omission is because “quantity of motion” is already 
the quantification of the qualitative concept of motion. What would rather 
require qualitative definition would be motion itself, a concept Newton 
presumably takes as primitive and therefore indefinable.

32. Newton typically speaks of single quantities being “proportional” to other 
quantities, but obviously the proportionality of ratios is intended, since a 
proportion equates ratios, not quantities. Niccolò Guicciardini argues that 
Newton’s practice of referring to “proportions” between single quantities 
at specific points (as for instance Prop. VI, Book I of the Principia) sug-
gests that Newton actually derived these results by means of algebra. See 
Guicciardini 1999, 125–135. Today we express a proportion algebraically 
by means of a “constant of proportionality.”

33. In the appendix (“Mechanics and the relativity postulate”) to Minkowski’s 
earlier and more technical paper on relativity (Minkowski 2012b [1908], 
51–110) there is no such detour through relativistic force. One must pre-
sume that in “Space and Time” Minkowski is proceeding for the benefit of 
physicists unfamiliar with the four-vector calculus.

34. I have corrected the Perrett and Jeffery translation, where “divided by c2” 

in the quoted passage incorrectly reads, “divided by 1
c

.” The Lewertoff 

and Petkov translation (Minkowski 2012c) of “Space and Time” corrects 

this typographical error. I have also substituted γ for Minkowski’s 
dt

dτ
 and 

vx for his 

dx

d
dt

d

τ

τ

 (and likewise for the other spatial variables).

35. (cft, Fγ) ∙ (cγ, vγ) = 0, and so c2ftγ − Fvγ2 = 0 or f
Fv

ct =
γ
2 . Once again, F 

is the relativistic force.

36. This follows from the fact that v X v Y v Z
dE

dtx y z
k+ + =  by the work-

energy theorem.
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37. Hartle 2003, 87.
38. Nerlich 2013, 64.
39. Petkov 2005, 113.
40. Even Einstein himself, uncharacteristically, seems to have fallen prey to the 

temptation. In his Autobiographical Notes, for instance, Einstein remarks 
that if “one introduces as the unit of time, instead of the second, the time 
in which light travels 1 cm, c no longer occurs in the equations. In this 
sense one could say that the constant c is only an apparent universal con-
stant. It is obvious and generally accepted that one could eliminate two 
more universal constants from physics by introducing, instead of the gram 
and the centimeter, properly chosen “natural” units (for example, mass and 
radius of the electron). If one considers this done, then only ‘dimension-
less’ constants could occur in the basic equations of physics” (Einstein 
1979 [1949], 59). This is all clearly false and represents a seduction by 
pure mathematics to which Einstein was not normally susceptible. An 
adjustment of units does not remove c from the equations in any sense save 
a notational one. Clearly, c still maintains its dimensionality even if adjusted 
to “one unit of distance per one unit of time.” It is hard to imagine Einstein 
really thinking otherwise.

41. Nerlich 2013, 91.
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CHAPTER 3

Special Relativity and Spacetime

The questions on Minkowski spacetime raised thus far can be framed in  
general terms as follows: What is the relation between the concept of 
Minkowski spacetime and its object—what it intends or is “about”? That 
relation is so far obscure, and in this chapter I shall elaborate that obscurity 
in three principal respects: first, the theory of spacetime articulates no clear 
meaning to the concept of a “single continuum” of space and time; second, 
the theory conflates two quite different types of geometrical representation—
graphs and images—and so reads off visual features of graphs as if they were 
direct images of the physical world; and third, the theory of spacetime mis-
construes the significance of invariance in special relativity by way a false 
analogy with geometry.

3.1  Spacetime and the concept of a continuum

From a more or less common sense perspective, we can define a contin-
uum as an infinitely divisible magnitude of any kind (spatial, temporal, or 
otherwise). Slightly more formally, we might say that a metric continuum 
is defined by (1) a distance function between any two points and (2) the 
infinite proximity of neighboring points in the sense that for any given 
point, there exists a neighboring point such that the distance between the 
two is less than any given distance. In this general sense temperature, for 
instance, pressure, a line in space, loudness, time intervals, anything that 
admits of continuous degree, may be regarded as a continuum. A metric 
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continuum in differential geometry, in the usual sense, is a space with a 
line element or quadratic differential function giving the distance between 
any two points as a non-negative real number. In Riemannian geometry, 
this quadratic differential form is derived from the Pythagorean Theorem.

By its very nature, a metric continuum is a single continuum; for there 
can be no distance function between points of different continua. Were 
there such a function, per impossibile, its dimension or units would be 
undefined.1 We do refer loosely to the “spacetime continuum” of Newton’s 
theory, for instance, but with no four-dimensional metric Newtonian 
spacetime in reality comprises two distinct continua, one spatial and one 
temporal. The same applies to Einstein’s special relativity 1905, in which 
space and time are metrically entangled but not unified into a single metric 
continuum.

A last criterion for a metric continuum is a transformation function 
from one measuring system to another. In the case of a one-dimensional 
continuum this is simply a matter of unit conversion and a reference point. 
To convert from Celsius to Fahrenheit in the temperature continuum, for 
instance, we multiply by 9/5 and add the constant 32; and so our trans-

formation equation is °
°

= +F C
9

5
32 . For a geometrical continuum we 

require a transformation that accounts for displacements, rotations, and 
motions of the coordinate frames, expressing each transformed variable as 
a function of all the variables in the other system. Thus, in Cartesian coor-
dinates, for a rotation in two-dimensional Euclidean space we obtain:

 
′ = −x x ycos sinθ θ  

 
′ = +y x ysin cosθ θ  

As David Bohm aptly observes,

Without such a transformation, we would hardly even be justified in regard-
ing the … dimensions as united into a single space as “continuum” (e.g., in 
an arbitrary graph, in which one physical quantity such as temperature is 
plotted against another, such as pressure, there is no such unification).2

Thus while I could indeed plot my beer consumption over time on a 
graph, I could not meaningfully speak of a “beer-time continuum.”
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In terms of the three criteria we have listed, Minkowski spacetime 
would appear to qualify as a (single) continuum. Its “points” are events, 
its distance function the Lorentz invariant ds2 = c2dt2 − dx2 − dy2 − dz2 
(“spacetime interval”), and its transformation equations (in two dimen-

sions and employing hyperbolic functions with γ =

−

1

1
2

2

v

c

):

 ct ct x′ = −cosh sinhγ γ  

 
′ = −x x ctcosh sinhγ γ  

Yet we immediately notice an awkward circumstance. The transformed 
quantities above are ct and x, not t and x. Otherwise those quantities 
would be of heterogeneous dimension, rendering senseless the arithmeti-
cal operation of subtraction. (That was the whole point of Minkowski’s 
“positive parameter c.”) We certainly expect all the dimensions of a single 
continuum to be of the same kind, in accord with the requirement for a 
distance function. And, indeed, it would appear that if continua of differ-
ent dimension are to be “merged” into a single continuum, each must lose 
its specific dimensionality and assume the merged dimensionality. One 
way such a merging might be accomplished, formally at least, is by drop-
ping the constant c and regarding the variables t and x as dimensionless 
numbers. Here a kind of “homogeneity of dimension” is accomplished by 
abstracting from the nature of the physical quantities under consideration. 
Short of that, a distance or interval, in the physical or geometrical sense, 
must carry some specific kind of dimension and be measured in a specific 
kind of units.

It follows that if space and time themselves, and not just the algebraic 
variables t and x, are truly to be merged into a single continuum, either  
(1) space must be “temporalized,” (2) time must be “spatialized,” or (3) both 
space and time must give way to a third type of merged dimension (“space-
time”). Moreover, as Émile Meyerson observed early on (1925) in the 
history of the theory of relativity, the fact that Minkowski’s construction 
is a “geometry” means that the merging in question will necessarily be 
effected “to the advantage of space”; that is, option (2)  above must 
prevail:
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It should be noted that if time and space are henceforth to be more or less 
merged into a single continuum, this change will clearly work to the advan-
tage of space…. Let us observe, moreover, that this already follows from the 
fact that the construction at which one arrives is a geometry. And one need 
only open an exposition of the doctrine to note that, where time is con-
cerned, the writer always speaks of one dimension, obviously conceived as 
spatial, while no attempt is ever made to represent the properly spatial 
dimensions in terms of time.3

In such a merged entity, time must acquire a geometrical or spatialized 
nature, which we nevertheless somehow experience as if events were “com-
ing to be and passing away,” all the time being ourselves confined to the 
present. Such a philosophy of time, often called eternalism or the “block 
view,” is probably the dominant view today among philosophers of time.

Yet option (3) would arguably be the more logical choice, since, at least 
prima facie, the merging of time and space into a single continuum should 
favor neither time nor space. A physically real spacetime interval, that is, 
should carry the dimension of spacetime and accordingly be measured in 
units of spacetime, whatever those might be, rather than in units either of 
time or space. In that event, both space and time would be experiential 
illusions of some kind or at least “emergent phenomena” grounded in 
some more fundamental reality (itself neither spatial nor temporal.) 
Indeed, philosophical accounts of Minkowski’s theory often seem to oscil-
late between option (2) and option (3). For obvious reasons, option (1), 
or the temporalizing of space, is not seriously entertained.4

The single continuum theory of space and time must also provide an 
intelligible account of the relation between four-dimensional spacetime 
and the three-dimensional world of Einstein 1905 special relativity. It is 
not enough to speak of a three-dimensional projection or “cross-section” 
of the four-dimensional absolute world which alone is truly real. In an 
actual geometrical projection, after all, a shadow for instance, the number 
of dimensions is reduced by one while the qualitative type of dimension 
(space) is left unaltered. In the alleged “spacetime projection,” by contrast, 
the qualitative type of dimension (spacetime) is itself altered, such that an 
absolute, non-perspectival reality with “merged” dimensionality neverthe-
less exhibits, when so projected, distinct dimensions of space and time.

We must ask whether the theory of spacetime does not in reality con-
flate two quite distinct meanings of the “three-dimensional projection” of 
a four-dimensional absolute world: in one sense the literal geometrical 
resolution of a four-vector into its spatial and temporal components, and 
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in a very different sense the metaphorical projection of the absolute world 
in experience, from the particular perspective of an “observer.” When 
Minkowski asserts, for instance, that “only the four-dimensional world in 
space and time is given by phenomena, but the projection in space and in 
time may be undertaken with a certain degree of freedom,” presumably he 
means that in choosing a specific inertial frame of reference we project the 
four-dimensional absolute world onto a three-plus-one-dimensional rela-
tive one.5 This interpretation indeed is suggested by the “Minkowski dia-
gram,” with its depiction of multiple frames on the same graph.6 The 
specific “relativity” at issue here clearly is a relativity with respect to the 
inertial frames licensed by the special theory of relativity—that is, the reso-
lution of a spacetime four-vector into components relative to one of those 
frames—not a perceptual relativity with respect to some hypothetical 
“observer” who experiences the world as a three-dimensional present.

However, ex hypothesi in Minkowski’s theory, only the four-dimensional 
world truly exists; and in that world there are solely spacetime intervals, 
not time intervals and spatial distances per se. How, then, can there obtain 
any such “projection” with respect to a three-dimensional inertial frame 
that according to the theory is not objectively real? The analogous projec-
tion of a three-dimensional object onto a two-dimensional surface (casting 
a shadow, for instance) can be freely undertaken only because two- 
dimensional surfaces do exist in three-dimensional space, and exhibit the 
same spatial quality of dimension as three-dimensional space. But here we 
have postulated a projection “onto” something that previously has been 
deemed not to exist except as a projection. We cannot give ourselves back 
with one hand what we have just taken away with the other. Thus, in the 
end, the “three-dimensional projection” of Minkowski’s absolute world 
could only be a projection in subjective experience, for in Minkowskian 
special relativity there exists by hypothesis no three-dimensional physical 
world upon which such a projection could terminate. In that case, how-
ever, our ability to formulate special relativistic physics three- dimensionally 
with respect to inertial frames is rendered unintelligible.

3.2  the “Geometry of Spacetime”: 
GraphS and imaGeS

In the theory of Minkowski spacetime, much of the weight of the analogy 
between space and spacetime is borne by the so-called spacetime coordi-
nate rotation. This graphic device is represented, once again, on the 
famous Minkowski diagram from the Cologne address (Fig. 3.1):
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To review, Cartesian axes x and y are rotated “inward” to obtain oblique 
axes x′ and y′, with each point on the hyperbola drawn through A repre-
senting an event at a given time and place with reference to the origin. Just 
as for any point on a circle in regular Cartesian coordinates, the rotation 
of the coordinate axes leaves unchanged the quantity x2 + y2 (the distance 
between the point and the origin), so for the hyperbolic rotation the 
quantity c2t2 −  x2 (the so-called spacetime distance) remains invariant, 
regardless of the orientation of the coordinate axes.

To better appreciate the meaning of the “spacetime rotation,” we must 
consider more closely the nature of geometrical representation in general. 
Let us distinguish, in admittedly oversimplified fashion but sufficient for 
present purposes, two basic types of geometrical representation: images 
and graphs. An image (or “icon”) is a direct representation in the sense 
that it pictures what it represents, thus bearing a genuine resemblance to 
what it is about.7 A circle drawn with pencil and compass, for instance, 
perhaps from the books of Euclid or Apollonius, qualifies as an image of a 
circle in space. The drawn figure or image is not the object of the proof, 
of course, since it is not strictly circular in a mathematical sense; but it does 
bear a direct resemblance to the geometrical circle in that it is “more or 
less” a plane figure with its points equidistant from the center.

Images have some interesting phenomenological features that have 
been analyzed by philosophers of art. A small child will point to a photo 
and say, “That’s Daddy!” even though she very well knows that Daddy is 
not a flat piece of paper. She still discerns the genuine “sameness” between 
the image and Daddy. Thus an image exhibits a kind of identity in differ-
ence that renders present what is absent, by way of this sameness with the 
image. The relation is quite different from that between a mere sign and 
the thing signified. If I am driving down the interstate and see a sign that 

0
1
D’ C

C’D

B

B’

t’

t

A’
A x’

x

1
c

Fig. 3.1 Spacetime 
coordinate rotation

 J. K. COSGROVE



 41

says “Boston 45,” I now know that Boston is 45 miles away, but I do not 
point at the sign and say, “There’s Boston,” as I would if I picked out the 
city on a map of Massachusetts or saw a photo of the skyline. A mere sign 
“points” as it were, by convention, while an image pictures by virtue of its 
more direct relation to that which it represents.

The geometrical representation of something non-spatial can never be 
an image. However, still within the sphere of geometrical representation, 
and situated somewhere between images and “mere signs” with respect to 
the directness of the relationship with what it intends, lies the interesting 
category of graphs. An example is the “Bell Curve.” The bell shape itself, 
maybe a line connecting plotted points designating tabulated data (for 
instance, frequencies of grades on an exam) does not in any way resemble 
the actual frequency of those grades. It is not an image of that frequency. 
But it evidently does more than merely point in the manner of a sign like 
the table of data itself. For in a way the Bell Curve still pictures something. 
Thus, one might point at the graph and say, “There’s the distribution for 
last week’s exam.”

As compared with a genuine image, however, like a drawing of a circle, 
a graph represents indirectly or symbolically. We find an early example of a 
graph in the history of mathematical physics in Galileo’s treatment of pro-
jectile motion (Two New Sciences, Theorem I, Proposition I of Day Four), 
in which on a single diagram Galileo represents time by means of a hori-
zontal line and space by means of an intersecting vertical line. The para-
bolic shape of the plotted line is in this case only accidentally an image of 
the actual path in space of the falling body. Rather, Galileo’s graph repre-
sents visually an idealized set of data (vertical positions of a projectile at 
points in time), or perhaps better an idealized law.8 On the other hand, a 
plot of a parabolic trajectory in space, with both the horizontal and verti-
cal axes representing distance in space, would be an image in the proper 
sense. And, indeed, the same diagram can be an image or a graph, or even 
both at once, depending on how we interpret the vertical and horizontal 
axes respectively. In Newton’s Principia, for instance, we first encounter a 
graph in Lemma X of Section I, Book I, where times are represented on 
the vertical and velocities on the horizontal (with spaces traversed propor-
tional to the areas of triangles). The very same diagram was an image in 
the previous Lemma IX, where Newton demonstrated a proposition about 
the geometrical relationship between the sides and areas of such triangles.9 
The advantage of a graph over simply tabulating data is that we can see 
patterns that might otherwise go unnoticed. The apex of the bell curve, 
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for instance, indicates the most likely test score, and its shape calls our 
attention to how the different scores are smoothly distributed from lowest 
to highest.

Graphs such as employed in analytical geometry and mathematical 
physics are, as a rule, symbolic representations of equations, or at least they 
imply equations. Thus in the graph of the equation for a circle, r2 = x2 + y2, 
the points on the graph represent relations between distances along the x 
and y axes, which themselves represent possible numerical values of the 
variables x and y, which in turn represent whatever we are actually talking 
about. The question therefore arises whether the drawn circle on the 
graph of the equation r2 = x2 + y2 should be regarded as an image of a circle 
(direct representation) or a graph of a circle (indirect representation). In 
fact, the drawn circle can be taken, at different levels of representation, 
either as an image, a graph, or even both at the same time—although qua 
graph it is never an image per se. The equation itself defines general rela-
tions between numbers and does not necessarily have anything to do with 
a geometrical circle. For instance, were there a quantitative relationship in 
economics between, say, marginal tax rates and economic growth, such 
that the sum of squares of these quantities equaled a constant, economists 
no doubt would speak of the “circular relationship” between economic 
growth and tax rates. In that case our diagram would function purely as a 
graph of economic data. But if we are doing geometry, then the graph of 
the equation is simultaneously an image of the geometrical entity of 
interest—a circle in space. Geometry therefore comes into play here at two 
different levels of representation: as symbolic means of representation 
(graph of the equation) and as image of the thing being represented (a 
circle in space).

Descartes himself, originator of what today we call “graphing an equa-
tion,” sets forth as clearly as one could want the symbolic conception 
governing what we nowadays call “analytical geometry”:

We have as much reason to abstract propositions from geometrical figures, 
if the problem has to do with these, as we have from any other subject mat-
ter. The only figures we need to reserve for this purpose are rectilinear and 
rectangular surfaces, or straight lines, which we also call figures, because, as 
we noted above, these are just as good as surfaces in assisting us to imagine 
an object that is really extended. Lastly, these same figures must serve to 
represent sometimes continuous magnitudes, sometimes a set or number.10
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While we are used to thinking of analytical geometry as a method for 
doing geometry algebraically, which it is, to be sure, Descartes’ decisive 
innovation is the symbolic representation of quantity in general by line 
lengths, which is why he begins his Geometry of 1637 with a demonstra-
tion of how to perform the basic arithmetical operations by means of geo-
metrical figures.11 So even when we really are doing geometry, we will 
“abstract” from geometrical figures by using lines (coordinate axes) to 
represent the general quantitative relationships determined by equations. 
Our figures or graphs will sometimes represent something geometrical, 
like a circle or ellipse, but sometimes not (“a set or a number”). The graph 
is therefore always first and foremost a symbolic space, regardless of whether 
ultimately it represents something geometrical.

Nevertheless, when we are doing geometry, a graph of the equation for 
a geometrical figure is always at the same time an image of that figure: for 
the geometrical representation of such an equation also pictures the fig-
ure. The situation is quite different when we are not doing geometry, 
though, for here graph and image never coincide. There can be no geo-
metrical image of a non-geometrical object. Suppose I have a body in 
uniform motion, for example, satisfying t

s

v
=  (t = time, s = distance, v = 

velocity). In Cartesian coordinates, with time on the vertical axis and space 
on the horizontal axis, the graph of the equation for the body’s trajectory 
is a straight line. But this straight line is not an image of the body’s trajec-
tory in space and time. For, after all, if the body were accelerating rectilin-
early it would still be making a straight line in space, but its graph would 
no longer be straight line. Even to say that t

s

v
=  “graphs as a straight 

line” presupposes Cartesian coordinates. If we apply the coordinate trans-
formation s′ = s2 the graph will now be a curved line, even though the body 
is still moving uniformly and making a straight line in the x direction.

Clearly, a Minkowski diagram is a graph rather than an image. It is never 
both at once, as in our example where the drawn circle represents at two 
levels simultaneously (as graph of the equation for a circle and as the image 
of an actual geometrical circle). Thus arises another disanalogy between 
the Minkowski spacetime interval and its exemplar the Pythagorean line 
element. Distances on a drawn right triangle are images of actual distances 
in a geometrical right triangle. Spatial distances on a Minkowski diagram, 
by contrast, are not likewise images of distances in spacetime, for a “world 
line” on a Minkowski diagram is a graph of the equation for the trajectory 
of a body in special relativistic space and time. That is why if I plot the 
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trajectory of a light ray, for instance, and then measure the distance 
between two of its points on the graph in front of me, this distance does 
not represent anything at all. The spacetime distance for a light-like inter-
val is zero, after all, while the spatial and temporal intervals traversed by the 
light are registered on the x and t-axes respectively.

The rather obvious distinction between a graph and an image would 
hardly be worth mentioning except for the propensity of physicists and 
philosophers of science to speak of spacetime diagrams as if they were 
images rather than graphs. Indeed, the difference between a graph and an 
image, for which adepts in relativity undoubtedly have an intuitive sense, 
is nevertheless systematically disregarded in some of the best literature on 
spacetime.12 An example is Roberto Torretti’s admirable Relativity and 
Geometry, a historical-critical analysis of special and general relativity “from 
the standpoint of geometry.”13 In his opening discussion of Newtonian 
physics, Torretti introduces the concept of a coordinate system or “map-
ping” of points in spacetime to real numbers. The variables xn are intro-
duced in purely analytic-algebraic terms without being associated with any 
set of coordinate axes or spacetime diagram. At a certain juncture, though, 
we are suddenly informed that a curve in the four-dimensional manifold M 
may be called a “worldline.” Evidently we have made the transition to a 
graph without being explicitly told that we have. Surely nothing to com-
plain about, except that further on in the same discussion we learn that “a 
free particle has a straight worldline: this is the geometric contents of 
Newton’s First Law.”14 Strictly speaking, of course, it is not the geometri-
cal contents of Newton’s First Law, but rather the geometrical contents of 

a graph of the equation 
d x

dt
i

2

2
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  for Newton’s First Law. Fortunately, 

just two lines later Torretti backtracks slightly: “The difference between a 
free or inertial and a non-inertial or forced motion is therefore analogous 
[my italics] to that between straightness and crookedness …” (30). 
Perhaps the term “analogy” is less than apt here, though, suggesting as it 
does a degree of sameness in the order of being, whereas the relation 
between actual inertial motion and geometrical straightness on a graph is 
a purely symbolic or conventional. That is nothing against the use of 
spacetime diagrams, but if we are seriously to accept the proposition that 
an inertial trajectory is a “geometrical object,” as writers on spacetime 
habitually insist, then such a trajectory should be literally geometrical—in 
this case literally a straight line. Or, if the notion of “straight line” is not 
to be taken literally, then we should be told what actual geometrical object 
is here intended.
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Torretti’s ambiguity is emblematic of a general propensity, with which 
the literature on spacetime is replete, to conflate images and graphs, direct 
representations with symbolic representations. An extreme example of this 
propensity is Petkov’s contention that the law of inertia can be understood 
in terms of the four-dimensional “stress” experienced by a deformed 
(crooked) world tube, with inertia thereby understood as the force that 
restores the world-tube to straightness.15 Needless to say, such a deformed 
world tube (crooked line) lives only on a graph and experiences no stress. 
Once again, we can always straighten out the deformed world-tube and 
relieve the stress by means of a suitable coordinate transformation.

Another example, again from one of the better studies, illustrates the 
same tendency to reify symbolic entities. In his estimable Foundations of 
Spacetime Theories, Michael Friedman introduces the notion of a vector 
tangent to a curve in Euclidean three-space R3, with a “component-free” 
representation as in Fig. 3.2 below16:

The curve may be regarded as an image or direct representation of the 
geometrical object of interest—a curve in space. The vector itself merits 
some additional comment, though, since it serves in one respect as an 
image and in another as a graphic symbol. Its “imaging” function consists 
in pointing in the same direction as the curve at the point of tangency. 
However, the length of the tangent vector is purely symbolic, since the 
rate of change represented by the length of the drawn line is a different 
kind of quantity from the length of the line drawn on the diagram. In this 
case we symbolically represent the magnitude of the rate of change by 
means of the length of a line. Thus we have an image (direction of the 
arrow) in one respect and a symbol (length of the vector sign) in another.

Fig. 3.2 Tangent 
vector in Euclidean 
3-space (one dimension 
suppressed)

 SPECIAL RELATIVITY AND SPACETIME 



46 

Friedman then seamlessly proceeds to an analogous representation of a 
curve and its tangent vector in the four-dimensional spacetime manifold 
R4 as below17:

Figure 3.3 above is clearly the very same diagram as Fig. 3.2, except that 
the vertical axis now represents time. But notice what has happened. In the 
earlier example (Fig. 3.2), the geometrical object of interest, a curve in space, 
was represented by an image—a spatial curve on the diagram. But now our 
“spacetime curve” is purely symbolic. It contains no imaging features what-
soever. The physical trajectory in question is not actually a line, straight or 
otherwise, since the line is solely on the graph. Moreover, the direction of 
the arrow for the tangent vector no longer represents an actual direction in 
space, as before, but now symbolically represents the body’s velocity. 
Furthermore, the length of the “four-vector” on paper is now completely 
meaningless. While Friedman emphasizes the superiority of the “compo-
nent-free” mode of representation, which is supposedly more direct, dis-
pensing as it does with coordinate systems, in reality the freedom from 
components is illusory and merely notational. Minkowski spacetime, after all, 
is a construction out of Cartesian components. The best we can manage as 
regards a component-free representation is to combine the three spatial 
components into a single “component-free” spatial component of our space-
time vector. But we simply have no means of combining the spatial compo-
nent and the temporal component into a component- free entity or single 
vector, except merely notationally—by writing for the tangent vector in 
spacetime the symbol T  instead of T i, for instance—or graphically by draw-
ing an arrow tangent to a curve on a spacetime diagram. That is why when 
so-called “coordinate-free” or “component-free” methods are used in four-
dimensional physics, to actually do any calculation or measure anything one 
still has to restore at a minimum the distinct time and space components. In 

Fig. 3.3 Tangent 
vector in spacetime (two 
dimensions suppressed)
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a genuinely component- free or vectorial formulation it would be entirely 
optional whether to resolve geometrical objects into components.

A last example from the spacetime literature helps bring home the 
invidious effect of mistaking graphs for images. Petkov argues, on the basis 
of Minkowski’s cross-section diagram (see right hand part of Fig.  3.4 
below), that relativistic length contraction would be impossible in a three- 
dimensional world.18 For in that case the respective four-dimensional strips 
on the diagram allegedly would not represent anything existing in the 
world, with the result that there could be only the one proper length PP 
corresponding to the single projection onto the x-axis. But in Minkowski’s 
absolute world, Petkov notes, the object can also have length P′P′ corre-
sponding to its projection parallel to the x′-axis in the space of the rela-
tively moving observer:

Petkov concludes, “Therefore the four-dimensional vertical strip of the 
body would not represent anything real in the world and would be merely 
an abstract geometrical construction” (34).

Clearly, the four-dimensional vertical strip both represents something 
real in the world and is merely an abstract geometrical object. That very 
duality, as we learned above, is the essential property of a graph. Petkov has 
unfortunately taken Minkowski’s diagram for an image when it is in reality 
a graph of the points at which certain events occur in space and time. What 
Petkov more intelligibly could have said is that while the strips on the 
graph do not image anything in the physical world, and are indeed merely 
abstract geometrical constructions, they do indirectly or symbolically rep-
resent something in the real world, namely, the Lorentz contraction.19

Returning to Minkowski’s hyperbolic rotation in spacetime, we must 
conclude that the analogy with a Pythagorean rotation in Euclidean space 
is merely formal. We cannot physically rotate a “time axis,” after all, whereas 
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if I wished I could set up a Cartesian grid in my backyard and verify the 
Pythagorean distance formula by actually rotating the apparatus. But the 
hyperbolic rotation can be effected only on a graph. It is a symbolic rotation 
and should not be taken as the image of a “Lorentz boost” in spacetime. 
There is no physical “angular rotation” whatever, although the construc-
tion does bear a limited algebraic analogy to the algebraic representation of 
a real rotation in space. Physicists and philosophers know this intuitively, of 
course, which raises the question of the source of the considerable seduc-
tiveness of the Minkowski diagram. That source, I shall argue in Part II, is 
the symbolic-algebraic constitution of the spacetime interval itself.

Ultimately, if our intention is to represent a four-dimensional geometri-
cal object, we should be able to identify that object without recourse to 
symbolic representation on a graph. In pre-Minkowski special relativity we 
can easily translate the language of graphs, which is unobjectionable in 
itself, into something physically intelligible. That unfortunately does not 
appear to be the case for the theory of Minkowski spacetime.

3.3  invariance and Special relativity

According to the regnant account of the history of relativity, although 
Einstein discovered special relativity in 1905, the theory’s true significance 
was opened up only in 1908 when Minkowski unveiled its “deep geo-
metrical structure.” Since Minkowski’s theory countenances solely invari-
ant geometrical objects, so goes the account, it alone discovers “objectively 
reality.” If invariance truly merits the significance assigned to it in such an 
account it must speak strongly in favor of Minkowski’s theory. If we con-
sider the concept of invariance more closely, though, the proposition 
becomes dubious.

3.3.1  Invariance and Objectivity

The idea that invariance is an index of objective reality is one of the most 
deeply entrenched notions of relativistic physics. Scott Walter plausibly 
suggests that one of the principal reasons for the relatively rapid accep-
tance of Minkowski’s theory, subsequent to its publication, was just the 
restoration of the kind of absolute entities that physicists were used to, but 
which had been relativized by Einstein’s 1905 theory.20 Yet Einstein him-
self, even after embracing Minkowski’s formalism and employing it in gen-
eral relativity, does not appear to have subscribed to this view of invariance. 
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The principle of relativity as Einstein understood it, after all, holds that the 
laws of nature are invariant, not that particular physical quantities or geo-
metrical objects are invariant. Indeed, in Einstein’s thought the concept of 
covariance brings out this very difference: quantities such as length, mass, 
and so forth must co-vary so that the laws of nature may remain invariant. 
However, most if not all of the influential interpretations of relativity over 
the past few decades have embraced invariance, or better frame- 
independence, in preference to relativity, as the ruling concept of space-
time theory. The doctrine evidently has its historical origins in Felix Klein’s 
“Erlanger program,” where differing geometries are classified based on 
their invariants under some group of transformations. It finds its way into 
mathematical physics via Minkowski’s geometrical interpretation of the 
special theory of relativity.

Considered in itself, of course, special relativity is an abstraction, for the 
special theory holds only infinitesimally in general relativity. We must think 
of special relativity in local terms and, specifically, refrain from extrapolat-
ing results that depend on frame-relative simultaneity at a distance. 
Nevertheless, the notion of frame-relativity itself remains essential to 
Einstein’s 1905 special relativity. Nerlich, one of the most intelligent 
defenders of invariance theory, argues that apart from Minkowski’s four- 
dimensional geometry, the three-dimensional “rod-in-a-frame” of 
Einstein’s 1905 special relativity is referentially indeterminate: “In the 
1905 theory why don’t know quite what we are talking about.”21 The 
problem is that the pair of simultaneous events determining the length of 
the rod is not the same in two frames moving relative to one another. 
Thus, at least if a rod is defined as a set of simultaneous events, we have two 
different rods rather than one and the same rod measured in two different 
frames. A referentially determinate rod, then, evidently would be a four-
dimensional entity whose frame-independent proper length measures the 
space-like interval between events at its endpoints. However, it is only in 
the four-dimensional theory itself that we fix the identity of a three- 
dimensional rod in terms of a set of simultaneous events or a  three- 
dimensional cross-section of the rod’s four-dimensional “world tube.” In 
Einstein 1905, the three-dimensional rod is taken for granted as an endur-
ing object with a proper length in its rest frame, apart from considerations 
of simultaneity. This assumption is perfectly reasonable, for we cannot even 
begin our reflections in the theory of relativity without assuming the exis-
tence of entities that maintain their identity through time. A mere mani-
fold of events could never yield the world tubes of the four- dimensional 
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theory itself. With respect to the rod, a single pair of simultaneous events 
is required, not to determine the rod referentially, but to measure its length 
when it is moving relative to a rest frame. Thus is the one and only three-
dimensional rod contracted in a frame, with no issues of referential inde-
terminacy such as concern Nerlich. Length contraction is a physically real 
effect in special relativity, apart from considerations of relative simultaneity 
at a distance.22

What makes the invariance theory seductive is a misplaced analogy with 
geometry. Suppose I am describing a geometrical object by means of a 
rigid reference frame, for instance, a Cartesian coordinate system. If I 
reorient the reference system, its relations with the object of interest 
change. These changed relations are entirely objective—they do not reflect 
an observer’s “point of view” or anything like that. However, given that my 
aim is to describe the object of interest itself, not anything else, I do not 
want the changing relations to the reference system to enter the descrip-
tion. In this sense I am indeed seeking invariants in coordinate geometry: 
the distance between two points of interest, for example, irrespective of the 
changing components of displacement vector between those points. 
Observe that there is nothing in the invariant, in this case the distance 
between the points of interest, which makes it “objectively real” in some 
way the changing vector components are not objectively real. To be sure, 
the invariant distance between the points is “objective” in the sense of 
being the object of interest. But both the distance between the points and 
the vector components are objectively real, even if the latter are not invari-
ant because I am deliberately altering them. Since I am the one using this 
particular physical system as a reference frame, though, I might well say 
that “relative to me,” or from my perspective, the invariant displacement 
vector between the two points has different components than it does from 
the perspective of somebody else employing a different reference system. 
But this is only a loose way of speaking, since the vector components them-
selves are not geometrically related to me as an “observer,” but rather to 
the reference system itself, a physical system made of rigid rods. I just hap-
pen to be using it, and nothing would change if I were not.

