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Preface

The aim of this book is to help people understand and enjoy the world in
which we all live. It is written for the undergraduate student of physics,
and is intended to teach. The text presents an extensive study of Special
Relativity, and a (gentle, but exact) introduction to General Relativity.
It is not intended to be the first introduction to Special Relativity for
most students, although for a bright student it could function as that.
Therefore basic ideas such as time dilation and space contraction are
recalled but not discussed at length. However, I think it is also beneficial
to have a thorough discussion of those concepts at as simple a level as
possible, so I have provided one in another book called The Wonderful
World of Relativity. The present book is self-contained and does not
require knowledge of the first one, but a more basic text such as The
Wonderful World or something similar is recommended as a preparation
for this book.

The book has two more specific aims. The first is to allow an
undergraduate physics course to extend somewhat further and wider
in this area than has traditionally been the case, while ensuring that
the mainstream of students can still handle the material, the second
is to show how physics ‘works’ more generally and to act as a prelude
to advanced topics such as classical and quantum field theory. The title
Relativity Made Relatively Easy is therefore playful, yet serious. The text
aims to make manageable what would otherwise be regarded as hard; to
make derivations as simple as possible and physical ideas as transparent
as possible. It is intended to teach, and therefore little prior mathe-
matical knowledge is assumed. Although spacetime and relativity are
the main themes, physical ideas such as fields and flow, symmetry and
stress are expounded along the way. These ideas connect to other areas
such as hydrodynamics, electromagnetism, and particle physics. The
present volume covers Special Relativity thoroughly except for spinors
and Lagrangian density methods for fields, and it introduces General
Relativity with the minimum of mathematical apparatus required to
acquire correct ideas and quantitative results for static metrics. The
affine connection (Christoffel symbol), for example, is not needed in
order to achieve this. A second volume will extend the treatment of
General Relativity somewhat more thoroughly, and will also introduce
cosmology, spinors and some field theory (which explains the occasional
mention of ‘volume 2’ in the present text).
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Preface

Although many universities are now extending their core coverage of
Relativity, and the present volume is intended to meet that need, a few
sections go further than most undergraduate courses will want to go.
These are intended to fill the gap between undergraduate and graduate
study, and to offer general reading for the professional physicist.

The exercises are an integral part of the text, and are of three types.
Some are examples to build familiarity, some introduce formulae or
results that fill out or complete the main text, and some build physical
infuition and a sound grasp of the big ideas.

Sections or chapters with a * in the heading can be omitted or
skimmed at first reading.
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The relativistic world






Basic ideas

The primary purpose of this chapter is to offer a way in for readers
completely unfamiliar with Special Relativity, and to recall the main
ideas for readers who have some preliminary knowledge of the subject.
Fior the former category, appendix A contains some ol the basic argu-
ments that will not be repeated in the main text (and that can be found
in introductory texts such as The Wonderful World of Relativity). The
right moment to turn to that appendix, if you need to, is after completing
section 1.2 of this chapter.

In order to discuss space and time without being vague, it is extremely
helpful to introduce the notion of a reference body. This is usually called
an ‘inertial frame of reference’, but this phrase is in some respects
unfortunate. The phrase ‘frame of reference’ is used in an abstract way in
everyday language, but in physics we mean something more concrete: a
large rigid physical object which could, in principle, exist in the vicinity

1.1 Newtonian physics
1.2 Special Relativity
1.3 Matrix methods

1.4 Spacetime diagrams

of any system whose evolution we wish to discuss. Such a ‘reference > "]‘J":l"‘\'f'“ ==y
body’ clarifies what we mean when we talk of distance and time. By | _destbed | I 4
‘distance’ we mean the number of particles or rods of the reference body B

between two places. The reference body keeps track of time as well, since 1A ‘{/“[r T

the particles making it can be imagined to be tiny regular clocks (think T LTS T

of an atom with an internal vibration, for example). By ‘time’ at any ./ ’;/ | & ';J.___J )
given place we mean the number of repetitions of some such regularly d e
repeating process (‘clock’) at that place. v ei/ \uJ 4——4

‘Frame of reference’ and ‘reference body’ are synonyms in physics.

Most people like to think of a frame of reference as having the form of Fig. 1.1
a scaffolding of ideally thin and rigid rods, with clocks attached. One
might also think of it as a large brick (but one with the unusual property
that others things can move through it unimpeded). It is a mistake to
try to be too abstract here. Although the scaffolding or rigid body is
not necessarily present, our reasoning about distance and time must be
consistent with the fact that such a body might in principle be present
in any region of spacetime, and used to define those concepts.

An inertial frame of reference is one in which Newton’s First Law
of Motion holds. If a particle not subject to any forces always has a Fig. 1.2
constant velocity relative to some frame of reference (as determined by
distance and time measurements furnished by nearby parts of the frame),
no matter when or where the particle sets out, then that frame is an
inertial frame of reference. It follows immediately that all the parts of
an inertial frame of reference have the same velocity relative to one
such particle as it moves past, and by considering many freely moving
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particles at different places and times one may infer that all the parts of
an inertial frame move along together, having the same velocity and zero
acceleration relative to any other such frame, assuming that cistance
relationships obey Euclidean geometry.

An observer is a reasoning being who could in principle be situated at
rest in some given frame of reference. We use the word ‘observe’ to mean
not what the observer directly sees, but what he or she can deduce to be
the case at each time and place in his/her reference frame. For example,
suppose two explosions occur, and an observer is located closer to one
than to the other in his own reference frame. If such an observer receives
light-flashes from the two explosions simultaneously, then he ‘observes’
(i-e., deduces) that the explosions were not simultaneous in his reference
frame.

1.1 Newtonian physics

Let us briefly survey the connection between inertial reference frames
according to classical physics, as developed by Galileo, Newton, and
others.

A crucial idea, first presented at length by Galileo, is the idea that the
behaviour of physical systems is the same in any given inertial reference
frame, irrespective of whether that frame may be in uniform motion
with respect to others. For example, it is possible to play table tennis
in a carriage of a moving railway train without noticing the motion of
the train (as long as the vails are smooth and the train has constant
velocity). There is no need to adjust one’s calculations of the trajectory
of the ball or the choice of force to apply using the bat: all the behaviour
is the same as it would be in a motionless train. This idea, which we shall
state more carefully in a moment, is called the Principle of Relativity;
it is obeyed by both classical and relativistic physics.

When we analyze the motions of bodies it is useful to introduce a
coordinate system (in both space and time), which is simply a way of
noting positions and times relative to a reference body (= inertial frame
of reference). An event is a point in space and time. It is useful to know,
for any given event, how the coordinates of the event relative to one
reference body relate to the coordinates of the same event relative to
another reference body. If reference frames S and S’ have all their axes
aligned, but frame S’ moves along the positive z direction relative to S at
speed v, then we say the reference frames are in standard configuration
(Fig. 1.3). The coordinates of any given event, as determined in two
reference frames in standard configuration, are related, according to
Newtonian physics, by

¥ =t
=z —wt,
¥y =y,
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This set of equations is called the Galilean transformation. It can also
be wrilten in matrix notation as

1 000 t
ol -2 1 0 0 T
z 00 01 z
or
§ i
(£)-s )
where
10 0 0
| =-» 1 0 0
Gg= 00 1 0 (1.4)
00 0 1
The inverse Galilean transformation is
t 1 0 00 t/
T v I 0 0O z!
v =100 16|l k2-3)
z 00 01 2!

which can also be written

(-5

The reader is invited to verily this—that is, check that the matrix given
in eqn (1.5) is indeed the inverse of G.

Matrix notation makes il easy to check things such as the effect of
transforming from one reference frame to another and then to a third.
For example, the net effect of transforming to another frame and then
back to the first is given by G~'G, which is, of course, the identity
matrix.

1.2 Special Relativity

1.2.1 The Postulates of Special Relativity

Turning now to Special Relativity, we shall find that the Principle of
Relativity is still obeyed, but the Galilean transformation fails.

1.2 Special Relativity 5

Fig. 1.3 Two reference frames (=ref.
erence bodies) in standard configura-
tion. 8’ moves in the o direction relative
to §, with its axes aligned with those
of §. The picture shows the situation
at the moment {defined in 8} when the
axes of 8’ have just swept past those of
5. The whole reference frame of S’ is in
motion together at the same velocity v
relative to S. Equally, the [rame of S ig
in motion at velocity —v relalive to 8.
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The Main Postulates of Special Relativity are

Postulate 1, ‘Principle of Relativity’: The motions of bodies included in a
given space are the same among themselves, whether that space 15 at rest or
moves uniformly forward in a straight line.

Postulate 2, ‘Light Speed Postulate’:

Version A:There 18 a finile mazimum speed for signals.

Version B:There is an inertial reference frame win which the speed of light in
vacuum 15 tdependent of the motion of the source.

The Principle of Relativity (Postulate 1) is obeyed by classical physics;
the Light Speed Postulate is not. The Principle of Relativity can also be
stated as:

The laws of physics take 1the same mathematical form in all inertial frames of
reference.

In Postulate 2, either version A or version B is sufficient on its own
o allow Special Relativity to be developed. Version A does not mention
light; which makes it clear that Special Relativity underlies all theories in
physics, not just electromagnetism. For this reason version A is preferred.
ITowever, we will preserve the practice of calling this postulate the
‘Light. Speed Postulate’ because in vacuum, far from material objects,
light-waves move at the maximum speed for signals. With this piece of
information about light, one can use either version to derive the other.

Einstein used version B of the Light Speed Postulate. It is often stated
ag ‘the speed of light is independent of the motion of the source.' In
this statement the fact that motion can only ever be relative motion
is taken for granted, and il is a statement about what is observed in
any reference frame. In our version B we chose to make a slightly more
restricted statement (choosing just one reference frame), merely because
it is interesting to hone ones assumptions down to the smallest possible
set. By combining this with Postulate I it immediately follows that all
reference frames will have this property.

The Light Speed Postulate can be tested very accurately by astro-
nomical observations. For instance, in a binary star system each star
orbits the centre of mass. If the emitted light had a speed depending on
the motion of the source, then it would propagate to Farth at a speed
which varies with the time of emission. For example, light emitted at one
point on the orbit would catch up and possibly overtake light emitted at
another point. This would be observable as multiple images appearing
in detectors on Farth, or as some more modest change in the detected
pattern of fluctuation (e.g. of Doppler effect or intensity). No such effects
have ever been detected. A typical approach would be to test the claim
that the speed of light emitted by a source of velocity v is given by
¢+ kv, where k is a constant to be determined. By using X-ray sources
one can avoid complicating issues arising from scattering of visible light
by the interstellar medium, and by a clever combination of position and
Doppler measuwrements (see exercise 1.5) one can determine the upper



bound k < 10~ using data from binary systems situated at a distance
of order 10* light-years from Earth and having an orbital period of a few
days.

In order to make clear what is assumed and what is derived, it is useful
to add two further postulates to the list:

Postulate 0, ‘Buclidean geometry': The rules of Fuclidean geometry apply to
all spatial measurements within any given inertial reference frame.

Postulate 3, ‘Conservation of momentum’: Internal interactions among the
parts of an 1solaled system cannot change the system’s total momentum, where
momentum is a vector function of rest mass and velocity.

Postulate 0 (Euclidean geometry) is obeyed by Special Relativity but
not by General Relativity. Postulate 3 (couservation of momentum)
allows the central elements of dynamics to be deduced, including the
famous formula E = mc¢? (which cannot be derived from the Main
Postulates alone).

1.2.2 Central ideas about spacetime

Recall that a ‘point in spacetime’ is called an event. This is something
happening at an instant of time at a point in space, with infinitesimal
time duration and spatial extension. For an example, tap the tip ol a
pencil once on a table top, or click your fingers.

A particle is a physical object of infinitesimal spatial extent, which can
exist for some extended period of time. The line ol events which gives
the location of the particle as a function of time is called its worldline;
see Fig. 1.4.

If two events have coordinates (ty,z1,y1, 21) and (t2, 22,2, z2) in some
reference frame, then the quantity

s=—Flta-t)+ (@m—2) '+ (le-n)+(-—2)? (L7

is called the squared spacetime interval between them. Note the crucial
minus sign in front of the first term. We emphasize it by writing eqn
(1.7) as

$? = —c2At? + Ax? + Ay? + A% (1.8)

Il 2 < 0 then the time between the events is sufficiently long that a
particle or other signal (moving at speeds less than ¢) could move from
one event to the other. Such a pair of events is said to be separated by
a time-like wnterval. If s* > 0 then the time between the events is too
short for any physical influence to move between them. This is called a
spacelike interval, If s* = 0 then we have a null interval, which means
that a light pulse or other light-speed signal could move directly from
one event to the other,

Although the parts ¢;,x,,v:,2; needed to calculate an interval will
vary from one reference frame Lo another, we will find in chapter 2 that
the net result, s*, is independent of reference frame: all reference

1.2 Special Relatwvity 7

! One can replace the statement of
Postulate 3 by a statement about
translafional symmetry; see chapter 14.

Fig. 1.4 A spacetime diagram show-
ing a worldline and a light-cone (past
and future branches), Time runs in
the vertical direction on the diagram,
and one spatial dimension has been
suppressed. The cross (%) marks an
example event. The apex ol the cone
is another event,
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Fig. 1.5 The set of events at fixed
interval from the origin forms a hyper-
boloid of revolution. The figure shows
such a surface for the case where the
interval from the origin is spacelike. (a)
shows the surface as traced out by a set
of hyperbolae, and (b) shows the same
surface and illustrates the interesting
fact that it can also be constructed
from a set of exactly straight lines (cf.
section 3.2).

Fig. 1.6 The set of events at a fixed
time-like interval from the origin.

frames agree on the value of this quantity. This is similar to the fact
that the length of a vector is unchanged by rotations of the vector.
A quantity whose value is the same in all reference frames is called
a Lorentz invariant (or Lorentz scalar). Lorentz invariants play a
central role in Special Relativity.

The set of events with a null spacetime interval from any given event
lie on a cone called the light-cone of that event; see Fig. 1.4, The part (or
‘branch’) of this cone extending into the past is made of the worldlines of
photons that form a spherical pulse of light collapsing onto the event, and
the part extending into the future is made of the worldlines of photons
that form a spherical pulse of light emitted by the event. The cone is an
abstraction: the incoming and outgoing light-pulses do not have to be
there. The past part of the light-cone surface of any event A is called the
past light-cone of A, and the future part of the surface is called the future
light-cone of A. The whole of the future cone (i.e., the body of the cone
as well as the surface) is called the absolute future of A, and consists of
all events which could possibly be influenced by A (in view of the Light
Speed Postulate). The whole of the past cone is called the absolute past
of A, and consists of all events which could possibly influence A, The
rest of spacetime, outside either branch of the light-cone, can neither
influence nor be influenced by A. It consists of all events with a spacelike
separation from A.

The set of events at fixed interval from the origin satisfies the equation

PP+’ + 2422 =L (1.9)

where L is a constant. [f L > 0 the interval is spacelike; if L < 0 the
interval is time-like. This is the equation of a hyperboloid of revolution;
see Figs 1.5 and 1.6.