The success of the “method of invariance” above depends on the rigid 
rods staying the same length when the coordinate system is reoriented; for 
if the rods changed their length, then the displacement vector itself, and 
not just its components relative to the reference system, would be altered. 
In that case, we would have to either disqualify the reoriented coordinate 
system or incorporate it into our description of the geometrical object of 
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interest. On the latter option, length would now be a relational property 
of the displacement vector with respect to the reference system. That is, 
the determination of length would now require specification of a frame, 
just as, for instance, in the description of left and right when I say the cof-
fee cup on my desk is “to my left,” while at the same time it is to your 
right. There is no question here of any loss of objectivity that previously 
attached to the invariant distance between points. Relational properties 
are as objective as non-relational ones. The displacement vector in the new 
situation would have a definite and objectively determined length, but 
only relative to a frame.

The significance of invariance in geometry lies not in serving as an 
index of objective reality, but rather in picking out the properties of the 
geometrical object under study and screening out other properties, equally 
objective, which depend merely on the object’s relations to the reference 
system. Philosophically speaking, the opposite of “objective” is subjective, 
not relative. But in special relativity, unlike geometry, we have to take into 
account the effect of motion on the rods and clocks of the reference sys-
tem. Therefore, we can no longer use invariance the way we did in geom-
etry. The length of a rigid rod is now a relational property of the rod, and 
similarly for clocks, which now register a time interval relative to a frame.

Reflecting in 1920 on the problem of the magnet and conducting coil, 
famously mentioned at the beginning of his 1905 paper, Einstein observes,

The idea that these two cases [motion of the magnet or motion of the coil] 
should essentially be different was unbearable to me. According to my point 
of view, the difference between the two could only lie in the choice of the 
point of view, but not in a real difference …. As seen from the magnet, there 
was certainly no electric field; whereas seen from the circuit there certainly 
was an electric field. Therefore, the existence of the electric field was a rela-
tive one, depending on the state of motion of the coordinate system used; 
and only the magnetic and electric fields combined, aside from the state of 
motion of the observer or coordinate system, could be granted a kind of 
objective reality.23

In light of our analysis, Einstein expresses himself unfortunately when he 
suggests that only the combined field is “objectively real,” as if the frame- 
relative electric field merely reflected a subjective point of view. Should we 
characterize the objective reality of the combined field this way, in terms 
of its independence of the motion of the “observer or coordinate system,” 
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as if the latter two were equivalent? As we said, the coordinate frame is a 
physical system comprised of rigid rods and clocks; an objective state of 
affairs holds relative to that system (how fast the magnet is moving, for 
instance) quite apart from the presence of any observer. Conversely, 
observers can use any coordinate system they like and are not “assigned” 
to their rest frames. To be sure, it is harmless to speak of reference frames 
in terms of observers at rest in those frames, as long as we do not also 
attribute to these physical systems themselves the subjective perspective of 
observers. The frame-relativity of the electric field has nothing to do with 
how things subjectively appear to observers at rest in this or that frame, 
and Einstein in fact leaves it unclear the nature of the combined field in the 
magnet and coil scenario. Does the combined field act through physically 
distinct electric and magnetic components? How so if those component 
are objectively unreal? And if the components are not physically real, then 
out of what elements is the field “combined”?

It is just at this point that spacetime geometry is supposed to come into 
play, furnishing an objective description of the combined field as a single 
four-dimensional object. Before treading the geometrical path, though, 
we should reflect more carefully on the question of frame-relative forces in 
special relativistic electrodynamics. A force is either exerted or not, regard-
less of reference frame, but to quantify a force we need to consider its 
effect. A force in the special relativistic version of Newton’s second law, 
f = m0aγ, has for its effect frame-relative increments of both kinetic energy 
and momentum in the accelerated body. We learned in Chap. 2 that the 
Minkowski four- momentum does not in fact combine relativistic kinetic 
energy and relativistic momentum into a single frame-independent quan-
tity, since the time component of the four-momentum is mcγ, not mc2γ. 
The four- dimensional approach fails here, and if it fails in this case it fails 
in every case. Kinetic energy is the ability to do work, and work is a motive 
force acting through a distance. By virtue of the Lorentz contraction, a 
body in motion is not capable of the same amount of work in every frame, 
since the distance through which the motive force acts is not the same in 
every frame. The motive force itself is either present or not, either acts or 
does not act, irrespective of the frame of reference; but the components of 
the physical effect fall out differently in different frames of reference.

For the case of the magnet and conductor, of course, the motive force 
itself acts through electric and magnetic components. However, a better 
description than the one Einstein gives in 1920, perhaps, would be that 
the components of the “combined field,” which is either present or not, 
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are relational manifestations of the one electromagnetic force. They are 
not objectively unreal for being relational. Clearly, the electromagnetic 
field is a dynamical effect of the relative motion of the conductor and mag-
net, not a dynamical effect of the motion of either of those relative to the 
reference system. It is solely the metrical properties of space and time that 
are determined relative to the reference system.

This is the solution to the case, cited by Nerlich, of a magnet and coil 
at rest relative to one another. Relative to a frame in which the magnet and 
coil are at rest, there is no induced electric field and therefore no current 
in the coil, while relative to a frame in which they move, according to 
Faraday’s law, there is a magnetically induced electric field and therefore a 
measurable current. However, the motion of the electrical charges in the 
magnetic field produces an electromotive force which exactly cancels out 
the induced electric field, such that no current flows in the coil. Surely, as 
Nerlich puts it, “No coil is both devoid of current-producing E fields and 
yet contains two such equal and opposing E vector fields.”24 That is indeed 
the case, for in the scenario under consideration there are present no E 
fields, since there is no relative motion between the magnet and the coil. 
Nevertheless, the Maxwell-Hertz equations cited by Einstein in the elec-
trodynamical part of his 1905 paper predict an induced electric field rela-
tive to the “stationary frame.”25 That is because these equations determine 
the existence of the electric field based on the motion of the charge rela-
tive to a rest frame, not relative to the coil. Accordingly, the opposing 
electromotive force relative to the reference system must also be consid-
ered, as if both forces were both present.

But Einstein’s essential insight in 1905 was that it is the motion of the 
magnet and coil relative to one another that gives rise to the dynamical 
effect of the field, not the motion of either of those relative to a rest frame. 
(He misstates that insight when he says that only the combined field is 
“objectively real.”) In reality, the motion of the charge relative to the ref-
erence system determines only the metrical environment in which the 
force acts, so to speak, not the dynamical production of the force itself. As 
Einstein writes in 1905,

If a unit electric point charge is in motion in an electromagnetic field, the 
force acting on it is equal to the electric force which is present at the locality 
of the charge, and which we ascertain by transformation of the field to a 
system of coordinates at rest relatively to the electrical charge. (New manner 
of expression.)26
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This procedure gives the E field due to the relative motion of the charge 
and the magnet, in the present example zero. The problem is that if we 
transform to any frame in which the charge is moving, the Maxwell-Hertz 
equations will return an electromagnetic field that is not really there, since 
in pre-relativistic fashion the Maxwell-Hertz equations assume that the 
field is generated by motion relative to a rest frame. The fact that in special 
relativity the rest frame is no longer the ether, but rather any inertial frame, 
leaves the anomaly intact: for it is not motion relative to a rest frame that 
gives rise to the field, but rather the relative motion of the magnet and 
coil. Four-dimensional spacetime does not remove the anomaly. Instead, 
once we have determined the field in the rest frame of the charge, we can 
apply f = mo ay to obtain E′ = Eγ for a frame relative to which the charge is 
moving. For Nerlich’s case of the magnet and conductor at rest relative to 
one another, the electric field is zero in any frame. For other cases we 
obtain from E′ = Eγ a physically real, frame-relative electric field.

Nerlich reasonably stresses the difference between frame-invariance 
(so the velocity of light, for instance) and frame-independence (for exam-
ple, how many passengers are riding on one of Einstein’s famous trains). 
What supposedly renders true invariants objectively real is not that they 
are the same relative to all frames, but that they are independent of any 
frame at all. It is only because such objects are themselves absolute and 
frame-independent that they can appear in our experience as invariant. On 
such a view, then, frame-invariance must be regarded as the mode in 
which that which is absolute reveals itself to frame-bound beings like us. 
This philosophy is often supplemented by the assertion that the absolutes 
of a theory are therefore its “observables”—for instance, in relativity the 
“proper” quantities such as proper time, proper mass, and so forth. Thus 
the proper time registered by a clock, for instance, is to be understood not 
as a measure of the time elapsed relative to the frame in which the clock is 
at rest, but rather as a measure of the absolute spacetime distance traversed 
by the clock.

On its face, the observation that proper time is an “invariant” in the 
theory of relativity seems trivial, as if one were to read great significance 
into the fact that all observers can agree that the clock face has Arabic 
rather than Roman numerals or something. For the very designation of 
the time recorded on a particular clock as the “proper time” renders that 
time frame-independent by definition—it is, after all, the time recorded on 
that clock. This is not the same as to say that the quantity of time that has 
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passed is frame-independent. Suppose I am driving down the highway and 
mark the reading on my speedometer as I pass a tree on the side of the 
road. The speedometer reading itself, the position of the indicator, is 
frame-independent and thus “the same for all observers.” Does that mean 
that the speed of my car is frame-independent? Clearly not, since the 
speedometer registers my car’s speed relative to the pavement.

Proper quantities might reasonably be regarded as frame-invariant in 
the sense that they serve as reference quantities in all frames. That is, the 
coordinate time in every frame is τγ, and so the proper time τ itself is 
frame-invariant. But τ is still the time registered in the clock’s rest frame 
and, in any event, this sense of frame-invariance is quite apart from abso-
lute geometrical objects. To be sure, in special relativity we cannot regard 
the proper time recorded on an accelerated clock as the time of the clock’s 
rest frame. But that is simply because the rest frame of an accelerated clock 
is not an allowable frame in special relativity. Such a clock does not register 
an amount of time that has passed in any frame.

What really motivates the claim that proper time is a frame-independent 
absolute in the theory of relativity is the idea that a clock records the abso-
lute spacetime distance along its path. That is not true. To be sure, proper 
time is proportional to the Lorentz-invariant c t x2 2 2− , the so-called 
“interval” in spacetime (as per to the relation c2τ2 = c2t2 − x2). Unfortunately, 
this proportion is often erroneously interpreted to mean that the proper 
time registered on a clock actually “measures” a spacetime interval. Such 
a manner of speaking is misleading, however, since a quantity can properly 
be measured solely in terms of a unit homogeneous with the quantity 
itself. If I wish to measure how much money I have, for instance, the unit 
of measure must be an amount of money. Of course, I may represent the 
amount of money I have by means of some other quantity, the length of a 
line, for instance, but that does not amount to measuring my wealth in 
units of length. Likewise, the fact that the square of the proper time regis-
tered on a clock is proportional to the invariant algebraic quantity c2t2 − x2 
does not mean that c2t2 − x2 is a frame-independent physical quantity mea-
sured by the clock. After all, mvc3 is proportional to momentum, even 
though mvc3 obviously represents no physical quantity at all in the real 
world. Moreover, while the quantity c2t2 − x2 is clearly frame-invariant, it 
most assuredly is not frame-independent. Quite the contrary, the expres-
sion is meaningful only as one member of a Lorentz transformation equa-
tion. A truly frame-independent expression for the spacetime interval 
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would have stand alone, like the Pythagorean distance formula, indepen-
dently of any transformation law. In no wise, then, can proper time be 
regarded as “frame-independent” simply by virtue of its proportion to the 

Minkowski interval c t x2 2 2− .
If we are committed Minkowskian absolutists, of course, we will insist 

that proper time cannot be a relativistic quantity because relativistic quan-
tities are not objectively real; but if we are relativists we will demur and 
continue to regard proper time in special relativity as relative to the rest 
frame of our clock, and proper length as relative to the rest frame of our 
rigid rod. And whether we should be absolutists or relativists is a philo-
sophical question that cannot be settled by relativistic physics. The coffee 
cup on my desk is to my left and to your right. It is precisely as participant 
in these relations that the coffee cup is “referentially determinate,” in 
Nerlich’s terms. The relations in question are objective and have nothing 
to do perspectival cross-sections or anything of the kind. As for special 
relativity as an empirical theory, it is enough that a length-contracted rod 
exhibit sufficiently stable relations with other entities to secure its referen-
tial determinacy. For if the length-contracted “rod-in-a-frame” were not 
the same rod as the non-contracted “rod-in-its-rest-frame,” on what basis 
could we say that this particular and perceptually given rod is “really” a 
four-dimensional entity in Minkowski spacetime?

3.3.2  Invariance and the Clock Paradox

There exists a growing body of literature suggesting that the so-called 
relativistic “clock paradox” (or “twin paradox”) can be explained solely in 
terms of the invariance properties of Minkowski spacetime.27 To review 
the scenario, two clocks are locally synchronized initially, with one of them 
subsequently traversing a closed path in space and finally reuniting with 
the “stationary” clock at some later time. At the time of their reunion the 
traveling clock is retarded compared to the rest clock. The evident para-
dox lies in the failure of relativistic reciprocity: for the traveling clock is 
retarded absolutely compared to the rest clock. This failure of reciprocity 
has suggested to some authors that clock retardation is not a relativistic 
effect at all, but rather an absolute effect determined by the four- 
dimensional path of the traveling clock, which traverses a shorter interval 
in spacetime than the stationary clock.
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Petkov, for instance, maintains that philosophical considerations aside 
only the Minkowski four-dimensional viewpoint is consistent with the 
physics of the clock paradox.28 To bracket considerations of acceleration 
that are irrelevant to the clock paradox, Petkov employs an all-inertial 
clock scenario with a third clock serving as surrogate for the original trav-
eling clock on its return trip. That is, traveling clock B departing from A is 
intercepted by synchronized clock C traveling at equal and opposite veloc-
ity, such that when C meets A, C registers the same retardation compared 
to clock A as accelerated clock B would have in the original scenario. Thus 
no acceleration is involved.

The problem with the three-clock scenario, though, is that it is not set 
up to register reciprocal clock retardation. To exhibit the expected reci-
procity we must reanalyze the scenario in the rest frame of clock B. The 
extra clock therefore must function this time as a surrogate for A, just as 
in the original scenario it stood in for B. However, C fails to reunite with 
B after to C’s encounter with A; furthermore, in B’s frame C is now travel-
ing at twice A’s speed and so the required symmetry between A and C 
would not be satisfied in any event. Thus, in the three-clock scenario ana-
lyzed relative to the rest frame of B, there is available no direct comparison 
for determining the retardation of clock A compared to clock B.  If we 
suitably modify the three-clock scenario with a new surrogate inertial 
clock D, standing in for A at the reunion with B, we shall find the expected 
reciprocity in time dilation.

As for the acceleration of the traveling clock in the standard twin sce-
nario, Petkov is correct that it is not acceleration per se the yields the 
retardation of the traveling clock. Nevertheless, the accelerated clock will 
always be retarded compared with the non-accelerated clock. That follows 
simply from the fact that the validity of special relativity is restricted to 
inertial frames. In the usual scenario, after all, the clock that moves must 
be retarded relative to the rest clock; and in order for there to be a reunion 
at all, the moving clock must turn around and come back (that is, it must 
accelerate). Thus the accelerated clock will always be the time-dilated 
clock, an absolute effect to be sure, but no paradox because reciprocity in 
time dilation assumes a situation analyzable in terms of inertial frames in 
motion relative to one another. The twin paradox is therefore resolved by 
a standard analysis in special relativity, formulated three-dimensionally, 
with no necessary appeal to the “length of a world-line” in four- dimensional 
spacetime.
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3.4  on the arrow of explanation

In his 1905 paper, Einstein removes the apparent conflict between the 
special principle of relativity and the light postulate, by means of his analy-
sis of simultaneity and the subsequent derivation of clock retardation and 
the Lorentz contraction. The slowing down of clocks and the shortening 
of rigid rods exactly compensates for the relative motion of reference 
frames, leaving the speed of light unaffected. However, Einstein does not 
claim to have explained why these effects occur, and any attempt to regard 
his presentation as an explanation must end up in circularity. For should 
we say that clocks slow down and rods contract because the speed of light 
is constant in all frames, we obviously are in need of an explanation for 
why the speed of light is constant in all frames, which could only be that 
clocks slow and rods contract. Supporters of Minkowski’s theory custom-
arily invoke the geometry of four-dimensional spacetime as a “construc-
tive explanation” for relativistic time dilation and length contraction.29 
But even if we accepted Minkowski’s theory, it could supply no more 
explanation of these effects than does Einstein 1905, for the four- 
dimensional geometry in question is derived from the Lorentz transfor-
mation in the first place. To provide a truly constructive explanation, the 
theory of Minkowski spacetime would have to account for the light pos-
tulate itself—why the speed of light is the same in all inertial frames. But 
Minkowski’s theory presupposes rather than explains the light postulate.

Would length contraction and time dilation be better understood as 
dynamical effects, as John Bell and more recently Harvey Brown argue?30 
Einstein’s 1905 special relativity, Brown emphasizes, was not generally 
interpreted at first as foreclosing the possibility of a dynamical account of 
relativistic effects such as length contraction and time dilation. But the 
acceptance of Minkowski’s theory changed things:

Following Einstein’s brilliant 1905 work on the electrodynamics of moving 
bodies, and its geometrization by Minkowski which proved to be so impor-
tant for the development of Einstein’s general theory of relativity, it became 
standard to view the Fitzgerald-Lorentz hypothesis as the right idea based 
on the wrong [dynamical] reasoning.31

Such a dynamical account, Bell had suggested, might explain length con-
traction in terms of the equilibrium of electromagnetic forces between the 
particles of a rod in motion. However, it is hard to see how an explanation 
in terms of force could account for the reciprocity of the relativistic effects 
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in question. Of two rigid rods, each shortened in the other’s rest frame, 
only one of them, on Bell’s hypothesis, has experienced an equilibrium- 
altering force. For the proposal to succeed we would require a sense of 
“dynamical” distinct from the concept of force.

One confusion in the discussion, as Brown notes, is the assumption that 
a phenomenon must be either “kinematical” or “dynamical.”32 The issue 
is not merely one of semantics. Brown points out that while Einstein 
placed his discussion of length contraction and time dilation under the 
“Kinematical Part” of his 1905 paper, Einstein was in fact cognizant of the 
fact that the concept of the “rigid” measuring rod and clock was not inde-
pendent of dynamical considerations:

Einstein realized, possibly from the beginning, that the first ‘kinematic’ sec-
tion of his 1905 paper was problematic, that it effectively rested on a false 
dichotomy. What is kinematics? In the present context it is the universal 
behavior of rods and clocks in motion, as determined by inertial coordinate 
transformations. And what are rods and clocks, if not, in Einstein’s later 
words, ‘moving atomic configurations’? They are macroscopic objects made 
of micro-constituents—atoms and molecules—held together largely by elec-
tromagnetic forces.33

This kinematical-dynamical dichotomy is misleading for another reason as 
well, which is that what makes a kinematical description kinematical is that 
it abstracts from the causes of motion, including the absence of forces, not 
that it describes a “kinematical phenomenon.” The medieval mean speed 
theorem, for instance, which abstracts from the cause of uniformly acceler-
ated motion, does not thereby explain uniformly accelerated motion as a 
kinematical phenomenon. Even the law of inertia, which deals with 
unforced motion, is not merely a kinematical law. That is, we do not 
abstract from the forces causing inertial motion, since there are none. The 
law of inertia does not abstract from the concept of force itself, as does the 
mean-speed theorem, since the very statement of the law of inertia refers 
specifically to the absence of forces. The law of inertia is dynamical, and 
indeed no physical law is merely kinematical. That is why we characterize 
Einstein’s metrical theory of gravity, with its appeal to the “most inertial” 
trajectory of a force-free body, as a dynamical theory of gravity rather than 
a kinematical theory of gravity. There are a number ways we might think 
of unforced motion as dynamical or caused—a body’s endeavor to persist 
in its state, for instance, which is how Leibniz regarded it. A dynamical or 
causal explanation need not be framed in terms of forces.
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We do not yet possess an adequate explanation of length contraction 
and time dilation, and I have none to offer here. Such an explanation 
would have to account for why these effects occur in the precise degree 
necessary to render the speed of light invariable in all inertial frames. It 
would be a vanishingly unlikely coincidence, comparable to the equality of 
inertial and gravitational mass in Newton’s theory, for the relativistic factor 
γ to exactly compensate for the relative velocity of frames and so maintain 
constant light velocity in all frames. The situation indeed suggests that 
light, or at least light velocity, plays a role in the production of the rod and 
clock effects, perhaps functioning as a universal metrical standard in nature. 
I shall refrain from speculating on what the mechanism for this might be.

3.5  conceptual difficultieS of minkowSki 
Spacetime: the need for a hiStorical approach

Based on our analysis thus far in Part I, the theory of Minkowski spacetime 
falls considerably short in conceptual intelligibility and coherence, how-
ever superior it may be in terms of mathematical formalism. Defenders of 
Minkowski’s theory assure us that its absolute geometrical objects are 
physically real, but the theory itself fails to identify any such objects. 
Minkowski’s formalism, with its “automatic covariance,” undeniably rep-
resents a mathematical contribution to special relativity; but that is some-
thing else than to say it makes a real contribution to the theoretical content 
of special relativity.

While the evidence against the physical reality of Minkowski spacetime 
is thus far very compelling in my judgment, the argument is not yet con-
clusive. Virtually any scientific concept is infected with at least some degree 
of incoherence, and when a concept plays a vital role in our best theories, 
as would appear to be so for Minkowski spacetime at least in general rela-
tivity, if not special relativity, then rather than rejecting it outright we allow 
the process of scientific advance gradually to purge its incoherencies, at 
least as far as possible. Moreover, from the perspective of the kind of con-
cept formation that characterizes modern science in general, we have per-
haps focused too exclusively, for the case of Minkowski spacetime, on the 
particular obscurity of the concept’s relation to what it intends. That is to 
say, I have found fault principally with the intentional structure of this con-
cept or its manner of referring to the physical world it is supposed to be 
“about.” But concept formation in modern science has from its inception 
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in the sixteenth and seventeenth centuries been determined principally by 
the relation of concepts to other concepts in the system of science as a whole, 
not by the relation of concepts to what they intend per se. Indeed, this very 
feature of modern concept formation emerges very early on in modern 
mathematics, in the development of the symbolic concept of number from 
Vieta to Descartes. Jacob Klein characterizes the shift from the ancient to 
the modern mode of concept formation as follows:

In Greek science, concepts are formed in continual dependence on “natu-
ral,” prescientific experience, from which the scientific concept is 
“abstracted.” The meaning of this “abstraction,” through which the con-
ceptual character of any concept is determined, is the pressing ontological 
problem of antiquity; it becomes schematized in the medieval problem of 
universals, and, in time, fades away completely. The “new” science, on the 
other hand, generally obtains its concepts through a process of polemic 
against the traditional school science. Such concepts no longer have that 
natural range of meaning available in ordinary discourse, by appeal to which 
a truer sense can always be distinguished from a series of less precise mean-
ings. No longer is the thing intended by the concept an object of immediate 
insight. Nothing but the internal connection of all the concepts, their 
mutual relatedness, their subordination to the total edifice of science, 
 determines for each of them a univocal sense and makes available to the 
understanding their only relevant, specifically scientific, content.34

If Klein is right that the concepts of modern natural science—Minkowski 
spacetime or any other concept—achieve their relation to what they intend 
indirectly, via the “total edifice of science,” then we cannot fairly subject 
the concept of spacetime to a standard of intelligibility derived from the 
quite different intentional structure of the concepts of Greek science, 
where concepts intend their objects directly. Cleary the concept of 
Minkowski spacetime is accepted today principally by virtue of its role in 
the formulation and conceptual structure of Einstein’s theory of gravity, 
not by virtue of the transparency of its relation to what it intends.

If we wish to more than merely acknowledge the incommensurability of 
the ancient and modern modes of concept formation highlighted by Klein, 
however, we need a method of evaluating the concepts of modern math-
ematical science on their own terms, but without simply taking for granted 
the superiority of the modern mode of concept formation. This can be 
achieved if we recognize that the original concepts determining modern 
science are in their very meaning-structure transformations of received 
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pre-modern concepts, and specifically of Greek concepts. Thus, to grasp 
the present-day meaning of a concept in the total edifice of science, one 
must view that total edifice—within which alone meaning accrues to the 
concept—from the perspective of its historical constitution.

A historical approach such as described above is all the more indispens-
able for elucidating the symbolic-algebraic structure of the concepts of 
modern mathematical physics. For there can be no doubt that this very 
structure first arose as a transformation of the received Greek concepts of 
ratio and proportion, traditionally regarded up to the time of Newton and 
beyond as the proper mode of expression for a mathematical science of 
nature. Our analysis suggests as much already in some of the confusion we 
have noted in the spacetime literature regarding the physical meaning of 
graphed algebraic equations. This very mode of representation, which 
makes its first appearance in Descartes’ Geometry of 1637, has somehow 
determined the conception of mathematical physics ever since.

noteS

1. This observation applies, for instance, to the so-called “color manifold”: If 
we characterizing each possible color in “color space” in terms of three 
variables (for instance, hue, brightness, and saturation), we can define a 
“color metric” measuring how different one color is from another. 
However, we do not thereby attain a single continuum, since the color 
metric governs the color manifold solely as a symbolic space (or configura-
tion space). The three “dimensions” (hue, brightness, saturation) remain 
heterogeneous. As Kinsman et al. observe “The only way for D [distance] 
to be a valid metric distance [in the color manifold] would be if [all] axes 
had the same units” (Kinsman et al. 2012).

2. Bohm 1996, 148.
3. Meyerson 1985, 72.
4. For one thing, since time has only one dimension we cannot highjack an 

extra dimension for the representation of space. Beyond that, space is pres-
ent all at once, whereas time is present solely moment by moment and is 
for that reason ill-suited for representing anything else.

5. Minkowski 1952 [1909], 83.
6. Elie During (During 2012) emphasizes that the depiction of multiple ref-

erence frames on a single drawing is the decisive feature of the Minkowski 
diagram, which distinguishes it from a mere graph in the usual sense. 
However, During unnecessarily complicates his analysis by equating mul-
tiple reference frames with multiple “perspectives.” While it is true that 
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one does occupy a particular perspective from the reference frame in which 
one is at rest, the concept of a reference frame in the theory of relativity is 
entirely distinct from that of an observer’s “perspective,” and any observer 
can use any reference frame.

7. Emily Grosholz (Grosholz 2007) distinguishes three overlapping forms of 
mathematical representation: iconic, symbolic, and indexical. Icons resem-
ble what they represent, symbols represent by convention, and indexes 
“represent for the sake of organization and ordered display” (25). What we 
call a graph would be an index in Grosholz’ terminology. John Roche 
(Roche 1993, 197–198) distinguishes between diagrams and illustrations, 
the former making no attempt at resemblance, as in the representation of 
a body’s length by the length of a line. Thus diagrams become conven-
tional or symbolic when what they represent is no longer spatial, as when 
we represent a body’s weight by the length of a line.

8. Roche (1993, 216) notes that a graph in the strict sense of the term would 
exhibit a set of experimental data, whereas what we often find instead is the 
graphical representation of an idealized law or equation.

9. The production costs for such illustrations were evidently very high in 
Newton’s time, so he used the same illustration in both of the aforemen-
tioned lemmas.

10. Rule 14 of Rules for the Direction of the Mind (Descartes 1985–1991, 
1:65).

11. Grosholz (2007, 167) specifically highlights Descartes’ definition of mul-
tiplication, according to which the product of a line by a line yields another 
line (rather than a plane). This innovation, which renders geometrical 
magnitudes symbolic, removes a traditional impediment the geometrical 
representation of arithmetical operations, since Descartes is longer limited 
to three dimensions.

12. According to Roche, this propensity has its origin with Minkowski himself: 
“Lagrange, Laplace, Poinsot and their followers would surely have regarded 
Minkowski’s space-time as a conventional configuration space [symbolic 
space] created for purposes of mathematical convenience. … Minkowski, 
however, had far more ambitious claims for his invention. … From the 
perspective of the present article Minkowski seems to have taken his geo-
metrical metaphor of space and time rather too literally” (Roche 1993, 
231).

13. Torretti 1983, 3.
14. Torretti 1983, 29.
15. Petkov 2005, section 10.2.
16. Friedman 1983, 35. I have redrawn Friedman’s diagrams for purposes of 

this discussion.
17. Friedman 1983, 36.
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18. Petkov 2012, 33–34.
19. I have here omitted from consideration Petkov’s further argument that, 

save for the Minkowski’s four-dimensional viewpoint, we are actually deal-
ing with two different three-dimensional objects in their respective frames. 
That may indeed present a problem for a so-called presentist interpretation 
of time. However, in the present discussion I am proceeding with no such 
presentist assumptions, but rather evaluating the concept of Minkowski 
spacetime on its own terms. To be sure, “presentism” is problematic from 
the perspective of special relativity, with or without Minkowski spacetime. 
But special relativity is valid only infinitesimally in general relativity.

20. Walter 1999, 72.
21. Nerlich 2013, 89.
22. See Winnie 1970, 97–98.
23. Einstein 2002 [1920], 135.
24. Nerlich 2013, 88.
25. Einstein 1952a [1905], 51–52.
26. Einstein 1952a [1905], 54.
27. See for example, Arthur 2006, sections 3–4; Nerlich 2013, Chap. 7; Petkov 

2005, section 5.5 and 2013, 86–88.
28. Petkov 2005, section 5.5.
29. See, for instance, Janssen 2009, Balashov and Janssen 2003, Nerlich 2013 

(Chap. 5). On the other side of the debate is, most prominently, Harvey 
Brown (Brown 2005; also Brown and Pooley 2006).

30. Brown 2005; Bell 1987.
31. Brown 2005, 2.
32. Brown 2005, 4.
33. Brown 2005, 4.
34. Klein 1992 [1934–1936], 120–121.
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PART II

The Symbolic-Algebraic Constitution 
of the Concept of Spacetime

1.1  IntroductIon to Part II: the concePt 
of a SenSe-hIStory

We have noted that Cartesian algebra was first introduced into mathemati-
cal physics in the seventeenth and eighteenth centuries as a symbolic trans-
lation of Euclidean proportions. Of course, the historical observation does 
not in itself entail the further claim that Euclidean proportion determines 
the present-day meaning of algebraic equations in theories of physics. 
Indeed, we would fall prey to what is sometimes called the “genetic 
fallacy” if we assumed that the historical origin of a concept rules its sub-
sequent meaning development. Instead, we must distinguish between a 
contingent chronology of historical influence, so to speak, and what we 
should call a historically inscribed logical structure.

Edmund Husserl’s later philosophy of science focuses on just this ques-
tion of the genetic constitution of meaning and the associated role of histori-
cal investigation in the clarification of concepts. Moreover, Husserl’s analysis 
of what he calls “Galilean science” has specifically in view the very formalism-
inspired Göttingen physics of which Minkowski is so prominent an exem-
plar.1 Husserl and Minkowski were colleagues at Göttingen from 1902 until 
Minkowski’s death in 1909 and Husserl was well acquainted with Göttingen 
science. I therefore base my account of the concept of “sense-history” prin-
cipally on Husserl, especially his “The Origin of Geometry” of 1936.2

The sense-history of a concept is logical, not temporal or “historical” in 
the usual sense, even though historical investigation may be essential to our 
knowledge of a sense history. The concept of multiplication, for instance, 
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presupposes addition, since to multiply a quantity is to add it repeatedly to 
itself. We can construct an algebraic concept of multiplication upon this 
original sense of repeated addition, such as multiplying a negative number 
by another negative number according to the rules of a symbolic calculus, 
but such a development of the meaning of multiplication is necessarily 
founded—not just temporally but also logically—upon the original sense of 
multiplication as repeated addition. That is, the algebraic concept of multi-
plication carries within itself, as a constituent of its present-day meaning, its 
original sense as repeated addition. In general terms, according to Husserl,

[t]he essential peculiarity of such products is precisely that they are senses 
that bear within them, as a sense implicate of their genesis, a sort of histori-
calness; that in them, level by level, sense points back to original sense …; 
that therefore each sense-formation can be asked about its essentially neces-
sary sense-history.3

Thus, while the sense-history of a concept or a judgment is in itself logical 
rather than temporal in structure, it nevertheless presupposes a temporal 
genesis in the concrete process of actual history. The modern algebraic 
concept of multiplication, which carries within itself as part of its sense- 
history  the ancient Greek concept of multiplication, did not arise until 
around the sixteenth century.

A related consideration is the inevitable historical process through 
which historically layered moments of sense become successively hidden 
from view. That is to say, in the historical sense we “forget” that repeated 
addition is still active in and continues to determine the present-day mean-
ing of  multiplication. In this sense, we should say that the concept of 
repeated addition is historically “sedimented” in the concept of algebraic 
multiplication. A primary goal of Husserl’s form of analysis, then, is to 
“desediment” such meaning formations, as it were, and so reactivate the 
original experiential or intuitive evidence upon which they are ultimately 
grounded.4 The outcome of the enterprise, if it successfully opens up the 
sedimented history of a concept, will be one of the following: (1) an ade-
quate intuition of the object itself, (2) a dissolution of meaning, or most 
likely (3) a residue of coherent content.

Husserl observes that a “handed-down” science like the European sci-
ence of his time constitutes itself through a tradition, and so the sense- 
structure of that science must be revealed through a historical investigation 
of that tradition.5 The point is evident enough if we merely consider the 
fact that the term “science” as we use it nowadays refers specifically to 
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“modern science” or the science handed down since the scientific revolu-
tion of the sixteenth and seventeenth centuries. In the present context this 
“ready-made” science must be further specified as algebraic physics. In any 
such tradition, each development has reference to a prior acquisition, and 
each new acquisition is taken up into the totality of the tradition as a 
premise for further acquisitions. In general, any scientific tradition as 
“ready-made” is to a significant extent passively received, in the sense that 
we do not begin from new foundations with each generation, but accept 
the accomplishments of the past more or less without question. This is a 
necessary feature of any scientific tradition and applies to even the most 
creative scientists. furthermore, and this is the crucial point,

since meaning is grounded upon meaning, the earlier meaning gives some-
thing of its validity to the later one, indeed becomes part of it to a certain 
extent. Thus no building block within the mental structure is self-sufficient; 
and none, then, can be immediately reactivated by itself.6

In terms of Minkowski’s theory, we cannot gain possession of the concept 
of “spacetime four-vector,” for example, without first having acquired 
“spacetime displacement,” the latter itself founded upon the prior acquisi-
tion of the lorentz transformation, and so forth. A passively acquired 
meaning at any point in the historical genesis of a concept thus may render 
the concept itself passive in the present-day as such accretions of meaning 
are successively sedimented in the concept.