The single most basic insight into spacetime that Einstein’s theory
mtroduces 1s the relatwity of simultaneity: two events that are simulta-
neous in one reference frame are not necessarily simultaneous in another,
In particular, if two events happen simultaneously at different spatial
locations in reference frame I', then they will not be simultaneous in
any reference frame moving relative to I' with a non-zero component of
velocity along the line between the events. An example is furnished by
‘Einstein’s train’; see Fig. 1.7.
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Fig. 1.7 Einstein’s train. A fast-moving train is moving past a platform. Firecrackers are placed at the two ends of the
train, each triggered to explode when it reaches the corresponding end of the platlorm. Suppose an observer 8 standing still
in the middle of the platform receives flashes of light from the two explosions simultaneously. He infers that the explosions
were simultaneous (they both occured at a time %Lg /e before he received the signals, where Ly is the length of the platform
according to his measurements). From this he can also infer that the train has the same length as the platform. S also finds
that the front flash reaches a passenger P seated in the middle of the train before the back flash does. For example, when
the flashes arrive at S one has already passed P, while the other has not. It follows that the passenger himself experiences the
flashes separated by a finite interval of time. P considers that the flashes travelled equal distances (relative to him) to reach
him, since he is seated in the middle of the train, and one fash occurred at the front, one at the back: there are scorch marks
on the train to prove it. Since the speed of light is a universal constant, P must infer that the explosions were nol simultaneous
in his reference frame: the front one occurred before the back one. Hence simultaneity is not absolute: it depends on a reference
frame. (P may also infer that the train is longer than the platform, according to his measurements.)

By careful argument from the postulates one can connect timing and
spatial measurements in one inertial reference frame to those in any
other inertial reference frame in a precise, quantitative way. In the
next chapter we will introduce the Lorentz transformation to do this
in general. Arguments for some simple cases are a useful way into the
subject, and are summarized in appendix A.

1.3 Matrix methods

By writing down the Galilean transformation using a matrix, we have
already assumed that the reader has some idea what a matrix is and how
it is used. However, in case matrices are unfamiliar we will here summa-
rize the matrix mathematics we shall need. This will not substitute for
a more lengthy course of mathematical training, but it may be a useful
reminder.

A matrix is a table of numbers. We will only need to deal with real
matrices (with rare exceptions), so the numbers are real numbers. In an
‘n x m’ matrix the table has n rows and m columns. Here is a 2 x 3

matrix, for example:
1.2 -36 8
(2 4.5 2)‘ (1:40)
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If either n or m is 1 then we have a vector; if both are 1 than we have
a scalar.

A vector of 1 row is called a row vector; a vector of 1 column is called
a column vector:

1
row vector: (1, -3,2), column vector: |—3
2

The sum of fwo matrices, written as A + 13, is only defined (so it
is only a legal operation) when A and B have the same shape: that
is, the two matrices have the same number of rows n, and they also
have the same number of columns m (but n does not have to equal m).
A + B is then defined to mean the matrix formed from the sums of the
corresponding components of A and B. To be precise, if M;; refers to
the element of matrix M in the ith row and jth column, then the matrix
sum is defined by

M=A+B & Mi; = Ay + By,

This rule applies to vectors and scalars too, since they are special cases
of matrices, and it agrees with the familiar rule for summing vectors:
add the components.

The product of two matrices, written as AB, is only defined (so it
is only a legal operation) when A and B have appropriate shapes: the
number of colwmns in the first matrix has to equal the number of rows
in the second matrix. For example, a 2 x 3 matrix can multiply a 3 x §
matrix, but it cannot multiply a 2 X 3 matrix. The product is defined
by the mathematical rule

M = AB PN Mi; =" AixBy;. (1.11)
-

It is important to note that this rule is not commutative: AB is not
necessarily the same as BA. The rule is important in order to have a
precise definition, but the use of subsecripts and the sum can leave the
operation obscure until one tries a few examples. It amounts to the
following. You have to work your way through the elements of M one
by one. To obtain the element of M on the ith vow and jth column,
take the ith vow of A and the jth column of B. Regard these as two
vectors and evaluate their scalar product: that is, ‘dive’ the row of A
onto the column of B, multiply corresponding elements, and then sum.
The result is the value of M,;.

The only way to become familiar with matrix multiplication is by
practice. By applying the rule, you will find that if a k x n matrix
multiplies a n x m matrix then the result is a k x m matrix. This is
a very useful check to keep track of what you are doing.

The whole point of matrix notation is that much of the time we
can avoid actually carrying out the element-by-element multiplications
and additions. Instead we manipulate the matrix symbols. For example,
if A+ B=C and A- B =D then we can deduce that C + D = 24



without needing to carry out any element-by-element analysis, The
following mathematical results apply to matrices (as the reader can show
by applying the rules developed above):

A+B=B+ A4
A+(B+C)=(A+B)+C
(AB)C = A(BC)
A(B+C)=AB+ AC.
We shall mostly be concerned with square matrices and with vectors.
The square matrices will be mostly 4 x 4, so they can be added and
multiplied to give other 4 x 4 matrices. A square matrix can multiply

a column vector, giving a resull that is a column vector (since a 4 x 4
matrix multiplying a 4 x 1 matrix gives a 4 x 1 matrix). For example:

1.2 —-36 8 2 1 20
2 45 2 05| [-3] _[-9s
-1 5 1 -05 2| T | -12
2 45 3 =5 —4 14.4

A square matrix can be multiplied from the left by a row vector, giving
a result that is a row vector (since a 1 x 4 matrix multiplying a 4 x 4
matrix gives a 1 x 4 matrix).

Mairiz inverse

Many, but not all, square matrices have an inverse. This is written M~
and is defined by

MM '=M"'M=1 (1.12)
where [ is the identity matruz, consisting of ones down the diagonal and

zeros everywhere else. For example, in the 4 x 4 case it is

0
0
0
1

= D e I e
oCcC 9O
oO-=HCOC

The identity matrix has no effect when it multiplies another matrix;
IM = MI =M for all M. Inverses of non-square matrices can also be
defined, but we shall not need them.

There is no definition of a ‘division’ operation for matrices (in the
sense of one matrix ‘divided by' another), but often multiplication by
the inverse achieves what might be regarded as a form of division. For
example, if AB = C and A has an inverse, then by premultiplying both
sides by A~! we obtain A 'AB = A~'C, and therefore B = A=*C (by
using the fact that A='A =TI and IB = B).

1.3 Matriz methods

11
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The inverse of a 2 X 2 matrix is easy to find:

a b 1 1 d —b
M (c d) ad—bc(—c a
Here the inverse exists when ad — bc # 0, and you can check that it
satisfies eqn (1.12).
There is also a general rule on how to find the inverse of a matrix of
any size; you should consult a mathematics textbook when you need it.

The inverse of a product is the product of the inverses, but you have
to reverse the order:

(AB)"'=pB'A"1 (1.13)
Proof: (AB)(B7'A™Y)= A(B7'B)A™'!=AA"'=1, and you are
invited to show by a similar method that (B=*A7!)(AB) = I.

Transpose and scalar product

The transpose of a matrix, written M7, is the matrix obtained by
swapping the rows and columns. To be precise:

A=MT means Aij = Mj;.

For example, the transpose of the matrix displayed in eqn (1.10) is

1.2 2
—-3.6 45].
8 2

The transpose of a row vector is a column vector, and the transpose of
a column vector is a row vector.
The following results are useful:

(A+B)T = AT 4+ BT (1.14)
(AB)T = BT AT (1.15)
(AT)™ = (A7)T (1.16)

Note the order reversal in eqn (1.15). You can easily prove this result
using eqn (1.11). Then eqn (1.16) follows, since if M is the inverse of AT
then we must have AT M = I, taking the transpose of both sides gives
MTA =17 =1 and hence MT = A~! and the result follows.

The product of a row vector and a column vector of the same length
is often useful because it is simple: it is a 1 x 1 matrix—in other words,
a scalar. If we start with a pair of column vectors u and v of the same
size, then we can obtain such a scalar by

ulv. (1.17)

This comes up often, so it is given a name: it is called the scalar product or
inner product of the vectors. (The inner product of a pair of row vectors
would be uv”.) You can calculate it by multiplying corresponding



components and summniing. For example, if u has components u),us, u3
and v has components vy, vz, v3 then

UTV = UV 1+ UV + U3V3. (118)

Most science or mathematics students will meet the scalar product first
in the context of vector analysis in space, where one is typically dealing
with three-component vectors representing things such as displacement,
velocity, and force. In this context it can be convenient not to be too
concerned whether the vectors are row or column vectors, and so the dot
notation is introduced: the scalar product is written u - v. In Relativity
we will be dealing with 4-component vectors in time and space, and for
them we will introduce a special meaning for the dot notation and for
the phrase ‘scalar product’.

1.4 Spacetime diagrams

Figs 1.4, 1.5, and 1.6 are all examples of spacetime diagrams. A spacetime
diagram shows events and worldlines and other information in a natural
way, and when used correctly is a great help to understanding Relativity.
By convention, time is usually shown vertically on the diagram. It is
then most casy to show either two spatial dimensions (in a perspective
or projected view) or a single spatial dimension. The coordinate axes in
Figs 1.5 and 1.6 show the coordinates for one inertial reference frame
which has been given a privileged status on the diagram. It is the
reference frame S associated with a body whose worldline is vertical
on the diagram. The same region of spacetime can be discussed equally
well in terms of the coordinate system of any other reference frame S,
moving with respect to the first. Such a coordinate system can be shown
by adding to the diagram a worldline of a particle fixed in S/, and a line
of simultaneity for S'; see Fig. 1.8. (For the line of simultaneity, consult
Fig. A.2 in the appendix.) These lines are the time axis t and position
axis =’ for the second frame. Events separated by an interval parallel
to ¢ on the diagram are at the same position in $’ (they are separated
only by time in S’). Events separated by an interval parallel to z’ on the
diagram are simultaneous in S’ (they are separated only by space in §').

To obtain the time and distance between events, in either frame, from
such a diagram, the axes must be calibrated. We can always choose
the origin of frame S’ so that the event {t =0, z = 0} occurs at {t' =
0, 2" = 0}. Consider the event E on the time axis of §', one unit of time
in frame S’ after ¢/ = 0. This event is at {t’ =1, 2’ =0}, and at some
{t,z} related by = = vt where v is the relative velocity of the franes.
The spacetime interval between the origin and E is invariant, i.e., the
same in both frames, so

_c2t/2 — ——C2t2 +.’122 — —t2(c2 —U2)

1.4 Spacetime diagrams

13
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Fig. 1.8 Spacetime diagram showing
coordinate axes for two observers in
relative motion in one spatial dimen-
sion. The light-cone symbal in the cor-
ner indicates that this is a spacetime
diagram (if this were in any doubt),
and also indicates the orientation of the
diagram and the directions of light-like
worldlines. Note that this diagram is
completely flat: it shows motion in just
one spatial dimension (e.g. beads slid-
ing along a wire, trains running along
a track), and is not a perspective view
of a three-dimensional diagram (which
could be used to show motion in two
spatial dimensions).

Fig. 1.9 Specetime diagram showing
coordinate axes for two observers in rel-
ative motion in one spatial dimension,
with an example event A and a further
worldline. The distance between A and
the worldline, in any given frame, is
indicated by the length of a line extend-
ing from A to the worldline, oriented
parallel to a line of simultaneity for
that [rame: i.e., the r-axis and z'-axis
respectively.

[ 4 4

therefore t = 4t' where v = (1 —v%/c*)~'/? is the Lorentz factor. It
follows that one unit of ‘primed time’ along the t’ takes up more than
one unit of ‘unprimed time’ along the t axis (since y > 1).

When treating a single pair of reference frames it can be convenient
to take care of this calibration issue by choosing a more symmetric
configuration of the diagram. Suppose the frames are S and §'. There
always exists an intermediate frame IF such that S and S’ move with equal
and opposite velocities relative to F. If we take the point of view of F for
the purpose of constructing the diagram, then the coordinate axes of S
and 8’ will be placed as shown in Fig. 1.9, and this is convenient because
now both sets of axes get the same calibration, because both suffer the
same time dilation and Lorentz contraction relative to F. This makes it
easy to compare distance or time measurements in one frame with corre-
sponding measurements in the other. For example, the distance between
the curved worldline and the event marked A on Fig. 1.9, as observed
in the two frames, is indicated by the two straight line segments marked
Az and Az'. One can see at a glance that Az < Az’ in this example.
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Exercises

11) s

The spacetime diagram in the figure shows the
worldlines of two inertial observers S and §', and
various other events. Find the sequence of the
labeled events, first in the rest frame of S, and
then in the rest (rame of S'. Is causality always
respected?

(1.2) Using a spacetime diagram, or otherwise, prove
that

(i) the temporal order of two events is the same
in all reference frames il and only if they are
separated by a time-like interval,

(it) there exists a reference frame in which two
events are simultaneous if and only if they are
separated by a space-like interval.

(1.3) Bondi’s k factor. Hermann Bondi proposed the
following neat argument. Suppose two observers
A and B move uniformly along a linc at relative
speed v. Clocks held by the observers are set to
zero when they meet, At event A the first observer
sends a light-pulse to the second, who receives it
at event B and immediately returns it, the return
pulse arriving at event C.

(i) Show that

and te = tg(l+v/e)

where ta,tg,tc are the times of the three
events as observed in frame A.

(ii) Let ty be the time of the reflection event, as
registered on a clock held by B, and define a

—1

factor k = tig/ta. This is the ratio of recep-
tion time observed by the receiver to emission
time observed by the emitter, when a light-
signal is sent between the parties. Since the
whole situation is linear, k is independenl of
time. Since the situation is symmetric, we
must find the same factor k& lor the return
signal: e, k = tc/tp. Use this information
to find & in terms of v,

(ili) Hence find tg/t)s in terms of v (time dila-
tion), and also explain how k is related to the
Doppler effect,

(1.4) A rod of rest length Lg lies on the z axis of some
reference frame S, and moves at speed v along that
axis. At some moment, the motion is reversed,
such that all particles in the rod change their
velocity [rom +v Lo —u simultaneously in S. Find
the initial and final lengths of the rod, in [rame S
and in a frame S8’ in standard configuration with S.
(Note that both frames are inertial; their motion
does not change!) Using a spacetime diagram, find
the sequence of events in §': which end of the rod
starts to move first, relative to 8’7

(1.5) Consider using observations of a binary star sys-
tem to test the Light Speed Postulate, as follows.
At distance D from Earth a small X-ray-emitting
star follows a circular orbit of radius » around a
large companion, at a speed vy < c. The distance
of the small star from Earth is then D+ rsinwt,
and its velocity component towards Earth is v =
vgcoswt where vy = rw. In a model where the
speed of light is given by ¢+ kv, where v is the
velocity of the source and k < 1 is a constant,
show that X-rays emitted at time { are received
on Farth at time

T
te=t+T+ E sinwt — %kcoswt
to Towest order in &k, where T'= D/c. Hence show
that

d_c’l:tE =1+ (V/c) cos(wt + )

where V =wo(1+ (kTw)?)'/® and tan¢ = kTw.
Explain why the observed Doppler effect Ag/A
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is given by dtg/d¢ (e.g. consider two successive
emitted wavelronts, with v « ¢ so that time dila-
tion is negligible). The X-ray intensity varies as
a function of time owing to eclipsing by the large
companion. By comparing the detected intensity
curve with the detected Doppler shift curve, one
can measure the offset phase ¢. Find an upper
bound on k if this phase is determined to be

2 K. Breeher, Phys. Rev. Lett. 39, 1051 (1877).

¢ < 0.06 rad for the source Her-X1, which lies at
a distance 2 x 10" light-years and has an orbital
period of 1.7 days?.

(1.6) Find the velocity at which you should move rel-
ative to Holbein’s picture The Ambassadors in
order that the image of the skull should not be
stretched in your rest {rame.



The Lorentz
transformation

In a first introduction to Special Relativity (such as appendix A}, the
reasoning is kept as direct as possible. Simple physical scenarios are
used to deduce basic mathematical results. Now we will introduce a more
algebraic approach. This is needed in order to generalize and to proceed.
In particular, it will save a lot of trouble in calculations involving a
change of reference frame, and we will learn how to formulate laws of
physics so that they obey the Main Postulates of the theory.

2.1 Introducing the Lorentz
transformation

The Lorentz transformation, for which this chapter is named, is the
coordinate transformation which replaces the Galilean transformation
presented in eqn (1.1).

Let S and 8’ be reference frames allowing coordinate systems (¢, z,y, z)
and (t', 7,9, 2') to be defined. Let their corresponding axes be aligned,
with the  and 2z’ axes along the line of relative motion, so that S’ has
velocity v in the z direction in reference frame S. Also, let the origins of
coordinates and time be chosen so that the origins of the two reference
frames coincide at £ =1t" = 0. Hereafter we refer to this arrangement
as the ‘standard configuration’ of a pair of reference frames. In such a
standard configuration, if an event has coordinates (¢,z,y,2z) in S, then
its coordinates in S are given by

t' = ~(t — vz/c?) (2.1)
' =~y(—vt+ ) (2.2)
v =y (2.3)
=g (2.4)

where the Lorentz factor v =~(v)=1/(1—v%/c*)}/2. This set
of simultaneous equations is called the Lorentz transformation; we
will derive it from the Main Postulates of Special Relativity in
section 2.1.1.
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28
32
39
41
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The Lorentz transformation

By solving for (t,z,y. 2) in terms of (¢, 2,y’, 2') you can easily derive
the inverse Lorentz transformation:

1=t +vz'/c?) (2.5)
z = ~y(vt +a) (2.6)
y=1v (2.7)
$=7 (2.8)

This can also be obtained by replacing v by —v and swapping primed
and unprimed symbols in the first set of equations. This is how it must
turn out, since if $’ has velocity v in S, then S has velocity —v in &/,
and both are equally valid inertial frames.

Let us immediately extract from the Lorentz transformation the
phenomena of time dilation and Loventz contraction. For the former,
simply choose two events at Lthe same spatial location in 8, separabed
by time 7. We may as well choose the origin, & = y = z = 0, and times
t =0and t =7 in frame S. Now apply eqn (2.1) to the two events. We
find that the first event occurs at time t' = 0, and the second at time
t’ = y1, so the time interval between them in frame S’ is y7: i.e., longer
than in the first frame by the factor . This is time dilation.

For Lorentz contraction one must consider not two events but two
worldlines. These are the worldlines of the two ends, along the x direc-
tion, of some object fixed in S. Place the origin on one of these worldlines,
and then the other end lies at z = Lg for all ¢, where Lg is the rest length.
Now consider these worldlines in the frame S’ and choose the time ¢’ = 0.
At this moment the worldline passing through the origin of S is also at
the origin of S': i.e., at '’ = 0. Using the Lorentz transformation, the
other worldline is found at

t' = 4(t —vLo/c?), z' = y(-vt+ Lp). (2.9)

Since we are considering the situation at ¢’ = 0 we deduce from the first
equation that ¢ = vLg/c?. Substituting this into the second equation we
obtain 2’ = yLo(1 — v*/c?) = Lo /7. Thus in the primed frame at a given
instant the two ends of the object are at 2’ = 0 and ' = Ly /7. Therefore
the length of the object is veduced from Lg by a factor . This is Lorentz
contraction.

For relativistic addition of velocities, eqn (A.11), consider a particle
moving along the &' axis with speed u in frame §'. Its worldline is
given by 2’ = ul’, Substituting in eqn (2.6) we obtain = = y(vt’ + ut’) =
v+ u)(E —ve/e?). Solve for 2 as a function of , and one obtains
@ = wt with w as given by eqn (A.11).

For the Doppler effect, consider a sequence of wavefronts emitted from
the origin of S at times 0, £y, 28y, . ... The Grst wavefront is detected in
S at t' = 0. The next wavefront has the worldline 2 = c(t — #5), and
the worldline of the origin of S’ is © = vi. These two lines intersect at
o =wt =t — 1), hence L = ty5/(1 —wv/c). Now use the Lorentz trans-
formation (2.5) with ' = 0 to find the time of the reception event in
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Table 2.1 Useful relations involving 7. f = v/c is the speed in units of the speed
of light. dt/dr relates the time between events on a worldline to the proper time, for
a particle of speed v. dt’/dl relates the time belween events on a worldline for two
reference frames of relative velocity v, with u the particle velocity in the unprimed
frame. 1f two particles have velocities u, v in some reference frame, then y(w) is the
Lorentz factor for their relative velocity.

~
B=V1-1/7. 7' = (' - 1) (2.10)

dy _ 3,2 d o) = A3
&y, L) = (211)
% =, ij—tf :’)‘v(l—u-V/CQ) (2.12)
Y(w) = y(u)r(v)(1 —u - v/c?) (2.13)

§:t' =t/v=1to/v(l —v/c). This gives the period of the wave observed
in S’. After inverting to convert times into frequencies, we obtain eqn
(A.10), for S’ moving away from the source.

To suminarize:

The Postulates of Relativity, taken together, lead to a description of spacetime
in which the notions of simultaneity, time duration, and spatial distance are
well-defined in each inertial reference frame, but their values, for a given pair
of events, can vary [rom one reference frame to another. In particular, objects
evolve more slowly and are contracted along their direction of motion when
observed in a reference frame relative to which they are in motion.

A good way to think of the Lorentz transformation is to regard it
as a kind of ‘translation’ from the t,z,y, z ‘language’ to the t',z’,y/, 2’
‘language’. The basic results given above serve as an introduction, to
increase our confidence with the transformation and its use. In this and
the next chapter we will use it to treat more general situations, such as
addition of non-parallel velocities, the Doppler effect for light emitted
at a gencral angle to the direction of motion, and other phenomena.

Table 2.1 summarizes some useful formulae related to the Lorentz
factor y(v). Derivations of eqns (2.12) and (2.13) will be presented in
section 2.5, while the derivation of the others is left as an exercise for
the reader.

Why not start with the Lorentz transformation?

Question: ‘The Lorentz transformation allows all the basic results
of time dilation, Lorentz contraction, Doppler effect, and addition
of velocities to be derived quite rcadily. Why not start with it, and
avoid all the trouble of the slow step-by-step arguments presented in
introductory trcatments of Relativity?’

Answer: The cautious step-by-step arguments are needed in order
to understand the results, and the character of spacetime. Only then

19
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T

Fig. 2.1

1 If you doubt this, replace one pipe
with a wide metal sheet having a hole
of proper diameter Dp. The remaining
pipe cannot both pass through and not
pass through this hole. A change of ref-
erence frame has no influence whatso-
ever on events; it influences merely how
distances and times between events are
measured.

is the physical meaning of the Lorentz transformation clear. We
can present things quickly now, because spacetime, time dilation,
and space contraction are discussed in the previous chapter and in
appendix A (and at greater length in The Wonderful World). Such a
discussion has to take place somewhere. The derivation of the Lorentz
transformation given in section 2.1.1 can seem like mere mathematical
trickery unless we maintain a firm grasp on what it all means.

2.1.1 Derivation of Lorentz transformation

To derive the Lorentz transformation from first principles, one may
reason as follows.
We seek a transformation of coordinates such that the coordinate

systems in two inertial veference frames S and S’ will lead to results

consistent with the Principle of Relativily and the Speed of Light
Postulate. We shall assume that the transformation is linear, (i.e., the
equations for ¢/, 2/, ¢, 2’ only contain terms linear in ¢, z, y, z, not higher
powers or products of them); if we find a linear transformation then the
assumption will be proved to have been justified.

After adopting the standard configuration of the axes of the inertial
frames, we can derive by symmetry arguments the equations y' =y and
z' = z, (i.e., the absence of any transverse effect). Let us assume there
is an effect on transverse distance, in order to prove a contradiction.
Take a cylindrical pipe of diameter Dy in its rest frame, cut it in two,
and let the two segments approach one another along their common axis
(Fig. 2.1). Let S be the rest frame of the second pipe segment. In this
frame the other segment is moving. Let Dy, D, be the diameters of the
two pipe segments as observed in 8. Clearly, Da = Dy. If Dy < Dy, then
pipe 1 will pass inside pipe 2. However, by the Principle of Relativity
we must then find that in the rest frame S™ of pipe 1, D} < Dy =
80 pipe 2 passes inside pipe 1. This is a contradiction, because which
pipe is inside is an absolute property.! Therefore Dy < Dy cannot be
true. Hence we must have Dy > Dy. However, the case Dy > Dy again
leads to a contradiction. It follows that D; = Dy. One can extend this
argument to the whole of the rectangular meshes in the yz and y'%’
planes in Fig. 1.3.

It remains to find the equations relating t' and 2’ to (¢,2,y, #). Using
methods such as radar signalling to establish simultaneity (appendix A),
it is not hard to prove that events in a plane at any given ¢,z are also
simultaneous in §’, so ¢’ depends only on ¢ and z. Also, we seek a solution
where the axes of S and S’ remain aligned as the reference frames move,
so =’ depends only on ¢ and z. Therefore we can restrict the last part of
the derivation to one spatial dimension, and we seek a pair of equatlonb
having the general form

(2.14)

t' = at + bz
' =dt +ex
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where a, b, d, e are constant coefficients to be discovered.
We have four unknowns, and we can find four equations for them as
follows:

(1) Since the reference frame S’ moves with speed v along the @ direction
in S, the point 2’ = 0 must move as © = vt:

0=dt +euvt
= d= —év. (2.15)
(2) Similarly, the point & =0 in S moves as ' = —uvt’ in §'; therefore

—yt’ = dt when t’ = at, hence
d = —av. (2.16)

Combining eqns (2.15) and (2.16) we have a = e.

(3) A light-speed signal in 8 must also have the speed of light in §', so
z = ¢t must give 2’ = et”:

t' =at + bet,

v
ct’:dt+ect}=>ac+bc =d+ ec

= d = bc?. (2.17)
(4) So far we have established that the general form is

t' = a(t —vz/c?),

z’' = a(-vt + z). (2.18)

It remains to find an expression for a. This can be done by applying the
Principle of Relativity. First manipulate eqns (2.18) so as to obtain t
and z in terms of ¢’ and z":

1 ! I
£=m(t +TJI/62),

T = (vt' + 2'). (2.19)

1
a(l - v?/c?)
(An easy way to obtain this is to express (2.18) using a 2 x 2 matrix and
pre-multiply by the inverse of the matrix.) Now argue (by the Principle
of Relativity) that the second set of equations must be the same as the
first set, except for a change in the sign of v and swapping primed and
unprimed symbols. This implies that

1
a= m (220)

Hence a = v, and we have derived the Lorentz transformation.
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Fig. 2.2 A particle has velocity u in
frame S. Frame S’ moves al velocity
v relative to 8, with its spatial axes
aligned with those of S.

2.2 Velocities

Let reference frames S, S’ be in standard configuration with relative
velocity v, and suppose a particle moves with velocity u in S (see
Fig. 2.2). What is the velocity u’ of this particle in §'?

For the purpose of the calculation we can, without loss of generality,
put the origin of coordinates on the worldline of the particle. Then
the trajectory of the particle is z = uzt,y = uyt, z = u.t. Applying the
Lorentz transformation, we have

z' = y(—vt + u,t)
y =uyt
2=t (2.21)
for points on the trajectory, with
t = (t—ougt/c?). (2.22)

This gives t = t'/y(1 — u,v/c?), which, when substituted in the equa-
tions for z',y', #/, implies

1] Uy — V v
- 2.

ki T uyv/c?’ (2:23)

AP S 9.94
= 1wl V2

u

Pl R 2.2

Ys (1 = uzv/c?) \&i2)
Writing
u=u+uy (226)

where uy is the component of u in the direction of the relative motion
of the reference frames, and u, is the component perpendicular to it,
the result is conveniently written in vector notation:

il == - uy —v ug
=1 —u-v/e?’ Tw(l—u-v/c?)

These equations are called the equations for the ‘relativistic transforma-
tion of velocities’ or ‘relativistic addition of velocities’. The subscript on
the 7 symbol acts as a reminder that it refers to v(v) not y(u). If u and
v are the velocities of two particles in any given reference frame, then
u’ is their relative velocity (think about it!).

When u is parallel to v we regain eqn (A.11).

When u is perpendicular to v we have uh = —v and | =u/v,. The
latter can be interpreted as an example of time dilation (in S’ the particle
takes a longer time to cover a given distance), For this case, u'? = u® +
v? — u?o?/c?,

Sometimes it is useful to express Lhe results as a single vector equation.
This is easily done using uj = (u-v)v/v? and uy = u — uy, giving:

u) = (2.27)
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It will be useful to have the relationship between the gamma factors for
u’,u and v. One can obtain this by squaring eqn (2.28) and simplifying,
but the algebra is laborious. A much better way is to use an argument
via invariant quantities. This will be presented in section 2.6; the result is
given in eqn (2.13). That equation also serves as a general proof that the
velocity addition formulae never result in a speed w > ¢ when u,v < c.
For, if u < ¢ and v < ¢ then the right-hand side of (2.13) is real and
non-negative, and therefore v(w) is real, hence w < c.

Let @ be the angle between u and v, then uy = ucosf, u; = usin#,
and from eqn (2.27) we obtain

(2.28)

- ﬂ B usinf
tanf’ = '“'i] iy v (2.29)
This is the way a direction of motion transforms between reference
frames. In the formula, v is the velocity of frame S’ relative to frame
S. (We shall present a quicker derivation of this formula in section 2.5.3
by using a 4-vector.) The classical (Galilean) result would give the same
formula, but with 4 = 1. Therefore, the distinctive effect of the Lorentz
transformation is to ‘throw’ the velocity forward more than one might
expect (as well as to prevent the speed exceeding ¢).

Fig. 2.3 presents some examples of eqn (2.29). If in an explosion in
reference [rame ', particles are emitted in all directions with the same
speed «, then in frame 8 the particle velocities are directed in a cone

S’ a_ .