The passive kind of thinking described above thus yields what we might 
call ready-made concepts, constituted by means of a sedimented sense- 
history. What we learn in scientific textbooks, essentially, is how to operate 
with such ready-made concepts in a rigorous and methodical way. To ren-
der transparent the present-day meaning of such concepts thus requires a 
form of historical investigation we could call “desedimentation.” Husserl 
concludes:

Existing in this way [as sedimented traditions], they [all the so-called exact 
sciences] extend enduringly through time, since all new acquisitions are in 
turn sedimented and become working materials. Everywhere the problems, 
the clarifying investigations, the insights of principle are historical.7

We must now turn our attention to these kinds of investigations, first in the 
history of mathematics and then in the history of mathematical physics.
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1. See Heelan 1987.
2. Husserl 1970 [1939]. The essay was written in 1936 and first published in 

1939, subsequent to Husserl’s death in 1938.
3. Husserl 1978, 207–208.
4. Husserl did not himself coin or employ the term “desedimentation.” He 

spoke instead of the “reactivation” of sedimented meanings and of the pos-
sibility for “cashing in” such meanings or recovering their original and intui-
tive self-evidence. Jacob Klein supplies a commentary on Husserl’s reflections 
on history and the philosophy of science in Klein “Phenomenology and the 
History of Science” (Klein 1985, 65–84). See also Hopkins 2011, chapter 1.

5. Husserl 1970, 354–355.
6. Husserl 1970 [1939], 363.
7. Husserl 1970 [1939], 369.
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CHAPTER 4

The Historical Sense-Structure 
of Symbolic Algebra

Commenting in the appendix to his Universal Arithmetic on the use of 
Cartesian algebra in geometry, Isaac Newton expresses the following 
rather dim view of the practice:

Equations are expressions of arithmetical computation, and properly have 
no place in geometry except so far as quantities truly geometrical (that is, 
lines, surfaces, solids, and proportions) may be said to be some equal to oth-
ers. Multiplications, divisions, and such sorts of computations, are newly 
received into geometry, and that unwarily, and contrary to the first design of 
this science…. Therefore, these two sciences ought not to be confounded. 
The ancients did so industriously distinguish them from one another, that 
they never introduced arithmetical terms into geometry. And the moderns, 
by confounding both, have lost the simplicity in which all the elegancy of 
geometry consists.1

These strictures are in one sense surprising, coming as they do near the 
end of a treatise in which Newton subjects geometrical problems to exten-
sive algebraic analysis. How do we explain them? In the first place, Newton 
is invoking the ancient distinction between continuous quantity (geome-
try) and discrete or numerical quantity (arithmetic). As is well known, 
after the discovery of incommensurability in the ancient Pythagorean 
School, Greek mathematics could no longer regard numerical methods in 
geometry as scientifically rigorous, given the problem of numerically 
undefined geometrical ratios. The situation was not substantively altered 
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by Eudoxus’ general theory of proportion, which furnished a rigorous 
definition of geometrical ratios while leaving their numerical incommen-
surability unaffected. For Eudoxus did not discover the “real numbers,” as 
is sometimes suggested.

We are used to representing the Pythagorean Theorem, for instance, as 
a sum of algebraic squares (A2 + B 2 = C 2), the terms designating numbers 
multiplied by themselves. But consider Fig.  4.1 below from Euclid’s 
Elements (Book I, Proposition 47):

Euclid’s diagram depicts relations between geometrical squares built on 
the sides of a right triangle: squares ABFG and ACKH together add up to 
the square BCED. On this basis, were we to write the Pythagorean 
Theorem in the form of an equation it would be ABFG + ACKH = BCED, 
with no numbers or algebraic squares. The Pythagorean Theorem under-
stood this way, in terms of a sum of geometrical squares, must not be 
regarded as the geometrical version of a properly algebraic theorem. Rather 
the reverse: The Pythagorean Theorem is about the relations between the 
geometrical squares; only subsequent to the proof based on geometrical 
squares can the theorem be translated numerically into algebra. The ques-
tion raised by the passage from Newton above is whether the algebraic 
representation of the theorem sacrifices mathematical rigor by obscuring 
the geometrical relations involved. Euclid’s proof of the Pythagorean 
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Theorem does not treat the squares numerically, in the sense of relating 
their “areas” (length times width), for such treatment would require at 
least implicitly the designation of a numerical unit of length and therefore 
run up against the problem of incommensurability. So even if we write 
ABFG + ACKH = BCED, as above, we have an “equation” only in a nota-
tional sense, not in the sense of the moderns whom Newton chastises 
(chiefly Descartes, one must suppose). Unfortunately, these moderns have 
confused the subject matter of geometry by blurring the essential distinc-
tion between geometrical and numerical quantity.

But there is more at issue in the quoted passage than merely a nod on 
Newton’s part to the superior rigor of the ancients in maintaining the 
distinction between continuous and discrete quantity. Newton singles out 
multiplication and division, “newly received” into geometry, for special 
censure, suggesting the employment of these operations in geometry has 
a more specific association with Cartesian algebra (the arithmetic of the 
moderns). Ancient Euclidean geometry freely employed addition, of 
course, although not in the numerical sense. Fortunately, an earlier discus-
sion of multiplication in Newton’s treatise sheds light on the present pas-
sage. In his initial discussion of the basic arithmetical operations Newton 
notes that, properly speaking, the multiplication of a line (by a number) 
yields a new line whose length is some numerical multiple of the original 
line. However, we also speak, albeit improperly, of “multiplying” one line 
by another line to yield a surface:

Moreover, custom has obtained, that the genesis or description of a surface, by 
a line moving at right angle upon another line, should be called multiplication 
of those two lines. For though a line, however multiplied, cannot become a 
surface, and consequently this generation of a surface by lines is very differ-
ent from multiplication, yet they agree in this, that the number of unities in 
either line, multiplied by the number of unities in the other, produces an 
abstracted number of [square] unities in the surface ….2

No doubt the ancient Greeks also knew how to multiply the numerical 
values of the sides of a rectangle to compute the area. However, they did 
not operate with “abstract numbers” in the modern sense of dimension-
less entities susceptible to numerical computation. The abstract concept of 
“three,” after all, cannot be multiplied by the abstract concept of “four” 
as if the abstractions were numbers in their own right. In this sense, our 
modern concept of number might better be termed symbolic rather than 
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merely “abstract.” In any event, Cartesian algebra employs multiplication 
and division routinely in Newton’s “improper sense” above, presumably 
an additional lapse of rigor on the part of the moderns.

Clearly, Newton’s strictures on algebraic equations in geometry apply, 
mutatis mutandi, to algebraic equations in physics. And, as we have 
observed already, the concept of Minkowski spacetime is essentially 
symbolic- algebraic in origin, notwithstanding its usual characterization as 
a departure from Einstein’s algebraic methods. The founding analogy 
with the Pythagorean Theorem therefore remains open to question. To 
evaluate the analogy in terms of its physical validity, however, requires our 
first gaining a secure grasp of the algebraic constitution of concepts in 
modern mathematical physics generally. This task can be accomplished 
only through a philosophical analysis informed by historical scholarship. 
In the medieval science of mechanics, and up to the time of Galileo and 
beyond, relations between physical quantities were represented not 
numerically or algebraically, but rather geometrically in terms of ratio and 
proportion. It is not immediately clear how to translate a proportion of 
ratios involving homogeneous physical quantities into an equality of abso-
lute numerical quantities while maintaining scientific rigor and physical 
intelligibility; not least because, as Newton saw so clearly, arithmetical 
operations in geometry and physics do not directly admit of such algebraic 
employment (“distance over time,” for instance, or “mass times velocity,” 
operations which were incoherent until the nineteenth century). Moreover, 
the concept of number itself undergoes a conceptual transformation in the 
sixteenth and seventeenth centuries coinciding with the rise of Cartesian 
algebra. The symbolic constitution of the modern number concept then 
carries over into the conceptual structure of mathematical physics itself, 
through the displacement of the traditional mathematics of ratio and pro-
portion by modern symbolic algebra.

The conceptual obstacles to the assimilation of algebra into mathemat-
ical physics were nevertheless successfully overcome from the late seven-
teenth through the eighteenth century, eventuating not simply in a new 
mathematical language for the science of physics, but even more impor-
tantly a new conception of nature inseparable from symbolic  mathematics.3 
We shall trace some relevant features of this development, first in the 
received Greek mathematical tradition of Euclid and Diophantus and 
then in the writings of the principal architects of modern symbolic alge-
bra in the seventeenth-century: Vieta and Descartes. Fortunately, consid-
erable scholarship on this development already exists, and I shall rely 
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especially on Jacob Klein’s classic study Greek Mathematical Thought and 
the Origin of Algebra.4 While making no attempt to survey the history of 
algebra, I shall focus on specific developments relevant to the algebraic 
constitution of concepts in modern mathematical physics.

4.1  The ConCepT number in Greek maThemaTiCs

The concept of number (arithmos) in Greek mathematics, which governs 
the Western arithmetical tradition up to the sixteenth century, is set forth 
definitively in Book VII of Euclid: “A number is a multitude composed of 
units” (Definition 2).5 It bears underlining that on Euclid’s definition, a 
number is the multitude of units themselves, not an abstract concept by 
means of which we refer to the collection of units. If the units in question 
are individual eggs, for example, then the number is those eggs themselves 
as a countable collection (“a dozen,” as we say, but not “the number 
twelve”). Thus a number in the Greek conception is always determinate, 
both with respect to the kind of units (apples, eggs, and the like) and with 
respect to how many of them there are ( four apples, a dozen eggs). 
Arithmetic, as a science of number, addresses pure or non-sensible units 
rather than sensible units like apples or eggs; but even in scientific arithme-
tic a number remains a multitude of (pure) units rather than an abstraction 
or symbolic entity.6

4.1.1  Arithmetical Operations in Euclid

The concept of number as a collection of countable units determines the 
arithmetical operations that can be performed on numbers. Thus we can 
add numbers together or subtract them from one another as long as the 
units are of the same kind. We cannot add apples and oranges, for instance, 
unless we change our unit of counting to fruit, thus restoring homogene-
ity of units. Multiplication raises additional considerations for ancient 
Greek arithmetic. Euclid defines the operation of multiplication with great 
care (Elements, Definition 15) in terms of repeated addition: “A number is 
said to multiply a number when the latter is added as many times as there 
are units in the former.”7 Note that in Euclid’s definition the number being 
multiplied or the “multiplicand” is a collection of pure units, while the 
multiplier is a number of “takings” of that multiplicand. Therefore only the 
number being multiplied is an arithmetical quantity (collection of pure 
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units) per se. That is, if I multiply four times three, for instance, I take three 
pure units four times. Commuting the operation by taking four pure units 
three times is, strictly speaking, a different operation.

In the Greek context, then, multiplication has a quite different mean-
ing than our modern day sense of multiplying together dimensionless 
numbers. For on the Greek conception we do not really multiply a num-
ber by another number, but rather take a given number of pure units a 
certain number of times, by repeatedly adding the number to itself. The 
arithmetical science therefore employs what could be called a natural con-
cept of number in the sense that the very same concept applies in the pre- 
scientific realm of sensible units. We could no more take three pure units 
four pure units times than we could take, for example, three eggs, two 
eggs times. Rather, we take a number of eggs, three of them, twice. The 
use of pure units in scientific arithmetic nevertheless lends itself to con-
ceiving of those numbers in practice as if they were dimensionless, such 
that Euclid is indeed willing to speak of multiplying a number by another 
number. The early modern architects of our own science were well aware 
that the numerical methods of symbolic algebra (multiplying mass times 
velocity, for instance) raised issues of physical intelligibility and mathemat-
ical rigor in the science of physics.

Euclid understands the operation of division likewise in terms of one 
number being a “part” of another number or “measuring” it, as three 
measures six in the sense that six contains three twice. Division is thus 
the inverse of multiplication and should not be confused with fractions in 
the modern sense, by which, for example, 

2

4
 can be understood both as 

“the number two divided by the number four” and as a fractional number 
in its own right. In the Greek context fractions necessitate a change of 
unit, since the unit itself, as the principle of number, cannot be fractional-
ized. Again, if I have three pizzas and cut each of them in half I can no 
longer count pizzas per se and must instead adopt as my new unit half a 
pizza. I now have six of these new units—six halves—and a whole pizza 
now comprises two units.

4.1.2  The Concept of Ratio

If a fraction in the sense of Greek mathematics should not be confused 
with the arithmetical operation of division, neither should it be confused 
with the quite different concept of a ratio. A fraction is a number of parts, 
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while a ratio is a relation between numbers or more generally between 
quantities of the same kind. In the domain of number, of course, each 
particular number has the same ratio to the unit as it has units—the num-
ber three, for example, has the ratio 3:1 with the unit. But that does not 
render a ratio itself a number. By contrast, in modern day algebra ratios 
are generally represented as fractional numbers, effacing the very distinc-
tion between ratio (a relation between homogeneous quantities in gen-
eral) and number (a countable quantity). Thus we represent the ratio 
between the circumference and diameter of a circle as the “dimensionless 

number” π
C

D
=






3 14. .

An operation on ratios of great importance for the historical transition 
to algebraic physics in the early modern period is the compounding of 
ratios. Euclid does not define compounding per se, but he does identify 
two specific types of compound ratio, the “duplicate” and the “triplicate” 
(Definitions 9 and 10 respectively). Given three magnitudes in continuous 
proportion (so A : B : C, with A : B ∷ B : C), the ratio A : C “duplicates” 
A : B, and similarly for a triplicate ratio. In general, then, given two ratios 
C : B and B : A, not necessarily in continuous proportion, the compounded 
ratio is C : A. A familiar shortcut for compounding numerical ratios is to 
multiply the antecedents and consequents and then place their respective 
products in ratio: (3  : 4)(4  : 5) ∷  (12  : 20). For this reason, the com-
pounding of ratios is often defined as “multiplying” the ratios together, 
which translates into algebra as multiplication of fractions. That is, instead 
compounding a : b and c : d to obtain a new ratio e : f, we instead write in 

algebra 
a
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 = , which yields a number (quantity) rather than a 

ratio (relation). Strictly speaking, of course, a relation cannot be multi-
plied by another relation to yield a numerical quantity and such algebra-
ically generated quantities are in reality symbolic artifacts.

These distinctions may strike the reader as somewhat naïve and in any 
case hardly relevant to modern day mathematical physics. Nevertheless, 
we prematurely formalize the operations of arithmetic at our peril, for any 
subsequently formalized sense they may acquire must be founded ulti-
mately on their natural meaning in terms of the direct experience of count-
able quantities. That applies all the more with respect to the meaning of 
the formalized arithmetical operations in mathematical physics. For 
instance, do we genuinely grasp the physical meaning of the algebraically 

formalized operation “time squared” in s
at

=
2

2
, the algebraic version of 
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Galileo’s law of free fall? Does the algebraic quantity t2 represent a physical 
quantity in nature? If it does not, what is its relation to the physical world? 
And what about mv or mc2?

4.1.3  Arithmetic and Geometry in Euclid

Euclid never uses arithmetical operations in geometry, even if some of his 
arithmetical terminology has its origin in geometry. A “plane” number, for 
instance, which is obtained by multiplying two numbers (“sides”), is still a 
definite multitude of discrete units and can in no wise be assimilated to 
continuous geometrical quantity. In the arithmetical books of the Elements 
(VII, VIII, and IX), Euclid represents numbers in general, including plane 
and solid numbers, by simple line lengths, and there is no counterpart in 
Euclid to the later practice of “multiplying” a geometrical magnitude by 
another geometrical magnitude to obtain a magnitude of higher dimen-
sion. The use of geometrical terms such as square, cube, and so forth in 
Greek arithmetic no doubt has its origin in the arithmetical treatment of 
geometrical problems, a practice that must have been well established 
prior to the discovery of incommensurables, and which in any case would 
have been necessary for practical calculation. From a rigorous perspective, 
however, the use of arithmetical operations in geometry must be justified 
in terms of ratio and proportion, in particular the compounding of ratios. 
The size of a rectangle, for instance, increases with the compounded ratio 
of its sides (Euclid VI.23). Hence, if the lengths of the sides are increased 
by factors of a and b respectively, then the ratio of the new rectangle to the 
original rectangle is proportional to the ratio compounded of the ratios of 
the corresponding sides: (a : 1)(b : 1) ∷ ab : 1. If the factors are 2 and 3, 
for instance, the figure is now six times as large; and this result does not 
depend on our having first designated a unit of length and then multiplied 
the lengths of the sides by one another to obtain the area of the rectangle. 
We have obtained no numerical value for the absolute size of the resultant 
figure, that is to say, but instead determined the ratio of its size to the size 
of the original figure (6:1).

If, unlike Euclid, we desire a numerical treatment of the problem then 
we must first designate a unit length. Doubling and tripling the respective 
sides of a unit square now gives us a rectangle of six square units, since the 
consequent of our 6:1 ratio is now the unit square. And as long as the sides 
are numerically commensurable, as in the present case, we can take a 
shortcut by multiplying together their numerical values to obtain the 
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“area.” Nevertheless, in the Greek context we have not truly multiplied a 
“length by a length,” for multiplication in the sense of a number of “tak-
ings” of a given length cannot yield a figure of higher dimension. If we 
multiply a length, we always simply obtain a longer length.

4.2  alGebraiC equaTions in Greek maThemaTiCs: 
DiophanTus of alexanDria

Modern symbolic algebra at its inception was a direct reinterpretation of the 
theory of equations in Diophantus.8 While the influence of Diophantus’ 
Arithmetica (third-century A.D.) was transmitted to the West indirectly 
from the thirteenth to the sixteenth-centuries through medieval Arabic alge-
bra, it was nevertheless the direct appropriation of Diophantus that led to 
the algebra of Vieta and Descartes. Thus a review of Diophantine algebra is 
necessary to prepare us for consideration of those particular features of mod-
ern symbolic algebra that determine the concept of Minkowski spacetime.

4.2.1  The Concept of Number in Diophantus

The feature of Diophantine algebra that must be emphasized above all, in 
comparison to modern algebra from Vieta onward, is its consistency with 
the Euclidean definition of number. Diophantus gives the Euclidean for-
mulation at the outset of his Arithmetica, Book I: “All numbers are made 
up of some multitude of units.”9 Nevertheless Diophantus calculates 
with fractions and negatives, even admitting the former—although not 
negatives—as solutions to problems. This practice has led some scholars to 
conclude that, notwithstanding his initial definition, Diophantus under-
stands numbers in terms of what we call the rational numbers. According 
to Heath, for instance, Diophantus at least in his solutions countenances 
“no numbers whatever except ‘rational’ numbers; and in pursuance of this 
restriction he excludes not only surds and imaginary quantities, but also 
negative quantities.”10 Hence, for Heath, the Diophantine concept of 
number is effectively our concept of rational number minus the negative 
numbers. Diophantus thus abandons his original Euclidean definition of 
number as a multitude of units, something on which Heath is strangely 
silent. Another scholar goes further, maintaining that although Diophantus 
restricts solutions to positive numbers, he uses negative numbers in calcu-
lation, such that “it is safe to say that Diophantus extended the domain of 
numbers to the field of rationals …”11
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To determine the question, let us first consider how Diophantus presents 
algebraic expressions in general. A typical problem in the Arithmetica is to 
find some number or numbers with stipulated relations to other numbers, 
which as a rule entails an initial assignment of determinate values to given 
numbers. In the very first problem of the Arithmetica, for instance, 
Diophantus seeks to “divide a given number into two having a given differ-
ence.”12 The given number is then stipulated as one-hundred and the differ-
ence forty. With the smaller number designated as the unknown, Diophantus 
in our notation constructs the equation 2x + 40 = 100. All his symbols are 
abbreviations for words and Diophantus’ symbolism here says, “Two times 
the unknown number plus forty units equals one- hundred units.”

While Diophantus does lay down rules for multiplying negatives, this 
does not signal the concept of a “negative number,” but rather simply facili-
tates calculations such as the reduction of 

a
x

3
2 10= −  to a = 6x − 30 (I.21). 

In the reduced expression, that is, we have multiplied the number 10 by the 
number 3, yielding the number 30 to be taken away from 6x; we have not 
multiplied the number “−10” by the number 3 to yield the number −30. 
Hence, when subtraction is involved Diophantus takes a (positive) number 
of units away from some other number of units, and if the result would go 
less than zero he rejects it. Cleary if Diophantus truly countenanced nega-
tive numbers he would have no reason to preclude them in his solutions.

What about fractions? To be sure, Diophantus employs them freely 
both in calculation and in some solutions (for example, I.21, I.23, I.24, 
I.25, and I.39). On the other hand, when the conditions of the problem 
permit he converts fractional solutions into “whole number” solutions by 
multiplying through by a common denominator, a practice that calls to 
mind Plato’s remark in Republic VI (525E) that if someone proposed to 
partition the unit or monad, a trained mathematician would laugh at him 
and proceed to multiply. In such cases Diophantus has found it necessary 
to employ an auxiliary unit in the course of the calculation; then, upon 
obtaining a fractional solution, he adopts that auxiliary unit as the new 
unit of the problem. In the course of calculation in I.24, for example, he 

obtains x x x x+ +





 + +






 = +

1

3

1

2
3 , yielding x =

13

12
 for the solution of 

the unknown along with 
17

12
 and 

19

12
 for the other two numbers sought 

by the problem. Here 
1

3
 means one of three fractional parts into which the 

original unit has been partitioned—it is not the “rational number” 
1

3
 in 
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our sense, but rather exactly one of the auxiliary units (those new units 
being one-third parts of the original unit).

Hence, for Diophantus, just as for Greek arithmetic in general, the unit 
qua unit is indivisible, even though it can be replaced with a new unit to 
accommodate the exigencies of calculation. Diophantus procedure is akin, 
for instance, to what we are used to doing with denominations of money. 
In American currency the dollar is the unit, but we still count pennies or 

“cents” (
1

100
 of a unit) as if they were units in their own right (auxiliary 

units, as I have termed them above). In Diophantus’ case, the mere 
employment of an auxiliary or provisional unit does not change the defined 
units of the problem (just as a penny is still a cent or 

1

100
 of the American 

monetary unit). In the problem under consideration above (I.24), how-
ever, Diophantus’ last step is to change the unit of the problem by 
 multiplying through by the common denominator twelve to obtain the 
solution 13, 17, and 19 in the new units. The provisional unit has become 
the unit of the problem.

The Diophantine monad or “one” therefore exhibits, in its practical 
divisibility, all the characteristics of a sensible unit of measure (meter, sec-
ond, or the like), while maintaining the status of a pure unit, indivisible 
per se and not tied to any particular kind of sensible matter. A more for-
midable challenge to the thesis that Diophantus affirms in practice the 
Euclidean definition of number as a determinate multitude of units is his 
initial definition of the unknown as an “indeterminate multitude of units” 
(plēthos monadōn aoriston)13 as well as several lemmas (IV.34, 35, and 36) 
in which he proposes to find “indeterminate numbers” (arithmous aoris-
tous).14 Such phraseology might seem to suggest that a number for 
Diophantus is not necessarily a determinate number of units but rather 
some kind of more generalized entity, which Diophantus for some reason 
feels the need to render determinate in the solutions to his problems. This 
is evidently how Vieta in the sixteenth century took Diophantus, but as 
Klein points out, such an interpretation betrays the dubious assumption 
that Diophantus must be “groping” for the full generality of our modern 
algebraic concept of number. An indeterminate number in the Diophantine 
context, however, means simply a definite number that has yet to be deter-
mined, not an indeterminate “generalized quantity” in the modern sense.15 
If I have some eggs in the refrigerator but do not know how many there 
are, I might refer to there being an “indeterminate number” of eggs in the 
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refrigerator; but in fact there are just so many eggs in the refrigerator and 
I intend nothing else than that by calling the number indeterminate. That 
is, the number of eggs is undetermined but not indeterminate. Accordingly, 
those lemmas where Diophantus seeks indeterminate solutions are always 
auxiliary to the following problem, where the numbers left undetermined 
by the previous lemma take on determinate values. In these particular 
problems and in other indeterminate ones such as I.22 through I.25, 
Diophantus is therefore supplying a general procedure for obtaining a 
determinate result. As Klein observes, with Diophantus “we must distin-
guish strictly between the procedure and the object; while the procedure is 
… ‘general’ (katholou), the object intended is in each case a determinate 
number of monads [units].”16

4.2.2  Algebraic Calculation with “Species”

Diophantus’ calculation with what he calls “species” (eide ̄) must be under-
stood in terms of his understanding of number, discussed above, as a 
determinate multitude, even when that multitude is provisionally undeter-
mined. Diophantus characteristically notes that the very definition of 
number as a multitude of units implies that number can always be aug-
mented to infinity by the successive addition of units. Thus a scientific 
knowledge of number requires that the numbers be classified into eide ̄ or 
kinds, for otherwise the trained mathematician could not “know all the 
numbers,” as Plato observes in Theatetus 198A-B. For Diophantus, such 
classification of numbers into eidē or species is concerned, in the first place, 
with the classifications for the “square” (x2), the “cube” (x3), the “square- 
square” (x4), and so forth, but also the unknown itself as well as the given 
number or “constant” in our sense (which Diophantus however always 
assigns a definite value). Thus Diophantine species are not themselves 
numbers, but rather classes of numbers. The square numbers, for instance, 
are 4, 9, 16, 25, and so forth, designated indeterminately for purposes of 
calculation since they are not yet known. Accordingly, the sign for the 
square (ΔΥ) intends not an indeterminate quantity but rather a determi-
nate quantity as yet unknown, to be discovered in the course of solving the 
problem. For this reason Diophantus always gives his solutions in terms of 
determinate numbers, never generalized solutions (save for the provisional 
cases discussed above).

A number of algebraic manipulations that we take for granted today are 
precluded by Diophantus’ number concept. In the first place, there can be 
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no negative, irrational, or imaginary numbers. Nor can there be continu-
ous functions of the form f(x) = y, with associated “graphing” of equations 
based on the continuity of the real number line. Certainly there can be no 
multiplication of quantities by one another, such as mass times velocity, 
nor division of heterogeneous quantities (distance over time, for instance). 
If algebra is to be of use in mathematical physics, then, the number con-
cept of Diophantus must undergo the requisite alterations, which it does 
at the hands of Vieta and Descartes.

4.3  moDern symboliC alGebra

Franςois Viète (Vieta) (1540–1603) is generally recognized as the founder 
of modern symbolic algebra. While Vieta’s “general art” is anticipated in 
certain respects by medieval Arabic algebra, modern symbolic algebra 
takes its point of departure from Vieta’s direct reinterpretation of the 
Diophantine concept of “species.” This is the algebra, with improvements 
by Descartes and others, assimilated into European mathematical physics 
beginning around the late seventeenth century.

Vieta sketches the basic principles of what he calls symbolic logistic or 
“species calculus” (logistice speciosa) in Introduction to the Analytical Art 
(In Artem Analyticem Isagoge) of 1591. It is clear from the outset of this 
document that Vieta conceives of a general mathematical art encompass-
ing quantity of any kind, be it geometrical or numerical: “Our art,” he 
writes in his opening dedication to his patroness Catherine of Parthenay, 
“is the surest finder of all things mathematical.”17 However, while the 
principal ancient model for such a universal mathematics, Eudoxus’ gen-
eral theory of proportion (Euclid, Book V), treats both geometrical and 
numerical subject matter through a general method, while maintaining 
the essential distinction between the two kinds of quantity, Vieta gen-
eralizes the object of mathematical analysis in such a way that the fun-
damental Greek distinction between continuous and discrete quantity is 
effectively obliterated. Indeed, according to Jacob Klein, whose interpre-
tation we shall endorse here, Vieta introduces a new generalized or sym-
bolic conception of number that governs the subsequent development 
of European mathematics. Thus Vietan algebra evinces a fundamental 
discontinuity with ancient Greek mathematics, while at the same time 
interpreting itself as a direct development of that ancient mathematics. 
The decisive step is Vieta’s symbolic reinterpretation of the Diophantine 
concept of “species.”
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4.3.1  Vieta’s Reinterpretation of Diophantine Species

The Diophantine eidos (“species”), we recall, designated by a letter sign, is 
not itself a number but rather the kind or class to which an intended but 
as yet undetermined number belongs (square, cube, and so forth, or sim-
ply the unknown itself). Hence, although Diophantus does subject the 
letter sign directly to arithmetical calculation, it is not the species per se 
that is the intended object of calculation, but rather a determinate number 
(of units) falling under that particular type. A Diophantine equation we 
would write down as 2x2 = 50, for instance, means that the number we are 
looking for is a square number which, taken twice, makes fifty units. Along 
the same line of thinking, when Diophantus affirms that any species mul-
tiplied by unity remains the same (Definition Six), he does not mean that 
any number multiplied by one equals itself (our “multiplicative property 
of 1”), but rather that any number taken once remains in the same class or 
species as before—if it was a square number it remains a square number 
and so forth.18 By contrast, Vieta’s analytical art or “zetetics” reinterprets 
the Diophantine species, designated by a letter sign, as “magnitude in 
general” while at the same time subjecting it to arithmetical calculations as 
if it were itself a number. Thus Vieta prefaces his list of rules for symbolic 
calculation with the remark that “[t]he numerical reckoning operates 
with numbers; the reckoning by species operates with species or forms of 
things …”19 By means of the transformation of the Diophantine species 
concept, “number” is reconceived in Vieta’s analytical art as indeterminate 
or generalized quantity, no longer a “number of ” countable units per se. 
This development expresses itself not only in how Vieta contrasts his anal-
ysis with that of Diophantus but above all in how he understands what he 
calls the “law of homogeneity.”

In Chapter 5 of the Analytical Art, Vieta praises Diophantus for the 
generality of his algebraic method, deliberately concealed:

Diophantus in those books which concern arithmetic employed zetetics 
most subtly of all. But he presented it as if established by means of numbers 
and not also by species (which, nevertheless, he used), in order that his 
subtlety and skill might be the more admired; inasmuch as those things that 
seem more subtle and more hidden to him that uses the reckoning by num-
bers (logistice numerosa) are quite common and immediately obvious to him 
who uses the reckoning by species (logistice speciose).20
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Whereas in reality Diophantine analysis, however general in procedure, is 
always ruled by the understanding of number as a determinate multitude 
of countable units, Vieta interprets Diophantus as having attained his 
results by means of a calculus of generalized quantity, as Vieta himself. 
Likewise in Chapter 1 Vieta stresses that, unlike the analysis of the ancients, 
his new zetetic art “does not employ its logic on numbers—which was the 
tediousness of the ancient analysts—but uses its logic through a logistic 
which in a new way has to do with species.”21

What is especially significant in these passages is that Vieta conceives his 
symbolic logistic as numerical in character and therefore in continuity with 
Diophantine analysis, even though the Vietan calculus proceeds with “spe-
cies” understood as generalized symbolic magnitudes.22 The kind of gen-
erality at issue, therefore, is not merely the generality of a procedure equally 
and indifferently applicable to both geometrical and numerical quantity; 
for even if generality in that sense is one of Vieta’s principal desiderata 
there would be no point in mentioning Diophantus as a predecessor in this 
respect. Rather, Vieta’s innovation is a generality with respect to the object 
of calculation and solution, which is solely indeterminate quantity, con-
ceived numerically via the arithmetical calculus of letter symbols.

4.3.2  Vieta’s “Law of Homogeneity” and the Symbolic 
Concept of Number

The new number concept with which Vieta is operating comes through 
most clearly in his novel formulation of the “law of homogeneity” 
(Introduction, Chapter 3), which is “[t]he supreme and everlasting law of 
equations and proportions ….”23 The principle of homogeneity in Greek 
mathematics, whose authority Vieta indeed cites in the text under consid-
eration, specifically regards ratios. Euclid defines a ratio [logos] as “a sort 
of relation [skēsis] in respect of size between two magnitudes of the same 
kind” (Euclid, Book V, Definition 3).24 There exists no ratio, for instance, 
between a plane and a line. By contrast, Vieta’s law of homogeneity regards 
not ratios but the numerical operations of addition and subtraction:

The supreme and everlasting law of equations or proportions, which is 
called the law of homogeneity because it is conceived with respect to homo-
geneous magnitudes, is this: Only homogeneous magnitudes are to be com-
pared with one another…. And so, if a magnitude is added to a magnitude, 
it is homogeneous with it.25
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So only a magnitude of the same kind can be added to or subtracted from 
another magnitude. That might seem to go without saying, but in terms 
of Vieta’s calculus of species the requirement means specifically that every 
term of an algebraic equation must be of the same degree or dimension. A 
plane magnitude can only be added to another plane magnitude, for 
instance, and so an equation such as  x3 −  ay  =  y3 (in Vieta’s notation, 
A cube minus B plane in E equals E cube) satisfies Vieta’s law of homogene-
ity only if a is understood as a so-called “plane magnitude.”

The homogeneity requirement applies solely to addition and subtrac-
tion, though, whereas multiplication in Vieta’s calculus yields a heteroge-
neous magnitude (a plane times a side yields a solid, for instance).26 
Evidently, while the basic arithmetical operations (addition, subtraction, 
multiplication, division) get their sense from the ordinary arithmetical 
operations of the same name, the numerical meaning of these ordinary 
operations has been altered in a certain way. In Euclid or Diophantus, the 
geometrical terminology “side” or “plane” as applied to numbers is simply 
a classification and so there is no more of an impediment to adding a side 
to a plane than there is, for instance, to adding an even number to an odd 
number. Similarly, multiplication of a side and a plane yields a new classi-
fication (cube), but the number produced is still a multitude of countable 
units, just as if one were to multiply an odd number by an odd number to 
yield a number of a different class (even). But in Vieta’s calculus not only 
must addition and subtraction be limited to terms of the same dimension, 
but both multiplication and division yield quantities of different  dimension. 
Clearly we are no longer dealing with a “number of ” something (apples, 
dogs, pure arithmetical units).