—_ v
u'<v u'>v
S
ve<e
]
v~¢e

—N—=5a0

<3
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Fig. 2.3 Transformalion of velocities.
An isotropic explosion in frame S’ pro-
duces particles all moving at speed u'
in §', and a fragment is left at the
centre of the explosion (top diagram).
The fragment and frame S’ move ta the
right at speed v relative to frame S.
The lower four diagrams show the silu-
ation in frame S. The » shows the loca-
tion of the explosion event. The square
shows the present position of the cen-
tral fragment, the circles show positions
of the particles, and the arrows show
the velocities of Lhe particles. The left
diagrams show examples with u' < v,
the right with ' > v. The top two dia-
grams show the case u’, v < ¢. Here the
particles lie on a circle centred at the
fragment, as in classical physics. The
bottom diagrams show examples with
v ~ ¢, thus bringing out the difference
between the relativistic and the classi-
cal predictions. The lower right shows
u' = ¢ ‘headlight effect’ for plotons.
The photons lie on a circle centred al
the position of the explosion (not the
fragment), but more of them move for-
ward than backward.
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Fig. 2.4 Two illustrative collision
experiments. The lines show particle
tracks, and the dashed ellipses indicate
part of the cylindrical detector.
The central circle indicates where a
collision has taken place (a) shows
a case where the collisions products
emerge roughly isotropically, and (b)
shows a case where most particles
emerge in three jets. It is highly
likely that the explanation for (b) is
the emission of a small number of
short-lived fast-moving particles, each
of which gave rise to one jet.

(0)

angled forwards along the direction of propagation of 8’ in S, for v > ',
and mostly in such a cone for v < #'. This is not completely unlike
the classical prediction (shown in the top two diagrams of Fig. 2.3).
but the ‘collimation’ into a narrow beam is more pronounced in the
relativistic case. A practical result of this is illustrated in Fig. 2.4. When
a fast-moving particle decays in fight, the products are emitted roughly
isotropically in the rest frame of the decaying particle, and therefore in
any other frame they move in a directed ‘jet’ along the line of motion
of the original particle. Such jets are commonly observed in particle
accelerator experiments (Fig. 2.4b). They are a signature of the presence
of a short-lived fast-moving particle that gave rise Lo the jet.

Is it acceptable to set ¢ = 17

It is a common practice to sel ¢ =1 for convenience when doing
mathematical inanipulations in Special Relativity. Then one can leave
e out of the equations, which reduces clutter and can make things
easier. When you need to ealeulate a specific number for comparison
with experiment, yon must either put back all the es into your final
equations, or remember that the choice ¢ = 1 is consistent only when
the units of distance and time (and all other units that depend on
them) are chosen appropriately, For example, one could work with
seconds for time, and light-seconds for distance. (One light-second is
equal to 299792458 metres.) The ouly problem with this approach
is that vou must apply it consistently throughout. To identify the
positions where ¢ or a power of ¢ appears in an equation, one can
use dimensional analysis, but when one has further quantities also
set equal to 1, this can require some careful thought. Alternatively
you can make sure that all the units yon use (inclnding mass, energy,
ete.) are consistent with ¢ = 1.

Some authors like to take this further, and argne that Relativity
teaches us that there is something basically wrong about assigning
different. units to time and distance. We recognise that the height
and width of any physical object are just different uses of essentially
the same type ol physical quantity—namely, spatial distance—so
the ratio of height to width is a dimensionless number. One might



2.3

want to argue that similarly, temporal and spatial separation are just
different uses of essentially the same quantity namely, separation
in spacetime -so the ratio of distance to time (what we call speed)
should be regarded as dimensionless.

Ultimately this is a matter of taste. Clearly timec and spacc are
intimately related, but they are not quite the same: there is no way
that a proper time could be mistaken for, or regarded as, a rest length,
for example. My preference is to regard the statement ‘set ¢ =1" as
shorthand for ‘set ¢ = 1 distance-unit per time-unit’. In other words,
I do not regard speed as dimensionless, but 1 recognise that to choose
‘natural units' can be convenient. ‘Natural units’ are units where ¢
has the value ‘1 spced-unit’,

2.3 Lorentz invariance and 4-vectors

It is possible to continue by finding equations describing the transforma-
tion of acceleration, and then introducing force and its transformation.
However, a much better insight into the whole subject is gained il we
learn a new type of approach in which time and space are handled

together.

Question: Can we derive Special Relativity directly from the invari-
ance of the interval? Do we have to prove that the interval is Lorentz-
invariant first?

Answer: This question addresses an important technical point. It is
good practice in physics to look at things in more than one way. A
good way to learn Special Relativity is to take the Postulates as the
starting point, and derive everything from there. This is approach
adopted in The Wonderful World of Relativity and also in this book.
Therefore, you can regard the logical sequence as ‘postulates =
Lorentz transformation = invariance of interval and other results.’
However, it turns out that the spacetime interval alone, if we assume
its frame-independence, is sufficient to derive everything else! This
more technical and mathematical argument is best assimilated after
one is already familiar with Relativity. Therefore we are not adopting
it at this stage, but some of the examples in this chapter serve
to illustrate it. In order to proceed to General Relativily it turns
out that the clearest line of attack is to assume by postulate that
an invariant interval can be defined by combining the squares of
coordinate separations, and then derive the nature of spacetime from
that and some further assumptions about the impact of mass-energy
on the interval. This leads to ‘warping of spacetime’, which we observe
as a gravitational field.

Lorentz invariance and 4-vectors

25
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2 The Lorentz transformation is com-
monly indicated by either a calligraphic
Roman letter £, or by the Greek cap-
ital Lambda, A. We adopt the latter
in order that £ can be used for other
things such as a Lagrangian. This is
also helpful to connect fo research lit-
erature where the use of A is almost
universal.

First, let us arrange the coordinates t,z,y,z into a vector of four
components. It is good practice to make all the elements of such a
‘“4-vector' have the same physical dimensions, so we let the frst com-
ponent be ct, and define

ot

X = (2.30)

y
z
We will always use a capital letter and the plain font as in X’ for 4-vector
quantities. For the familiar ‘3-vectors’ we use a bold Roman font as in ‘'x’,
and mostly but not always a small letter. You should think of 4-vectors
as column vectors not row vectors, so that the Lorenlz transformation
equations can be written?

X' = AX (2.31)
with
vy -8 00
ss|"® 2 00 (2.32)
0 0 0 1
where
B=2. (2.33)

c
The right-hand side of eqn (2.31) represents the product of a 4 x 4
matrix A with a 4 x 1 vector X, using the standard rules of matrix
multiplication. You should check that eqn (2.31) correctly reproduces
eqns (2.1) to (2.4).

The inverse Lorentz transformation is obviously

X = A-1x! (2.34)
(just multiply both sides of eqn (2.31) by A1), and one finds
¥ 8 0 0
a_ | v 00
S I B (2.35)
0 0 01

It should not surprise us that this is simply A with a change of sign of
B. You can confirm that A='A = I where I is the identity matrix.

When we want to refer to the components of a 4-vector, we use the
notation

WX FLIZNE o N RIS (2.36)

where the zeroth component is the ‘time' component, cf for the case
of X as defined by eqn (2.30), and the other three components are the
‘spatial’ components, x,y, z for the case of (2.30). The reason for placing
the indices as superseripts rather than subseripts will emerge later.
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2.3.1 Rapidity
Define a parameter p by

tanh(p) = % =B, (2.37)

then

1+

1/2
cosh(p) = v, sinh(p) = v, exp(p) = (15) . (@239)

so the Lorentz transformation is

coshp —sinhp 0 0
—sinhp coshp 0 0
0 010

0 0 0 1

A= (2.39)

The quantity p is called the hyperbolic parameter or the rapidity. This
form makes some types of calculation easy. For example, consider a group
of three references frames S, S', S all moving colinearly, with p, the
rapidity with which frame S’ moves relative to 8, and p, the rapidity
with which frame S” moves relative to §'. Then for any 4-vector V,

V" = AV = AyALV.

It follows that the transformation from frame S to S” is A = A A,. In
matrix form this is

coshp, =—sinhp, 0 D coshp, —sinhpy, 0 0

A —sinh py, coshp, 0 O —sinh py coshp, 0 0
0 0 1 0 1] 0 1 0

0 0 0 1 0 0 0 1

((cosh pucosh py + sinh py sinhp,) (—cosh p, sinh p,. — sinh p, coshp,) 0 0 )
.

cosh{py + pu) —sinh(puv+ps) 0 D
—sinh(py + pu) cosh(py +p.) 0 D
0 0 1 0

0 0 0 1

where in the intermediate step some of the working is omitted, since it
is more useful to see the pattern than to write out all the terms. From
the form of the result it is clear that for relative motion all in the same
direction, the rapidities simply add

Pw = Py + Pu (2.40)

where p,, is the rapidity with which S” moves relative to S. This makes
rapidity a useful tool for studying straight-line motion; cf. section 4.2.4.
If the relative motion of one pair of frames is in a direction different from
that of the other pair, then the calculation is a lot more complicated,
and no such simple result emerges. For motion all in a single direction,
however, one can use eqn (2.40) as an alternative way to deduce the

27
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Fig. 2.5 Rapidity versus v.
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addition of velocities formula w = (u+v)/(1 +uv/c?) by using the
standard result for the hyperbolic tangent of a sum:

tanh p, + tanh p,
h = '
tan (,Ou i Pv) 1 + tanh Pu tanh Pu

Example A rockel engine is programmed to fire in bursts such that
each time it fires, the rocket achieves a veloeity increment of #—meaning
that in the inertial frame where the rockef is at rest helore the engine
fires, its speed s u after the engine stops. Calenlate the speed w of the
rocket relative to ils starting rest frame aflter n such bursts, all colinear.

Solution

Define the rapidities p, aud p,, by tanhp, = u/e and tanhp,, = w/e,
then by equ (2.40) we have that p,, is given by the sum of 1 inerements of
P Le pu = npy. Therefore, w = etanli(np, ). (This can also be written
w=¢(z" — 1)/(z" + 1) where z = exp(2py)-)

You can readily show that the Lorentz transformation can also be
written in the form

et + 2’ e P et +x

ct! — ' el ot —x
i = 1 p . (2.41)
2 1 z

The form (2.39) can be regarded as a ‘rotation’ through an imaginary
angle ip if we also multiply the zeroth component of 4-vectors by 7.

2.4 Lorentz-invariant quantities

Under a Lorentz transformation a 4-vector changes, but not out of all
recognition. In particular, a 4-vector has a size or ‘length’ that is not
affected by Lorentz transformations. This is like 3-vectors, which pre-
serve their length under rotations, but the ‘length’ has to be calculated
in a specific way.

To find our way to the result we need, first recall how the length
of a 3-vector is calculated. For r = (z,y,2) we would have r = [r| =

Vot 4+ y? + 22, In vector notation this is
[t =r-r=r"r (2.42)

where the dot represents the scalar product, and in the last form we
assumed r is a column vector, and r7 denotes its transpose: i.e. a row
vector. Multiplying that 1 x 3 row vector onto the 3 x 1 column vector
in the standard way results in a 1 x 1 ‘matrix'—in other words a scalar,
equal to 2% + 42 + 22,

The ‘length’ of a 4-vector is calculated similarly, but with a crucial
sign that enters in because time and space are not exactly the same as
each other. For the 4-vector X given in eqn (2.30) you are invited to
check that the combination



=(X%)% 4 (X1)? + (X3 4 (X¥)? (2.43)
is ‘Lorentz-invariant’. That is,
A% 4% 4%+ % = PR+ 2P+ P+ 2 (2.44)

cl. eqn (1.7). In matrix notation, this quantity can be written

-+ 2® + y? + 22 = XTgX (2.45)
where
-1 0 0 0
|l o100 .
9= 00 1 0 (2.46)
00 01

More generally, if A is a 4-vector, and A’ = AA, then we have
ATgA = (AA)Tg(AA)
= AT(ATgA)A, (2.47)
(where we used egn (1.15)). Therefore ATgA" = AT gA as long as

ATgA = g. (2.48)

You should now check that g as given in eqn (2.46) indeed satisfies this
matrix equation. This proves that for any quantity A that transforms
in the same way as X, the scalar quantity ATgA is ‘Lorentz-invariant’,
meaning that it does not matter which reference frame is chosen for the
purpose of calculating it, as the answer will always come out the same.

g is called ‘the metric’ or ‘the metric tensor’. A generalized form of it
plays a central role in General Relativity. In order to consider Lorentz
transformations of all kinds (for relative motion in any direction, with
or without rotation and inversion) one may regard g as the prior, given
quantity, and then the important eqn (2.48) is the defining property of
Lorentz transformations A in general. This will be explored further in
chapter 6.

In the case of the spacetime displacement (or ‘interval’) 4-vector
X, the invariant ‘length’ we are discussing is the spacetime interval s
previewed in eqn (1.7), taken between the origin and the event at X.
As we mentioned in eqn (A.4), in the case of time-like intervals the
invariant interval length is ¢ times the proper time. To see this, calculate
the interval in the reference frame where the X has no spatial part: i.e.
&=y =z (. Then it is obvious that X" gX = —¢*t* and the time ¢ is
the proper time between the origin event 0 and the event at X, because
it is the time in the frame where O and X occur at the same position.

Time-like intervals have a negative value for 5% = —¢?At* + (Az? +
Ay? + Az?), so taking the square root would produce an imaginary
number. However, the significant quantity is the proper time given by
7= (—g?)12 /¢, which is real, not imaginary. In algebraic manipulations,
mostly it is not necessary to take the square root in any case. For

2.4 Loreniz-invariant quantities
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AT

——cl]
Ax

Fig. 2.6 The relationship between
AT, At, and Az can be seen this way
(with e=1 and Ay = Az=10), The
diagram may be thought of as hall a
‘light-pulse clock’; ¢f. Fig. A4

Table 2.2 A selection of useful d-vectors. Some have more than one name. Their
definition and nse is developed in the text. The Lorentz {actor 5 is 4,: Le. it vefers
to the speed u of the particle in question in the given reference frame. 5 is used for
dy/dt and W = dFE/di. The last column gives the invariant squared ‘length’ of the
d-vector, but is omitted in those cases where it is less useful in analysis, Above the
line are time-like d-vectors; below the line the acceleration is space-like, aud the wave
vector may be space-like or time-like.

symbol  definition components name(s) invariant

X X (ct,r) 4-displacement, interval ~ —c¢*r?

u dX/dr {ve,yu) 4-velocity —c?

p molU (E/e,p) energy-momentum, —méc?
4-momentun

F dP/dr (vW /e, ~f) 4-force, work-force

J pol (co.J) 4-current density —c?p

A A (/e A) 4-vector potential

A dU/dr F{¥c,yu +va) d-acceleration ai

K (Y (w/c k) wave vector

intervals lying on the surface of a light-cone the ‘length’ is zero, and
these are called null intervals.

Table 2.2 gives a selection of 4-vectors and their associated Lorentz-
invariant ‘length-squared’. These 4-vectors and the use of invariants in
calculations will be developed as we proceed. The terminology ‘time-
like’, ‘null’, and ‘space-like’ is extended to all 4-veetors in an obvious
way, according as (A%)? is greater than, equal to, or less than (A?)2 +
(A%)2 + (A%)2. Note that a ‘null’ 4-vector is not necessarily zero; rather,
it is a ‘balanced’ d-vector, poised on the edge between time-like and
space-like.

It is helpful to have a mathematical definition of what we mean in
general by a 4-vector. The definition is: a f-vector is any set of four
scalar quantities that transform in the same way as (ct,x,y, z) under a
change of reference frame. Such a definition is useful because it means
that we can infer that the basic rules of vector algebra apply to 4-vectors.
For example, the sum of two 4-vectors A and B, written A+ B, is
evaluated by summing the corresponding components, just as is done
for 3-vectors. Standard rules of matrix multiplication apply, such as
A(A+ B) = AA + AB. A small change in a 4-vector, written for example
dA, is itself a 4-vector.

You can easily show that eqn (2.48) implies that ATgB is Lorentz-
invariant for any pair of 4-vectors A, B. This combination is essentially
a form of scalar product, so for 4-vectors we define

A-B=ATgB. (2.49)

That is, a central dot operator appearing between two 4-vector symbols
is defined to be shorthand notation for the combination AT gB. The result
is a scalar, and it is referred to as the ‘scalar product’ of the 4-vectors.
In terms of the components it is
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~A"BY + (A'B! 4 A?B% 4+ A%BY).

A ‘vector producl’ or ‘cross product’ can also be defined for 4-vectors,
put it requires a 4 x 4 matrix to be introduced. This will be deferred
until chapter 12.

4-vector notation; metric signature

Unfortunately there is more than one convention concerning notation
for 4-vectors. There are two issues: the order of components, and the
sign of the metric. For the former, the notation adopted in this book
is the one that is most widely used now, but in the past authors
have sometimes preferred to put the time component last instead of
first, and then number the components 1 to 4 instead of 0 to 3. Also,
sometimes you find ¢ = /=1 attached to the time component. This
is done merely to allow the invariant length-squared to be written
5, (A¥)?, and the i factor then takes care of the sign. One reason
to prefer the introduction of the g matrix (eqn (2.46)) to the use of 1
is that it allows the transition to General Relativity to proceed more
smoothly.

The second issue is the sign of g. When discussing General Rel-
ativity, the most common practice in writing the Minkowski metric
g is the one adopted in this book. However, within purely Special
Relativistic treatments another convention is common, and is widely
adopted in the particle physics community. This is to define g with
the signs 1,—1,—1,—~1 down the diagonal: i.e. the negative of the
version we adopt here. As long as one is consistent, either convention
is valid -but beware: changing convention will result in a change of
sign of all scalar products. For example, we have P - P = —m?¢? for
the energy-momentum 4-vector, but the other choice of metric would
give P - P = m?c%. The number of positive and negative signs in the
metric is called the signature. This can also be deduced from the
trace of the metric (the sum of the diagonal elements) if the number
of dimensions is given. Our metric has signature +2, and the other
choice has signature —2. The reason that 1, —1, —1, —1 is preferred by
many authors is that it makes time-like vectors have positive ‘size’,
and most of the important basic vectors are time-like (see table 2.2).
However, the reasons to prefer —1,1, 1, 1 outweigh this, in my opinion.
They are

(1) It can be confusing to use (+1, —1, —1, —1) in General Relativity.
(2) Expressions like U - P ought to remind us of u - p.

(3) It is more natural to take the 4-gradient as (—38/dct,d/0z,
d/8y,8/08z), since then it more closely resembles the familiar
3-gradient.

The 4-gradient (item 3) will be introduced in chapter 6, and its
relation to the metric will be explained in chapter 12.
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Fig. 2.7

2.5 Basic 4-vectors

2.5.1 Proper time

Consider a worldline, such as the one shown in Fig. 2.7. We would like to
describe events along this line, and if possible we would like a description
that does not depend on a choice of frame of reference. This is just like
the desire to do classical (Newtonian) mechanics without picking any
particular coordinate system: in Newtonian mechanics it is achieved by
using 3-vectors. In Special Relativity, we use 4-vectors. We also need a
parameter to indicate which event we are talking about, i.e. ‘how far’
along the worldline it is. In Newtonian mechanics this job was done by
the time, because that was a universal among reference frames connected
by a Galilean transformation. In Special Relativity we use the proper
time 7. By this we mean the integral of all the little infinitesimal bits
of proper time ‘experienced’ by the particle along its history. This is
a suitable choice because this proper time is Lorentz-invariant, agreed
among all reference frames,

This basic role of proper time is a central idea of the subject.

In Newtonian mechanics a particle’s motion is described by using a
position 3-vector r that is a function of time, so r(t). This is shorthand
notation for three functions of t; the time t serves as a parameter. In
relativity when we use a 4-vector to describe the worldline of some
object, you should think of it as a function of the proper time along
the worldline, so X(7). This is a shorthand notation for four functions
of T; the proper time 7 serves as a parameter.

Let X be the displacement 4-vector describing a given worldline. This
means that its components in any reference frame S give ct, z(t), y(1), z(¢)
for the trajectory relative to that frame. Two close-together events on
the worldline are (ct,x,y,2) and (¢(t +dt), z + dz,y + dy, z + dz). The
proper time between these events is

i 7
dr = - (df* — da” — dy” - d2)"*

=dt (1 —uz/c?’)”2 (2.51)

where u = (dz/dt,dy/dt,dz/d¢t) is the velocity of the particle in §. We
thus obtain the important relation

dt
a7 (2.52)
for neighbouring events on a worldline, where the ~ factor is the one
associated with the velocity of the particle in the reference frame in
which ¢ is calculated.

Eqn (2.12ii) concerns the time between events on a worldline as
observed in two frames, neither of which is the rest {rame. The worldline
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s that of a particle having velocity win the frame S, with v the velocity of
g/ relative to S. To derive the result, let (¢,r) = (¢, ut) be the coordinates
in S of an event on the worldline of the first particle; then the Lorentz
gransformation gives

t' =y, (t —vz/c?) = v, (t — u-vi/c?).

Differentiating with respect to ¢, with all the velocities held constant,
gives eqn (2.12ii).

2.5.2 Velocity, acceleration

We have a 4-vector for spacetime displacement, so it is natural to ask
whether there is a 4-vector for velocity, defined as a rate of change of
the 4-displacement of a particle. To construct such a quantity, we note
first of all that for d-vector X, a small change dX is itself a 4-vector.
To obtain a ‘rate of change of X’ we should fake the ratio of dX to a
<mall time interval. But take care: if we want the result to be a d-vector
then the small time interval had better be Lorentz-invariant. Fortunately
there is a Lorentz-invariant time interval that naturally presents itself:
the proper time along the worldline. We thus arrive at the definition

dX
dr
The 4-velocity 4-vector has a direction in spacetime pointing along the
worldline.

If we want to know the components of the 4-velocity in any particular
frame, we use eqn (2.52):

4-velocity = (2.53)

dX dXdt
== o a = (s ) (2.54)
The notation (...,...) is a list of elements; it is shown horizontal on

the page in order to save space, but U should be understood to he a
column vector when it is used in matrix expressions such as U' = AU.
The invariant length or size of the 4-velocity is just ¢ (this is obvious
if you calculate it in the rest frame, but for practice you should do
the caleulation in a general reference frame too). This size is not ouly
Lorentz-invariant (that is, the same in all reference frames) but also
constant. (that is, not changing with time), even though U can change
with tie (it is the 4-velocity of a general particle undergoing any form
of motion, not just inertial motion). In units where ¢ = 1, a 4-velocity is
a unit vector,

4-acceleration is defined as one would expect by A =dU/dr =
d*X /dr?, but now the relationship to a 3-vector is more complicated:

A du du ?(d‘y dy

== T R au+7a) (2.55)
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fu=(u-u)/? = du/dt =(1/2)
(u®)"12%(u-ata-u)=u alu,
or use (d/dt)(u? + uf + u2)1/2,

% The transformation of 3-acceleration
is best oblained by differentiating eqn
(2.27) and using eqn (2.12), yielding
ah = a“(fyct)_a,
al = (ay +(a-v)uyjoc?)(ya) 7%,

where ¢ = 1 — u-v/e?,

dr

Fig. 2.8

where v = v(u) and a is the 3-acceleration. Using dvy/dt = (dvy/du)
(du/dt) with the y relation (2.11) and® du/dt = (u -a)/u, we find

dy ju:a
=it e o (2.56)
Therefore
PR i 2 TR
A_q(c'y,cgwu+a). (2.57)
In the rest frame of the particle this expression simplifies to
A = (0,ap) (2.58)

where we write ag for the acceleration observed in the rest frame. If one
takes an interest in the scalar product U - A, one may as well evaluate it
in the rest frame, and thus one finds that

U-A=0

That is, the f-acceleration 1s always orthogonal to the 4-velocity. This
makes sense, hecanse Lhe magnitude of the 4-velocity should not change:
it remains a unit vector. 4-velocity is time-like, and 4-acceleration is
space-like and orthogonal to it. This does not, of course, imply that
3-acceleration is orthogonal to 3-velocity (though it can be, but usually
is not)?.

Using the Lorentz-invariant length-squared of A one can relate the
acceleration in any given reference [rame to the acceleration in the rest

(2.59)

frame ag:
af _(u-ay? 4, su-a 2N
’r( (c)"’*(cz*“*a))—%‘ (2.60)
This simplifies to
aj =v'a®* +%(u-a)?/® =1%(a® - (uAa)’/c?) (2.61)

where we give two versions for the sake of convenience in later discus-
sions. As a check, you can obtain the first version from the second hy
using the triple product rule.

ag is the proper acceleration, which is the acceleration relative to a
frame in which the particle is momentarily at rest. a is the acceleration
relative to a frame of our choosing—for example, the laboratory frame—
in which the particle has velocity u.

Eqn (2.61) gives ap = v%a and ag = y>a for the cases of a orthogonal
and parallel to u, vespectively. In the first case the factor v* comes from
twa factors of Lime dilation, and in the second case there is a further
factor of v becanse of Lorentz contraction. To see this, consider a pair
of neighbouring events A,B on the worldline, separated by proper time
d7. Al event A the particle is at rest in some frame; at B the velocity of
the particle in that frame is agdr (to first order in d7), and the distance
travelled from A is dlg = %aude. In another frame moving perpendicular
to ag, the time interval between A and B is dilated but the distance is
the same, leading to



2al, g
° = 2.62

(vdr)? A2 (2.62)
whereas in a frame moving parallel to ap one has also contraction of the
distance, leading to

2dlg/y  ag
=T =% (2.63)

For example, for circular motion the proper acceleration ag is ~?
times larger than the acceleration (a = u2/r) in the laboratory, and for
straight-line motion it is v® times larger.

Straight-line motion at constant ap is motion at constant v3a. Using
the gamma relation (2.11ii), this is motion at constant (d/dt)(~yv):
in other words, constant rate of change of momentum—i.e. constant
force. This will be discussed in detail in section 4.2.4. For such motion
the acceleration in the original rest frame falls in proportion to 1/+3
as v increases, which is just enough to maintain ag at a constant
value.

Addition of velocities: a comment

In section 2.5.2 we showed that the velocity 4-vector describing the
motion of a particle has a constant magnitude or ‘length’; equal to ¢. It
is 2 unit vector when ¢ = 1 unit. This means that one should treat with
caution the sum of two velocity 4-vectors:

Uy + Uy =7 (264)

Although the sum on the left hand side is mathematically well-defined,
the sum of two 4-velocities does not make another 4-velocity, because
the sum of two time-like unit vectors is not a unit vector.

The idea of adding velocity vectors comes from classical physics, but
if one pauses to reflect one soon realizes that it is not the same sort
of operation as, for example, adding two displacements. A displacement
in spacetime added to another displacement in spacetime corresponds
directly to another displacement. For the case of time-like displacements,
for example, it could represent a journey from event A to event B,
followed by a journey from event B to event C' {where each journey
has a definite start and finish time as well as position). Hence it makes
sense to write

X1 + Xq = Xg. (265)

Adding velocity 4-vectors, however, gives a quantity with no ready
physical interpretation. It is a bit like forming a sum of temperatures:
one can add them up, but what does it mean? In the classical case the
sum of 3-vector velocities makes sense because the velocity of an object C
relative to another object A is given by the vector sum of the velocity of
C relative to B and the velocity of B relative to A. In Special Relativity

2.5 Basic 4-vectors
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velocities do not sum like this, and one must instead use the velocity
transformation equations (2.27).

2.5.3 Momentum, energy

Supposing that we would like to develop a 4-vector quantity that
behaves like momentum, the natural thing to do is to try multiplying a
4-velocity by a mass. We must ensure that the mass we choose is Lorentz-
invariant—which is easy: just use the rest mass. Thus we arrive at the
definition
dXx
4-momentum P = mpU = Mo (2.66)
T
P, like U, points along the worldline. Using eqn (2.12) we can write the
components of P in any given reference frame as

dx .
P= Moy = (yumoc, Yumou) (2.67)

for a particle of velocity u in the reference frame.

In chapter 5, velativistic expressions for 3-momentum and energy will
be developed. The argument can also be found in many introductory
texts. One obtains the important expressions

E = ymgc?, p = ymou (2.68)

for the energy and 3-momentum of a particle of rest mass mg and velocity
u. It follows that the 4-momentum can also be written as

P = (E/c,p)

and for this reason P is also called the energy-momentum 4-vector.

In the present chapter we have obtained this 4-vector quantity purely
by mathematical argument, and we can call it ‘momentum’ if we chose.
The step of claiming that this quantity has a conservation law associated
with it is a further step; it is a statement of physical law. This will be
presented in chapter 5.

The relationship

P u

F- 3 (2.69)
(which follows from eqn (2.68)) can be useful for obtaining the velocity
if the momentum and energy are known.

We used the symbol my for rest mass in the formulac above. This was
for the avoidance of all doubt, so that it is clear that this is a rest mass
and not some other quantity such as vmg. Since rest mass is Lorentz-
invariant, however, it is by far the most important mass-related concept,
and for this reason the practice of referring to yrmg as ‘relativistic mass’
is mostly unhelpful, and is best avoided. Therefore, we shall never use
the symbol m to reler to ymg. This frees us from the need to attach a



subscript zero, and throughout this book the symbol m will only ever
refer to rest mass.

Invariant, covariant, conserved

Inwariant or ‘Lorentz-invariant’ means the same in all reference
frames

Covariant is a technical term applied to some 4-vector quantities, and
is used to mean ‘invariant’ when it is the mathematical form of an
equation (such as F = dP/dr) that is invariant.

Conserved means ‘not changing with time’ or ‘the same before and
after’.

Rest mass is Lorentz-invariant but not conserved. Energy is conserved
but not Lorentz-invariant.

2.5.4 The direction change of a 4-vector
under a boost
The simplicity of the components in P = (E/c, p) makes P a convenient
4-vector to work with in many situations. For example, to obtain the
formula (2.29) for the transformation of a direction of travel, we can
use the fact that P is a 4-vector. Suppose a particle has 4-momentum
P in frame S. The 4-vector nature of P means that it transforms as
P’ = AP so,
EI/C =y(E/c— Bps),
Py =v(=BE/c+ps),
Py = Dy,
and since the velocity is parallel to the momentum we can find the
direction of travel in frame S’ by tan 8’ = p, /p.:
Dy _ Uy B using
'Y(_’UE/CZ +Pz) Yol —v + ug) ’)/U(UCOSQ—’U)’

tand’ = (2.70)
where we used eqn (2.69). This is valid for any 4-vector, if we take it that
u refers to the ratio of the spatial to the temporal part of the 4-vector,
multiplied by the speed of light.