Witmer observes in the introduction to his translation of Vieta that “[n]
ot everything … Viète proposed has served the test of time. One item in 
particular is his insistence on endowing coefficients with dimensions such 
that all terms in any given equation will be of the same degree.”27 Indeed, 
any satisfactory interpretation of Vieta’s law of homogeneity must account 
for its precipitous abandonment by his successors. Already in Descartes’ 
Geometry Vieta’s law of homogeneity is reduced the requirement that 
terms of heterogeneous degree be either multiplied or divided by unity 
until they are of the same degree. The usual explanation for the eclipse of 
Vieta’s law of homogeneity is that Vietan magnitudes are themselves geo-
metrical or at least Vieta is constrained by a traditional way of geometrical 
thinking in algebra. Morris Kline, for instance, remarks that, “Vieta too 
was largely tied to geometry. Thus he writes A3 + 3B2A = Z 3, where A is 
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the unknown and B and Z are constants, in order that each term be of third 
degree and so represent a volume.”28 As Vieta stresses, however, the proxi-
mate object of zetetics is magnitude in general (“forms of things”), not 
geometrical magnitude per se. Only at the stage of “exegetics,” subsequent 
to having solved the equation in general terms by means of zetetics or 
symbolic logistic, does the geometer or arithmetician as the case may be 
assign a specifically geometrical or arithmetical sense to the species upon 
which the zetetic art operates.29 Moreover, Vieta explicitly maintains that 
equations are “resolutions” of proportions in general and so he uses pow-
ers higher than the third as a matter of course.30 If y  : x 2 ∷ x 2  : a, for 
instance, then ay = x 4. As for the notion of a traditional limitation on terms 
of different degree in the same equation, there in fact was no such limita-
tion. Diophantus adds and subtracts terms of different degree without 
comment, since, as we already observed, his square, cube, square-square 
and so forth are understood alike as numbers of countable units. A geo-
metrical requirement of homogeneity could arise for Vieta only if he were 
employing geometry as a method of proof in algebraic problems. Cardano 
in his Ars Magna of 1545, for instance, solves the cubic equation 
x3 + 6x = 20 geometrically,31 and clearly if the numerical quantity x3 is to 
be represented for purposes of proof by a geometrical cube, then 6x must 
be a solid and, accordingly, 6 a plane. But there is no homogeneity require-
ment imposed on the equation itself, only on the geometrical proof. Vieta’s 
law of homogeneity, by contrast, is numerical in origin.

If we remind ourselves that Vieta’s homogeneity requirement applies spe-
cifically to species or generalized magnitudes, not to collections of countable 
units per se, we can see that it is solely with reference to the new indetermi-
nate or generalized number concept that Vieta must stress his homogeneity 
requirement—for the numerical operations of addition and subtraction are 
intelligible only if carried out with reference to some unit of calculation. For 
Vieta that unit (the “homogeneous element”32) is now “one plane unit” or 
“one solid unit” and so forth, or simply one “side” without any adjoined 
power designation at all. Such a unit or homogeneous element is not geo-
metrical per se, even if it obviously depends on a geometrical analogy: for it 
is simply a unit of general magnitude, conceived numerically but indiffer-
ently applicable to geometry or arithmetic. Just as clearly, Vieta’s unit is no 
longer arithmetical in the sense of Euclid or Diophantus, for when number 
is understood in the traditional sense as a “number of ” countable units, 
homogeneity need hardly be emphasized since it is fulfilled as a matter of 
course. On this point Jacob Klein is worth quoting at length:
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Vieta’s law of homogeneity is concerned … with the fundamental fact that 
every “calculation,” since it does, after all, ultimately depend on “counting 
off ” the basic units, presupposes a field of homogeneous monads. For 
Diophantine “logistic” this demand is fulfilled as a matter of course, because 
it already operates within such a field of “pure” monads—the known and 
unknown “magnitudes” which are there united in an equation represent, 
each and every one, an “arithmos of monads.” For the logistice speciose this 
fundamental presupposition needs to be especially stressed; hence the empha-
sis with which Vieta, in contrast to the “ancient analysts” (veteres Analystae), 
expounds his “lex homogeneorum” as the foundation of the “analytical art.” 
Thus it appears that the concept of the species is for Vieta, its universality 
notwithstanding, irrevocably dependent on the concept of “arithmos.” He 
preserves the character of the “arithmos” as a “number of …” in a peculiarly 
transformed manner. While every arithmos intends immediately the things or 
the units themselves whose number it happens to be, his letter sign intends 
directly the general character of being a number which belongs to every pos-
sible number, that is to say, it intends “number in general” immediately, but 
the things or units which are at hand in each number only mediately.33

From our vantage point Vieta’s law of homogeneity may seem like an 
empty gesture, a geometrical anachronism intruding upon the dimension-
less realm of pure number. But our perspective is conditioned by the his-
torically sedimented logic of the Vietan conception of number  itself, in 
which number is no longer directly determined by reference to a field of 
countable units.

Klein proceeds in the same discussion to characterize this conceptual 
transformation in terms of the scholastic distinction between a “first inten-
tion” (intention prima) or direct concept of a being and a “second inten-
tion” (intention segunda) or concept which directly intends another concept 
rather than a being. In Greek mathematics the concept of number is first 
intentional or directly “about” some determinate collection of countable 
units. Vieta takes the indeterminate “species” or concept of a number in 
general (second intention) as if it were the object of a first intention by sub-
jecting it to numerical calculations, a conceptual innovation rendered pos-
sible by the designation of the “homogeneous element.” Klein continues:

Furthermore—and this is the truly decisive turn—this general character of 
number or, what amounts to the same thing, this general number in all its 
indeterminateness, that is, its merely possible determinateness, is accorded a 
certain independence which permits it to be the subject of ‘calculational’ 
operations.34
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Through the rules of the symbolic calculus, then, the mathematical 
object intended by Vieta’s algebraic letter sign has essentially merged in 
meaning with the letter sign itself; and this is what Klein refers to as the 
modern symbolic conception of number, in contradistinction to the mere 
use of symbols to represent numbers. In Vieta’s analytical art, that is, the 
means of representation in a sense has been identified with the thing 
represented. This is most evident for species of the first degree, since in 
such case one calculates simply on a letter sign itself, with no adjoined 
power designation and therefore no evident numerical character to the 
sign other than that which accrues to it via the operational rules for addi-
tion, subtraction, multiplication, and division (set forth by Vieta in 
Chapter 4 of his Analytical Art). Moreover, the symbolic mode of con-
ceiving number rapidly comes to govern not merely algebraic variables 
like x or y, but also determinate numbers in our sense like “the number 4.” 
The common observation that Greek mathematics recognized solely the 
“natural numbers,” as if the Greek domain of number were defined sim-
ply in terms of some subset of our own, thus betrays a failure of historical 
perspective.

4.3.3  Vietan Algebra as Mathesis Universalis

We can now more precisely characterize the difference, with regard to the 
kind of generality at issue, between the ancient general theory of propor-
tion and modern “general algebra” or mathesis universalis. Eudoxus’ gen-
eral theory of proportion, as set forth in Euclid, uses line lengths to 
symbolize proportions in general, whether geometrical or numerical. But 
the ancient theory does not identify this particular means of representa-
tion, the symbolic line lengths, with the subject matter under study. 
Hence, the general theory of proportion maintains the distinction between 
numerical and geometrical ratios. By contrast, modern symbolic algebra 
essentially identifies the symbolic means of representation—the letter sign 
or “species”—with the thing represented (“magnitude in general”), by 
subjecting the letter signs to numerical operations as defined by the rules 
of the symbolic calculus. Since the concept of magnitude in general makes 
no distinction per se between discrete and continuous quantity, that dis-
tinction is lost to modern symbolic algebra.

This very development is evident already, in fact, even before Vieta, 
in Simon Stevin’s Arithmetique of 1585.35 Stevin defines number not as 
a multitude of countable units but rather as “that by which the quantity 
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of each thing is understood” (“cela, par lequel s’explique la quantité de 
chacune chose”),36 explicitly rejecting the connection between number 
and discrete quantity per se.37 For according to Stevin, and contrary to 
the traditional understanding, the unit itself is a number.38 Even today 
in everyday speech I might say, for instance, “I have a number of errands 
to run,” meaning at least two of them. Stevin however appeals to the 
principle that the part is of the same material as the whole to argue that 
the unit, always being a part of other numbers, must itself be a number. 
Just as slicing up a loaf of bread yields smaller pieces of bread, so also 
slicing up number in any way yields simply number. The conclusion fol-
lows only if we implicitly understand the concept of number in the 
symbolic sense identified by Klein, though, since only on that account 
is the “material” of number of the same nature as number: That is, the 
general concept of being a number is now understood as the material of 
number rather than the material of a number being the discrete units 
which make up a number.39 Hence, based on his implicitly symbolic 
conception of number, Stevin can introduce “irrational numbers” in 
our modern sense and in principle the real number line itself. The 
symbolic number concept thus removes one of the traditional barriers 
to a numerical and, mutatis mutandi, algebraic treatment of continuous 
quantities in mathematical physics (distance, time, mass, and so forth). 
With respect to mathematical physics, however, an even more decisive 
feature of Vieta’s analytical art is its explicit treatment of equations in 
general as symbolic translations (“resolutions,” as he calls them) of pro-
portions. For example in Chapter 2 of the Analytical Art, after setting 
forth the “stipulations governing  equations and proportions,” which, 
he maintains, are already to be found in Euclid, Vieta observes that in 
view especially of his stipulations #15 and #16 on the multiplication of 
extreme terms (if two ratios a : b and c : d are proportional, for instance, 
then ad = bc), a proportion can be called the “composition” (constitu-
tio) of an equation and an equation the “resolution” (resolutio) of a 
proportion.40 No such identification of proportions and equations is 
possible for Diophantus, since numerical proportions comprise a mere 
subset of proportions in general. The Vietan-Cartesian understanding 
of equations as symbolic-analytic translations of proportions will sub-
sequently determine the algebraic structure of concepts in modern 
mathematical physics.
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4.4  DesCarTes anD symboliC spaCe

Descartes is clear from the beginning that algebraic equations are symbolic 
translations of proportions, explicitly stressing the relationship between 
the two in his Discourse on Method of 1637, to which Descartes’ treatise on 
algebra (the Geometry) is appended as a demonstration of the scientific 
method therein articulated:

For I saw that, despite the diversity of their objects, they [the mathematical 
sciences] all agree in considering nothing but the diverse relations or pro-
portions that hold between these objects. And so I thought that it best to 
examine only such proportions in general, supposing them to hold only 
between such items as would help me to know them more easily…. Next I 
observed that in order to know these proportions … I should suppose them 
to hold between lines, because I did not find anything simpler, nor anything 
that I could represent more distinctly to my imagination and senses. But in 
order to keep them in mind or understand several together, I thought it 
necessary to designate them by the briefest possible symbols. In this way I 
would take over all that is best in geometrical analysis and in algebra, using 
the one to correct all the defects of the other.41

For Descartes, therefore, equations are symbolic translations of propor-
tions involving general magnitudes, with such magnitudes visually repre-
sented by line lengths. The symbolic conception of line lengths as general 
magnitudes is Descartes’ particular innovation—not merely the symbolic 
employment of line lengths to represent numbers or other quantities, 
which of course can be found even in Euclid—but the symbolic conception 
of line lengths as general magnitudes, in the same sense as the symbolic 
number concept Descartes inherits from Vieta.

4.4.1  Geometrical Representation of Arithmetical Operations

Descartes famously announces at the very outset of his Geometry that 
“[a]ll the problems of geometry can easily be reduced to such terms that 
thereafter we need to know only the length of certain straight lines in 
order to construct them.”42 Forthwith he sets forth his method for carry-
ing out the basic operations of arithmetic geometrically by means of the 
theory of ratio and proportion. To multiply two lines together, for 
instance, we place one of them (BD) in ratio with unity (AB = 1) and the 
other (BC) in ratio with the desired product (BE). We then construct 
similar triangles as in Fig. 4.2 below:
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It follows by the theorem of similar triangles that BD : 1 ∷ BE : BC and 
so (BD)(BC) = BE. Note that the multiplication of line by a line now yields 
another line rather than a plane, and so Descartes is no longer limited to 
three dimensions in his geometrical representation of algebraic quantities. 
“In one brilliant insight,” Grosholz observes, Descartes “has freed the alge-
bra of magnitude from the constraints and complications that hampered 
Viéte.”43 Of course, Descartes entitles his book Geometry rather than 
Universal Arithmetic because his ultimate aim is to represent geometry alge-
braically; and this aim will once again raise the issue of the numerical unit.

Having introduced his geometrical arithmetic Descartes turns to 
geometry proper, remarking disapprovingly upon the “scruple which the 
ancients had [against] using the terms of arithmetic in geometry, which 
could proceed only from the fact that they did not see clearly enough 
their relationship …” (“le scrupule, que faisoient les anciens d’user des 
termes de l’Arithmetiqueen la Geometrie, qui ne pouuoit proceder, que de ce 
qu’ils ne voyoient pas assés clairement leur rapport”).44 For example, the 
ancient geometer Pappus assumed that the famous locus problem is lim-
ited to six lines, since there can be no figure of higher than three dimen-
sions.45 The limitation to six can be removed, according to Pappus, only 
by conceiving the problem in terms of compounded ratios among the 
given lines. But for Descartes, Pappus’ way around the limitation betrays 
a failure at grasping the true relationship between geometry and arithme-
tic, which is numerical. That is, the compounded ratios proposed by 
Pappus should properly be expressed numerically by means of an equa-
tion, in terms of the arithmetical operation of multiplication. And when 
we multiply the lines to obtain new lines, clearly there is no limitation on 
how many lines may be so multiplied. Consequently, Descartes easily 
solves the locus problem by means of his algebraic calculus or, as we call it, 
“analytical geometry.”

E

C

A BD

Fig. 4.2 Multiplication 
in Descartes’ Geometry
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The resolution of a proportion into an equation clearly is a powerful 
mathematical tool, and it would be just a short step, which Descartes him-
self nevertheless does not explicitly take, to dispense altogether with the 
cross-multiplication of proportions and simply nominalize ratios directly 
as fractional numbers. The nominalization of ratios as numbers is indeed 
suggested by the very fact that every number is the antecedent of its own 

ratio with the unit (e.g., 
3

1
1 3 1: ::: ).46 Pursuing this line of thought, John 

Wallis in his Mathesis Universalis of 1657 defines numbers themselves as 
simply “indices” of all possible ratios with the unit,47 essentially the 
 definition of number given in the twentieth century by the mathematician 
Hermann Weyl: “Numbers are merely concise symbols [my italics] for such 
relations [ratios] …”48 Since a ratio, being a relation rather than a quan-
tity, has no dimensionality per se, numbers themselves are rendered 
dimensionless. The equations of modern mathematical physics would be 
impossible without the nominalizing of ratios as dimensionless numbers, 
a historically sedimented development essential to the meaning-structure 
of the concepts of modern physics, as when we translate Galileo’s law of 

fall as s
at

=
2

2
.

4.4.2  Descartes’ Symbolic Interpretation 
of Geometrical Magnitude

In Descartes’ algebra—and this is what we especially must underline—
magnitude in general, the proximate object of the Cartesian mathesis 
universalis, is to be treated numerically regardless of the ultimate subject 
matter under investigation. Indeed, geometrical magnitudes function in 
Descartes’ Geometry at two levels simultaneously: in the first place as 
symbolic representations of generalized magnitude and in the second as 
the geometrical subject matter under study. The subject matter under 
study, therefore, could always have been otherwise: “At the same time I 
would not restrict them [proportions] to this alone [geometrical magni-
tudes], in order that I could better apply them afterwards to all the oth-
ers to which they might be suited.”49 The same holds in Rule Fourteen 
of the early Rules for the Direction of the Mind, where Descartes stresses 
that “when the terms of a problem have been abstracted from every 
subject … then we understand that all we have to deal with here are 
magnitudes in general.”50
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Given Descartes’ aim, which is the numerical-algebraic treatment of 
generalized magnitude, it is no surprise when in Book One of Geometry he 
announces his own law of homogeneity, such as we have already encoun-
tered in Vieta:

It is also to be noted that each of the parts of a single line should ordinarily 
be expressed by as many dimensions as each other part, when unity is not 
determined in the problem: thus, here, a3 contains as many dimensions as 

abb or b3, which compose the line which I have called a b ab3 3 23 − + . But 
it is not the same thing when the unity is determined, because unity can be 
understood throughout, [even] where there are too many or too few dimen-
sions; thus, if it is necessary to extract the cube root of a2b2 − b, we must 
consider that the quantity a2b2 is divided once by unity, and that the quan-
tity b multiplied twice by the same.51

But from where precisely does the need for dimensional homogeneity 
arise? Descartes is clear that all the terms in his equations are simply lines, 
so in the passage above he cannot be referring to homogeneity of geo-
metrical dimension; as he says, he uses such geometrical terms solely as a 
concession to standard terminology in algebra (“Here it is to be noted 
that by a2 or b3 or the like, I ordinarily mean only simple lines, although, 
in order to make use of the names used in algebra, I call them squares, 
cubes, etc.”52) Rather, since Descartes’ algebraic letter signs, like Vieta’s, 
designate “general magnitude” while at the same time maintaining a spe-
cifically numerical intelligibility, some unit of calculation must be defined. 
To convince ourselves that Descartes’ letter signs do indeed carry a numer-
ical intelligibility, we need only underline the interpretation of algebraic 
terms such as a2 or b3 above as “simple lines,” which would be unintelli-
gible were Descartes’ calculus a purely geometrical algebra. Descartes 
overcomes Vieta’s proscription on terms of unlike degree by designating a 
unit line length and multiplying or dividing by it to obtain the required 
homogeneous unit of numerical calculation. Thus it is not the case, as is 
often suggested, that Descartes here overcomes a “traditional impedi-
ment” in algebra, tied to the geometrical conception of quantity; for as we 
saw with Vieta there could be no such impediment in algebra itself. Rather, 
it is the Vietan symbolic concept of number that first gives rise to the issue 
of homogeneity, for only when numerical calculations, which do presup-
pose a field of homogeneous units, are performed upon symbolically con-
ceived letter signs does the status of the numerical unit become an issue. 
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It is, therefore, no traditional impediment but rather this very modern 
impediment that Descartes removes through multiplication by the unit.53

4.4.3  Symbolic Space

Although Descartes in his Geometry does not actually employ “Cartesian 
coordinates” in our sense of perpendicular axes with numerical coordi-
nates are assigned to points, in principle the method is nevertheless in play. 
In his solution to the locus problem, for instance, Descartes refers all 
quantities to two designated reference line segments (x and y) and deter-
mines the desired locus of points by means of numerical distance and angle 
to the reference segments. Clearly, every point by this means can be fixed 
in location with reference to x and y, so we effectively have a coordinatized 
space. However, since Descartes’ line segments are symbolic magnitudes 
that can represent quantity of any kind, geometrical or not (“all the others 
to which they might be suited”), Descartes has in essence set up a symbolic 
space (later called a configuration space) within which quantitative rela-
tions in general can be represented. We call such representations “graphs” 
of equations.

An ellipse in Cartesian symbolic space, then, is proximately the graph of 
the equation for an ellipse, which may or may not have anything to do 
with a geometrical ellipse. Yet in Geometry Descartes betrays little aware-
ness that he is operating simultaneously at two different levels of represen-
tation: the symbolic ellipse, representing an equation, on the one hand, 
and the geometrical ellipse itself on the other. As Klein points out, 
Descartes rather seems to assume that his symbolic figures are the same 
ones the ancients drew to directly represent or “image” figures of interest 
to the science of geometry.54 Even in geometry per se, then, a Cartesian 
symbolic ellipse directly represents not a determinate geometrical figure, 
but rather the general character of being an ellipse (the general quantita-
tive relations that define “ellipse as such”).

On this basis Klein sees in Cartesian “symbolic extension” a transfor-
mation of the object of a second intention (symbolic ellipse) into a first 
intention (geometrical figure), analogous to the construction of Vieta’s 
symbolic number concept. That is, the symbolic ellipse or visual represen-

tation of the equation for an ellipse in general (we write 
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Descartes interprets as a geometrical figure in its own right; and, more 
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generally, since Descartes identifies matter with geometrical extension 
(“my entire physics is nothing but geometry”55), Descartes has effectively 
cast his symbolic space or “Cartesian coordinate space” as the substance of 
the physical world. Indeed, Klein concludes his analysis of Descartes’ alge-
bra with the pregnant observation that Cartesian symbolic space subse-
quently becomes the “absolute space” of Newtonian physics: “Only at this 
point has the conceptual basis of ‘classical’ physics, which has since been 
called ‘Euclidean space,’ been created. This is the foundation on which 
Newton will raise the structure of his new science of nature.”56

Klein’s interpretation of Cartesian symbolic space is confirmed in a cer-
tain way by Einstein’s own treatment of the concept of space in two of his 
essays from the 1930s (“The Problem of Space, Ether, and the Field in 
Physics,” 193457; and “Physics and Reality,” 193658). Einstein proposes 
that the intuitive origin of the concept of space lies in our direct experience 
of solid bodies. If two solid bodies are separated by an interval we can inter-
pose a third solid body that exactly fills that interval and, assuming the 
rigidity of the third body, exactly fills any other equal interval. Thus we have 
the concept of a measurable interval in space. But this is not yet the concept 
of a mathematical continuum of space, which, according to Einstein, we 
first encounter in Descartes’ method of numerical coordinates:

In the geometry of the Greeks space plays only a qualitative role, since the 
position of bodies in relation to space is considered as given, it is true, but is 
not expressed by means of numbers. Descartes was the first to introduce this 
method.59

Space as a continuum does not figure in the conceptual system [of Greek 
geometry] at all. This concept was first introduced by Descartes, when he 
described the point in space by its coordinates. Here for the first time 
 geometrical figures appear, in a way, as parts of infinite space, which is con-
ceived as a three-dimensional continuum.60

Einstein then concludes his analysis on a note strongly suggestive of Klein:

In so far as geometry is conceived as the science of laws governing the 
mutual spatial relations of practically rigid bodies, it is to be regarded as the 
oldest branch of physics. This science was able, as I have already observed, to 
get along without the concept of space as such, the ideal corporeal forms—
point, straight line, plane, segment—being sufficient for its needs. On the 
other hand, space as a whole, as conceived by Descartes, was absolutely 
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necessary to Newtonian physics. For dynamics cannot manage with the con-
cepts of the mass point and the (temporally variable) distance between mass 
points alone. In Newton’s equations of motion, the concept of acceleration 
plays a fundamental part, which cannot be defined by the temporally variable 
intervals between points alone. Newton’s acceleration is only conceivable or 
definable in relation to space as a whole. Thus to the geometrical reality of 
space a new inertia-determining function was added.61

Hence, in our terms, Cartesian symbolic space—or numerically coordina-
tized space—furnishes the continuum of points at rest requisite to the 
formulation of Newtonian physics. The reader familiar with the history of 
general relativity will no doubt be reminded of the trouble coordinates 
gave Einstein in the so-called hole argument, with different solutions to 
the gravitational field equation applying at the same point in the same 
coordinate system.62 Einstein’s resolution of the hole argument involved 
the reversal or “deconstruction,” if you will, of physically reified Cartesian 
symbolic space:

On the basis of the general theory of relativity … space as opposed to “what 
fills space,” which is dependent on the coordinates, has no separate exis-
tence…. If we imagine the gravitational field, i.e. the functions gik, to be 
removed, there does not remain a space of type (1) [“flat space” or 
“Minkowski space”], but absolutely nothing, and also no topological space. 
For the functions gik describe not only the field, but at the same time also the 
topological and metrical structural properties of the manifold. A space of 
type (1), judged from the standpoint of the general theory of relativity, is 
not a space without a field, but a special case of the gik field, for which—for 
the coordinate system used, which in itself has no objective significance—
the functions gik have values that do not depend on the coordinates. There 
is no such thing as an empty space, i.e., a space without a field. Space-time 
does not claim an existence of its own, but only as a structural property of 
the field.63

While the passage above, from the 1952 appendix to Einstein’s popular 
book on relativity, is generally regarded as referring specifically to the hole 
argument, it is difficult to speculate on whether Einstein had the hole 
argument in mind also in his discussion of the concept of space in the 
1930s essays. Nevertheless, I cannot resist a comparison with Klein writing 
around the same time (1932):
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Only in this way [identifying the object of a second intention with the object 
of a first intention] can we come to understand that Descartes’ concept of 
extensio identifies the extendedness of extension with extension itself. Our 
present-day concept of space can be traced directly back to this. Present-day 
Mathematics and Physics designate as “Euclidean Space” the domain of 
symbolic exhibition by means of line-segments, a domain which is defined 
by means of a coordinate system, a relational system [Bezugssystem], as we 
say nowadays. “Euclidean Space” is by no means the domain of the figures 
and structures studied by Euclid and the rest of Greek mathematics. It is 
rather only the symbolic illustration of the general character of the extended-
ness of those structures. Once this symbolic domain is identified with corpo-
real extension itself, it enters into Newtonian physics as “absolute space.” At 
the present time it is being criticized by relativity theory, which has been 
steered by the question of “Invariance” into trying to break through these 
symbolic bounds, while continuing to use this very symbolism [my italics].64

It is doubtful, at least as regards the concept of Minkowski spacetime, that 
we can break through these symbolic bounds while continuing to use the 
very same symbolism.

Having achieved a grasp of the conceptual structure of modern sym-
bolic algebra sufficient for our purposes, we are ready to proceed in the 
next chapter to the assimilation of that algebra into mathematical physics. 
With respect to the subsequent development of mathematical physics, we 
shall see that just as Vietan-Cartesian algebraic letter signs are, through 
the rules of the symbolic calculus, merged in meaning with the numerical 
quantities they designate, so in the equations or “formulas” of modern 
mathematical physics algebraic symbols are gradually merged in meaning 
with the physical quantities they represent.65 The merging of symbol and 
quantity comes through most clearly in the multiplication and division of 
heterogeneous physical quantities, where the arithmetical operations can 
only have a symbolic intelligibility. The algebraic formula p  =  mv, for 
instance, takes mv as a physical quantity (momentum), but the operation 
of multiplication can be carried out solely on symbolic quantities in the 
Vietan-Cartesian sense. For what could it mean to take three kilograms, 
for instance, four meters per second times?

Historical accounts of the assimilation of algebra into modern mathe-
matical physics as a rule presuppose the modern symbolic concept of 
number, and so we have at some length considered modern symbolic alge-
bra from the perspective of some key stages in its historical development. 
This was necessary preparation for the clarification of the algebraic structure 
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of the concepts of modern mathematical physics in the next chapter: for it 
is the Vietan-Cartesian algebra specifically that is assimilated into physics 
in the latter part of the seventeenth century through the eighteenth cen-
tury. Having outlined the conceptual structure of this symbolic algebra we 
may proceed to the process of assimilation itself.
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CHAPTER 5

The Historical Sense-Structure of Modern 
Algebraic Physics

The assimilation of Cartesian algebra into mathematical physics met with 
significant opposition. We have already noted Newton’s objections to 
algebra in geometry, and as late as 1798, Laplace feels the need to justify 
the use of algebra in theoretical physics. Real issues of physical intelligibil-
ity engendered the resistance to the use of algebra in physics, not merely 
mathematical conservatism or an exaggerated reverence for the ancients. 
We touched on some of these issues last chapter. In this chapter we shall 
consider more closely those historical developments by which Cartesian 
algebra came to be the principal, and by now the exclusive, mathematical 
and conceptual language of theoretical physics. Fortunately, a body his-
torical scholarship in this area already exists—if not always from the per-
spective of our present concerns—and so I shall avail myself of it freely in 
what follows.1 The present chapter offers not a historical narrative or even 
a historical sketch, but rather a discussion of some emblematic examples, 
for the purpose of identifying the decisive conceptual moves underlying 
the algebraic structure of concepts in modern physics.

5.1  Pre-AlgebrAic Physics in gAlileo

While Galileo is rightly regarded as the founding father of modern mechan-
ics, his mathematical method is essentially Euclidean (with a noteworthy 
exception to be discussed below). Galileo neither uses equations nor 
defines physical concepts or principles numerically, although he necessarily 
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interprets his experimental results in terms of numerical measurements. In 
this respect, Galileo’s science comports with the seventeenth-century 
understanding of rigorous science in general, which, as such, must respect 
the fundamental Greek distinction between continuous and discrete quan-
tity. Euclidean rigor in Galileo’s case is accomplished by means of repre-
senting physical quantities geometrically as line lengths, such that the 
Euclidean method of ratio and proportion may be applied indirectly to 
physical quantities of interest.

The one exception to Euclidean rigor is Galileo’s method of compound-
ing ratios of heterogeneous quantities, a departure from the Euclidean law 
of homogeneity for ratios. Recall that compounding ratio B : A with ratio 
C : B yields C : A for the compound ratio. In view of Euclid’s definition, 
according to which a ratio is a relation between magnitudes of the same 
kind, all the quantities involved in the ratios to be compounded must be of 
the same kind, for otherwise a heterogeneous ratio would result. Euclid 
never compounds a ratio of lines, for instance, with a ratio of planes; for the 
compounded ratio then would be the ratio of a line to a plane, and a plane 
cannot be a multiple of the length of a line. By contrast, a proportion 
between ratios of heterogeneous quantities is perfectly acceptable—for 
example, a ratio of lines set in proportion to a ratio of planes—since such a 
proportion involves no ratio between unlike quantities.

Galileo gets around the homogeneity requirement for ratios by repre-
senting all the quantities as line lengths and then compounding ratios of 
line lengths. Proposition IV, Theorem IV of Day Three in Galileo’s Two 
New Sciences, for instance (“On Equable Motion”), reads: “If two move-
ables are carried in equable motion but at unequal speeds, the spaces run 
through by them in unequal times have the ratio compounded from the 
ratio of the speeds and from the ratio of the times.”2 Galileo designates 
line lengths A and B respectively as the speeds and line lengths C and D as 
the times, yielding A  : B for the speeds and C  : D for the times. If we 
appropriately adjust the line lengths such that B equals C, as we may, then 
we obtain A : D for the compound ratio of interest, itself proportional to 
the ratio G  : L of the distances traversed. But line length A represents 
speed and line length D time, and so the law of homogeneity for ratios has 
been violated indirectly. While there is precedent in medieval science for 
compounding heterogeneous ratios, the practice nevertheless betrays a 
certain lack of rigor.3 We can restore homogeneity, however, by interpret-
ing Galileo’s proposition in terms of two proportions or a “conjoint pro-
portion” rather than a single proportion. Instead of a single proportion, 
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that is, between the compounded ratio of the speeds and the times and the 
ratio of the distances—G : L ∷ (A : B) (B : D)—we instead regard the ratio 
of the distances as proportional conjointly to the ratio of the speeds and to 
the ratio of the times: G  :  L ∷  A  :  B (with C  :  D held constant) and 
G : L ∷ C : D (with A : B held constant). The technically illicit compound-
ing may thus be regarded as an abbreviation for two proportions.

Another instructive example for our purposes is Galileo’s law of free fall 
(Day Three, Proposition II, Theorem II), which we are used to expressing 

algebraically as s
at

=
2

2
. Here is how Galileo presents it: “If a moveable 

descends from rest in uniformly accelerated motion, the spaces run through 
in any times whatever are to each other as the duplicate ratio of the times; 
that is, the squares of those times.”4 To demonstrate the proposition we 
start with the medieval mean speed theorem, which Galileo has proved in 
the previous proposition: the distance traversed by a uniformly accelerated 
body is equal to the distance traversed in an equal time by a body moving 
uniformly at one-half the terminal speed of the accelerated body. And, 
since by definition a uniformly accelerated body acquires equal increments 
of velocity in equal times, the ratio of distances traversed is proportional 
twice over to the ratio of times— that is, it is proportional conjointly to the 
ratio of terminal velocities, which itself is proportional to the ratio of times, 
and to the ratio of times again. In this case, though, since our quantities 
are homogeneous, we can express ourselves more compactly by com-
pounding the ratio of times with itself (“duplicating the ratio”).

Galileo consequently gives the law of fall as, “The ratio of distances is 
as the duplicate ratio of times,” adding, in accordance with accepted 
usage: “… that is, as the squares of those times.” Here we have no multi-
plication of t by itself to yield t2, but rather a duplicate ratio of times, 
which, given the representation of those times by line lengths, and given 
also that the size of a square increases as the duplicate ratio of its side, may 
be called the “squares of those times.” Hence, Galileo’s proportion is: 
s1 : s2 ∷ (t1 : t2) (t1 : t2) (with s representing distance and the parentheses 
designating the operation of compounding rather than multiplication).

We thus encounter in Galileo a non-numerical conception of physics 
in strict accord with the requirements of its subject matter: continuous 
physical quantity. Moreover, we have seen that, with the exception of 
the compounding of heterogeneous ratios, Galileo employs a direct 
method of representation. That is to say, Galileo’s mathematical 
 operations are directly intelligible in terms of ratios and proportions 
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and require no translation into physically intelligible language. His sym-
bolic line lengths are merely a visual aid and do not enter into the physi-
cal meaning of his theorems in physics: in principle they are dispensable. 
That is why Galileo gives his theorems, the law of fall for instance, in a 
direct language free from mathematical symbolism (“The ratio of dis-
tances is as the duplicate ratio of times”).

Galileo’s non-symbolic conception of mathematical representation in 
physics raises the question of how the symbolic-algebraic method of 
Descartes can be integrated into Galilean physics. For only the assimilation 
of Cartesian algebra into physics yields “modern physics” in the sense we 
understand it today. Yet the displacement of the Euclidean mathematics of 
ratio and proportion by Cartesian algebra renders the proximate object of 
modern theoretical physics a symbolic construction. Thus, according to 
Hermann Weyl, for instance, our intuitions of space and time must “give 
way to symbolic construction of exactly the same kind as that which Hilbert 
carries through in mathematics.”5 The idea of mathematical science as 
symbolic construction is commonplace enough in contemporary history 
and philosophy of science, but it has not as a rule been understood in the 
context of the prior symbolic construction of number as we focused on 
last chapter; rather, in such analyses the modern symbolic concept of num-
ber is simply taken for granted. But it is the Vietan-Cartesian concept of 
number that renders possible the very symbolic construction of natural 
science to which Weyl alludes in the quotation above. As a result, the rela-
tionship between symbolic construction and the physical world is left 
unclarified; just as is, for instance, the relationship between “the number 
4” itself and these four apples in front of me.