Fig. 2.9 gives a graphical insight into this result (see the caption for
the argument). The diagram can be applied to any 4-vector, but since it
can be useful when considering collision processes, an energy-momentum
4-vector is shown for illustrative purposes.

In the case of a null 4-vector (e.g., P for a zero-rest-mass particle)
another form is often useful:

_CL; _ Y(=BE/c+pcost) cosf—f
E ~(E/c—Bpcosf) 11— Bcosb

where we used F = pc.

cost = (2.71)

2.5

Basic 4-vectors

37



38 The Lorentz transformation

YBE'/c /28

Fig. 2.9 A graphical method for obtaining the direction in space of a d-vector after a Lorentz *hoost’: i.e.. a change to another
reference frame whose axes are aligned with the first. (Note that this is neither a spacetime dingram nor a pichure in space; it
is purely a mathematical constrnction). Let frame S’ be in standard configuration with S. p’ is a momentum vector in 3'. The
point A on the diagram is located such that its y position agrees with pj,, and its & position is yp. fron the fool of p’. p is Lhe
momentum vector observed in frame 8. Tt is placed so that its foot is al a distance v3E' /e to the left of the [oot of p’, and it
extends from there Lo A, It is ensy Lo check that it thus has the correct = and y components as given by Lorentz transformation
of p’. The interest is that one can show that when # varies while maintaining p’ fixed, the point A moves around an ellipse.
Therefore, the right-hand diagram shows the general pattern of the relationship between p and p’.

2.5.5 Force
We now have at least two ways in which force could be introduced:

? 7 dP

F=mgA or F= P (2.72)
Both of these are perfectly well-defined 4-vector equations; buf they are
not the same, because the rest mass is not always constant. We are
free to choose either, because the relation is a definition of 4-force, and
we can define things how we wish. However, some definitions are more
useful than others, and there is no doubt about which one permits the
most eleganf theoretical description of the large quantity of available
experimental data. Tt is the second:

dP
dr’
The reason why this is the most useful way to define 4-force is related

to the fact that P is conserved.
We have

F

il

(2.73)

o dP  /1dE dp)
_d'r_(cd'r’d‘r :

where p is the relativistic 3-momentum ymgu. To work with F in practice
it will often prove helpful to adopt a particular reference frame and study
its spatial and temporal components separately. To this end we define a
vector f by

i s (2.74)



which is called the force or 3-force. Then we have

dP dP d
F= ar Lo ’Y& (E/e,p) = (YW /e, 7). (2.75)

where W = dE/dt can be recognized as the rate of doing work by the
force.

2.56.6 Wave vector

Another 4-vector appears in the analysis of wave motion. It is the wave-
4-vector (or ‘4-wave-vector’)

K~ (w/c, k) (2.76)

where w is the angular frequency of the wave, and k is the spatial
wave-vector, which points in the direction of propagation and has size
k= 2m/ ) for wavelength A. We shall postpone the proof that K is a 4-
vector until chapter 6. We introduce it here because it offers the most
natural way to discuss the general form of the Doppler effect, for a
source moving in an arbitrary direction. Note that the waves described
by (w/c, k) could be any sort of wave motion, not just light-waves. They
could be waves on water, or pressure waves, etc. The 4-wave-vector
can refer to any quantity a whose behaviour in space and time takes
the form

a=agcos(k - T — wt)
where the wave amplitude aq is a constant. The phase of the wave is
o=k r—wt=K-X.

Since ¢ can be expressed as a dot product of 4-vectors, it is a Lorentz-
invariant quantity.®

2.6 The joy of invariants

Suppose an observer whose 4-velocity is U observes a particle having
4-momentum P. What is the energy E¢o of the particle relative to the
observer?

This is an eminently practical question, and we should like to answer
it. One way would be to express P in component form in some arbitrary
frame, and Lorentz-transform to the rest frame of the observer. However,
do not try it! You should learn to think in terms ol 4-vectors, and not
g0 to components if you do not need to.

We know that the quantity we are looking for must depend on both
U and P, and it is a scalar. Therefore, let us consider U - P. This is
such a scalar, and has physical dimensions of energy. Evaluate it in the
rest frame of the observer: there U = (¢,0,0,0), so we obtain minus ¢
times the zeroth component of P in that frame: i.e. the particle’s energy

2.6 The joy of invariants
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5 In chapter 6 we start by showing that
¢ is invariant witbout mentioning K,

and then define K as its 4-gradient.

Fig. 2.10

A
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in that frame, which is the very thing we wanted. In symbols, this is
U.P = —Ep. Now briug in the fact that U - P is Lorentz-invariant. This
means that nothing was overlooked by evaluating it in one particular
reference frame, and it will always give En. We are done: the energy of
the particle relative to the observer is —U - P.

This calculation illustrates a very important technique called the
method of invariants. The idea has been stated beautifully by
Hagedorn:

If a question is of such a nature thatl its answer unll always be the same, no
malter in which inertial frame one starts, il must be possible to formulale the
answer enlirely with the help of those invariants which one can build with the
available f-vectors. One then finds the answer in o particular inertial frame
which one can choose freely and in such a way thal the answer 15 there obmous
or maost easy. One looks then how the inwvariants appear in s particular
syslem, expresses the answer e the problem by these swme wnvariants, and
one has found al the same lime the general answer,’

He continues to add that it is worthwhile to devote some time to thinking
this through until one has understood that there is no hocus-pocus or
guesswork and that the method is completely safe. I agree!

Example For any isolated system of particles there exists a reference
frame in which the total 3-momentum is zero, Such a frame is called
the CM (centre-of-momentum) frame. For a system of two particles of
d-momenta Py, P, what is the total energy in the CM frame?

Solution

We have three invariants to hand: P, - P, = —m,c , Po Py = —mgc ;
and Py Ps. Other invariants, such as (Py -+ P2) - (Py + P3), can be
expressed in terms of these three. Let S be the CM frame. In the CM
frame the total energy is obviously K] + Ei. We want to write this in
terms of invariants. In the CM frame we ha.vc. by definition, p} + p5 = 0.
This means that (P} + P5) has zero momentum part, and its energy part
is the very thing we have been asked for. Therefore, the answer can be
written as

BQY = Elyy = oy/~ (P} + Py) - (P} + Pj)

=ey/—(Pi + P2) - (P1 + P2), (2.77)

where the last step uses the invariant nature of the scalar product. We
now have the answer we want in terms of the given 4-momenta, and it
does not matter in what frame (‘laboratory frame’) they may have been
specified.

The method of invariants provides a very convenient way to derive
the equation (2.13) relating the Lorentz factors for different 3-velocities.
We consider the quantity UV where U and V are the 4-velocities of
particles moving with velocities u, v in some frame. Then, using eqn
(2.54) twice,



U-V=vym(—ct4+u-v)

Let w be the relative 3-velocity of the particles, which is equal to the
velocity of one particle in the rest frame of the other. In the rest frame of
the first particle its velocity would be zero, and that of the other particle
would be w. Evaluating U -V in that frame gives

U -V = —y,¢2

Now use the fact that U -V is Lorentz-invariant. This means that the
above two expressions are equal:

’chz = :u’Yv(Cz —u-v).

This is egn (2.13). (See exercise 2.6 for another method.)

2.7 Summary

The main ideas of this chapter have been the Lorentz transforma-
tion, 4-vectors, and Lorentz-invariant quantities, especially proper time.
To help keep your thoughts on track you should consider the space-
time displacement X and the energy-momentum P to be the ‘primary’
4-vectors—those most important to remember. They have the simplest
expression in terms of components (see table 2.2): their expressions
do not involve . For wave motion, the 4-wave-vector is the primary
quantity.
The next most simple 4-vectors are 4-velocity U and 4-force F.

Exercises for Chapter 2 41
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Exercises

(2.1) Show that (iii) if the 4-displacement between any two events

(1) for any time-like vector Y there exists a frame
in which its spatial part is zero,

is orthogonal to an observer’s worldline, then
the events are simultaneous in the rest frame

of that observer.

(it) any vector orthogonal to a time-like vector
must be space-like,

(2.3) A stack of synchronized clocks is formed in (rame

S’, such that all their hour and minute hands turn

(1ii) with one exception, any vector orthogonal to
a null vector is space-like, and describe the
exception.

(2.2) Show that

at the same rate about a common axis, aligned
with the z’ axis. Describe the stack of clocks at
some instant in frame S.

(2.4) In a given inertial rame S, two particles are

(i) the instantaneous 4-velocity of a particle is shot out from a point in orthogonal spatial direc-
parallel to the worldline, tions with equal speeds v. Al what rate does
(ii) if a pair of events is simultaneous in the the distance between the particles increase in
rest frame of some observer, then the 4- S? What is the speed of each particle relative
displacement between them is orthogonal to to the other? Which of these cquantities can

that observer’s worldline. exceed c?
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(2.5) Two particles move along the z axis at speeds
0.8¢c and 0.5¢, the faster setting out two metres
behind the slower. After how many seconds do
they collide?

(2.6) Two particles have velocities u, v in some refer-
ence frame. The Lorentz factor for their relative
velocity w is given by

y(w) = y(u)y(v)(1 - u-v/c*).

Prove this twice, by using each of the following
two methods.

(i) In the given frame, the worldline of the first
particle is X = (ct, ut). Transform to the rest
frame of the other particle to obtain ¢ = ~,t
(1 —u-v/c*). Obtain dt'/dt and hence the
required result.

(ii) Use the invariant U .V (as in the text).

(2.7) Show that if two particles have velocities u, v
relative to a given frame, then the speed ol one
particle relative to the other is

_ey/e?(u—v)? —uPv? + (u-v)?
- d-u-v

w

(2.8) Show from egns (2.27) that when u is perpendic-
ular to v, y(u') = y(u)y(v).

(2.9) S1n frame S a guillotine blade in the (z,y) plane
falls in the negative y direction towards a block
level with the z axis and centred at the origin.
The angle of the edge of the blade is such that the
point of intersection of blade and block moves at
a speed greater than ¢ in the positive z direction.
In some frame S’ in standard configuration with
S, this point moves in the opposite direction along
the block. Now suppose that when the centre of
the blade arrives at the block, the whole blade
instantaneously evaporates in frame S (for exam-
ple, it could be vapourized by a very powerful laser
beam incident from the z direction). A piece of
paper placed on the block is therefore cut on the

negative z-axis only. Explain this in S’. (Hint: the
spacetime diagram.)

(2.10) How many boosts by 0.5¢ are required to reach the
speed 0.99¢? (where each boost results in speed
0.5¢ in whatever is the rest frame before the boost,
and 0.99¢ is the final speed relative to the initial
rest frame). (Hint: rapidity.)

(2.11) Evaluate the result of two Lorentz transforma-
tions in succession, for relative motion all along
the same direction, without using rapidity, and
confirmn that the result is consistent with eqn
(A.11). (This exercise merely shows how to do
something ‘the hard way'.)

(2.12) Use the Lorentz transformation of the energy-
momentum 4-vector lo re-derive the velocity
transformation equations (2.27), as follows. First
obtain p, = v,(—vE/c® + pi), with B = y,moc?
and pr = yumon.. Therefore

L

mog = T yumo(uz —v).

Next, make use of

da’ _ dadr dt
dt/ ~ dr df dt/

(cf. exercise 2.6).
(2.13) A particle has energy 1 joule and momentum
102 kgm/s. Find its speed.
(2.14) Let Py and P2 be the 4-momenta of two particles.
Show that
P1- Pz = —mimacty, (2.78)
where 7, is the Lorentz factor of the relative speed
of the particles.

(2.15) A pair of pions are emitted from a point with equal
speeds v in opposite directions in frame S, and
subsequently decay after proper lifetimes 7, 72,
respectively. Find the distance between the decay
events (i) in frame S and (ii) in the frame in which
the decay events are simultaneous.



Moving light sources

3.1 The Doppler effect

Suppose a wave source in frame 5’ emits a plane wave of angu-
1ar frequency wp in a direction making angle #p with the 2’/ axis
and lying in the z'y’ plane. Then the wave 4-vector in S’ is K' =
(wo /e, ko cos by, ko sin b, 0). (Here we adopt the subscript zero to indicate
values in the frame where the source is at rest).

Applying the inverse Lorentz transformation, the wave 4-vector in S

is

wfe vy 8 0 0 wo /e Ywo/e + ko cos o)
kcosE? = 'Y.H ¥ 0 0 t'\‘“ (-Osf)n - 'Y(ﬁwu/tr + kn COSQ(;) (3 ]}
ksimé| |0 0 1 0 ko sin @y kq sin @y W
0 0 0 01 0 0
Therefore (extracting the first line, and the ratio of the next two):
ko
w=r"wp | 1+ —wvcoshy | . (3.2)
wo
iné
tanf = sl (3.3)

y(cos Oy + v{wg/ko)/c?)

Egn (3.2) is the Doppler effect. We did not make any assumption
about the source, so this result describes waves of all kinds, not just

light.
For light-waves one has wg/ko - - ¢, s0
w=v(1+ B cos b )wy. (3.4)
For f3 = 0 we have the ‘longitudinal Doppler effect’ for light:
w _(1+v/c 3
w_u = "r(] s i?/(:) = (1——‘-1;/(:) .

Another standard case is the ‘transverse Doppler effect’, observed when
0 =m/2: ie, when the received light travels perpendicularly to the
velocity of the source in the reference frame of the receiver (Note that
this is not the same as 8; = 7/2). From eqn (3.3) this occurs when
cosfy = —v/e, so

W

1
— =4(1 —2%/c?) = —~.
o ( /c) T

3.1 The Doppler effect

3.2 Aberration and the
headlight effect

3.3 Visual appearances

Fig. 3.1
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This can be interpreted as an example of time dilation: the process of
oscillation in the source is slowed down by a factor ~. It is a qualitatively
different prediction from the classical case (where there is no transverse
effect) and so represents a direct test of Special Relativity. In practice
the most aceurate tests combine data from a variety of angles, and
a comparison of the [requencies observed in the forward and back
longitudinal directions allows the classical prediction to be ruled ount,
even when the source velocity is unknown.

It can be useful to have the complete Doppler effect formula in terms
of the angle @ in the laboratory frame. This is most easily done by
considering the invariant. K - U, where U is the 4-velocity of the source.
In the source rest frame this evaluates to —(wy/c)e = —wy. In the
‘laboratory’ frame S it evaluates to

k
(w/e, k) - (ve,yv) =y(-w+k -v)=—w (1 = ;U cosG).
Equating the two expressions, we have
Doppler effect
w 1

wo di Y1 = (v/vy) cosf) (3:5)

where v, = w/k is the phase velocity in the laboratory frame. The
transverse effect is easy to ‘read off” from this formula (as is the effect
at any #). This version, and its straightforward derivation from K - U, is
the most useful form of the Doppler effect formula.

The transverse Doppler effect has to be taken into account in high-
precision atomic spectroscopy experiments. In an atomic vapour the
thermal motion of the atoms results in ‘Doppler broadening’—a spread
of observed frequencies, limiting the attainable precision. For atoms
at room temperature, the speeds are of the order of a few hundred
metres per second, giving rise to longitudinal Doppler shifts of the
order of hundreds of MHz for visible light. To avoid this, a collimated
atomic beam is used, and the transversely emitted light is detected. For
a sufficiently well-collimated beam, the remaining contribution to the
Doppler broadening is primarily from the transverse effect. In this way
the experimental observation of time dilation has become commonplace
in atomic spectroscopy laboratories, as well as in particle accelerators.

3.2 Aberration and the headlight effect

The change in direction of travel of waves (especially light-waves) when
the same wave is observed in one of (wo different inertial [rames is
called aberration. The new name should not be taken to imply thaf
there is anything uew here, beyond what we have already discussed. It
is just an example of the change in direction of a 4-vector. The name
arose historically because changes in the direction of rays in optics were
referred to as ‘aberration’.
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The third line of eqn (3.1) reads ksin® = kg sin fy. For light-waves the
phase velocity is an invariant, so this can be converted into

wsin f = wq sin fy. (3.6)

This expresses the relation between Doppler shift and aberration.
Returning to eqn (3.1) and taking the ratio of the first two lines, one
has, for the case wp/c = ko (e.g., light-waves):

(3.7)

By solving this for cosfy you can confirm that the formula for cosfly
in terms of cosf can be obtained as usual by swapping ‘primed’ for
unprimed symbols and changing the sign of v (where here the ‘primed’
symbols are indicated by a subscript zero).

" Consider light emitted by a point source fixed in S'. In any given time
interval ¢ in S, an emitted photon' moves through ct in the direction 6,
while the light-source moves through vt in the z-direction; see Fig. 3.2.
Consider the case 6y = w/2; for example, a photon emitted down the
y/ axis. For example, there might be a pipe laid along the y' axis and
the photon travels down it (Fig. 3.3). Observed in the other frame, such
a pipe will be parallel to the y axis, and the photon will still travel
down it. In time t the photon travels through distance ¢t in a direction
to be discovered, while the pipe travels through a distance vt in the
2 direction. Therefore, for this case, ccosfl = v, in agreement with eqn
(3.7). A source that emitted isotropically in its rest frame would emit half
the light into the directions #y < /2. The receiver would then observe
this light to be directed into a cone with half-angle cos~' v/c—i.e., less
than m/2; see Fig. 3.4. This ‘forward beaming’ is called the headlight
effect or searchlight effect.

The lower right part of Fig. 2.3 gives an example of the headlight
effect. If in an explosion in reference frame S', photons or light-pulses
are emitted in all directions, then in frame S the velocities are directed
mostly in a cone angled forwards along the direction of propagation of
S"in S.

The full headlight effect involves both the direction and the intensity
of the light. To understand the intensity (i.e., energy crossing unit area
In unit time) consider Fig. 3.5, which shows a plane pulse of light
propagating between two mirrors (such as in a laser cavity, for example).
We consider a pulse which is rectangular in frame S', and long enough
so that it is monochromatic to good approximation, and wide enough so
that diffraction can be neglected. Let the pulse length be n wavelengths:
Le., n)\g in frame S'. Imagine a small antenna which detects the pulse as
it passes by. Such an antenna will register n oscillations. This number
nanust be frame-independent. 1t follows that the length of the pulse in
frame S is nA.

We shall now prove an interesting property of the propagation of such
a rectangular light-pulse: namely, the arca of the wavefronts is Lorentz-
invariant. This follows from the fact that null worldlines are lines of

A8\,

Fig. 3.2

1 We use the word ‘photon’ for con-
venience here. It does nol mean the
results depend on a particle theory for
light. It suffices that the waves travel in
straight lines: i.e., along the direction
of the wave vector. The ‘photon’ here
serves as a convenient way to keep track
of the motion of a given wavefront in
VACUUIT.

frame S

frame §'

Fig. 3.3 If a photon travels down a
given pipe in one reference frame then
it will do so in all reference frames. In
particular, if the pipe is at rest rela-
tive to the source and oriented at right
angles to the relative motion of source
and observer, then we can use this to
deduce quickly the direction of the pho-
ton in the observer’s frame S, since such
a pipe is merely contracted not rotated,
as shown. Hence one finds cosfl = v/c.
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Fig. 3.4 The headlight effect for pho-
tons. An ordinary incandescent light-
bulb is a good approximation to an
isoliopic emitter in its rest [rame:
half the power is emitted into each
hemisphere. In any frame relative Lo
which the light-bulb moves at veloc-
ity v, the emission is not isotropic
but preferentially in the forward direc-
tion. The light appearing in the forward
hemisphere of the rest frame is emit-
ted in the general frame into a cone
in the forward direction of half-angle
cos™u/fe (so sinf = 1/v). Its energy
is also boosted. The remainder of the
emitted light fills the rest of the full
solid angle (the complete distribution
is given in eqns (3.13) and (3.14)).

constant interval. To be precise, all events on a null worldline are at
the same spacetime interval from some given event B, where B can be
positioned anywhere (in some arbitrarily chosen reference frame) but
must occur at the right time. This seems surprising, but the proof is
simple: see Fig. 3.6.

The straight lines shown in Fig. 1.5b are examples of this fact, and
we now see that they are all null lines. With this in mind, the proof can
be turnished another way by the use of 4-vectors (exercise 3.8).

Now consider the wavefronts shown in Fig. 3.5. Each end of a wave-
front follows a trajectory like the one shown in Fig. 3.6, and each
wavefront is an example of the line AB. Focus attention on the ¢ =0
wavefront and ignore all the others (if you prefer, suppose we are
considering a short pulse of light, or two photons travelling abreast).
For convenience, place the origin (of time as well as space coordinates)
at B and suppose the phase is zero there. In some other frame (S’), the
trajectory followed by the other end of the wavefront (the end passing
through A) is given by linear functions «’(t"), 3'(t'), 2'(t') which satisfy

Bt v 6 = =
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Fig. 3.5 The effect of a change of reference frame on o plane wave. The dingrams show a pulse of light propagating between
a pair of mirrors: for example, the mirrors of a laser cavity, The left diagram shows the sitvation in 8/, the rest frame of the
mirrors. The right diagram shows the mirrors and wavefronts al two instants of time in frame § (full lines show the situation
at ¢ = 0, dashed lines show the situation at a later time ¢), In this frame the laser cavity suffers a Lorentz contraction and the
pulse length is reduced by a larger factor. The wavefronts are no longer perpendicular to the mirror surfaces. The angles are
such that the centre of each wavefront still arrives al the centre of the right mirror, and after reflection will meet the oncoming
left mirror al its centre also. The width of the wavefronts is the same in the two frames (see text),
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_? + 1% = L2 where v’ = (2'? + y" + 2/?)1/2, by using the fact that
all events along the worldline are at the same interval from the origin B,
and this interval is Lorentz-invariant. It follows that at ¢ = 0: i.e., when
the wavefront in question arrives at B, the other end of the wavefront
is at 7" = L. Therefore the width of the wavefront is Lorentz-invariant.
The height of the wavefronts (that is, their length in the direction
perpendicula.r to the relative motion of S and S') is obviously invariant,
so we deduce that the area (and shape) of the wavefronts is invariant.
QED.

This fact has some further nice implications: it means that a circu-
jar disk-shaped pulse of light has a circular (not elliptical) shape in
all frames (and with the same radius), and a pattern of photons all
propagating abreast will ‘look the same’ (i.e., form the same image on a
Aat piece of card placed perpendicular to the beam) no matter what the
motion of the card relative to other things (this configuration is called
a super-snapshot).

Since the area is invariant, and the length transforms as the wave-
length, it follows that the volume of the pulse transforms in the same way
as its wavelength, Now, the intensity [ of a plane wave is proportional
to the energy per unit volume u. We have, therefore:

I _u E/A

Iy wug  Ep/Ao
where F is the energy of the pulse. Such a pulse of light can be regarded
as an isolated system having zero rest mass and a well-defined energy-
momentum 4-vector P describing its total energy and momentum. This
statement is non-trivial, and will be re-examined in chapters 8 and 16.
Since P-P =0 =K K and p is in the same direction as k, we find that
the 4-vectors P and K are in the same spacetime direction, so their
components transform similarly. To be precise, E/Ey = w/wp. It follows
that, for 2 plane wave, the intensity transforms as the square of the
frequency:

(3.8)

I u  w?

Iy w wf
(This result can be obtained more directly by tensor methods; see eqn
(15‘51)). For the forward direction the Doppler effect gives w > wp; then
eqn (3.9) predicts an intensity increase even for a plane wave. This forms
the second part of the ‘headlight effect’. It means that not only is there
a steer towards forward directions, but also an increase in intensity of
the plane wave components that are emitted in a forward direction.
The headlight effect can be observed in high-energy collision experi-
ments, and also in astrophysics. Some astrophysical sources emit fast-
moving jets of material, which in turn glow. Owing to the headlight effect
the observed emission from such jets is mostly along the line of the jet.
Owing to the expansion of the universe, distant galaxies are moving away
from us. The light-emission from each galaxy is roughly isotropic in its
rest frame, so owing to the headlight effect the light is mostly ‘beamed’

(3.9)

Fig. 3.6 The thick line shows the tra-
jectory of a photon relative to some
reference frame S. Event A is some
arbitrary event on the worldline. Let
B be an event that is simultaneous
with A and on a perpendicular from
A, in the frame S. Then all events on
the worldline have the same interval
from B. For, by Pythagoras' thearem,
(Az? + Ay?) = L? + c?At?. Hence the
squared interval from B to any event on
the worldline is L2.

one frame

(o]

another frame

Fig. 3.7
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Fig. 3.8 A small change in # and ¢
gives the arc lengths shown; these arcs
meet at right angles, so the area is
r2 sin Bdfde; the solid angle is defined
as the ratio of this area to r? (so the
full solid angle of a sphere is 47).

Fig. 3.9 Photons emitted into dé in
frame 8 are found propagating in the
range of angles d@’ in frame S'.

away from us, making the galaxies appear dimmer. This helps to resolve
Olber’s paradox, concerning why the sky is dark at night.

The headlight effect is put to good use in X-ray sources based on
‘synchrotron radiation’. When a charged particle accelerates, its electric
field must distort, with the result that it emits electromagnetic waves
(see chapter 8). In the case of electrons moving in fast circular orbits, the
centripetal acceleration results in radiation called synchrotron radiation.
In the rest frame of the electron at any instant, the radiation is emitted
symmetrically about an axis along the acceleration vector (i.e., about
an axis along the radius vector from the centre of the orbit), and
has maximum intensity in the plane perpendicular to this axis. In the
laboratory frame two cffects come into play: the Doppler effect results
in [requency shifts up to high frequency for light emitted in the forward
direction, and the headlight effect ensures thal most of the light appears
in this direction. The result is a narrow beam, almost like a laser beam,
of hard X-rays or gamma-rays. This beam is continually swept around
a circle, so a stationary detector will receive pulses of X-rays or gamma-
rays. (See section 8.3 for more information).

So far we have examined the headlight effect by finding the direction
and energy of any given particle or ray. Another important quantity is
a measure of how much light is emilted into any given small range of
directions. This is done by imagining a sphere around the light-source,
and asking how much light falls onto a given region of the sphere.

In spherical polar coordinates, the element of solid angle is (Fig. 3.8)

dQ = sin8d8de. (3.10)

When we transform between frames, taking the axis of polar coordinates
along the relative motion of the frames, we shall find that & # 8 but
¢’ = ¢ (the latter follows from cylindrical and mirror symmetry, or,
equally, from the simple form of the transverse part of the Lorentz trans-
formation). It follows that d¢’ = d¢. Hence the solid angle transforms as

ég' _ sin#'d#’'d¢’  —d(cos#')d¢’ dcosé’
dQ  sinfdfd¢  —d(cosf)d¢  dcosh’

(where d(cos#) is simply a way of writing df if f(8) = cos#). Reverting
now o the subseript zero notation, we have 8 = g and £ = (. The
relationship between cos @ and cos fy is given by eqn (3.7). For simplicity
of calculation, write this in the form f = (fo + 8)/(1 + Bfo), where f =
cosf and f = cosfy, and then it is casy fo evaluate df/d fo. Hence we
find that for a group of light-rays propegating outwards from a point, the
solid angle taken up by the rays transforms as

(3.11)

@ } - (ﬂ)"’
dQ  %(1 +Bcoshp)? \w
where the final step used eqn (3.4).
If the source emits isotropically in its rest frame, then the number of

photons going into any given solid angle in any given time is proportional
to that solid angle. The significance of eqn (3.12) is that those same

(3.12)
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photons fill a different solid angle in the other frame—a smaller one for
divections ahead of the source, a larger one for directions behind. In other
words, there is a brightening in the forward direction: more photons per
anit solid angle (or per unit area at any given distance). More generally,
the number of photons per unit solid angle is written d N/df2, which can
pe a function of § and ¢, and we have that the enhancement factor when
one examines the same source from the perspective of another frame is

given by

dN_cwci_s'zﬂ_dz\f(w)2

T TR T (3.13)

Wy
gince the number N of photons emitted is invariant. For example, the
enhancement factor for emission into a small solid angle in the directly
forward direction (at 8 =8y =0) is y%(1 + 8)> = (1 + B)/(1 - B).

For isotropic emission in the rest frame one has dN/dQy = N/(4r) if
N is the total number of photons emitted into all directions, but eqn
(3.13) does not need to assume this.

The simplicity of the final result (3.13) is owing to eqn (3.12). It is
remarkable: the angles are so arranged that the solid angle transforms
in the same way as the square of the frequency. There is no very simple
reason for this, but a moderately intuitive argument runs as follows.
Consider a given emission event E at the origin and a detection event
D at (tg, ro) in the rest frame of the source. Since light travels at speed
¢ we must have rg = et, so the 4-vector X = (ctp, rp) is null. Applying a
Lorentz transformation, X transforms just the same way as the 4-wave-
vector K, which is also null. Therefore the distance r between E and 1D,
evaluated in other frames, varies from one frame to another in the same
way as the wave vector k, and hence (using the universal phase velocity
¢ for light-waves) in the same way as the frequency w. Now consider
two detectors, both present at event 1D, and presenting the same cross-
sectional area, but moving with different velocities. We will prove shortly
that they will intercept the same group of rays from E. The one observing
the higher frequency finds that the emission event was further away,
and therefore that detector presents a smaller solid angle at the emission
point, in proportion to 1/r2. Therefore the solid angle filled by any given
group of propagating photons varies as dQ2/dQy = (rg/r)? = (wo/w)?,
which is eqn (3.12).