5.2  The AssimilATion of AlgebrA inTo Physics

The process by which symbolic algebra was assimilated into physics 
spanned the latter part of the seventeenth and most of the eighteenth 
centuries.6 Near the end of this development, the illustrious mathemati-
cian Pierre Simon de Laplace, in a remarkable passage from the introduc-
tion to his Celestial Mechanics of 1798, lays out with exceptional 
explicitness, if not equal conceptual clarity, the symbolic-algebraic struc-
ture of concepts thus bequeathed to subsequent mathematical physics:

In uniform motions, the spaces described are proportional to the times. But 
the times employed in describing a given space are longer or shorter 
according to the magnitude of the moving force. From these differences has 
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arisen  the idea of velocity, which, in uniform motions is the ratio of the 
space to the time employed in describing it. Thus s representing the space, 

t the time, and 𝑣 the velocity we have v
s

t
= . Time and space being hetero-

geneous and consequently not comparable quantities, a determinate inter-
val of time, such as a second, is taken for a unit of time and in like manner 
a portion of space, such as the meter for the unit of space, and then time 
and space become abstract numbers, which express how often they contain 
units of their species [how many units they contain], and thus they may be 
compared with one another. By this means the velocity becomes the ratio 
of two abstract numbers, and its unit is the velocity of a body which 
describes a meter in one second.7

The fact that Laplace feels compelled to justify the formula v
s

t
= , a cen-

tury after it was first introduced, is noteworthy in itself. He initially char-
acterizes uniform velocity in a Galilean manner, in terms of Euclidean 
proportion. Note in particular that Laplace does not say that in uniform 
motion “distance is proportional to time”—our modern-day algebraic 
conception of a proportion with single quantities related by a constant of 
proportionality—but rather that “the spaces described are proportional to 
the times”: a proportion between homogeneous ratios. But almost imme-
diately he apparently reverses course with the novel assertion that velocity 
is in fact the ratio of the space to the time, expressing that ratio algebra-

ically as the fractional number 
s

t
. Then, in a last echo of the classical 

understanding of ratio, Laplace recalls that space and time cannot really be 
placed in ratio, nor can a quantity of space be divided by a quantity of 
time: for time and space are “heterogeneous and consequently not com-
parable quantities.” And so instead of a ratio between space and time we 
designate units of space and time respectively, such that space and time 
become “abstract numbers” upon which we can now carry out the opera-
tion of division.

There is much more to comment upon in the quoted passage, but of 
utmost interest for us is how the introduction of unit quantities of space 
and time renders space and time abstract numbers. Clearly, by “abstract 
number” Laplace understands number in the Vietan-Cartesian symbolic 
sense, not “numbers of ” pure units in the manner of Euclid or Diophantus. 
But if we understand s and t as symbolic dimensionless numbers, such that 

s can be divided by t, what makes v
s

t
=  an equation of physics, relating 
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physical quantities of space and time to the physical quantity of velocity?8 
It is the stipulation of units that allows the letter symbols to represent 
simultaneously purely symbolic numbers and “numbers of ” the desig-
nated physical measures. Thus the concept of velocity in Laplace’s formula 

v
s

t
=  precisely parallels in structure the concept of number in Vieta and 

Descartes. Just as Vieta’s species are at once generalized magnitudes and 
“numbers of ” homogeneous units (the “homogeneous element” of the 
equation), so too do Laplace’s algebraic variables at once represent gener-
alized magnitudes (“abstract numbers”) at the same time they function as 
“numbers of ” the physical unit measures. Moreover, this dual mode of 
intentionality—what Klein terms the identification of the object of a sec-
ond intention with the object of a first intention—is accomplished in the 
same manner in both cases: the letter symbol is merged in meaning with 
the quantity it represents by means of the rules which govern the symbolic 
calculus. Only in this manner can Laplace’s s and t be both “abstract num-
bers” and numbers of physical units.9

A generation earlier (1765), d’Alembert had with somewhat more clar-
ity stressed that the physical meaning of v

s

t
=  is “[nothing] other than 

that the velocities of two bodies are to each other as the quotients of the 
spaces divided by the times, provided one represents the spaces and times 
as abstract numbers which bear to one another the same ratio as these 
spaces and these times.”10 John Roche, in his account of the assimilation 
of algebra into mathematical physics, notes that in eighteenth-century 
physics the equal sign was often interpreted as an abbreviation for a pro-
portion or “ratio equation” and did not necessarily designate an equality 
of quantities.11 D’Alembert again writes: “Sometimes, in geometry and in 
mechanics, that is called an equation which is nothing other than a simple 
proportionality indicated in an abbreviated manner.”12

How would we render Laplace’s v
s

t
=  intelligible in terms of Galileo’s 

theorem on equable motion discussed above in Sect. 5.1? In most rigor-
ous form, without the employment of heterogeneous compounded ratios, 
Galileo’s theorem says that the ratio of distances is jointly proportional to 
the ratio of the speeds and to the ratio of the times. Less rigorously we can 
compound the ratios of speeds and times as Galileo does, with 
s1 : s2 ∷ (v1 : v2) (t1 : t2). Now let the variables s, v, and t represent continu-
ous numerical values of the measures of distance, speed, and time respec-
tively. Designating the consequents of these ratios as units and multiplying 

 J. K. COSGROVE



 107

through the compounded ratios we obtain s : 1 ∷ (vt : 1). We can then 
either directly nominalize the ratios as fractional numbers or apply the rule 
of cross-multiplication to resolve the proportion into the equation s = vt 

and, therefore, v
s

t
= . Following d’Alembert’s lead, instead of regarding 

s

t
 as the “division” of a quantity of space by a quantity of time, a physi-

cally unintelligible operation in any case, we instead interpret the equation 

v
s

t
=  as a symbolic translation of the original Galilean proportion. Physical 

sense thus accrues indirectly to the symbolic construction 
s

t
. There is no 

actual division of s by t, but rather a direct proportion of velocity to dis-
tance and an inverse proportion of velocity to time. The division sign 
represents the two proportions economically in a single algebraic 
expression.

Even more revealing in some respects is the algebraic translation of 

Galileo’s law of free fall into the formula s
at

=
2

2
. For two fixed accelera-

tions, the ratio of distances is proportional jointly to the duplicate ratio of 
the times and the ratio of accelerations, since the ratio of accelerations is 
proportional to the ratio of terminal velocities. We can compound these 
ratios to obtain s1 : s2 ∷ (t1 : t2) (t1 : t2) (a1 : a2). However, since one of the 
ratios of times enters the proportion by means of the mean speed theorem, 
according to which a uniformly accelerated body traverses a distance equal 
to half the distance it would cover at terminal speed, we insert the addi-
tional ratio 1:2 in our compounded ratio, yielding s1 : s2 ∷ (t1 : t2) (t1 : t2) 
(a1 : a2) (1 : 2). Now, in our usual manner, we designate the consequents 
s2, t2, and a2 respectively as units of distance, time, and acceleration and 
then multiply through to obtain s  : 1 ∷  (t)  (t)  (a)  : 2. The proportion 

accordingly resolves to the equation s
at

=
2

2
, in accordance with Vieta’s 

dictum that a proportion composes an equation and an equation resolves 
a proportion.

In comparing proportions with algebraic equations we must bear in 
mind this decisive difference: proportions equate relations (ratios) between 
quantities, while equations equate quantities themselves. Therefore, as we 
have seen, when a proportion is resolved into an equation the original ratios 
are nominalized as if they were quantities in their own right— artifactual 
quantities, if you will. Clearly, t2 in the example above represents no real 
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physical quantity but rather a nominalized compound ratio. Let us desig-
nate such pseudo-quantities, which are generated whenever proportions 
involving ratios of physical quantities are resolved into algebraic equations, 
as “symbolic quantities.” Hence, the mv in the momentum formula p = mv 
is a symbolic quantity in the same sense as t2 in Galileo’s the law of fall. 
From this perspective the nineteenth century American philosopher 
J.B. Stallo rightly objects, in his Concepts and Theories of Modern Physics 
(1881), to the

error respecting the true nature of arithmetical and algebraic quantities 
[which] has become next to ineradicable by reason of the inveterate use of 
the word “quantity” for purposes of designating indiscriminately both 
extended objects or forms of extension and the abstract numerical units or 
aggregates by which their metrical relations are determined … The use of 
letters as algebraic symbols, i.e., as representatives of numbers, is in itself a 
serious (though, perhaps unavoidable) infirmity of mathematical notation. 
In the simple formula, for instance, expressive of the velocity of a moving 

body in terms of space and time ( v
s

t
= ), the letters have a tendency to sug-

gest to the mathematician that he has before him direct representatives of 
the things or elements with which he deals, and not merely their ratios 
expressible in terms of numbers. In every algebraic operation the use of let-
ters obscures the real nature, both of the processes and the results, and tends 
to strengthen ontological prepossessions.13

Both “processes and results” are obscured precisely because we fail to 
attend to the historically constituted meaning-structure of algebraic equa-
tions in theoretical physics.

5.3  A cAse sTudy: newTon And “QuAnTiTy 
of moTion”

We conclude our discussion of the historical assimilation of algebra into 
physics with a brief case study: Newton’s treatment of “quantity of 
motion” (momentum) in the Principia. The case is especially informative 
in that, generally speaking, Newton is far more sensitive to issues of alge-
braic representation in physics than are his immediate predecessors. The 
sensitivity evidently increased as Newton’s career progressed, and it comes 
out particularly in some of the revisions to the Principia in the third edi-
tion of 1726. Before going into these revisions, we recall that already in 
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his Universal Arithmetic (published anonymously in 1707 but based on 
work from the 1670s) Newton expressed his increasing dissatisfaction 
with algebraic methods in geometry, over against the more rigorous 
geometry of the ancients. Henry Pemberton, who supervised the prepara-
tion of the third edition of the Principia, reports in 1728 that

I have often heard him censure the handling geometrical subjects by alge-
braic calculations; and his book of Algebra he called by the name of Universal 
Arithmetic, in opposition to the injudicious title of Geometry, which 
Descartes had given to the treatise, wherein he shows, how the geometer 
may assist his invention by such kind of computations…. Of their [the 
ancients] taste, and form of demonstration, Sir ISAAC always professed 
himself a great admirer: I have heard him even censure himself for not fol-
lowing them yet more closely than he did; and speak with regret of his mis-
take at the beginning of his mathematical studies, in applying himself to the 
work of Descartes and other algebraic writers, before he had considered the 
elements of Euclid with that attention, which so excellent a writer deserves.14

It is of no minor significance that Newton’s remarks above to Pemberton 
are from around the time of the preparation of the third edition of the 
Principia (1726), for they give us a measure of insight into the motivation 
for some of the changes he made to that text.

At the beginning of Arithmetica Newton distinguishes between “compu-
tation by means of numbers, as in vulgar arithmetic, or by species, as usual 
among algebraists.”15 Then in the immediately following section on the defi-
nition of terms, he remarks that “by number we understand, not so much a 
multitude of unities, as the abstracted ratio of any quantity, to another quan-
tity of the same kind, which we take for unity.”16 Newton’s definition of 
number is essentially the one already proposed by Wallis (4.4.2 above), and 
among such numbers, in the sense of abstracted ratios, are integers, frac-
tions, and surds (irrationals). Clearly, the notion of “abstracted ratio” is a 
development of Vieta’s symbolic number concept, but observe that for 
Newton the distinction between “vulgar” numbers and species falls wholly 
within the symbolic category. Unlike Vieta himself, for instance, Newton 
does not interpret the individual numbers of the ancients as symbolic entities 
assigned determinate values (e.g., “3” instead of “x ”), but instead distin-
guishes the ancient concept of number (“multitude of unities”) from the 
modern Vietan-Cartesian concept (“abstracted ratio”). The latter distinc-
tion applies to both determinate numbers (“vulgar arithmetic”) and indeter-
minate numbers (algebra or computation by “species”). Newton’s superior 
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insight into the definition of number is thus evinced in his declining to attri-
bute to the ancients the modern understanding of “vulgar numbers.” He is 
fully aware of the meaning of arithmoi in the ancient Greek sense and does 
not reduce it to a “less abstract” version of our own concept of number.

If the methods of the ancients are truly more rigorous, however, then a 
rigorous method in physics cannot be numerical, for the ancient concept 
of number (multitude of units) cannot accommodate the continuous 
quantities of physics. Number as “abstracted ratio” allows for the direct 
conversion of ratios to fractions, such that proportions can be rewritten as 
algebraic equations. Nevertheless, on Newton’s expressed preference for 
the ancients the calculational superiority of Cartesian algebra is not to be 
mistaken for an advance in mathematical rigor. Niccolò Guicciardini aptly 
characterizes Newton’s aversion to algebraic methods in terms of an 
increasing concern over “referential content”:

The importance of adopting a mathematical method endowed with referen-
tial content was particularly relevant for Newton’s science of motion. In the 
seventeenth-century, the idea that the language for natural philosophy had 
to be geometrical was deeply rooted. Since Galileo’s time, the “Book of 
Nature” had been thought to be written in “circles and triangles and other 
geometrical figures”; it was not, however, written in algebraic symbols…. 
Newton often characterized the symbolic methods of algebra and calculus as 
merely heuristic tools devoid of scientific character.17

It is in light of this expressed dissatisfaction with algebraic methods around 
the time of the third edition of the Principia that we shall interpret 
Newton’s specific alterations therein to the description of quantity of 
motion.

We noted in Chap. 2 (Sect. 2.4) that Newton was careful to distinguish 
between the qualitative definition of a physical quantity and its quantita-
tive measure. He defines “impressed force,” for instance, as an action on a 
body which changes its state of motion (Book I, Definition IV), while the 
quantitative measure of impressed force is given in the second law of 
motion as a proportion, in terms of its effect: “The change of motion is 
proportional to the motive force impressed.”18 Hence, what we express 
with the formula F = ma is not intended by Newton as a definition of 
impressed force, even if the equal sign in our algebraic version may well 
suggest the word “is.” Yet Newton does define quantity of motion quan-
titatively as a proportion: quantity of motion is “the measure of the same, 
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arising from the velocity and quantity of matter conjointly.”19 Our own 
concept of momentum perhaps can be thought of qualitatively in terms of 
how much effort it takes bring something to a stop (thus the use of 
momentum as a metaphor in sports and politics), but Newton’s quantity 
of motion is obviously already a quantification. Thus what would really 
require qualitative definition would be motion itself. Roche plausibly sug-
gests that Newton thought of motion as one of those quantities, like abso-
lute time, “to which we have no direct access and can only know only 
indirectly as measures.”20

In his commentary on the definition Newton at least is clear that by the 
phrase “arising from the velocity and quantity of matter conjointly” he 
intends a proportion: “Therefore, in a body twice as large, with equal 
velocity, it is double, and with double velocity, quadruple” (“ideoque in 
corpore duplo maiore, aequali cum velocitate, duplus est, et dupla cum veloci-
tate quadruplus”).21 Here Newton’s commitment to Euclidean rigor, 
expressed in the opening quotation of this chapter, comes through with 
exceptional clarity in that Newton gives the definition in terms of a “con-
joint proportion” (“orta … conjunctim”) rather than a heterogeneous 
compounded ratio (“ratione composite”) of velocities and quantities of 
matter. That is, declining Galileo’s method of heterogeneous compounded 
ratios, Newton specifies instead two proportions joined together: (1) a 
proportion between quantities of motion and quantities of matter with 
velocity held constant, and (2) a proportion between quantities of motion 
and quantities of velocity with quantity of matter held constant.22

Nevertheless, Newton is often willing to relax Euclidean rigor, espe-
cially when it comes to calculations—albeit preferably with appropriate dis-
claimers. Thus in the first two editions of the Principia (1687 and 1713), 
in the Scholium to the Laws of Motion, he gives the quantity of motion as 
the product of quantity of matter and velocity: “Tandem ducendum erit 
corpus A in chordam arcus TA, quae velocitatem ejus exhibit.”23 While 
Newton’s use of “ducendum … in” in preference to the more unambigu-
ously arithmetical “multiplicare” suggests the construction of a rectangle 
by “drawing” (ducere) body A’s mass (“quantity of matter”) into its veloc-
ity, the same terminology can also carry a numerical sense, which is evi-
dently the case here.24 That is, Newton does not speak here of a proportion 
between ratios but rather a single [quantity of] motion—“its motion” 
(“motus ejus”)—at a point. Thus we essentially have a numerical represen-
tation of quantity of motion as Q = mv. In the third edition of the Principia, 
however, around the time he was expressing to Pemberton his aversion to 
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algebra, Newton inserts the qualifying phrase “if I may say so” or “so to 
speak” (“ut ita dicam”): “Tandem ducendum erit corpus A (ut ita dicam) 
chordam arcus TA, quae velocitatem ejus exhibit.”25 Evidently Newton 
intends to underline that the “product” of mass and velocity is to be taken 
as an abbreviation for the proportion he had already given in Definition 
Two. Newton here confirms, therefore, what d’Alembert would later insist 
upon, that the physical meaning of algebraic representations in physics is 
“nothing other” than that which is given by proportions.

Another text of interest with regard to numerical methods in physics is 
Definition VIII on the “motive quantity of centripetal force.” Newton’s 
writes in 1687 and 1713,

Therefore the accelerative force is to the motive force as the velocity is to the 
motion. For the quantity of motion arises from the velocity drawn into 
[“ducta in” or “multiplied by”] the quantity of matter, and the motive force 
[arises from] the acceleration drawn into the same quantity of matter. (Est 
igitur acceleratrix ad vim motricem ut celeritas as motum. Oritur enim quan-
titas motus ex celeritate ducta in quantitatem materiae, & vis motrix ex accel-
eratrice ducta in ejusdem materiae).26

But in 1726 Newton replaces “ducere in” with the more rigorous “con-
joint proportion”:

For the quantity of motion arises from the velocity and quantity of matter 
conjointly, and the motive force [arises from] the acceleration and the same 
quantity [of matter] conjointly. (Oritur enim quantitas motus ex celeritate & 
ex quantitate materiae, & vis motrix ex acceleratrice & ex quantitate ejusdem 
materiae conjunctim).27

Thus Newton’s remarks to Pemberton on algebra around the time of the 
preparation of the third edition are once again reflected in an actual revi-
sion to the text.

These changes in the third edition are revealing of Newton’s progres-
sive aversion to algebra in physics. There can be no doubt that Newton 
regarded algebraic representation as an abbreviation for ratios and pro-
portions and did not invest such representations with direct physical 
intelligibility. This is in keeping with the general view of the matter in 
seventeenth and eighteenth century physics.28 A notable exception, which 
we shall see is highly relevant to the physical interpretation of Minkowski 
spacetime, is conservation laws. The law of conservation of quantity of 
motion for elastic collision, for instance, can be written algebraically as  
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m1 v1 + m2 v2 = m1v1
0
 + m2v2

0
. However, it is not the resolution of a pro-

portion in Vieta’s sense, since conservation laws in general equate sums 
of quantities rather than ratios of quantities. The interpretation of such 
an equation as the preceding in fact requires some care. In the present 
case, while the individual terms are indeed algebraic abbreviations for 
compounded ratios, the equation as a whole is not an abbreviated pro-
portion in the sense we have outlined above. Rather, to translate conser-
vation laws out of algebra we have to express them verbally, as both 
Newton and Descartes before him do:

The quantity of motion, which is determined by adding the motions made 
in one direction and subtracting the motions made in the other direction, is 
not changed by the action of bodies on one another. (Newton, Principia, 
Law III, Corollary III29)

And likewise,

God … always preserves the same quantity of motion in the universe. 
(Descartes, Principles of Philosophy, Part Two, 3630)

A conservation law, then, in its physical intelligibility, is neither an alge-
braic equality per se nor a proportion, but rather, like the Pythagorean 
Theorem itself, an equality of summed quantities. We shall have to deter-
mine into which category the Minkowski spacetime interval falls.
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CHAPTER 6

Desedimentation of Minkowski Spacetime

We must now apply the historical considerations of the last two chapters 
to the concept of Minkowski spacetime. The Minkowski spacetime inter-
val is sometimes called a “generalization” of the Pythagorean Theorem, 
but Einstein himself always more correctly referred to the formal analogy 
between the four-dimensional spacetime continuum and the three- 
dimensional continuum of Euclidean space:

The four-dimensional mode of consideration of the “world” is natural on 
the theory of relativity, since according to this theory time is robbed of its 
independence…. But the discovery of Minkowski, which was of importance 
for the formal development of the theory of relativity, does not lie here. It is 
to be found rather in the fact of his recognition that the four-dimensional 
space-time continuum of the theory of relativity, in its most essential formal 
properties, shows a pronounced relationship to the three-dimensional con-
tinuum of Euclidean geometrical space.1

The theory of Minkowski spacetime stands or falls with the analogy 
between the interval and the Pythagorean Theorem. If we are to regard the 
spacetime interval as anything more than one member of the general 
Lorentz transformation c2t′2 − x′2 = c2t2 − x2, however, we must establish a 
more than merely formal analogy between the interval and the Pythagorean 
Theorem.
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Clearly the relevant consideration for evaluating the Pythagorean anal-
ogy is the meaning of the squared terms. When we represent the 
Pythagorean Theorem algebraically, the squared terms ultimately repre-
sent actual geometrical quantities—the sizes of geometrical squares built 
on the sides of a right triangle. If the analogy with the Minkowski interval 
is to be regarded as more than merely formal, the squared terms in the 
expression c2dt2 − dx2 must represent geometrical quantities as well. But 
how do we determine whether they do? Our preliminary analysis identi-
fied two levels of historically sedimented meaning in the equations of 
physics: (1) the equations of physics generally function as symbolic abbre-
viations for proportions, and (2) algebraic terms in the equations of phys-
ics often represent symbolic quantities (or pseudo-quantities) instead of 
real quantities. We recall, for instance, that t2 in the algebraic version of 
Galileo’s law of fall is no real quantity in nature but rather the symbolic 
abbreviation for a duplicate ratio, meaning that the length of free fall 
under gravity increases four times when the time of fall doubles.

We thus have a method by which to proceed: Should the expression 
c2dt2 − dx2 reveal itself as the algebraic translation of a proportion, then 
the squared terms must be regarded as pseudo-quantities and any analogy 
to the Pythagorean theory such as could underwrite the concept of space-
time is fatally undermined. However, should the interval, like the 
Pythagorean Theorem itself or conservation laws and so forth, not find its 
origin in a proportion, that result would redound to the advantage 
Minkowski spacetime. For in that event, the spatial term at least would 
represent a geometrical square as in the Pythagorean Theorem. The time 
term c2dt2 would remain anomalous, though, for a square built on the 
distance light “would travel” in the time interval between two events 
clearly has no physical significance.

To determine the  category to which  the so-called spacetime interval 
belongs, we must translate the expression c2t2 − x2 out of algebra. It will 
serve our purpose to dispense with spatial components, expressing the 
distance between events with the single variable x. For although the reso-
lution of the spatial term into components renders the Pythagorean anal-
ogy more suggestive in visual-notational terms, the question of present 
interest is whether space and time can be merged into a single metrical 
continuum—and we already know the three dimensions of space are so 
united. Since c2t2  −  x2 can be rewritten as the product of factors 
(ct  +  x)  (ct −  x), a proportion immediately suggests itself. Clearly, the 
Lorentz transformation in the form (ct′ + x′) (ct′ − x′) = (ct + x) (ct − x), 
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with some preliminary algebraic manipulation, may be composed as a pro-
portion between compound ratios. However, we cannot in this manner 
truly discern the sense structure of the equation. Instead, in accord with 
our expressed aim of desedimenting the concept of Minkowski spacetime, 
we must proceed genetically or in the opposite direction. That is, we start 
rather with a non-algebraic derivation of the Lorentz transformation and 
recover the original proportion from which it is derived, thereby reactivating 
the historically sedimented sense-structure of the algebraic resolution of the 
proportion. In relativistic physics too, that is, to cite once again the pre-
scient words of d’Alembert, “[T]hat is called an equation which is nothing 
other than a simple proportionality indicated in an abbreviated manner.” 
The genetic procedure is all the more necessary in view of Minkowski’s 
appropriation of an already historically sedimented development of 
 meaning—Vietan-Cartesian symbolic algebra—as point of departure for 
the construction of the concept of four-dimensional spacetime. For our 
task is just to uncover the sense-genesis of the very algebraic expression 
that Minkowski presupposed as his starting point.

We set up a thought experiment as depicted in the spacetime diagram 
below (Fig. 6.1)2:

Two clocks A and B, with trajectories so designated (A coinciding with 
the time axis), intersect at the origin of coordinates. Sometime later, a 

t

clock A clock B

event E

light pulse

x

Fig. 6.1 Two world- 
lines with light pulse
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light pulse departs from A and passes B on its way to reflecting off a mirror 
(event E) and subsequently arriving back at A.  We designate the time 
interval between the clocks’ initial  rendezvous and event E as tA and tB 
appropriately (relative to inertial frames A and B respectively) and the dis-
tances as xA and xB respectively. We further designate the time it takes the 
light pulse to travel (in either direction) between A and E or between 
B and E as TA and TB respectively. Consequently, for the light pulse’s trip 
to the mirror the time of transmission from A is tA − TA and the time of 
reception at B is tB − TB. And by analogous considerations for the return 
trip the light pulse’s time of departure from B is tB + TB and the time of 
reception at A is tA + TA.

Considering first the light pulse’s trip to the mirror, we form the ratio 
of the time of transmission at A and reception at B: (tA − TA) : (tB − TB). 
Likewise, for the return trip we form the ratio of the time of transmission 
at B and reception at A: (tB + TB) (tA + TA). And, since the situation is sym-
metrical as regards the “to” and “from” trips of the light pulse, the two 
ratios are proportional: (tA − TA) : (tB − TB) ∷ (tB + TB) (tA + TA). We could 
call this the “pure form” of the Lorentz transformation, exclusively in 
terms of homogeneous ratios of time intervals. It meets the standard of 

Euclidean rigor. An algebraic substitution of 
x

c
A  and 

x

c
B  respectively for 

TA and TB yields t
x
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: :: : . This propor-

tion defines the relations between intervals of space and time in two iner-
tial reference frames moving relative to one another. Note that the only 
physical quantities represented are intervals of time, distances in space, 
and the speed of light. Moreover, only the speed of light is invariant (albeit 
not frame-independent).

By substituting in the proportion above the algebraic terms 
x

c
A  and 

x

c
B  

we have implicitly introduced numerical units of time and distance and we 
must now those units explicit. We do so by employing the law of cross-multi-
plication for proportions and writing a new proportion between compounded 

ratios: t
x

c
unit t
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c
unit t
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c
unit t
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 : . We 

now translate the proportion into an algebraic equation by nominalizing the 
ratios as fractional numbers and reading the compounding of ratios as 
multiplication:
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Multiplying through by c yields (ctA + xA) (ctA − xA) = (ctB + xB) (ctB − 
xB). Finally, upon multiplying out the factors, we obtain the  desired 
equation:

 c t x c t xA A B B
2 2 2 2 2 2− = −  

Clearly, in the algebraic version of the Lorentz transformation, ratios or 
relations between quantities have been translated symbolically as quanti-
ties in their own right (fractional numbers). Subjected to the arithmetical 
operations of multiplication and division these ratios yield the squared 
terms of the Minkowski spacetime interval. That is to say, the squared 
terms in the spacetime interval are symbolic abbreviations for compounded 
ratios. They are not actual quantities. The algebraic expression for the 
spacetime interval thus arises through the same process of historically sedi-
mented symbolic abbreviation as we saw in the historical examples dis-
cussed in Chap. 5.

Let us pause over this result. Were the so-called spacetime interval 
c2t2 −  x2 an actual physical or geometrical quantity, the squared terms 
would also have to be actual quantities. But the squared terms in the 
expression c2t2 − x2 are no more actual quantities than is t2 in the algebraic 
version of Galileo’s law of fall. To be sure, for a given “space-like” interval 
we can always choose an inertial frame relative to which that interval 
reduces to the Pythagorean distance formula s2 = x2 + y2 + z2, in which case 
the squared terms of the interval indeed correspond to geometrical 
squares. But when we regard x2 as the numerical measure of the area of a 
geometrical square, then we are applying the operation of multiplication 
improperly in Newton’s sense, for “[the] generation of a surface by lines 
is very different from multiplication.”3 Instead, our warrant for adopting 
the custom of multiplying “length times width” to obtain area is under-
written by the Euclidean proof (Book VI, Prop. 23) that the area of a 
rectangle is proportional to the compounded ratio of its sides. In the case 
of a geometrical square, the compounded ratio of interest is a duplicate 
ratio and so the proportion translates in numerical terms to 
Area = length × width. But all that shows is that I am free to write the 
Pythagorean Theorem algebraically as s2 = x2 + y2 + z2. Clearly, I may not 
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assume the converse and assert that the algebraic term x2 in the so-called 
spacetime interval represents a geometrical square. For it may or may not 
represent one depending on whether it is geometrical in origin. The 
expression for the space-like interval x2  +  y2  +  z2 has its origin in the 
Lorentz transformation, not in geometry, and so we merely recover the 
same numerical values as the Pythagorean distance formula. It is not on its 
own terms a geometrical formula.

The theory of four-dimensional spacetime depends for its physical 
validity on our understanding the interval c2t2 − x2 as a real quantity in 
nature. However, through our historical desedimentation the interval 
reveals itself as an algebraic artifact rather than a physical or geometrical 
quantity. I submit this result as conclusive: The theory of Minkowski space-
time mistakes a symbolic construction for a physical reality. Minkowski 
spacetime may be a useful or even a beautiful fiction, but it is a fiction 
nonetheless, for the theory of spacetime fails precisely on the point of its 
sine qua non: the interval as a real physical quantity.

We may continue to call the relativistic manifold of events a “contin-
uum,” as long as we recognize that it is not a single metrical continuum of 
merged space and time. To repeat, the metrical properties of space and 
time in the theory of relativity are interdependent or “entangled,” as per 
Einstein 1905, but they are not merged into a single geometrical contin-
uum of four dimensions. We shall now see that the same holds for general 
relativity.

Notes

1. Einstein 1961 [1916], 62–63.
2. I have appropriated the example from Bondi (1964), where it is treated 

algebraically. This particular analysis of the scenario originally appeared in 
Cosgrove 2012, 175–176.

3. Newton 1769 [1707], 11.

 J. K. COSGROVE



PART III

General Relativity Without Spacetime



125© The Author(s) 2018
J. K. Cosgrove, Relativity without Spacetime, 
https://doi.org/10.1007/978-3-319-72631-1_7

CHAPTER 7

Minkowski Spacetime and General Relativity

Einstein famously quipped in his popular book on relativity that the gen-
eral theory of relativity “would not have gotten out of diapers” apart from 
Minkowski’s four-dimensional formalism. We must now show that general 
relativity can be formulated apart from the concept of Minkowski space-
time. To this purpose, however, it is not sufficient to demonstrate that 
general relativity relies merely on Minkowski’s mathematical formalism, 
without committing itself to the physical reality of Minkowski spacetime. 
For the question remains as to the basis for the heuristic value of the math-
ematical formalism, if it be not the physical reality of Minkowski spacetime 
itself. The indispensability of Minkowski’s formalism, on the regnant 
interpretation, lies in its providing the requisite quadratic differential form 
for employment of Riemannian geometry. But in itself the employment of 
the mathematics of Riemannian geometry hardly renders general relativity 
“geometrical” in subject matter, as Einstein was well aware. Nevertheless, 
it is not obvious why Riemannian geometry would be effective in general 
relativity unless the Minkowski line element were physically real, since the 
metrical structure of any Riemannian manifold is defined by its line 
element.

Our task, then, is to demonstrate both that Minkowski spacetime as a 
physical concept is superfluous to general relativity and that the whole 
mathematical apparatus of four-vectors is superfluous as well. That means 
we must address the two respects in which Minkowski’s theory enters 
standard formulations of the general theory of relativity: the field equation 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72631-1_7&domain=pdf
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itself and the law of geodesic motion. In some quarters, of course, there 
is  a preference for deriving the law of motion directly from the field 
equation.

7.1  Tensor CalCulus and “GeomeTriCal objeCTs”
If you look up the definition of “tensor” or the “tensor calculus” in phys-
ics textbooks or other mathematical sources you will most likely learn that 
a tensor is a “geometrical object” that “maps vectors to real numbers” or 
some such thing. The more traditional view of a tensor as a purely analyti-
cal entity, defined in terms of its transformation properties, appears to 
have been more or less supplanted by the geometrical definition at least 
since the nineteen-sixties or thereabouts. The geometrical definition 
unfortunately is misleading, not least in its suggestion that tensors, by 
virtue of their invariance properties, are what is “really there” in nature.

7.1.1  Tensors as Ratio-Compounding Machines

Should tensors be defined as “geometrical objects”? A little reflection sug-
gests that they should not. To be sure, tensors sometimes are used to 
represent geometrical quantities or subject matter (for example, the 
Riemann tensor in differential geometry); but sometimes they are used to 
represent physical quantities (for instance, the stress tensor of classical 
physics) and sometimes they represent purely numerical relationships (the 
metric tensor, for instance, which determines the numerical coefficients of 
a quadratic differential function). In the specific case of the quadratic dif-
ferential form employed by Einstein for the metric of general relativity 
(φ = arsdxrdxs), John Norton has reminded us that,

[o]f course the modern reader immediately associates this form with the 
invariant line element of a non-Euclidean surface of variable curvature, such 
as was introduced by Gauss and developed by Riemann. However Ricci and 
Levi-Civita’s x1, …, xn were variables and not necessarily geometrical coor-
dinates. They were at pains to emphasize that what was then called infinitesi-
mal geometry was just one of many possible applications of their calculus.1

Tensors by definition are analytical entities, then, not geometrical entities. 
For it surely makes no sense to define something in terms of merely one of 
the possible instances falling under that definition. Indeed, the best way to 
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define a tensor is the traditional way in terms of its transformation proper-
ties. For instance, we define a covariant tensor of first rank in analytical 

terms as a set of components which transform according to A
x

x
A′

∂

∂ ′α
γ

α
γ=









 . 

And the preceding can be suitably generalized to cover tensors of any 
rank/type.

Why do standard definitions so often call tensors as “geometrical 
objects”? Speaking in terms of a vector or tensor of first rank, we observed 
in Chap. 2 that a vector in the proper sense of the term is a physical or 
geometrical quantity with a direction in space. However, since vectors can 
be resolved into directional components subject to a transformation rule, 
any set of numbers that so transform may be regarded as a “vector” in the 
purely analytical sense, even if the “components” in question are not com-
ponents of any single directed physical or geometrical quantity. So in this 
purely analytical sense we indeed may say that a tensor maps vectors to real 
numbers, and sometimes it really does (the metric tensor of differential 
geometry, for instance). But this sense of vector in no wise necessitates our 
regarding tensors as geometrical objects, for the vectors so mapped are not 
necessarily themselves geometrical objects.

What the tensor calculus truly is, in light of Vieta’s dictum that an 
equation resolves a proportion, is a machine for compounding ratios. We 
can support this definition with some simple observations on the transfor-
mation properties of a tensor. Consider once again the coordinate trans-
formation for a rotation in Euclidean space:

 
′ = −x xcos ysinθ θ  

 
′ = +y xsin ycosθ θ  

The transformation above is obtained by summing the unprimed com-
ponents of each component in the primed system. Each of these unprimed 
components is obtained in turn from the ratio of the change in the primed 
component to a unit change in the unprimed component—for example, 
∆x : ∆x ′ ∷ cos θ : 1, which we can translate into algebra as ∂x ′/∂x =  cos θ. 
So ∂x ′/∂x is an algebraically nominalized ratio of the kind we have dis-
cussed, a symbolic abbreviation in d’Alembert’s sense. If we then regard 
′x1
 and ′x2

 as components of vector A′, we can write A′ γ = (∂x ′γ/∂xδ )Aδ, 
always remembering that the ∂x ′γ/∂xδ are symbolically abbreviated ratios. 
But A′ γ = (∂x ′γ/∂xδ  )Aδ is a contravariant tensor of rank one. And so a 
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contravariant tensor of rank two is obtained by compounding two algebra-
ically nominalized ratios:

 
′ ′ ′= ∂ ∂( ) ∂ ∂( )A x x x x Aγρ

γ δ ρ σ
δσ/ / ,

 

And so forth for tensors of higher rank. For each higher rank, we stack on 
an additional compounded ratio. That is what I meant above by saying 
that the tensor calculus is a ratio-compounding machine.

The advantage of Cartesian algebra over the traditional mathematics of 
ratio and proportion, however, extends well beyond the former’s superior 
calculational power. Algebra also enhances the representation of quantita-
tive relationships. This conceptual advantage lies precisely in the nominal-
izing of ratios as quantities, which allows for the free substitution of 
algebraic quantities. Recall that in the process of constructing a tensor 
above we had to rewrite the ratios as numerical fractions, which alone 
allowed us to apply the ratios to the transformed vector components. 
Similarly, to derive the Minkowski interval in by means of ratio and pro-

portion in Chap. 6, we at a certain point had to substitute 
x

c
 for T in the 

proportion (tA − TA) : (tB − TB) ∷ (tB + TB)(tA + TA). We were licensed to 
make this substitution because the ratio of velocities is directly propor-
tional to the ratio of distances traversed and inversely proportional to the 

ratio of times elapsed, which translates into algebraic as c
x

t
= . Without 

the algebraic substitution we never could have incorporated the spatial 
terms and thus would have been brought to a stop. We are therefore far 
from recommending a return to traditional Euclidean ratio and propor-
tion as the primary language of mathematical physics. However, the power 
of modern symbolic algebra comes at the price of a loss of meaning. It is 
this inevitable loss that Newton reprehended in his polemics against 
Cartesian algebra.

7.1.2  Tensors and Invariance

A tensor is a symbolic construction and therefore cannot be what is “really 
there” at a point in space and time. It is sometimes, but not always, the case 
that  a tensor represents some frame independent physical quantity that is 
really there. The classical stress tensor, for instance, returns a single invariant 
and frame independent physical quantity, the total stress at a point. The metric 
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tensor of differential geometry, on the other hand, itself represents no geo-
metrical quantity but is rather a matrix of numerical coefficients. It is only 
when this matrix “acts upon” the appropriate quadratic differential form that 
a single invariant geometrical quantity (ds 2 or the square of the distance) is 
recovered. But the tensor is the numerical matrix itself, which neither is an 
invariant geometrical object nor is “really there.”

In fact, it is not true that a tensor must be even associated with any single 
invariant quantity. With respect to the electromagnetic field tensor in special 
relativity, for instance, there is no such single physical invariant. Depending 
on the inertial frame of reference we divide up the magnetic and electrical 
components of the electromagnetic field differently, but there is determined 
no single physical quantity over and above the set of tensor components. 
After all, the electric field has different units than the magnetic field, so we 
hardly could combine them in a single physical quantity. The only sense in 
which we can employ a so-called “component-free” approach to the elec-
tromagnetic field, therefore, is by means of the purely notational gesture of 
writing F instead of F ab. It is fundamentally misleading to call F an “intrin-
sic” representation, as if F directly represents what is really there, while Fab 
goes indirectly by means of components. The electromagnetic field always 
has electric and magnetic components—that has nothing to do with coor-
dinate representation and is a fact about the physical world.

With respect to the metric tensor of the general theory of relativity, to 
be sure we can represent the four coordinate differentials of interest (three 
spatial and one temporal) as components of a four-dimensional displace-
ment vector and then “map vectors to real numbers” by means of the 
metric tensor. But clearly in this case we are dealing with a “displacement 
vector” strictly in the analytical or symbolic sense, not in the proper sense 
of a vector as a single physical or geometrical quantity with direction space. 
Since the time component is not spatial, the four-dimensional entity of 
which we call it a “component” cannot be a vector in the physical or geo-
metrical sense. Thus the mere use of tensors in the formulation of the 
general theory of relativity in no wise implies the theory itself is geometri-
cal or that it deals exclusively with geometrical invariants.

7.2  aGainsT The lonG CloThes: minkowski 
spaCeTime in einsTein’s 1916 review arTiCle

Although Einstein did indeed avail himself of Minkowski’s four-vector for-
malism in the general theory of relativity, he need not have and the con-
cept of Minkowski spacetime itself plays no substantive role in the theory. 
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Einstein was wrong to suggest that the theory could not have been formu-
lated without it. The best way to demonstrate the point is to carefully 
review Einstein’s 1916 paper on general relativity, his first comprehensive 
presentation of the completed theory. The paper consists of five parts: Part 
A outlines the conceptual structure of the theory, Part B sets forth the 
required mathematical apparatus for formulating the theory, Part C sets 
forth the gravitational field law, Part D applies the theory of gravity to 
special relativistic physics, and Part E derives Newton’s theory of gravity as 
a first approximation. We shall be interested in Parts A, B, C, and E.

7.2.1  Einstein 1916, Part A: “Fundamental Considerations 
on the Postulate of Relativity”

Einstein launches his paper with the observation that the special theory of 
relativity, for all of its far-reaching modifications to classical mechanics, 
nevertheless retains two of the latter theory’s key assumptions: first, the 
principle of relativity is limited to inertial frames of reference, and second, 
the laws of kinematics pertain to measurements by means of rigid bodies 
(rods and clocks) which maintain their metrical properties independently 
of place and time. Einstein proceeds in section 2 of Part A to offer two 
independent arguments for an extension of the principle of relativity to 
accelerated frames of reference. The first argument is epistemological 
(“from the theory of knowledge”) and essentially derived from “Mach’s 
principle.” Since Einstein later renounced it we can leave it out of consid-
eration for present purposes. The second argument for the extension of 
the principle of relativity appeals to Einstein’s principle of equivalence.

7.2.1.1  Part A, §2: The Principle of Equivalence
The theory of gravity is first introduced in Einstein’s paper as a necessary 
condition for a generalized principle of relativity: “It will be seen from 
these reflections that in pursuing the general theory of relativity we shall be 
led to a theory of gravitation, since we are able to ‘produce’ a  gravitational 
field merely by changing the system of coordinates” (114).2 Here I shall 
emphasize Einstein’s principle of equivalence because the term has taken 
on a sense in the literature which departs from the sense in which Einstein 
employed it.3 The principle of equivalence in Einstein’s version, which is in 
my judgment the only one coherent with the conceptual structure of gen-
eral relativity, states that for a finite region in which the special theory of 
relativity holds, an accelerated reference frame induces a special kind of 
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gravitational field. The requirement for a finite special relativistic region is 
clear from Einstein’s application of the principle of equivalence in his deri-
vation of the metric geodesic later in the 1916 paper: “We now make the 
assumption, which readily suggests itself, that this covariant system of 
equations also defines the motion of the point in a gravitational field in the 
case when there is no system of reference K 0, with respect to which the 
special theory of relativity holds good in a finite region.”4 The principle of 
equivalence thus not only extends the principle of relativity to non-inertial 
reference frames in finite special relativistic regions, thus removing an epis-
temological defect of special relativity (the absolute status of the inertial 
frame), but also accounts for the equivalence of inertial and gravitational 
mass and forges the needed link between special relativity and the theory 
of gravity.

Since for a finite region in which the special theory of relativity holds 
(“Galilean region”) a free body follows an inertial path, we can deduce 
how that body will move relative to an accelerated frame in the same 
Galilean region. This accelerated motion is to be regarded as proceeding 
under the influence of a gravitational field of a special kind not associated 
with source masses. Then, on the basis of a reasonable conjecture, we can 
apply the generally covariant equation of geodesic motion to the case of a 
gravitational field for which special relativity does not hold good in a finite 
region. The preceding line of reasoning can be sustained, however, only if 
the principle of equivalence is not infinitesimal and the gravitational fields 
underwritten by the principle of equivalence are not fictitious or merely 
apparent. Einstein explains as much to Laue in response to the latter’s sug-
gestion that, in view of the vanishing of the Riemann tensor in the rigidly 
rotating disk scenario, the gravitational field associated with the rotating 
disk should be regarded as fictitious:

What characterizes the existence of a gravitational field from the empirical 
standpoint is the non-vanishing of the Γik

l , not the non-vanishing of Riklm. If 
one does not think intuitively in such a way, one cannot grasp why some-
thing like a curvature should have anything at all to do with gravitation. In 
any case, no reasonable person would have hit upon such a thing. The key 
for understanding the equality of inertial and gravitational mass is missing.5

Thus, even though the Riemann tensor vanishes for the gravitational field 
of the rotating disk—since a finite special relativistic region is presupposed 
by the thought experiment—the Γik

l  or affine connection still registers the 
real presence of a gravitational field.
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The preceding observations are difficult to reconcile with a vital role for 
Minkowski spacetime in the general theory of relativity. If we embrace 
Einstein’s version of the principle of equivalence, according to which the 
accelerated motion of a reference body relative to a finite Galilean region 
induces a real gravitation field, then the concept of the gravitational field 
as a frame independent geometrical object ceases to make sense. For on 
the relativistic view sanctioned by the principle of equivalence, the inertio- 
gravitational field must break down into inertial and gravitational compo-
nents depending on the relative state of motion of the reference system. 
And as we are so often reminded by expositors of Minkowski’s theory, 
“nothing moves in spacetime.” It is of no avail in this context to object 
that in Minkowski spacetime, frame relative phenomena are determined 
by different “slicings” of the absolute four-dimensional geometrical con-
tinuum which alone is real. For Einstein’s principle of equivalence requires 
that relative motion itself be real. As Synge saw so clearly, an absolute geo-
metrical formulation of Einstein’s theory of gravity cannot possibly coun-
tenance any such role for the motion of a reference frame as the principle 
of equivalence assigns it:

… the geometrical way of looking at space-time comes directly from 
Minkowski. He protested against the use of the word “relativity” to describe 
a theory based on an “absolute” (space-time), and, had he lived to see the 
general theory of relativity, I believe he would have repeated his protest in 
even stronger terms…. I have never been able to understand this Principle 
[of Equivalence] … In Einstein’s theory, either there is a gravitational field 
or there is none according to whether the Riemann tensor vanishes. This is 
an absolute property; it has nothing to do with any observer’s world-line.6

Obviously Einstein himself would not have agreed with respect to the 
application of the principle of equivalence in finite Galilean regions, and 
we have taken Einstein’s side on the matter. Nevertheless, Synge is cer-
tainly correct that the principle of equivalence is incompatible with 
Minkowski’s theory. And if, against Einstein’s interpretation, we 
instead regard the principle of equivalence as infinitesimal we likewise sever 
the conceptual link between special and general relativity and with it any 
possible connection between Minkowski spacetime and the general theory 
of relativity.

According to John Stachel, however, it is precisely with respect to the 
considerations raised by the rotating disk application of the principle of 
equivalence that Minkowski’s theory comes into play. For the hypothesis 
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of a non-flat metric to space and time led Einstein to conclude that “what 
was needed was a four-dimensional generalization of Gauss’s two- 
dimensional surface theory, and that the flat metric tensor of Minkowski’s 
formulation of special relativity had to be generalized to a non-flat met-
ric”.7 However, what Stachel here refers to as the flat metric tensor of 
Minkowski’s formulation is simply the coefficients −1, −1, −1, and 1 
attached to the variables dx1

2 , dx2
2 , dx3

2 , and dx4
2  respectively, in the 

Lorentz transformation − ′ − ′ − ′ + ′ = − − − +dx dx dx dx dx dx dx dx1
2

2
2

3
2

4
2

1
2

2
2

3
2

4
2 . 

And not only is Minkowski’s formulation not required for the requisite 
transformation of variables, but it arguably strips the expression 
− − − +dx dx dx dx1

2
2
2

3
2

4
2  of physical intelligibility by investing it with a physi-

cal meaning independently of its role in the transformation equation from 
which it is derived.

No doubt Einstein was thinking along the lines Stachel describes. But 
our present interest is not whether Einstein used Minkowski, as he obvi-
ously did, but whether he had to. In fact, the rotating disk experiment 
itself involves no merging of space and time into a single metrical contin-
uum as per Minkowski’s theory. Rather, we derive the non-Euclidean met-
rical properties of space on the disk via special relativistic length contraction 
of the small measuring rods around the circumference of the disk, and we 
derive the metrical properties of time on the disk via retardation of clocks 
situated at the circumference compared with the center of the disk. That 
is to say, the two metrical effects of interest, spatial and temporal, are inde-
pendently derived, with no merging of space and time and no necessary 
reference to anything geometrical.

John Norton proposes what at first glance seems a more weighty argu-
ment on behalf of Minkowski’s four-dimensional spacetime formulation. 
Once we relinquish rigid frames, Norton observes, we are deprived of the 
three-dimensional relative spaces that Einstein has used thus far to articu-
late the conceptual structure of the theory:

It was inevitable that Einstein would give up the use of standard [three- 
dimensional] formulations of theories in his search for a general theory of 
relativity. For the relative spaces used by these formulations would only have 
well-defined geometries if the associated frame is in rigid motion, which is 
by no means generally the case. Even in Minkowski space-time, no nonuni-
formly rotating frame can move rigidly. Worse, the relative space will only 
have the frame time required by the standard formulation if the space-time 
admits a foliation by hypersurfaces orthogonal to the frame. Even uniformly 
rotating frames in Minkowski space-time do not admit such a foliation. 
(Norton 1989, 25)
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 Einstein was thus compelled by the breakdown of rigid frames, Norton 
argues, to embrace a four-dimensional spacetime formulation for his the-
ory of gravity. The rotating disk thought experiment, itself an application 
of the principle of equivalence in a three-dimensional relative space, thus 
ultimately leads to the demise of three-dimensional relative spaces. And 
the only alternative is some generalization of Minkowski spacetime.

Einstein’s own conclusion from the rotating disk thought experiment is 
rather that a generally covariant formulation must be employed, since the 
usual method for assigning coordinates by means of rigid rods and clocks 
has broken down on the disk. There is no mention of Minkowski space-
time. In the event, the notorious “reference mollusk” of Einstein’s popu-
lar book is somewhat more informative on this point. Einstein observes 
that by continuing to speak of “reference bodies” in the context of the 
theory of gravity we are making a concession to “our ‘old-time’ three- 
dimensional view of things.” Nevertheless, if we insist on that view of 
things, we can perhaps speak of “non-rigid reference bodies … which are 
as a whole not only moving in any way whatsoever, but which also suffer 
alterations in form ad lib. during their motion.”8 The only reason to enlist 
the reference mollusk in preference to formal Gaussian coordinates, 
Einstein notes, is that the former allows for “the (really unjustified) formal 
retention of the separate existence of the space coordinates as opposed to 
the time coordinate.” Hence the demise of three-dimensionality indeed 
seems to be complete once we are deprived of rigid frames.

That can hardly be the case, though, for what could Einstein mean by 
asserting in the passage above that the “separate existence” of the space 
coordinates and time coordinate is merely formal and even “unjustified”? 
The claim in fact refers back to a version of the so-called point-coincidence 
argument from the preceding chapter of the same book:

We refer the four-dimensional space-time continuum in an arbitrary manner 
to Gauss coordinates. We assign to every point of the continuum (event) 
four numbers, x1, x2, x3, x4 (coordinates), which have not the least direct 
physical significance, but only serve the purpose of numbering the points of 
the continuum in a definite but arbitrary manner. This arrangement does 
not even need to be of such a kind that we must regard x1, x2, x3 as “space” 
coordinates and x4 as the “time coordinate.”9

By numbering points in a “definite but arbitrary manner” Einstein means 
assigning coordinates within the minimal formal requirements of a dif-
ferentiable manifold; and by the assertion that we do not even need to 
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distinguish which are the space coordinates and which the time coordinate 
he evidently means that, once the assignments are complete, we can 
manipulate the variables mathematically without regard to which of them 
represent time and which represent space. From a physical point of view, 
of course, we must distinguish the time coordinate from the space coordi-
nates, if only because the time coordinate enters the equations with a dif-
ferent sign. Einstein’s faith in the point-coincidence argument seems 
somewhat overweening in any event, since the purpose of a coordinate 
system is not simply to assign unambiguous labels to point-events, any 
more than the aims of a physical theory can be reduced to merely catalog-
ing the careers and intersections of the world-lines associated with such 
point events. All we really learn from the point-coincidence argument is 
that since, in general, we can no longer utilize rigid reference bodies in 
gravitational fields, we do well to embrace Gaussian coordinates.

But is the embrace of Gaussian coordinates in the general theory of 
relativity tantamount to the embrace of Minkowski’s four-dimensional 
spacetime? At this point in Einstein’s discussion, at least, that conclusion 
would follow only if the demise of the three-dimensional relative spaces of 
which Norton speaks implied the demise of three-dimensional relative 
spaces as such. But it clearly does not. The three-dimensional relative 
spaces suffering demise in Norton’s account, after all, are three- dimensional 
relative spaces with well-defined geometries and frame times. These well- 
defined geometries and frame times are necessary for the principle of 
equivalence to serve its purpose by enabling us to deduce the properties of 
gravitational fields in general by means of the properties of special fields in 
finite Galilean regions. Already with the rigidly rotating disk, however, we 
have been deprived of a frame time. Does that compel us to set aside the 
three-dimensional interpretation of the rotating disk’s gravitational field 
in favor of a Minkowskian four-dimensional space-time account? In no 
wise. That would defeat the very logic of the principle of equivalence and 
render the gravitational field of the disk fictitious, since the field is induced 
by the relative motion of the disk and inhabits the three-dimensional rela-
tive space of the disk. To be sure, for gravitational fields more generally the 
principle of equivalence has already served its purpose and we can no lon-
ger employ rigid reference bodies. But none of this has anything to do 
with Minkowski spacetime.

We conclude that the demise of three-dimensional relative spaces in 
Norton’s argument solely regards such relative spaces as are associated 
with rigid reference bodies, not three-dimensional relative spaces per se. 
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Hence, the demise of rigid frames in no way compels us to embrace 
Minkowski four-dimensional spacetime in the formulation of the general 
theory of relativity. For Einstein himself, it rather compels the embrace of 
Gaussian coordinates. But we have yet to be given a reason why the 
employment of Gaussian coordinates and the associated mathematical 
machinery (Riemannian geometry and the tensor calculus) is in any way 
related to the embrace of Minkowski spacetime.

7.2.1.2  Part A, §3: General Covariance
Einstein proceeds in Part A, section 3 to offer two arguments on behalf of 
general covariance. Curiously, he makes no direct inference from the gen-
eral principle of relativity to general covariance, but rather appeals in the 
first place to the unavailability of rigid reference frames in a gravitational 
field (rotating disk argument) and then to the point-coincidence argument 
for the arbitrariness of coordinate assignments. Neither of these arguments 
actually establishes a requirement for general covariance. What Einstein 
actually demonstrates by means of the rotating disk is that in the presence 
of a gravitational field we lose the direct metrical significance of coordinate 
differentials. But that entails nothing more than that some alternative to 
rigid Cartesian frames is required, so we can represent all possible gravita-
tional fields countenanced by the theory. It does not necessitate general 
covariance. General covariance provides for differing coordinate represen-
tations of the same gravitational field, that is, while the demise of rigid 
frames entails rather our finding a means of coordinate representation for 
different gravitational fields. The ill-fated Entwurf theory, for instance, 
which employed a generally covariant metric tensor along with a field law 
that was not generally covariant, was ultimately rejected by Einstein not on 
account of its restricted covariance but for quite other reasons.10

Neither does the point-coincidence argument establish a requirement 
for general covariance as opposed to merely an option:

The introduction of a system of reference serves no other purpose than to 
facilitate the description of the totality of such coincidences [intersections of 
material point-events]. We allot to the universe four space-time variables x1, 
x2, x3, x4 in such a way that for every point-event there is a corresponding 
system of values of the variables x1 … x4…. As all our physical experience can 
be ultimately reduced to such coincidences, there is no immediate reason for 
preferring certain systems of coordinates to others, that is to say, we arrive at 
the requirement of general covariance. (117–118)
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Since coordinates merely serve the purpose of labeling point-events, so 
long as that is accomplished unambiguously no particular coordinate sys-
tem or set of coordinate systems is to be preferred over any other. But such 
lack of favoritism by nature does not entail any requirement for general 
covariance and, as has often been noted in the literature, it would apply as 
well to any theory, not just general relativity.

Since both the rotating disk and point-coincidence arguments for gen-
eral covariance fail, it is strange that Einstein did not offer a direct argu-
ment for general covariance based on the general principle of relativity 
itself. While the rotating disk argument does make an indirect appeal to 
the general principle of relativity, by way of the principle of equivalence, its 
proximate basis is the breakdown of rigid coordinate systems. Clearly 
Einstein distinguished general covariance per se from general relativity, for 
at the close of his discussion of the rotating disk he adverts to the fact that 
the general covariance group of transformations is larger than the general 
relativity group:

It is clear that a physical theory which satisfies this postulate [general covari-
ance] will also be suitable for the general postulate of relativity. For the sum 
of all substitutions in any case includes those which correspond to all rela-
tive motions of three-dimensional systems of coordinates. (117)

In the 1916 paper, however, Einstein seems to have regarded general 
covariance as a sufficient condition for general relativity, whereas after 
Kretschmann’s objection he was forced to admit this was not the case. 
What we can say from our own vantage point is that extended covariance—
or covariance beyond Lorentz covariance—but not general covariance per 
se is a necessary condition for the realization of a general principle of rela-
tivity. The requisite degree of extended covariance is that which accom-
modates “all relative motions of three-dimensional systems of coordinates” 
in finite Galilean regions, as per the principle of equivalence. This includes, 
for instance, the rotating frames of reference upon which the Entwurf 
theory finally foundered in 1915.

The topic of general covariance would hardly be relevant to our topic 
were it not for the related thesis, which has gained considerable currency 
over the last decades, that general covariance is a minimal requirement for 
any “well-formulated theory.” While the precise sense of the concept “well-
formulated” is not always clear in the literature, the basic claim evidently 
is that theories formulated “intrinsically” in terms of component- free 
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 geometrical objects are trivially generally covariant, since coordinates are in 
that case optional.11 But the terms “coordinate-free” and “component- 
free” clearly must be distinguished: a vector, for instance, can be resolved 
into components without the use of a coordinate system, as Galileo did 
with the horizontal and vertical components of ballistic trajectories in space 
and Newton with his parallelogram of forces. With specific regard to com-
ponents, the assertion that general relativity is “well-formulated” only if it 
is formulated “intrinsically” clearly begs the question, for what is at issue is 
precisely whether the theory must or should be formulated geometrically as 
per Minkowski’s theory. It is indeed true that in geometry not only are 
coordinates optional, but also components. However, even in the context 
of Minkowski’s theory a “component-free” representation can only be a 
notational gesture, since Minkowski’s four- vectors are originally con-
structed out of components. At a minimum, and even if we represent the 
spatial component intrinsically without resolving it into the x, y, and z com-
ponents, the time component must always be distinguished.

7.2.1.3  Part A, §4: The “Linear Element”
Einstein explicitly acknowledges Minkowski, in the introduction to his 
1916 review article, as having been the “first one to recognize the formal 
equivalence of space coordinates and the time coordinate.”12 The concept 
of Minkowski spacetime itself, however, first makes its appearance in sec-
tion 4 of the paper, where Einstein notes that on the assumption that 
special relativity holds for infinitesimally small regions of space and time,

the expression ds dx dx dx dx2
1
2

2
2

3
2

4
2= − − − +  then has a value which is inde-

pendent of the orientation of the local coordinates, and is ascertainable by 
measurements of space and time. The magnitude of the linear element per-
taining to points in infinite proximity, we call ds….

To the “linear element” in question, or to the two infinitely proximate 
point-events, there will also correspond definite differentials dx1 … dx4 of 
the four-dimensional coordinates of any chosen system of reference. 
(Einstein 1952b [1916], 119)

The quotation marks around “linear element” in its second occurrence 
above perhaps are intended simply to introduce the reader to the new and 
potentially unfamiliar concept of the spacetime interval, but Einstein could 
also be signaling that he means to employ the concept of “linear element” 
in a strictly formal sense, in line with his earlier comment that Minkowski’s 
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significance lies in his having noticed the formal equivalence of the space 
and time coordinates.13 The decisive question is this: Does any concept 
Einstein introduces in the entirety of the paper necessitate our regarding 
the quadratic differential expression − − − +dx dx dx dx1

2
2
2

3
2

4
2  as a line ele-

ment in spacetime or indeed as anything related to Minkowski’s theory at 
all? For on its face the expression is merely as a Lorentz invariant as in 
special relativity 1905, and so we might well dispense with ds2 and write 
rather − ′ − ′ − ′ + ′ = − − − +dx dx dx dx dx dx dx dx1
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4
2 , with no reference 

to Minkowski’s theory.
Einstein explains in a footnote that he has chosen a unit of time to make 

the velocity of light unity, but we should note that he also suppresses the 
units of the velocity of light by writing the time coordinate as simply x4. 
This is a harmless notational gesture as long as we remember that the units 
are still there and that the time component of the so-called linear element 
carries units of spatial distance (ct). Einstein next introduces the familiar 
quadratic differential equation ds2  =  gστdxσdxτ that we associate with 
Riemannian geometry.14 Now if it could be demonstrated that the preced-
ing equation, as it functions in general relativity, is actually derived from 
Riemannian geometry we would have our first concrete evidence that the 
general theory of relativity indeed depends upon a geometrical formula-
tion based on the concept of Minkowski spacetime; for the employment of 
Riemannian geometry indeed requires a line element. However, Einstein’s 
actual derivation of the equation disappoints that hope since it has nothing 
to do with Riemannian geometry. He rather takes the Lorentz transforma-
tion − ′ − ′ − ′ + ′ = − − − +dx dx dx dx dx dx dx dx1
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2
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4
2  and substitutes gen-

eralized coefficients for the transformed variables with the restriction to 
inertial frames removed. That is to say, for the x coordinate Einstein 
obtains x ′ = Ax + By + Cz + Dt, for the time coordinate t ′ = Ex + Fy + Gz + Ht, 
and similarly for the other coordinates. In Einstein’s more compact nota-
tion the transformations are thus represented as dXν = aνσdxσ, where aνσ 
designates collectively our coefficients A, B, C, …, and so forth. 
Substitution of the transformed variables into the Lorentz equation 
− ′ − ′ − ′ + ′ = − − − +dx dx dx dx dx dx dx dx1
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4
2 , again derived from spe-

cial relativity 1905 with no relation to Minkowski, yields 
g′στdx′σdx′τ = gστdxσdxτ. Einstein of course instead writes ds2 = gστdxσdxτ, but 
that is merely a notational gesture at this point, since he has not yet dem-
onstrated that we are dealing with any such thing as a line element or 
“spacetime interval.” There is no justification as of yet for writing ds 2 
on the left-hand side. That is to say, the resemblance of the expression to 
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the  line element of Riemannian geometry alerts us to a formal analogy 
and no more, which would be obvious if we wrote out all the terms in such 
a way as to the show the opposing signs of the space and time variables. 
Nothing of substance is accomplished by coining the term “semi-Rieman-
nian” to account for the difference in metric signature. Prima facie, then, 
the relativistic equation g′στdx′σdx′τ = gστdxσdxτ, derived by generalizing the 
Lorentz transformation, represents nothing geometrical and is not an 
application of Minkowski’s theory.

Einstein concludes section 4 with the observation that, in accord with 
his earlier application of the principle of equivalence, the coefficients gστ 
are to be regarded as quantities describing the gravitational field relative to 
a given reference system (the formal equivalent, that is, of the scalar gravi-
tational potential in Newton’s theory). Thus, if in a Galilean region a free 
material point moves uniformly in a straight line, such that the gστ assume 
constant diagonal values −1, −1, −1, and +1 relative to a suitably chosen 
frame of reference, then relative to an arbitrarily accelerated frame the gστ 
will assume non-constant values as a function of the space and time coor-
dinates. Furthermore, that same material point will now move non- 
uniformly, with the law describing its motion being independent of the 
nature of the moving particle. It follows that the particle’s non-uniform 
motion is to be regarded as occurring under the influence of a gravita-
tional field described by the gστ. Moreover, and this is the decisive move in 
Einstein’s argument, even “in the general case, when we are no longer 
able by a suitable choice of coordinates to apply the special theory of rela-
tivity to a finite region, we shall hold fast to the view that the gστ describe 
the gravitational field” (120).

Einstein has by this point in his paper (sections 1–4) laid out the essen-
tial conceptual structure of the general theory of relativity, with no dis-
cernible role for Minkowski’s theory. All we have with respect to 
Minkowski spacetime, in fact, is the physically unjustified phrase “linear 
element” and the gratuitous notational gesture “ds2.” And if by this junc-
ture Minkowski’s theory has not assumed a physically substantive role in 
Einstein’s theory, one could be forgiven for wondering at what point it 
reasonably would be expected to fulfill such a role. After all, Einstein 
forthwith proceeds in Part B to what he calls the “purely mathematical 
task” of finding a generally covariant field equation in terms of the calcu-
lus of tensors, and if the task is purely mathematical we should not expect 
to encounter any new physical concepts. The remaining candidates for a 
substantive role for Minkowski’s theory, therefore, would appear to be 
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(1) the law of geodesic motion, usually understood in terms of a “straight 
line in four- dimensional spacetime,” and (2) the stress-energy tensor, a 
generalization of the Minkowski four-momentum.

7.2.2  Einstein 1916, Part B: “Mathematical Aids 
to the Formulation of Generally Covariant Equations”

We can skip over much of sections 5–12 in Part B on the mechanics of the 
tensor calculus. Of interest, however, is section 8 on the “fundamental 
tensor,” section 9 on the equation for a geodesic, and Einstein’s introduc-
tion of the Riemann tensor in section 12. Einstein treats tensors as purely 
analytical entities in these mathematical sections, in accord with our 
account in Sect. 7.1 above. He elaborates helpfully in his Princeton lec-
tures, explaining how we can define a vector in analytical terms without 
reference to geometry per se:

The ensemble of three quantities, defined for every system of Cartesian 
coordinates, and which transform as the components of an interval, is called 
a vector. If the three components of a vector vanish for one system of 
Cartesian coordinates, they vanish for all systems, because the equations of 
transformation are homogeneous. We can thus get the meaning of the con-
cept of a vector without referring to a geometrical representation.15

What defines a vector in the passage above is that the three quantities 
transform as the components of an interval. But the fact that the quantities 
in question transform in the same way as the components of a geometrical 
interval does not mean that they actually are components of an interval or 
anything geometrical at all. And the same applies to tensors: since a vector 
taken in the purely analytical sense is a tensor of rank one, “tensors of 
higher rank … may be defined analytically.”16

7.2.2.1  Part B, §8: Fundamental Tensor gμν

Einstein points out that, based on the mathematical proof he has given in 
section §7, the matrix gμν (“fundamental tensor”) in the expression for the 
linear element ds 2 = gμνdxμdxν is a covariant tensor of second rank. As we 
observed above, though, the application of the concept “linear element” 
to this quadratic differential expression is physically gratuitous, since 
Einstein has derived the expression not from differential geometry but 
rather by means of substituting the transformed variables dXν = aνσdxσ into 
the Lorentz equation − ′ − ′ − ′ + ′ = − − − +dx dx dx dx dx dx dx dx1
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Consequently, if we mean to call gμν a metric tensor, as we should, we as 
yet have no license for assuming that it is a metric tensor in the sense of 
differential geometry, where the gμν map the contravariant vectors dxμ and 
dxν to a single real number, the square of the line element at a point. That 
is to say, it is altogether possible, and I shall argue that it is indeed the 
case, that the gμν determine the metrical properties of space and time at a 
point without doing so by means of a “spacetime line element.” All we 
can say at this stage of Einstein’s discussion is that gμν is a covariant tensor 
of second rank and that the metrical properties of the space and time in a 
gravitational field are to be represented by this particular analytical entity. 
Or, to put a finer point on the matter, although we do know that gμν will 
represent the geometrical properties of space in Einstein’s theory, we do 
not know nor do we have any reason to expect that gμν will represent the 
metrical properties of time geometrically, or represent space and time 
together geometrically; for we have been given no reason to believe that 
the metrical properties of time are geometrical. Clearly, the fact that the 
metrical properties of both space and time can be represented in a single 
quadratic differential expression (gμνdxμdxν) in no wise forces upon us the 
conclusion that space and time themselves are therefore merged into a 
single geometrical continuum. For we already know from Einstein’s 1905 
special relativity, apart from Minkowski, that the metrical properties of 
space and time are entangled and therefore must be represented in a sin-
gle mathematical expression (the Lorentz transformation). There is noth-
ing new on this count in general relativity.

7.2.2.2  Part B, §9: Mathematical Derivation of Geodesic Line
In his 1916 paper Einstein employs for the derivation of the geodesic line 
the metrical notion of stationary ds (δ ∫ ds = 0) rather than tangent vector 
parallel transport. In 1917, Levi-Civita introduced the concept of parallel 
transport, derived from the metric, and subsequently Hermann Weyl in 
1923 demonstrated that parallelism can in fact be defined apart from the 
metric. Einstein’s use of stationary ds has suggested to some interpreters 
that in 1916 Einstein had yet to conceive his theory in a geometrical way, 
something that came only later with his embrace of the explicitly geo-
metrical notion of parallel transport or what we know today as the affine 
connection. According to Guttfreund and Renn, for instance, comment-
ing on these sections in their annotated edition of the 1916 paper, Einstein 
in 1916 neither “systematically introduce[d] non-Euclidean geometry, 
nor did he interpret his own theory in terms of differential geometry” 
(Gutfreund and Renn 2015, 81). Similarly, according to Ryckman
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the concept of parallel transference of a tangent vector in a Riemannian 
manifold M was first developed in 1917 by Levi-Civita … The hitherto 
purely analytical Christoffel symbols (of the second kind) of covariant dif-
ferentiation are equated with the components (relative to a given coordinate 
system) of the unique affine (henceforth “Levi-Civita”) connection associ-
ated with the metric. This furnishes the Christoffel symbols with a geometri-
cal interpretation, by relating them to the parallel displacement of a vector 
along a path ….17

But if Einstein in 1916 treats the Christoffel symbols and covariant dif-
ferentiation in a purely analytical way, does it follow that his subsequent 
embrace of parallel transport marks a turn to a more geometrical 
conception?

I am doubtful on this point. Parallel transport is, to be sure, a geometri-
cal concept, but the concept of a line element (ds) is equally geometrical. 
Moreover, it is not clear that Einstein’s subsequent embrace of parallel 
transport was motivated by geometrical considerations. In the Princeton 
lectures he introduces covariant differentiation with the comment that such 
operations are “recognized most satisfactorily in the … way, introduced by 
Levi-Civita and Weyl” (Einstein 1922, 69), but he does not explain why 
parallel transport is to be preferred to the method employed in the 1916 
paper. Perhaps Einstein merely regarded the earlier procedure as more cum-
bersome. Einstein’s remarks on the matter in 1955 are more enlightening:

It is well known that around the turn of the century Riemann’s theory of 
metrical continua, which had fallen so completely into oblivion, was revivi-
fied and deepened by Ricci and Levi-Civita; and the work of these two deci-
sively advanced the formulation of general relativity. However it seems to 
me that Levi-Civita’s most important contribution lies in the following 
theoretical discovery: the most essential theoretical accomplishment of gen-
eral relativity, namely, the elimination of “rigid” space, i.e. of the inertial 
system, is only indirectly connected with the introduction of a Riemannian 
metric. The immediately essential conceptual element is the “displacement 
field” (Γik

l ) which expresses the infinitesimal displacement of vectors.18

Clearly Einstein’s concern in the passage above is not with geometry but 
with the elimination of the inertial frame. Indeed, his reasoning appears 
equivalent to that in the letter to Laue from five years earlier (quoted 
above Sect. 7.2.1.1) on the rigidly rotating disk: what characterizes the 
existence of a gravitational field is the non-vanishing of the Γik

l , not the 
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non-vanishing of Riklm. That is, the Riemannian metric is incapable of dis-
tinguishing between a “flat” spacetime for which the Riemann tensor van-
ishes and a genuine gravitational field relative to an accelerated frame in a 
finite Galilean region (for which the Riemann tensor also vanishes). Only 
the affine connection, derivable independently of the Riemannian metric 
and vanishing solely for a flat spacetime, can register the distinction. Thus 
if anything this line of argumentation, which highlights the centrality of 
the principle of equivalence to the general theory of relativity, points away 
from a geometrical interpretation rather than toward one.

Whatever the evolution of Einstein’s thinking on the issue of the geo-
desic law of motion, whether a metric geodesic based on stationary ds or 
its equivalent in terms of parallel transport of the four-velocity vector, 
from our perspective the crucial point is that either method is on its face 
geometrical: stationary ds because it employs the notion of a line element 
and parallel transport because it employs the notion of parallelism. We 
shall see below, however, that stationary ds can be conceived in a more 
physically intelligible way apart from the geometrical notion of a geodesic 
line. Parallel transport, by contrast, is an essentially geometrical notion.

7.2.2.3  Part B, §12: The Riemann Tensor
We consider next Einstein’s analysis of the Riemann tensor in Part B, sec-
tion 12. With respect to our reading of the paper thus far the obvious 
question is why, unless that theory is geometrical in a substantive rather 
than merely formal sense, the mathematical machinery of Riemannian 
geometry should be so effective. The answer is that the relativistic expres-
sion gμνdxμdxν is exactly analogous in a formal sense to the line element of 
differential geometry, the two differing solely by the negative sign of the 
spatial variables in the relativistic version. But this difference is formally 
irrelevant for purposes of the requisite mathematical manipulations, since 
we are interested not in the values of the variables xn per se but rather 
solely in the gμν and its derivatives with respect to those variables.

In the sense of the general theory of relativity, Einstein highlights in 
§12 the specific significance of the Riemann tensor, constructed from gμν 
and its first and second derivatives:

The mathematical importance of this tensor is as follows: If the continuum 
is of such a nature that there is a coordinate system with reference to which 
the gμν are constants, then all the Bµστ

ρ  [Riemann tensor] vanish. If we 
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choose any new system of coordinates in place of the original ones, the gμν 
referred thereto will not be constants, but in consequence of its tensor 
nature, the transformed components of Bµστ

ρ  will still vanish in the new 
system. Thus the vanishing of the Riemann tensor is a necessary condition 
that, by the appropriate choice of the system of reference, the gμν may be 
constants. In our problem this corresponds to the case in which, with a suit-
able choice of the system of reference, the special theory of relativity holds 
good for a finite region of the continuum. (141)

What do we learn from this passage? If Einstein were speaking of a geo-
metrical theory defined in terms of a line element we would learn that 
when the Riemann tensor vanishes we have a Euclidean or “flat” space. 
But in the context of relativistic physics we learn something quite differ-
ent: If the Riemann tensor vanishes, Einstein notes, then by an appropriate 
choice of coordinates the special theory of relativity holds in a finite region. 
That appropriate choice of coordinates is in fact the choice of an inertial 
frame of reference coordinatized with rigid rods and clocks, such that the 
geometry of space is Euclidean and clocks at different locations can be 
synchronized. But, if for the same condition—the vanishing of the 
Riemann tensor in a finite special relativistic region—we choose an 
 accelerated system of coordinates (the rigidly rotating disk, for example), 
then instead we obtain a gravitational field of a special kind. In terms of 
this field, (1) the geometry of space will be non-Euclidean and (2) we will 
no longer be able to synchronize clocks at different locations such that the 
difference in time coordinates has a direct metrical significance. What we 
do not learn from the passage is that the Riemann tensor informs us of the 
“geometry of spacetime.” We have gotten so used to metaphorical ways of 
speaking that we forget what the theory is actually telling us.

If we wish to speak of the “Riemann tensor” in the context of general 
relativity we should above all be cognizant of the fact that in so speaking 
we refer to a purely analytical entity, albeit one originally invented in the 
context of differential geometry. But if it is understood as a geometrical 
entity then the “Riemann tensor” is not the Bµστ

ρ  of Einstein’s theory, as 
articulated in the passage quoted above. For in the very text before us 
(Part B, section 12), Einstein in fact obtains Bµστ

ρ  “from the fundamental 
tensor alone” and the fundamental tensor (gμν) is neither derived from dif-
ferential geometry nor in any substantive way related to Minkowski’s 
theory.
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7.2.3  Einstein 1916, Part C: Theory of the Gravitational Field

We focus in this part on the derivation of the law of motion in §13, the 
vacuum field equation in §14, and the general field equation in §16.

7.2.3.1  Part C, §13: Law of Motion
The mathematical apparatus for the equation of motion already having 
been given in terms of stationary ∫ds in section 9 of Part B, Einstein now 
proceeds to the physical application of the mathematical concept of a geo-
desic. With respect to Einstein’s derivation of the law of motion in Part C, 
section 13, we must underline once again that the use of “ds” to represent 
the left-hand member of g dx dx g dx dx′ ′ ′ =στ σ τ στ σ τ  is unjustified in a 
physical sense, it not having been shown that this expression has anything 
to do with a line element. Here I propose an equivalent derivation using 
extremal proper time rather than extremal ds, following Einstein’s account 
in section 13 and inserting the appropriate alterations as we proceed.

Einstein begins by recalling the law of inertial motion for finite special 
relativistic regions and the possible extension of that law to the general 
theory of relativity:

A freely movable body not subjected to external forces moves, according to the 
special theory of relativity, in a straight line and uniformly. This is also the case, 
according to the general theory of relativity, for a part of the four- dimensional 
space in which the system of coordinates K0 may be, and is, so chosen that they 
have the special constant values given in (4). (Einstein 1952b, 142) 

By “they” in the final clause Einstein evidently means the metric coeffi-
cients gστ specified in Part A, §4, where he noted that for an appropriately 
chosen coordinate system in a finite special relativistic region those coef-
ficients take on the constant diagonal values −1, −1, −1, +1. Let us return 
temporarily to the equation derived in that section, which should properly 
be written not as ds2 = gστdxσdxτ, but rather g′στdx′σdx′τ = gστdxσdxτ. Writing 
it out longhand, with the y and z dimensions suppressed, yields

 g c dt g dx g ct x g c dt g dx g ctx′ ′ + ′ ′ + ′ = + +′ ′
11

2 2
44

2
14 11

2 2
44

2
142 2  

We can then assign the constant metric coefficients –1 and 1 as appro-
priate to obtain the special relativistic equation −x ′2 + c2t ′2 =  − x2 + c2t2, 
which comes directly from Einstein 1905 special relativity. We demon-
strated in Chap. 6 that this equation is in reality a symbolic abbreviation 
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for a proportion, and so the two algebraic quantities equated (−x ′2 + c2t ′2 
and −x2 + c2t2) are themselves nominalized ratios rather than physical or 
geometrical quantities in their own right.

Keeping the preceding observation in mind, let us stipulate an inertial 
state of motion for the primed frame such that the two events in question 
occur at the same point in space. We may, therefore, rewrite the equation 
as c2τ2 =  − x2 + c2t2, where τ designates the time recorded on a clock at rest 
in the primed frame (thus registering coordinate time in the primed 
frame). Let us suppose, in addition, that this clock is present at both of the 
events in question. Clearly, τ2 is proportional to −x2 + c2t2, and so by sub-
stituting for the consequents of our ratios the unit of time and the unit of 
distance respectively, we obtain the proportion

 
τ τ: :: : .unit x c t unit x− +( )2 2 2

 

Since our clock is free of external forces and initially at rest relative to the 
primed frame, the law of inertia dictates that it remain at rest relative to the 
primed frame. Thus, were the clock to experience any acceleration during 
the time interval between the two events, such that it departed and subse-
quently returned to its original location, it would register a special relativ-
istic time dilation effect and the elapsed time recorded by the clock along 
its trajectory would be less than the elapsed time had it remained at rest.

Hence, Einstein’s 1905 special relativity, in concert with the law of iner-
tia, implies that proper time is maximized for an inertial trajectory. 
Moreover, so must the symbolic quantity −x2  +  c2t2 measured in some 
other inertial frame be maximized, since this quantity is proportional to 
proper time. Clearly the proportional holds irrespectively of whether 
−x2 + c2t2 is itself a physical or geometrical quantity, which it is not. Thus 
we now have a law of free body motion for the special theory of relativity: 
δ − +( ) =∫ dx c dt

A

B 2 2 2 0 . No conception of a “line element” has entered into 
our derivation; for all we are interested in is the fact that the symbolic 
quantity −x2 + c2t2 is maximized, because it is proportional to proper time. 
That is, it is not maximized because it is a “straight line” in four- dimensional 
spacetime or because it represents a spacetime distance. Consequently, the 
special relativistic law of motion should be referred to stationary proper 
time, and not to stationary ds as in Einstein’s account. The two are not the 
same, even if they are proportional. Stationary ds is in fact a physically 
meaningless concept, since an inertial trajectory is a straight line solely on 
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a graph. Happily, we can dismiss all that and hold fast to the physically 
intelligible concept of maximal proper time recorded on a clock. Such a 
clock does not “measure the interval,” as is often said, but rather measures 
its frame-time and, in so doing, also measures indirectly the proportional 
algebraic quantity −x2 + c2t2.

Having determined the law of motion in special relativity by referring it 
to stationary proper time instead of stationary ds, let us pick up again with 
Einstein’s account in section 13 of Part C. Still assuming a finite Galilean 
region, Einstein observes that on the basis of the principle of equivalence 
we can refer this motion in “any chosen system of coordinates” to a gravi-
tational field of a special type. Relying on the geodesic equation intro-
duced in Part B, §9, Einstein therefore writes, for this special gravitational 
trajectory,

 

d x

d

dx

d

dx

d

2

2
σ

µν
σ µ ν

τ τ τ
= Γ

 

There is no Minkowski spacetime geometry here, the Christoffel sym-
bols being purely analytical entities to derive the equation of motion on 
the basis of maximal proper time. In fact, given that the equation of 
motion is intended to represent the acceleration of a falling body, or the 
rate of change of its velocity over time, it is best to write the equation in 
terms of coordinate time, dispensing altogether with the four-velocity vec-
tor. In physical terms, after all, velocities and accelerations are referred to 
coordinate time rather than to a proper time parameter. Hence, following 
Clifford Will, our law of motion is expressed more revealingly in terms of 
coordinate time as follows:19

 

d x

dt

dx

dt

dx

dt

dx

dt

dx

dt

dx

dt

2
4σ

µν
σ µ ν

µν
µ ν σ= −Γ Γ .

 

Thus, as we noted in Chap. 2 for the special relativistic case, all relevant 
information contained in a Minkowski four-vector is determined by the 
three-dimensional spatial components. In the present case the gravita-

tional trajectory is completely determined by the spatial part d x

dt
j

2

2
,  for the 

time component reduces to20
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d t

dt

dx

dt

dx

dt

dx

dt

dx

dt

dt

dt

2

2
4 4 0+ − =Γ Γαβ

α β
αβ

α β .

Since both sides of this equation vanish, regardless of the gravitational 
potentials contained in the Christoffel symbols, the time component of 
the four-dimensional law of motion contains no information about the 

gravitational trajectory. Moreover, the original d t

d

dx

d

dx

d

2

2
0

τ τ ταβ
µ α β+ =Γ ,  

with proper time parameter, is derivable from the coordinate time version 
above, and so the proper time version in terms of the four-velocity con-
tains no additional information about the trajectory. We conclude that the 
geodesic equation is in substance really three-dimensional and that the 

time component 
d t

d

2

2τ
 is not a vector component in any physically mean-

ingful sense. We have thus freed ourselves of the physically obscure notion 
of a static gravitational trajectory in four-dimensional spacetime, replacing 
it with the more physically intelligible notion of a trajectory unfolding 
through time in three-dimensional space.

Einstein next makes the transition to gravitational fields associated with 
source masses, where no finite Galilean region is available:

We now make the assumption, which readily suggests itself, that this covari-
ant system of equations also defines the motion of the point in the gravita-
tional field in the case when there is no system of reference K0, with respect 
to which the special theory of relativity holds good in a finite region. (143)

The assumption to which Einstein refers, however, is truly reasonable only 
if we hold fast to the principle of equivalence in Einstein’s sense, for oth-
erwise we would have no reason to believe that an equation of motion for 
a fictitious gravitational field in a finite special relativistic region would 
apply to a “real” gravitational field associated with source masses, nor 
could we extrapolate based on what transpires in an infinitesimal region in 
which special relativity holds.21

We have arrived at the law of motion for the general theory of relativity 
without recourse to Minkowski spacetime. We therefore shall have dis-
charged the task of this chapter if we similarly can show that the gravita-
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tional field law itself no more relies on Minkowski’s theory than does the 
law of motion.

7.2.3.2  Part C, §14: Vacuum Field Law
Einstein commences his derivation of the vacuum field law by once again 
invoking the principle of equivalence and the special gravitational fields 
associated with it:

Here we again apply the method employed in the preceding paragraph in 
formulating the equations of motion of the material point. A special case in 
which the required equations must in any case be satisfied is that of the spe-
cial theory of relativity, in which the gμν have certain constant values. Let this 
be the case in a certain finite space in relation to a definite system of coordi-
nates K0. Relatively to this system all the components of the Riemann tensor 
Bµστ

ρ  … vanish. For the space under consideration they then vanish, also in 
any other system of coordinates. (143–144)

Our desired gravitational field law, then, must at a minimum accommodate 
the special gravitational fields induced by accelerated reference frames in 
finite special relativistic regions, since these are real gravitational fields. 
Otherwise we would simply have learned how to formulate special relativity 
in generally covariant fashion, but with no reason to require the law of gravi-
tation to cover such special gravitational fields. Were we to limit ourselves to 
just those special fields our gravitational field law would be Bµστ

ρ = 0 . But 
the gravitational field law must cover also those fields, associated with matter 
sources, which cannot be “transformed away” by a change of coordinates. 
Therefore, while the vanishing of the Riemann tensor is a sufficient condi-
tion for the satisfaction of the law of gravity, it is not a necessary condition:

Thus the required equations of the matter-free gravitational field must in 
any case be satisfied if all the Bµστ

ρ vanish. But this condition goes too far. 
For it is clear that, e.g., the gravitational field generated by a material point 
in its environment certainly cannot be “transformed away” by any choice of 
the system of coordinates, i.e., it cannot be transformed to the case of con-
stant gμν. (144)

As is well-known, Einstein’s choice for a gravitational tensor other than 
the Riemann tensor is strictly constrained at this point by the requirement 
that the desired tensor be constructed out of gμν and its derivatives no 
higher than second order. He fixes upon the only feasible candidate, the 
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Ricci tensor Rμν (Einstein here calls it Gμν), formed by contraction of the 
Riemann tensor.

This choice yields the vacuum field law Rμν  =  0, which Einstein 
announces with evident satisfaction:

It must be pointed out that there is only a minimum of arbitrariness in the 
choice of these equations, for besides Rμν there is no other tensor of second 
rank which is formed from the gμν and its derivatives, contains no derivatives 
higher than second, and is linear in these derivatives. (144)22

Since Einstein reiterates that in his derivation of the field law he has 
“proceeded by the method of pure mathematics,” (144–145) it is diffi-
cult to see any reliance on Minkowski’s theory, since the mathematical 
apparatus comes rather from Riemannian geometry. The only possible 
connection to Minkowski would be the metric tensor gμν, on the assump-
tion it entails the concept of a line element; but, as we have already 
observed, this entity is simply a generalization of a set of coefficients 
(−1, −1, −1, 1) already present in the special relativistic equation 
− ′ − ′ − ′ + ′ = − − − +dx dx dx dx dx dx dx dx1

2
2
2

3
2

4
2

1
2

2
2

3
2

4
2 . Clearly, the strictly ana-

lytical procedure of rendering the preceding equation generally covari-
ant cannot in itself make it geometrical or in any way dependent upon 
Minkowski’s theory.

Nevertheless, it is understandable that the employment of a metric ten-
sor would be mistaken for an embrace of Minkowski spacetime. For the 
concept of a metric tensor originates in differential geometry and in that 
context is defined essentially in terms of a quadratic distance function. It is 
then natural to assume, and indeed might even seem to be self-evident, 
that if in the general theory of relativity we employ a metric tensor gμν, 
formally analogous to the metric tensor of differential geometry, it too 
must be defined in terms of a distance function, but in this case a “space-
time” distance rather than a spatial distance per se as in differential geom-
etry itself. But this line of reasoning is simply wrong. The distance function 
of differential geometry is derived from a geometrical theorem (the 
Pythagorean Theorem) which has to do with relations between geometri-
cal squares built on sides of a right triangle. The analogous relativistic 
expression − − − +dx dx dx dx1

2
2
2

3
2

4
2  is derived rather from the Lorentz trans-

formation and could be a “generalization” of the Pythagorean Theorem 
only if the Lorentz transformation itself were a generalization of the 
Pythagorean Theorem. But as we concluded last chapter, it is not.
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The doubt is sure to persist, nevertheless, that if in Einstein’s theory the 
metrical properties of space and time are represented in a single equation 
(c2dτ2 = gστdxσdxτ) those metrical properties surely have been merged into 
a single continuum as envisioned by Minkowski’s theory. But once again 
the conclusion simply does not follow. Already in Einstein’s 1905 special 
relativity the metrical properties of space and time are jointly represented, 
by means of a single equation, without recourse to the notion of a space-
time distance. Metrical properties are all those properties that can be mea-
sured, and in the special theory of relativity what the existence of a single 
equation jointly expressing the metrical properties of space and time tells 
us is that those metrical properties are entangled, not that they are merged 
into a single continuum. Only in geometry proper are all dimensions 
merged into a single continuum.

7.2.3.3  Part C, §16: General Field Equation and Stress-Energy Tensor
For the completion of our analysis there remains the role of the stress- 
energy tensor in Einstein’s general field equation. Here the theory of 
Minkowski spacetime would lead us to believe that we require for the 
source of the gravitational field not merely a relativistic expression for 
mass-energy, as we might have expected, but rather some generalization of 
the momentum four-vector of Minkowski’s theory. This ends up forcing 
upon us additional components, such as pressure and stress, which we 
might not have thought should contribute to the gravitational field. We 
shall presently see that an energy tensor cannot be derived from the 
Minkowski four-momentum and that, in any event, Tμν does not represent 
an “invariant geometrical object.” Indeed, we might do well to dispense 
with Tμν altogether. Einstein’s own dissatisfaction with the role of the 
energy tensor in his theory of gravity is well-documented. In his essay 
“Physics and Reality” of 1936, Einstein compares his field equation to “a 
building, one wing of which is made of fine marble (left part of the equa-
tion), but the other wing of which is built of low-grade wood (right side 
of equation [Tμν]).”23 I believe, however, the situation for Tμν is even worse 
than Einstein’s bleak assessment would suggest: Tμν is comparable not to 
low-grade wood, to press the metaphor, but rather to a wing with no 
foundation at all.

Textbook accounts of general relativity, which as a rule avoid mention 
of Einstein’s own doubts about the energy tensor, typically inform us that 
for the right-hand side of the Einstein equation we need to include as 
sources for the gravitational field all forms of energy, as if for some reason 
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we had up to now been ignoring some of those forms. We soon find our-
selves in possession of a tensor Tμν that includes among its components not 
just energy, but also pressure, stress, momentum density, and so forth, 
which in fact are not forms of energy at all. As a rule, the usual account of 
the stress-energy tensor unfolds with no explanation of why such non- 
energy components should act as sources of gravity in the first place.

In fact, the structure of Tμν is dictated not by the need to include “all 
sources of energy” but by two quite different, albeit related, consider-
ations: First, since mass-energy is not invariant in special relativity it seems 
as if the invariant four-momentum, the time component of which is inter-
preted as energy, must be our point of departure for an energy tensor. 
Otherwise one might have expected, on the analogy with Newton’s the-
ory of gravity, that the source of curvature should be energy density alone. 
Secondly, since the left-hand side of the Einstein equation consists of a 
two-index (sixteen component) tensor Gμν, it evidently stands to reason 
that the right-hand side must also consist of a second rank tensor. This 
inference evidently is buttressed by the fact that in the special theory of 
relativity we do require a second rank tensor to represent energy density, 
with two frame-dependent corrections required, one for relativistic mass 
and one for a relativistic volume contraction.

In accord with established practice, then, let us adopt the Minkowski 
four-momentum as our point of departure for an energy tensor and focus 

initially on the time component m
d ct

d

( )
τ

 or mcγ. Things go awry right 

from the start. The time component of the Minkowski four-momentum, 
as we observed in Chap. 2, reduces not to E (relativistic energy) but to 
E

c
,  no physical quantity in its own right at all, energy or otherwise. For 

once again, we cannot simply make the c in the denominator “go away” 
by setting the velocity of light to unity. Hence, if the T44 component of 
the stress-energy tensor truly is to represent energy density, it cannot be 
derived from the Minkowski four-momentum.

Our textbook accounts as a rule first introduce ρutut as the energy den-
sity component of the stress-energy tensor for dust (where ρ is rest mass 
density and ut is the time component of Minkowski four-velocity). Of 

course, since ut is 
d ct

d

( )
τ

 or cγ, what we really have obtained is simply ρc2γ2 

or the relativistic energy density. And since that is the very quantity we 
would have desired for the energy density in the first place, one wonders 
why the detour through the four-velocity, other than to assure ourselves 

 MINKOWSKI SPACETIME AND GENERAL RELATIVITY 



154 

that we are proceeding in truly “four-dimensional” terms. In any case, the 
relativistic energy density ρc2γ2 can in no wise be derived from the time 
component of the Minkowski four-momentum, for in that event the T 44 
component instead would be ρcγ2, which is not energy density. From a 
physical perspective, then, Minkowski spacetime is hereafter out of the 
picture except notationally.

With a formulation in hand for energy density, we next learn in our 
standard accounts that this very quantity is best regarded as the flux of 
energy through a “hypersurface of constant time” or, more generally, the 
flux of the μth component of the four-momentum across a surface of con-
stant ν, yielding again for dust T μν = ρuμuν. The initial and wrong-headed 
commitment to the Minkowski four-momentum now compels us to define 
the other fifteen components of the stress-energy tensor in terms of such 
“fluxes.” Accordingly, the T  4ν components yield energy fluxes across sur-
faces of constant x, y, or z, and the T  μ4 components give rise to “momen-
tum densities” or fluxes of momentum in the time direction. Unfortunately 
for the theory, if these six aforementioned components are to carry the 
same units as energy density, which they must if they are to be set equal to 
the components of the Einstein tensor on the left-hand side of the Einstein 
equation, then an arbitrary divisor of c must be inserted into energy flux 
and an arbitrary factor of c into momentum density. For clearly a density 

of energy (
mc

volume

2

) cannot have the same units as either a density of 

momentum (
mv

volume
) or a flux of energy (

mc

area time

2

−
). We are usually 

told that momentum density is “the same as” energy flux because it has 
the same units, a singularly unhelpful explanation of the former entity.

Let us proceed to the remaining nine “inner” components of T  μν, 
which comprise the “stress tensor.” Once again, in terms of fluxes, we 
introduce the flux of x, y, or z momentum in the x, y, and z directions 
respectively. Thus for the components T xx, T  yy, and T zz we have pressures 
and for the remaining cross-product terms shear stresses. But difficulties 
once again immediately assert themselves. In a perfect fluid (zero viscosity 
and heat conductance) the shear stresses drop out and we are left with 
pressure alone. But pressure, which ex hypothesi characterizes the fluid 
 element under consideration, is not a flow of momentum, whatever that 
would mean. Rather, the so-called “flow” of momentum is a purely math-
ematical entity or symbolic quantity with the same units as pressure. 
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Furthermore, the physically accurate assertion that a perfect fluid, although 
it exhibits no shear stresses, still exerts pressure stems not from the con-
cept of “fluxes” of the components of the Minkowski four-momentum, 
but rather is derived directly from physical considerations relating to the 
motion of particles. Once again, when we encounter a physically intelli-
gible component of the stress-energy tensor we find that it is unrelated to 
four-vectors and when we find a connection to four-vectors the compo-
nent thus obtained is physically unintelligible.

The stress-energy tensor Tμν conceived as a generalization of the 
Minkowski four-momentum is beset with all the conceptual and mathe-
matical anomalies discussed above. These very anomalies raise the further 
question, which has been looming over our entire discussion, of why pres-
sure, stress, or any of the other components besides energy density should 
be regarded as sources of gravity in the first place. That is to say, what 
other reason besides the presence of a second-rank tensor on the left-hand 
side of Einstein’s field equation—admittedly no mean consideration—
would cause us to think that any tensor components besides mass-energy 
should make a contribution to the gravitational field? Even for the stan-
dard cosmological case of a perfect fluid, for instance, there is no experi-
mental evidence of any such an additional contribution to gravity by 
pressure. Based on purely physical considerations, geometrical objects 
aside, if pressure, for instance, is to act as a source of gravity independently 
of energy density, then it should also so act in vacuum solutions to 
Einstein’s field equation. Why then does the Schwarzschild exterior metric 
contain no term for pressure?24 With respect to the issue of such a separate 
pressure contribution to gravity, Vishwakarma acutely remarks that

the term ρ [mass-energy density] includes in it all the possible sources of 
mass and energy (excluding gravitational energy). Hence, so is included in 
it the energy equivalent to the work done against external pressure. If we 
already know that energy (in the form of work done) is being supplied to the 
system or getting released from it … why can’t this too be taken care of by 
the term ρ? There is no natural law which dictates that ρ cannot include 
particular types of energies.25

Vishwakarma concludes, “It is thus established that the relativistic descrip-
tion of matter [for a perfect fluid] … suffers from some subtle inherent 
inconsistencies in its basic formulation.”26 That is from our perspective 
rather an understatement.
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What needs to be questioned is the very assumption that we require an 
energy tensor on the right-hand side of Einstein’s gravitational field equa-
tion. The presence of non-energy terms like pressure in the stress-energy 
tensor suggests the possibility that the right-hand side of Einstein gravita-
tional field equation should not be occupied by any tensor at all. Here 
Einstein’s demonstration of the Newtonian weak-field limit for the non- 
vacuum field equation is especially revealing. In the 1916 review article, 
Part E, §21, Einstein observes that for the weak field limit we need con-

sider, in the equation of motion d x

ds

dx

ds

dx

ds

2

2
τ

µν
τ µ ν= Γ , only those terms for 

which μ = ν = 4 (where t = x4); for we deal in this case with velocities small 
in comparison to the velocity of light. Therefore, the equation of motion, 

which assumes s = t for small velocities, reduces to 
d x

dt

2

2
τ

µν
τ= Γ .27 Moreover, 

on the assumption that for a quasi-static field differentiations with respect 
to the time coordinate are small compared with differentiations with 

respect to the space coordinates, Γµν
τ  reduces to −

∂
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.28 Further 

reduction with α = τ and gττ ≅ 1 (since we have no off-diagonal metric 
coefficients and the diagonal ones differ only slightly from unity) yields 
d x

dt
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∂

 (τ = 1, 2, 3 since differentiation with respect to time van-

ishes). Therefore, without recourse to the field equation we have derived 

the Newtonian equation of motion, with 
1

2 44g  fulfilling the role of the 

gravitational potential in Poisson’s equation. The Newtonian limit is 
determined to a first approximation by g44 alone, on the basis of the gen-
eral relativistic geodesic law.

Einstein now reverses his procedure and recovers the field equation for 
the Newtonian limit from the weak-field metric above. The left side of the 

field equation reduces to G
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Moreover, with energy density alone to consider in light of our assump-
tions, the energy tensor reduces to T44  = ρ. Hence, we appear to have 
obtained the Newtonian limit ∇2g44 = kρ on the basis of Einstein’s field 
equation Gμν = kTμν. But not really. For that what Einstein has done is 
simply substitute the left-hand side Gμν of his field equation into the left- 
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hand side of the Poisson equation ∇2Φ = kρ. It is quite arbitrary to label ρ 
as T44 and, in fact, the energy tensor has played no role in the derivation 
whatsoever. It is rather the erroneous construction of the stress-energy 
tensor on the basis of Minkowski’s four-momentum, which equates energy 
with the time component of the four-momentum, that gives the appear-
ance of a physical rationale for pairing G44 with T44, when in reality none 
exists. The Newtonian limit Einstein has actually derived, therefore, is the 
vacuum equation ∇2g44 = 0, not the more general ∇2g44 = kρ. Then, on the 
basis of ∇2g44 = 0, we can deduce Newton’s inverse-square law and, going 
backwards from the inverse-square law, finally obtain the general version 
of the Newtonian limit ∇2g44 = kρ. The stress-energy tensor, therefore, 
does not come into play except notationally in Einstein’s derivation of the 
Newtonian limit of his field equation.

But that is not all. From the beginning the only reason we sought out 
a general equation in the form Gμν = kTμν, instead of being satisfied with 
the “pure” field equation Rμν = 0 (Rμν designating the Ricci tensor), is that 
(1) the analogy with Newtonian field law ∇2ϕ = kρ suggested we should 
seek for a non-vacuum analogue in general relativity, and (2) the energy 
density ρ of the Newtonian theory therefore appeared to require reformu-
lation as a matter tensor. But if the substance of Einstein’s recovery of the 
Newtonian limit is simply the reduction of Gμν to G44, which relies solely 
on the left-hand side of the field equation, why regard Rμν = 0 as a “vac-
uum field law” in the sense of a matter-free case of a more general field 
equation? For in the present case, once we have determined that any 
Newtonian weak field reduction, vacuum or non-vacuum, is governed by 
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 , we know also that our gravitational law 

for weak fields reduces to an inverse-square relation. On that basis we 
solve for the non-vacuum weak field (∇2g44 = kρ) with no stress-energy 
tensor. The preceding variation clearly is not sufficient for non-vacuum 
solutions in general, but it raises the possibility that the so-called “vacuum 
field equation” (or what Einstein came to prefer as the “pure gravitational 
field”) might be the field equation rather than merely a matter-free special 
case of a more general field equation.
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7.2.3.4  The Gravitational Field Equation Without a Matter Tensor
To make the proposal above more plausible, consider Einstein’s remark, at 
the conclusion of Section §4 of his 1916 article, on the significance of zero 
tensors in the formulation of generally covariant laws of physics:

The things hereafter called tensors are further characterized by the fact that 
the equations of transformation are linear and homogeneous. Accordingly, 
all the components of the new system vanish, if they all vanish in the original 
system. If, therefore, a law of nature is expressed by equating all the components 
of a tensor to zero, it is generally covariant [my italics].29

Einstein’s emphasis on zero tensors might seem misplaced, since any law of 
nature can be written in such a way that it equates all the components of a 
tensor to zero. In the specific case of the Einstein equation we can write 
instead of Gμν = kTμν the equivalent Gμν − kTμν = 0, which equates all of the 
components of the tensor Gμν − kTμν to zero. What then is the particular 
significance of zero tensors as far as general covariance is concerned?

To appreciate Einstein’s line of thinking in §4 we need to recall that 
Einstein regards the requirement of general covariance as a kind of “math-
ematical sieve,” by means of which the true field law can be discovered by 
eliminating all, or at least almost all, competing possibilities. Certainly 
Einstein was correct in assigning to general covariance this heuristic role, 
in the sense that the Ricci tensor is in fact the only tensor obtainable from 
the metric tensor and its derivatives and of no higher than second differ-
ential order. But Einstein’s particular logic of discovery can work here 
only if we are looking for a zero tensor from the beginning. That is, 
although Gμν − kTμν is indeed a zero tensor, Einstein could never have 
found it directly based on the requirement of general covariance, since 
there are innumerable other tensors obtainable in this fashion. Rather, we 
must from the start seek for a tensor that meets the mathematical criterion 
of Einstein’s “sieve.” Then we can set all the components of this tensor to 
zero for a generally covariant field law of gravitation. And only after the 
Ricci tensor has been obtained in this way can we introduce a matter ten-
sor on the right-hand side of the field equation and modify the left-hand 
side in accordance with energy conservation (that is, zero divergence of 

the stress-energy tensor) to yield R g R kTµν µν µν− =
1

2
.

Consequently, Einstein’s search for a zero tensor should not be under-
stood as a search for a “vacuum field law” per se, but rather in the first 
place as a search for general covariance, in accordance with the heuristic 
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role Einstein assigns the latter in the formulation of a theory of gravity. Or, 
as Einstein puts it in his Autobiographical Notes, we should focus on the 
law of the “pure gravitational field,” with respect to which the matter 
source formulation on the right-hand side is “merely a makeshift in order 
to give the general principle of relativity a preliminary closed-form expres-
sion.”30 On the possibility we are suggesting, the pure gravitational field 
equation Rμν = 0 would be the field equation itself, with non-vacuum solu-
tions consigned to the status of special cases.

7.3  GeodesiC law by oTher means

We now return to the question of parallel transport because it may be fairly 
asked how this unmistakably geometrical notion, in the present case clearly 
associated with the Minkowski four-velocity vector, should “work,” so to 
speak, in the general theory of relativity. But the question can be disposed 
quickly, since we answered it in essence already in Chap. 3 in the context 
of special relativity, where we observed that a “straight line in four- 
dimensional spacetime” is a graph of the equation for an inertial trajectory. 

Since the law of inertia dictates δ µdx

dt









 = 0, our law of geodesic motion 

must be 
d x

dt

2

2
0µ = , and so, in terms of geometrical representation on a 

spacetime graph, if we think of a four-dimensional “velocity vector” tan-
gent to the graph of an inertial trajectory, then obviously that vector must 
always lie on the graphed straight line and so be parallel to itself. The situ-
ation is in principle no different for a “most inertial” trajectory in the 
general theory of relativity. Here the law for “parallel transport” of the 
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sense that parallel transport is a geometrical concept; the Christoffel sym-
bols themselves have a purely analytical sense. Einstein therefore expresses 
himself unfortunately, in his Princeton lectures, when he suggests that in 
the theory of gravity geodesic motion is “the simplest generalization of 
the straight line.”31

From a somewhat similar perspective on Minkowski’s theory as ours, 
Harvey Brown is keen to emphasize that the law of motion in general rela-
tivity can be derived directly from the field equation (even from the vacuum 
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field equation in Einstein’s preferred “singularity” method).32 By this 
means, on Brown’s line of thought, no explanatory role need be assigned 
Minkowski spacetime in the derivation of the general relativistic law of 
motion. From our perspective, of course, Brown’s worries are ill-founded, 
since we have argued that neither stationary dτ nor parallel transport ulti-
mately relies on the concept of Minkowski spacetime. I remain skeptical, 
though, that a direct derivation of the geodesic law of motion from the 
field equation has the significance Einstein attached to it, in the sense of 
obviating the need for an independent hypothesis of motion in the gen-
eral theory of relativity. In the version of the direct derivation cited by 
Brown, for instance, the law of motion is obtained based on the vanishing 
of the covariant divergence of the stress-energy tensor for the freely fall-
ing test body. However, the vanishing of the covariant divergence of 
Einstein’s field equation is the result of applying the law of conservation 
of energy and momentum to the stress-energy tensor on the right-hand 

side. That is, we add the trace term −
1

2
Rgµν on the left in order to satisfy 

conservation on the right. But if we must apply conservation of energy to 

derive the field equation in the first place, why make the detour through 
the field equation instead of deriving the law of inertia directly from the 
principle of conservation of energy? And why should we regard an inde-
pendent law of inertia more distastefully than we would an independent 
law of conservation of energy? From our perspective, then, it is hard to 
see a great advantage in deriving the geodesic law directly from the field 
equation.
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CHAPTER 8

Relativity and Time

Many philosophers regard temporal becoming as irreconcilable with both 
special and general relativity.1 In special relativity, it would seem, distant 
simultaneity is either conventional, frame-relative, or both. Therefore, 
coming to be, entailing as it does a present in which things become, must 
render indeterminate the coming to be of distant events: becoming  
either will be limited to a local “now” or relativized to frames of refer-
ence with differing simultaneity relations. Furthermore, a given solution 
to Einstein’s gravitational field equation presents indefinitely many possi-
ble sets of simultaneous events or “foliations” of time, evidently once 
again rendering the coming to be of distant events indeterminate. Static 
theories of time, on the other hand, which reject tensed descriptions of 
physical reality, appear to receive a kind of scientific imprimatur from 
Minkowski’s theory. I conclude this study, then, with some observations 
on the status of time and becoming in a theory of relativity without 
spacetime.

8.1  Simultaneity in Special Relativity

In his analysis of simultaneity in the 1905 paper on special relativity, 
Einstein treats local simultaneity as self-evident, except for a footnote: 
“We shall not here discuss the inexactitude which lurks in the concept of 
two events at approximately the same place, which can only be removed 
by an abstraction.”2 Two events occurring at approximately the same place 
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in principle would still require a clock synchronization protocol. 
Presumably, then, the abstraction Einstein has in mind is the mathematical 
idealization by which we regard two events as exactly coinciding at a spa-
tial point. That idealization is surely justified in the context of Einstein’s 
analysis, but since the occurrence of two events at a single mathematical 
point is a physical impossibility, in the philosophy of time we cannot accept 
local simultaneity so defined as a primitive or self-evident concept. Indeed, 
we might well regard distant simultaneity in the vicinity as the more 
empirically transparent notion. After all, Einstein formulates his definition 
of local simultaneity in experiential terms—a direct perception of simulta-
neity in my “immediate proximity.” What I actually experience, however, 
is not simultaneity in the idealized sense (two events occurring at a single 
point in time and a single point in space), but rather what is sometimes 
called the “specious present” or the time corresponding to the mini-
mum  threshold of human consciousness, extending spatially to all the 
events I can experience within that duration.

Local simultaneity is often regarded as a relativistic invariant, but this is 
a misleading characterization since simultaneity is a topological relation 
and topological relations are frame-independent.3 Local simultaneity is 
not a relativistic invariant like the speed of light, for instance, which is 
inherently frame-relative but happens to be the same in all frames. Should 
there be such a thing as distant simultaneity, we would expect it to be 
frame-independent as well. Unfortunately, Einstein somewhat confuses 
the question in his 1905 paper by first declaring distant simultaneity con-
ventional, only to subsequently classify it as frame-relative. Thus Einstein’s 
frame-relative simultaneity is itself conventional. As Winnie shows, for 
instance, we can eliminate disagreement on simultaneity between frames 
in relative motion by selecting alternate clock synchronization conven-
tions.4 In any event, there can be no question that Einstein meant to deny 
the reality of distant simultaneity, not merely render it frame-relative. As 
late as 1949, for example, Einstein affirms, as a “definitive result” of the 
special theory of relativity, that “[t]here is no such thing as simultaneity of 
distant events.”5

While the debate on conventionality continues in the literature, only 
an unjustified operationalism would equate our inability to measure the 
one- way transit time of light with the conventionality of that one-way 
transit time and, along with it, the conventionality of distant simultaneity 
itself. However, Winnie and more recently Robert Rynasiewicz, for 
instance, have argued that the conventionality of distant simultaneity is 
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non-trivial in special relativity, and that, notwithstanding Einstein’s mode 
of expression in 1905, the thesis does not have its origin in an operation-
alistic concept of science. According to Winnie, the arbitrariness of distant 
clock synchronization within a single frame

reveals a structural feature of the Special Theory, and thereby of the universe 
it purports to characterize, which not only makes the one-way speed of light 
indeterminate, but reveals that its unique determination could only be at the 
expense of contradicting the non-conventional content of the Special 
Theory …. Thus the CS [conventionality of simultaneity] thesis should not 
be seen as having its basis in an operationalistic view of the nature of physical 
theory, but rather as pointing to a structural feature of the Special Theory 
which this theory does not share with classical kinematics.6

An example of the non-conventional content Winnie is referring to would 
be round-trip clock retardation. While one-way clock retardation is empir-
ically unverifiable and depends on the arbitrary choice of a clock synchro-
nization protocol (and in fact can be eliminated through choice of the 
appropriate protocol), round-trip retardation is empirically verifiable and 
independent of synchrony conventions. Winnie concludes that this “struc-
tural feature” of the special theory of relativity, the independence of non- 
conventional content with respect to synchrony conventions, would be 
inconsistent with the determination of a unique or “true” synchrony.

It is hard to see just where Winnie sees a conflict between the synchrony- 
independence of special relativistic effects such as round-trip clock retar-
dation and the operationalistic reading of the conventionality thesis. For 
suppose that in reality the one-way speed of light were equal to its average 
round-trip speed. Non-standard synchrony would still yield the same 
round-trip clock retardation as standard synchrony, since the differences in 
the one-way transit times exactly compensate for each other. And if what 
Winnie specifically means to proscribe is merely any unique empirical 
determination of the one-way transit time of light, at least by methods 
employing finite speeds (slow clock transport, for instance), we can assent 
to that proposition without foreclosing the possibility of a true one-way 
speed of light.

Rynasiewicz offers a somewhat more provocative account of the con-
ventionality thesis in terms of diffeomorphism equivalence.7 His proposal 
essentially amounts to designating events with the same time coordinate 
as simultaneous, and then reassigning events to different manifold points, 
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such that previously simultaneous events are no longer simultaneous. 
That is, we began with standard clock synchrony as per Einstein 1905, 
and obtain non-standard synchrony in the diffeomorphically related 
model (and, in turn, end up with standard synchrony in the new coordi-
nate  system corresponding to the diffeomorphism). According to 
Rynasiewicz, by analogy with the standard resolution of the hole argu-
ment in general relativity, we are to regard any two simultaneity conven-
tions related by a diffeomorphism as physically equivalent. This conclusion 
seems premature, though, for we must first determine the extent to which 
the analogy holds between the hole argument and the problem of distant 
simultaneity. At issue in the hole argument is our freedom to distribute 
the metric field over the manifold in many different ways. The argument 
for physical equivalence in this case is that the alternative is a singularly 
strange type of physical indeterminism that both fails to express itself in 
anything observable and involves the dubious existence of bare (abstract) 
manifold points. In the case of distant simultaneity, however, there is no 
similarly compelling argument for physical equivalence. To be sure, a 
unique simultaneity relation would be empirically unverifiable within the 
constraints of the theory of relativity. However, that is just what we 
should expect given the status of light as a “first signal.” Moreover, it is 
unclear what is even to be understood by the assertion that light has a 
determinate “average” round- trip speed, but no determinate instanta-
neous speed. For what is being averaged if not the instantaneous speed of 
light at each point of its round- trip? Unlike the hole scenario, then,  
nothing could be more natural than for light to have a determinate one-
way speed equal to its round-trip speed.

What we can say, in sum, is that distant simultaneity cannot register in 
special relativity. In this methodological sense, there is no distant simulta-
neity in special relativity and we thus are compelled to regard distance 
simultaneity as conventional within the round-trip transit time of light. 
That is, once again, a methodological constraint, not a settled judgment as 
to what is the case in nature. Moreover, if simultaneity is a strictly topo-
logical relation it should not be frame-relative. Relative simultaneity at a 
distance is not part of the empirical core of special relativity, and we have 
every reason to reject the concept. Finally, special relativity is valid only 
infinitesimally in general relativity, so relative simultaneity at a distance is no 
longer even a consideration when we consider gravity. Thus, in view of its 
methodological constraints, we can only conclude that the special theory 
of relativity leaves open the question distant simultaneity.
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8.2  Simultaneity in GeneRal Relativity

In special relativity, we encountered two potential sources of arbitrariness 
in the determination of distant simultaneity: (1) the conventionality of 
simultaneity in a single frame of reference, predicated on the convention-
ality of one-way light velocity, and (2) the relativity of simultaneity among 
inertial frames of reference in relative motion. We must ask whether either 
of these impediments is applicable to general relativity.

With respect to the latter, no general principle of relativity is realized in 
Einstein’s theory of gravity, except in the hypothetical scenario underwrit-
ten by the principle equivalence in a finite special relativistic region. Einstein 
was well aware that the general principle of relativity did not license us to 
“transform away” the gravitational field of the sun, for instance, in a finite 
region.8 Thus, as Kretschmann showed early on in the history of the gen-
eral theory, we must carefully distinguish between general coordinate free-
dom (general covariance) and a general relativity principle underwriting 
use of arbitrary frames of reference. In the special theory of relativity, by 
comparison, Lorentz coordinate transformations or “boosts” correspond 
to a change of inertial reference frame. Therefore, even though special 
relativity may be formulated in generally covariant terms, the theory must 
be at least Lorentz covariant. But the most we can say in general relativity 
is that its field equation must accommodate, at a minimum, the degree of 
covariance associated with the principle of equivalence—for instance, rig-
idly rotating frames in a finite special relativistic regions (one of the down-
falls of the Entwurf theory).

Since the general principle of relativity, underwritten by the principle of 
equivalence, does not obtain in our actual world, Einstein’s theory of grav-
ity realizes no principle of relativity such as could underwrite the relativity 
of simultaneity among reference frames in relative motion, at least not in 
the presence of gravitational fields associated with source masses. The idea 
that it does reflects a failure to distinguish properly between coordinate 
systems and reference frames. Merely by changing coordinates we do not 
adopt a new reference frame in the sense entailed by a relativity principle; 
for given a reference body in a particular state of motion we can always 
erase the old coordinates, so to speak, and inscribe new ones, thereby 
changing coordinate systems without changing reference frames. By con-
trast, the arbitrary “foliations” of time for a solution to Einstein’s field 
equation are all defined within a single coordinate system. To be sure, the 
differential rate of clocks in a gravitational field precludes the employment 
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the clock synchronization protocol of special relativity, where coordinate 
differences correspond directly to time intervals. But in some cases, at 
least, we can correct for the differential rate of clocks, so it would be 
wrong-headed to insist that simultaneity is strictly local in general relativ-
ity. The global positioning system (GPS) adjusts the rate of satellite clocks 
so they synchronize with clocks on the surface of the earth, such that truly 
simultaneous ticks of the respective clocks have the same time coordinate.9 
We could always be stiff-necked and insist that since the GPS synchroniza-
tion is dependent on a one-way light velocity assumption, the clock ticks 
are simultaneous in a conventional sense only. But this species of conven-
tionality, as we saw, can be regarded in terms of diffeomorphism; and, as 
we argued above, there is no strong case for diffeomorphic equivalence in 
the case of distant simultaneity. Rather, we encounter once again, now in 
general relativity, a methodological constraint on our determination of the 
one-way speed of light.

What we do learn from general relativity is that gravity has a metrical 
effect on clocks and that a free clock measures the time interval between 
any two events at which it is present. In Newton’s theory of absolute time, 
if we start with a set of globally simultaneous events then a given time 
interval determines another set of globally simultaneous events. The same 
also holds in special relativity given a simultaneity convention within a 
single frame. Thus we could say that in both Newton’s theory and in spe-
cial relativity, we can determine topological time (the simultaneity relation) 
as a function of a global metrical time: in Newton’s theory absolute  
time “flows equably” and in special relativity we assume that identically 
constructed clocks run at the same rate when at rest. This connection 
between topological and metrical time does not obtain in general relativity, 
since the rate at which processes occur (the ticking of a clock, for instance) 
depends on the gravitational field. Nevertheless, global simultaneity is 
consistent with general relativity.

Since simultaneity is a topological feature of time, and topological prop-
erties in general are frame-independent, it seems wrong-headed to ground 
the concept of global simultaneity in a preferred cosmological reference 
frame, as is sometimes attempted through considerations of the homoge-
neity and isotropy of the universe. For one thing, all we would thereby 
secure would be an average; and, just as there exists in the real world no 
“average American,” neither should there exist in the physical universe an 
average “now.” What cosmology can furnish, rather, is an approximation 
of the non-frame-relative present on a global scale, such that we can, for 
instance, speak of the present age of the universe. If clocks did not on average 
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tick at the same rate, so to speak, everywhere in the universe, the universe 
as a whole would not have an age. Similarly, the cosmic microwave back-
ground at present has the same temperature everywhere because it all 
started in the same place and has been cooling for the same amount of 
time. But all of this presupposes global simultaneity. We do not need a pre-
ferred cosmological reference frame to underwrite the concept of global 
simultaneity. In general relativity, the “preferred frame” is the local gravi-
tational field itself, relative to which metrical effects such as time dilation 
and the Lorentz contraction may be referred. Such a preferred frame does 
not presuppose cosmological homogeneity and isotropy.

With respect to the question of whether or in what sense time can be 
regarded as “absolute,” Michael Friedman usefully distinguishes three 
senses of the term absolute in the debate on the nature of space and time: 
(1) absolute versus relational, in the sense of the Leibniz-Newton debate 
over the independent reality of space and time; (2) absolute versus frame- 
relative (best regarded as a particular form of the preceding distinction, 
since a frame-relative property is a relation to a frame); and (3) absolute 
versus dynamical, in the sense of Einstein’s stricture on so-called absolute 
objects that act but are not acted upon.10 With regard to the first of 
Friedman’s contrasts, we must embrace a relational account according to 
which time is essentially bound up with the passage of events in the physical 
world. Clearly, in the theory of relativity we cannot endorse a definition of 
“absolute time” such as we find in Newton’s famous scholium, where time 
“flows equably” in itself, independently of the passage of events. With 
respect to frame-relativity, our analysis suggests that while metrical time is 
frame relative, topological time is global and frame-independent. On 
Friedman’s third contrast, between absolute and dynamical objects, we 
affirm the dynamical character of metrical time. However, metrical time is a 
matter of the comparative rates at which different processes occur, as when 
we compare the rate of some process to the rate of a clock. Comparative 
rates do not directly affect the order of events. A clock ticks more slowly in 
a gravitational field, but the positions of its hands are successively ordered 
the same way they would have been without gravity. In this sense, then, 
topological time is not dynamical. Yet the differential rates at which pro-
cesses occur obviously affects which particular distant events are simultane-
ous with which other ones, and in this sense topological time is dynamical 
as well. Topological relations in time seem more fundamental than metrical 
relations, for a metric interval presupposes two events already ordered ear-
lier and later in time. This very precedence of topological time is presumably 
why we can subjectively “lose track of time” in the metrical sense, but not 

 RELATIVITY AND TIME 



172 

(at least normally) in the topological sense. If I am immersed in something 
I cease to compare the rate of my activity to the rate of the clock on the wall, 
for instance, and so I am surprised when what seemed like twenty-minutes 
was actually three hours. But I do not usually find myself surprised that an 
event I thought occurred beforehand actually occurred afterward.

8.3  time and BecominG

The problem of distant simultaneity in the theory of relativity has suggested 
to some authors the possibility of a theory of local becoming. Dennis 
Dieks, for instance, proposes a conception of tensed time based on the 
“successive coming into being of events” at a particular location.11 
Becoming in Dieks’s sense is local in that (1) successive events come to be 
along a world-line, and (2) temporal ordering relations are non-global. 
However, such a theory of local becoming, which has much else to recom-
mend it, evidently saves becoming at the cost of what Vesselin Petkov has 
aptly called “event solipsism.”12 For if becoming is defined in terms of 
events successively coming into being locally, then the being of events com-
prising distant processes of becoming is rendered indeterminate. Moreover, 
as we already noted regarding Einstein’s 1905 discussion of local simulta-
neity, the concept of the local present is ambiguous in itself, since “here 
and now” in the strict sense is a mathematical abstraction. R.T.W. Arthur 
argues for an extension of the local present (“specious present”), the time 
of mutual interaction, to a round trip of light within the minimum dura-
tion of a conscious experience. One virtue of such a view is its comport-
ment with our experiential intuitions—you and I can actually have a cup 
of coffee together in a shared “now.” But in the end, the problem of the 
reality of distant processes of becoming is not satisfactorily disposed by any 
theory of the specious present, since we have merely replaced “event solip-
sism” with what we might call “regional solipsism.” On the theory of the 
specious present, that is, events outside the present’s spatial extent are still 
indeterminate as to their being.

Along the lines of Dieks and Arthur, though, let us conceive an event 
as the act of some entity—a being or substance in the traditional terminol-
ogy. We do not conceive of an event atomistically, but think rather of an 
event arising out of and perhaps overlapping with an immediately preceding 
event, and extending into an immediately succeeding event. The concept 
of a point-event being a mathematical abstraction, clearly in the concrete 
an event must have some finite temporal duration. The question cannot be 
avoided, therefore, as to what unifies the duration of an individual event or 
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makes all its temporal “moments” part of that one duration. On this ques-
tion, Leibniz argued that both time and space are unreal because, as infi-
nitely divisible mathematical continua, they lack substantial unity. He 
instead posited a “formal atom” (monad) or acting substance underlying 
the phenomenal world in time and space.13 We need not accept Leibniz’ 
metaphysical schema to acknowledge the force of his argument regarding 
unity: duration must be more than a mere succession of temporal points, 
but mere succession of points is the only aspect of the relation “before and 
after” that registers in the theory of relativity.

Where does the present time or “now” enter our picture? We observed 
earlier that the experienced “now,” while it does not register in the theory 
of relativity per se, is presupposed in Einstein’s very definition of local 
simultaneity. We can with advantage avail ourselves of Aristotle’s defini-
tion of change (kinēsis) or becoming in terms of the actualizing of a poten-
tial for being: becoming, that is, in Aristotle’s famous definition from 
Physics, is the “actualization of the potential qua potential.”14 That is to 
say, before the event has occurred the potential is not yet being actualized, 
and after the event has occurred it has already been actualized. Therefore, 
an event or action occurs solely in the present, the time when that which 
was merely potential is being actualized but has not yet been actualized. 
Only when the event or action has become, according to Aristotle, can we 
say it is actual and therefore no longer itself still a process:

At the same time we see and have seen, understand and have understood, 
think and have thought; but we cannot at the same time learn and have 
learned, or become healthy and be healthy. We are living well and have lived 
well, we are happy and have been happy, at the same time; otherwise the 
process would have had to cease at some time … but it has not ceased …15

Only in the perfect tense, as it were, is an event determinate or actualized: 
for then it already is and so has become.16

Insofar as the theory of relativity depends on the concept of “events,” 
then from a philosophical point of view we have every reason to hold to the 
reality of becoming. Static theories of time are unable to give any coherent 
account of what an event actually is; and it would be extraordinary if an 
event itself were an “illusion,” as static theories of time inevitably imply. 
However, becoming does entail simultaneity at a distance—unless we are 
willing to countenance local event solipsism—and simultaneity at a dis-
tance simply cannot register in relativistic physics per se. Craig Callender 
aptly sums up the situation:
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Tensers are wasting their time trying to find an image of the tensed theory 
in physics. Specific theories will be more or less hostile to tenses, but in 
general they will be against tenses so long as there is no clear need for them. 
Show physics a need for tenses and it will quickly accommodate them. Until 
then, merely as a by-product of scientific methodology, physics will not 
accommodate them.17

I believe Callender is quite right. However, there is no reason to believe 
that the tensed time of experience it is illusory simply because it does not 
register in mathematical physics. Furthermore, we need to be clear on the 
precise sense in which the failure of tensed time to register in physics is a 
“by-product of scientific methodology.”

The modern concept of science is coined above all in the writings of 
Descartes, especially his early treatise on method, Rules for the Direction of 
the Mind. In Rule 4 of that work, Descartes specifies the subject matter of 
his projected “universal mathematics” (mathesis universalis) as “order and 
measure”:

When I considered the matter more closely, I came to see that the exclusive 
concern of mathematics is with questions of order or measure [ordo vel men-
sura] and that it is irrelevant whether the measure in question involves num-
bers, shapes, stars, sounds, or any other object whatever. This made me 
realize that there must be a general science which explains all the points that 
can be raised concerning order and measure irrespective of the subject mat-
ter, and that this science should be termed mathesis universalis—a venerable 
term with a well-established meaning—for it covers everything that entitles 
these other sciences to be called branches of mathematics.18

The “other sciences” to which Descartes refers, which qualify as branches 
of mathematics only because they too are concerned exclusively with order 
and measure, are the traditional “mixed sciences,” or what Aristotle in 
Physics II.2 calls the “physical parts of mathematics”: optics, music, astron-
omy, and so forth. Whatever are the other attributes or particular “matter” 
of the objects of mathematics, mathematics itself examines strictly order 
and measure to the exclusion of all else. Descartes’ point is strictly meth-
odological here: a “certain science,” as he calls his projected enterprise, 
must deal exclusively with order and measure.19 In later and more familiar 
texts such as the Discourse on Method and Meditations, Descartes adds 
significant metaphysical apparatus to the methodological principle of the 
Rules: now the very being of the physical world is purely “extension,” for 
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instance, and only mathematical properties such as size, shape, motion, 
and the like are truly real. However, the later Cartesian metaphysics of 
extension is in large part polemical, an assault on the regnant Aristotelian 
science with its substantial forms, final causes, and so forth, sterile notions 
all of them, which Descartes wishes to purge from his new science.

The efficacy of the Cartesian scientific methodology, which is the  
methodology of modern science in general, can hardly be doubted now 
some four centuries into the modern scientific era. But the metaphysical 
apparatus is not essential to the scientific methodology. For comparison’s 
sake, consider Descartes’ elimination from biology of the concept of 
“soul” as principle of life. Descartes in fact goes so far as to argue for the 
elimination of any distinction between a sick body and a healthy body in 
the science of biology:

Those who are ill, for example, may desire food or drink that will shortly 
afterwards turn out to be bad for them. Perhaps it may be said that they go 
wrong because their nature is disordered, but this does not remove the dif-
ficulty. A sick man is no less one of God’s creatures than a healthy one, and 
it seems no less a contradiction to suppose that he has received from God a 
nature which deceives him. Yet a clock constructed with wheels and weights 
observes the laws of nature just as closely when it is badly made and tells the 
wrong time as when it completely fulfills the wishes of the clockmaker. In 
the same way, I might consider the body of man as a kind of machine …20

While modern biology has fully embraced the Cartesian clock metaphor, 
the science of medicine surely cannot dispense with an intrinsic distinction 
between a sick body and a healthy body, even if for methodological rea-
sons that distinction does not register in biology per se. Rather, the dis-
tinction is presupposed in biology, just as the experienced “now” is 
presupposed in the relativistic definition of local simultaneity. Likewise, 
mathematical physics cannot itself deny the reality of tensed time, even if 
in view of its methodological commitments it cannot register that reality. 
In fact, physics takes for granted the reality of becoming every time it 
speaks of a physical process. As Aristotle observed at the beginning of 
Western science, no special science demonstrates its own principles.

What, ultimately, is the time of mathematical physics but order 
(topological time) and measure (metrical time)? Methodologically, then, 
tensed time does not and cannot register in the science of physics. In this 
sense, Einstein was quite right to assert that “[t]he concept [of simultaneity] 
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does not exist for the physicist until he has the possibility of discovering 
whether or not it is fulfilled in an actual case.”21 Such utterances have 
sometimes been attributed to philosophical positivism on Einstein’s part, 
at least in this stage of his career, but they are better regarded as 
methodological.

Since the methodologically reduced time of special and general relativ-
ity leaves open the question of distant simultaneity, we should affirm 
global and non-frame-relative simultaneity as the most philosophically 
coherent position. The “eternalist” theory, or theory of static time, tries to 
have it both ways philosophically by affirming the reality of time in the 
sense of serial order while regarding time as unreal in its essential character 
as becoming. But McTaggart rightly pointed out that we cannot affirm 
the B series (non-tensed ordering of events) without also affirming the A 
series (becoming of events); for time essentially involves change, and 
becoming is the  only form temporal change could assume. Without 
becoming we cannot ultimately distinguish the temporal ordering of 
events from their spatial ordering. Certainly a plus sign rather than a minus 
sign in the metric signature is not enough to accomplish that. Any distin-
guishing mark of temporal change (directionality, causality, and the like) 
implies the reality of becoming.

In rejecting the static view of time, however, we do not necessarily 
embrace so-called presentism, at least not in an unqualified sense.22 The 
present obviously does enjoy a privileged reality, as when we say of some-
one who has died that “he is no more” or of a loved one who had been in 
pain, “Thank goodness she is no longer suffering.” In another sense, 
though, both the future and the past are real: the future as future and the 
past as past. Probably we do not get very far by disputing about whether 
the present is more real than the past and future.23 The crucial question is 
rather the reality of becoming, which we have every reason to affirm.

noteS

1. I shall generally avoid the term “tensed time,” which is often interpreted in 
the philosophy of time as synonymous with becoming. In his informative 
overview of time in special relativity, Savitt (2011, 563) distinguishes 
between tensed time and becoming, suggesting that the latter can be 
understood strictly in terms of “serially ordered clock times.” If by becom-
ing we mean coming into being, though, as the word suggests, then 
becoming inevitably involves tense.
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2. Einstein 1952a [1905], 39.
3. In this connection, one of the difficulties with Hilary Putnam’s famous 

argument that all events, whether past, present, or future, are “equally 
real,” since one can always designate a frame of reference relative to which 
a given event is simultaneous with some event occurring “now,” is that 
Putnam casts local simultaneity as a frame-relative invariant rather than a 
topological absolute. While it is true, if we must so put it, that two locally 
simultaneous events are simultaneous “in all frames,” since local simultane-
ity is in fact a frame-independent invariant, it is not true that locally simul-
taneous events occur “at the same time” in all frames, in the sense of 
occurring at a time common to frames in relative motion. Rather, a moment 
of time in a given frame is determined by the plane of simultaneity relative 
to that frame, and two frames with different planes of simultaneity have no 
moments in common; nor does a point at which the respective planes inter-
sect define a common moment. For at this point in space we simply have two 
simultaneous events, without any relation to reference frames. The “I-now/
You now simultaneity-at-a-point” adduced by Putnam in support of the 
transitivity of the “as real as” relation for events not lying on a single plane 
of simultaneity (Putnam 1967, 242) is in fact a function of the insertion of 
a conscious observer who perceives a “now” at the point in question. But 
this “now” is the subjective now of the observer, which in the context of the 
special theory of relativity does not determine a temporal moment common 
to frames in relative motion. In the sense of the special theory of relativity, 
after all, an observer’s subjective “now” would be simply injected into the 
manifold as one more event alongside all the others, in no wise bestowing a 
common “now” upon inertial frames in relative motion. Moreover, in spe-
cial relativity inertial reference frames are not defined by “observers” at rest 
in them in the first place, and in fact observers per se do not register in 
special relativity at all. Therefore, no “I-now/You now” at a point can 
underwrite the transitivity of Putnam’s “as real as” relation.

4. Winnie 1970, 84.
5. Einstein 1979 [1949], 57.
6. Winnie 1970, 81–82.
7. Rynasiewicz 2012.
8. See for example Part C, §14 of Einstein’s 1916 review article (Einstein 

1952b [1916], 144): “Thus the required equations of the matter-free 
gravitational field must in any case be satisfied if all the Bµστ

ρ  vanish. But 
this condition goes too far. For it is clear that, e.g., the gravitational field 
generated by a material point in its environment certainly cannot be ‘trans-
formed away’ by any choice of the system of coordinates, i.e. it cannot be 
transformed to the case of constant gμν.”
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9. On GPS, see Tom Van Flandern’s (2008) analysis of GPS and relativistic 
effects.

10. Friedman 1983, 62–64.
11. Dieks 2006b, 172.
12. Petkov 2005, 124.
13. Leibniz’ argument on substantial unity is in various texts, such as “A New 

System of Nature” (1695): “Now, a multitude can derive its reality only 
from true unities, which have some other origin and are considerably dif-
ferent from points which all agree cannot make up the continuum. 
Therefore, in order to find these real entities, I was forced to have recourse 
to a formal atom, since a material thing cannot be both material and, at the 
same time, perfectly indivisible, that is, endowed with true unity” (Leibniz 
1989 [1695], 139).

14. For instance Physics III.1, 201a10.
15. Aristotle, Metaphysics IX.6, 1048b25–30; Aristotle 1953, 449.
16. Scholars of Aristotle will note that the present passage properly refers to 

the fulfillment of an activity or a perfect actualization (entelecheia). 
However, for Aristotle the account of change in terms of perfect actualiza-
tion is the most intelligible that can be given and so is paradigmatic for 
change in general, even if most forms of change fall short of perfect 
actualization.

17. Callender 2008, 67.
18. Descartes 1985–1991 [ca. 1628], 1:19.
19. It is not entirely clear in the Rules how Descartes means to distinguish 

between “order” and “measure.” In Principles of Philosophy, a later and in 
many ways more mature work, Descartes associates order with number, 
stressing that “we should not regard order or number as anything separate 
from the things which are ordered or numbered” (Descartes 1985–1991 
[1644], I:211). In the same passage Descartes also mentions duration in 
time, which would obviously fall under “measure.” Order evidently has to 
do with how things are arranged, including numerical arrangement such as 
the succession of moments of time in correlation with what we now call 
real numbers.

20. Descartes 1985–1991 [1641], 1:58.
21. Einstein 1961 [1916], 26.
22. See the revealing discussion on this point by Unger (Unger and Smolin 

2015, 245–248 and 518–521), although I do not agree that if “the now 
has no unique value in natural science” (521) then the now has no privi-
leged status in natural philosophy. It is for methodological reasons, in my 
judgment, that the now has no privileged status in physics itself.

23. A nice discussion of the question of the reality of the present versus the 
reality of past and future is Dorato 2006.
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