The argument assumed that the detectors at D intercept the same
bundle of ray directions from E, independent of the state of motion of
the detector. To be precise, if we suppose that the source emitted N
photons in all directions in a short burst, then all identical detectors at
D receive the same fraction of those N, assuming that each detector has
the same proper size and is oriented so as to receive the light at normal
incidence in its rest frame. This is obvious for detectors moving directly
towards or away from the source (no transverse contraction), but more
generally it is a non-trivial result of the behaviour indicated in Figs 3.7
and 3.5. Each detector ‘chops out’ a certain segment of a flat light-pulse

Fig. 3.10 The detector moving to-
wards the source considers that the
emission event F. was further away.
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Fig. 3.11 The Doppler effect and the
headlight effect combine in this image
of waves emitted by a moving oscillat-
ing source. The image shows an exam-
ple where the emission is isotropic in
the rest [rame of the source, and the
phase velocity is ¢. Each wavefront is
circular, but more bunched up and
brighter in the forward direction.

washing over it. It chops out that same segment in the rest frame of the
source.

Eqn (3.13) concerns the number of particle velocities or ray directions
per unit solid angle, not the flux of energy per unit solid angle. To
obtain the latter we need to combine eqns (3.13) and (3.9). The emission
into all direction can always be expressed as a set of plane waves; eqn
(3.13) shows that for a point source the density (per unit solid angle)
of plane wave components transforms as w?, and eqn (3.9) states that
the intensity of each plane wave transforms as w®. It follows that, for a
monochromatic source that emits isotropically in its rest frame, the flux
of energy per unit solid angle transforms as

dP _ (W' dPo
dQ  \wd ) dQy’
This fourth power relationship is a strong dependence. For v close to
e, eqn (3.2) gives w = 2qwq for emission in the forward direction. At

v =2 100, for example, the brightness in the forward direction is enhanced
approximately a billion-fold.

(3.14)

3.2.1 Stellar aberration

‘Stellar aberration’ is the name for the change in direction of light
arriving at Earth from a star, owing to the relative motion of the
Earth and the star. Part of this relative motion is constant (over large
time-scales) so gives a fixed angle change: we cannot tell it is there
unless we have further information about the position or motion of the
star. However, part of the angle change varies, owing to the changing
direction of motion of the Earth in the course of a year, and this
small part can be detected by sufficiently careful observations. Before
carrying out a detailed calculation, let us note the expected order of
magnitude of the effect. At 0y = 7/2 we have cosf = v/e, therefore
sin(r/2 — 0) = v/e. For v < ¢ this shows that the angle 7 /2 — 0 is small,
so we can use the small angle approximation for the sin function, giving
6 ~ m/2 —v/c. Indeed, since the velocities are small, one does not need
Relativity to calculate the effect. Over the course of six months the
angle observed in the rest frame of the Earth is expected to change by
about 2v/c ~ 0.0002 radians, which is 0.01° or about 40 seconds of arc.



It is to his credit that in 1727 James Bradley achieved the required
stability and precision in observations of the star v Draconis. In the
course of a year he recorded angle changes in the light arriving down a
telescope fixed with an accuracy of a few seconds of arc, and thus he
clearly observed the aberration effect. In fact his original intention was
to catry out triangulation using the Earth’s orbit as a baseline, and thus
deduce the distance to the star. The triangulation or ‘parallax’ effect is
also present, but it is much smaller than aberration for stars sufficiently
far away. Bradley’s observed angle changes were not consistent with

arallax (the maxima and minima occured at the wrong points in the
Farth’s orbit), and he correctly inferred that they were related to the
velocity not the position of the Earth.

In the rest frame of the star, it is easy to picture the aberration effect:
as the light ‘rains down’ on the Earth, the Earth with the telescope on
it moves across; see Fig. 3.12. Clearly, if a ray of light entering the top
of the telescope is to reach the bottom of the telescope without hitting
the sides, the telescope must not point straight at the star; it must be
angled forward slightly into the ‘shower’ of light.

In the rest frame of the Earth, we apply eqn (3.7) supposing S to be
the rest frame of the star. # is the angle between the received ray and the
velocity vector of the star in the rest frame of the Earth. I'irst consider
the case where the star does not move relative to the Sun, then » in the
formula is the speed of the orbital motion of the ISarth. Since this is small
compared to ¢, one may use the binomial expansion (1 — (v/c) cosd) ! =~
1+ (v/c) cos§ and then multiply out, retaining only terms linear in v/¢,
to obtain

cos ' ~ cos® — %sin2 6. (3.15)
This shows that the largest difference between ¢ and # occurs when
sinfl = +1. This happens when Earth’s velocity is at right angles to a
line from the Earth to the star. For a star directly above the plane of
Earth'’s orbit, the size of the aberration angle is constant and the star
appears to move around a circle of angular diameter 2v/c; for a star
at some other inclination the star appears to move around an ellipse of
(angular) major axis 2v/c.

3.3 Visual appearances*

This section can be omitted at first reading—not because it is difficult
(it is not), but because it is of relatively small importance. No further
results in forthcoming chapters will require it.

When we discuss the situation in a given reference frame, we usually
mean the dispositions, velocities, accelerations, etc. al some instant
of time throughout that frame. However, another question that can
naturally arise is ‘what do things look like?"—where we mean ‘look like'
quite literally: where does the light received during some small time
interval by an observer located at some particular place appear to have
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Fig. 3.12 Stellar aberration pictured
in the rest [rame of the star. The
light ‘rains down' in the vertical direc-
tion, while the telescope fixed to planet
Earth moves across. The horizontal
lines show wavefronts. The thicker
dashed wavefront shows the position
at time t; of a portion of light that
entered the telescope (dashed) a short
time ago. In order that it can arrive at
the bottom ol the telescope, where the
same bit of light is shown by a bold full
line, it is clear that the telescope must
be angled into the ‘shower’ of light. (To
be precise, the bold line shows where
the light would go if it were not focused
by the objective lens of the telescope.
The ray passing through the centre of
a thin lens is undeviated, so the focused
image appears centred on that ray.)
This diagram suffices to show that a
tilt of the telescope is needed, and in
particular, if the telescope later moves
in the opposite direction tien its ori-
entation must be changed if it is to be
used to observe the same star.
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2 This can be obtained by using either
the trigonometric identity cos# = (1 —
t2)/(1 + t*) where t = tan(#/2), or the
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come from? This is the same question as one asks when considering the
concept of a virtual image in optics. When high-speed motion is involved,
Lo answer the question it is necessary to take into account the travel time
of the light from source to observer. For example, if a train is approaching
while I stand at the platform, the light [ see now from the back of the
train must have set off before the light I see now from the front of the
train. Therefore the visual appearance of the train is ‘stretched’ (a purely
classical phenomenon). The size of this visual stretching is similay to the
Lorentz contraction, and in some arrangements exactly the same!

Example Consider a cube of proper side Ly oriented horizontally
and passing horizontally from left to right at height h above a strip
of photographic ilm. Light from the Sun falls perpendicularly onto the
film. The flm is exposed briefly at some moment in its own rest [rame,
80 as to vegister the shadow of the cube. Find the length of the shadow.

Solution

Let us calculate in the rest frame of the film throughout. The cube
is Lorentz-contracted by a factor + along its direction of motion. The
shadow of the lower face clearly fills a length Lg/~ of the film. The travel
times of light [rom the lower and upper faces of the cube to the film are
hfc and (h+ Lg)/c respectively. Therelore the shadow of the upper face
trails behind that of the lower face by a distance Lgv/c. The total length
of the observed shadow is therefore Lo(1/v + v/c).

In this example the cube’s shadow is longer, not shorter, than Ly.
If one considers an image formed by light-rays emitted by the cube
and arriving perpendicularly onto the film (a so-called ‘super-snapshot’)
then the registered image is the same as would be obtained from a non-
moving enbe of the same size Ly but rotated through sin ™! v/e (exercise
for the reader). In this sense one may say that the cube ‘appears’ to be
rotated and not contracted (and therefore an intelligent observer would
ceduce that the enbe was, at any instant in his [rame, contracted and
not rotated!).

For the case of observation of a sphere, the following neat demonstra-
tion is due to Penrose.

Write the angular transformation eqn (3.7) in the form®

— e
1 H’/IC tan1d. (3.16)

tanif =

Now consider an observer at a particular place O. All that the observer
sees can be mapped onto a sphere around him (the very ‘sphere of the
heavens' we sometimes find ourselves imagining when we look at the
stars); see Fig. 3.14. Let him arrange for it to be further mapped onto
the tangent plane shown in Fig. 3.14, by stereographic projection from A.
We are doing this merely as a mathematical device to help understand
what different observers will see. The projected image has a vertical
dimension proportional to tanf.



Now suppose there is a spherical object moving in the sky, emitting
Jight, and consider two observers who momentarily meet at O. Depend-
ing on their motion, both observers receive light propagating at angles
(ransformed from 6g, but according to eqn (3.16) the stereographic
pmjection images they each find will only differ by a scale factor. Let
one observer be at rest in the rest frame of the spherical object. It is
obvious that he will see a circular shape on his sky. Now, stereographic
projection maps circles to circles, so he will also see a circular image
on his vertical ‘cinema screen’. It follows that the other observer, no
matter what his motion, will also see a circular stereographic projection
(since it merely differs by a scale factor), and thercfore he sees a circular
shape in hus sky. (Any pictures painted on the surface of the sphere
will nonetheless appear distorted.) We conclude that, despite Loreutz
contraction (or rather, because of length contraction, since without it
the image would be stretched), the boundary of a moving spherical
object will always present a circular visual appearance, to all observers.
It does not ‘look’ contracted—which implies that it must actually be
contracted.

To undertake a more general consideration of visual appearances,
consider a point source moving along the line ¥y = yp at constant velocity
v. [ts x-position is given by z(¢) = zp + vt, where zo is a constant. A
photon emitted by the source at time ¢t =t, and propagating to the
origin arrives there at time

b=ty Ry

- (v6 + (zo + vts , (3.17)

and propagales along a line making an angle 8 to the y-axis given by
tan @ = (zo + vts)/yo. (3.18)

Eqns (3.17) and (3.18) allow one to reconstruct the appearance of a
general moving object, since such an object can be considered to form
a set of point sources with various values of (zo, yo). The image formed
at any given time by a small imaging apparatus located at the origin is
constructed from rays arriving there simultaneously.

An appearance of superluminal motion

Suppose that a quasar 1 billion light-years from Earth explodes, emitting
material which moves outwards in two lobes. The explosion is recorded
by observers on Earth, and one year later an image is taken of the
(brightly glowing) lobes, using a powerful telescope; Fig. 3.15. Suppose
the angular separation of one lobe from the location of the explosion, as
recorded on the image, is then found to be 1 milli-arcsecond (approx-
imately 5 x 10~ radians). It would appear, then, that the lobe has
moved a distance 5 x 107% x 10° = 5 light-years in one year. This naive
calculation is said to imply a ‘visual appearance of faster-than-light
motion’. Of course, to an intelligent observer there is no such appearance,
because he would not accept the calculation: the travel time of the light
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view at some date

viewed a year later

Fig. 3.15 Astronomical observations.
Surprising or not?
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has not been properly taken into account. What is going on is that the
lobes are not moving purely in the transverse direction to the line of
sight from Earth, but they have a component of velocity along the line
of sight; Fig. 3.16. If this component is », then you can easily check
Lhat the difference in reception times Af,. is related to the difference in
emission times At. by

At = At, (1 - '”?)

LA Clearly At, > At, if the source has a component of velocity towards
us. The correct conclusion in the above example is that v, was positive
and the lobe took more than one year to travel between the observed
=" positions.

One cannot fully deduce the direction of motion of the lobe from the
given observations, but one can constrain it by imposing the condition
v < ¢, where v is its speed. If the lobe velocity makes an angle 8 with the
line of sight, then the observed ‘apparent transverse speed’ is given by

Az Az At wvsind
At,  At, At, 1 -—wvcosf/c’

Ate| {

Fig. 3.16 The situation near the star
when the lobe arrived at Az The
bright light-pulse from the explosion
is on its way. The lobe is about to
emit the light which will contribute to
the second image ahove. The transverse
velocity of the lobe i3 Az/Ate, not
Az /Aty

Exercises

(3.1) Two photons travel along the z-axis of S, with
a constant distance L between them. Find the
distance between them as observed in 8'. How is
this result related to the Doppler effect?

(3.2) The emission spectrum from a source in the sky is
observed to have a periodic Muctuation, as shown
in the data displayed in Fig, 3.17.

T 0.061 days ‘"v"‘ 1.886 HDB0715
Yy~ o34 "Y"’ 208wy oaaes
W 1.019 TR 2 W asss
W 1.162 W 2.821 Ww—““ 3.654
Wy~ 130 ‘Tr’ 2,859 ww-» 2,677
P IPERTTOV PP Rl ST RPPA T I 1 (v
6540 6550 6540 8550 €540 6550
wavelenglh (Angstroma)

Fig. 3.17 Spectra of light received from an astro-
nomical object at specific times during an obser-
valion period of a few days.

1t is proposed that the source is a binary star
system. Explain how this could give rise to the
data. Extract an estimate for the component of
orbital velocity in the line of sight. Assuming the
stars have equal mass, estimate also the distance
between them and their mass.

(3.3) 58 Excited jons in a fast beam emit light on a given
internal transition. The wavelength observed in
the direction parallel to the beam is 359.5 nm,
the wavelength observed in the direction perpen-
dicular to the beam in the laboratory is 474.4 nm.
Find the wavelength in the rest frame of the ions,
and the speed of the jons in the laboratory. [Ans.
406.3 nm, 0.2422¢|

A light-source moves relative to an observer S at
speed v. Show that for light emitted at a small
angle 8y to the forward direction in the source
frame, the angle of the ray observed by S is

-
0= 0 ctu

(3.4)




(3.5) A particle moves with v > | and emits light at a

stmall angle 8 to its line of Aight in the laboratory.
Show that the angle of emission (not necessarily
small) in the particle’s rest frame is given approx-
imately by

=4 1-— ’7202

cos " ——.
1+ 262

(3_6) Given a radioactive source that emits neutrinos

isotropically, how could a narrow beam of neutri-
nos be obtained?

(3.7) 88 galaxy with a negligible speed of recession

from Earth has an active nucleus. It has emitted
two jets of hot material with the same speed v in
opposite directions, at an angle 8 to the direc-
tion to Earth. A spectral line in singly-ionised
Mg (proper wavelength Ao = 448.1nm) is emit-
ted from both jets. Show that the wavelengths
X4 observed on Earth from the two jets are
given by

At = oy(1 + (v/¢) cos 6)

(you may assume the angle subtended at Earth
by the jets is negligible). I[ A4 = 420.2nm and
A_ = 700.1nm, find v and 6.

In some cases the receding source is diffi-
cult to observe. Suggest a reason for this. [Ans.
0.6¢, 65.4°)

(3.8) (3) An arbitrary null worldline can be specified by

X = Xo + aK where Xg is constant, K is null
and « is a parameter. Show that all events on
the worldline are at the same interval from any
given event Xg in the plane K- Xg = K- Xo.
Relate the quantities in part (i) to the
behaviour of a wavefront of a plane light-wave.
Hence show that the area of such wavefronts is
Lorentz invariant. (This is arguably a neater
method to the one given before eqn (3.8).)

(3.9) Moving mirror. A plane mirror moves uniformly

with velocity v in the direction of its normal in
a [rame S. An incident light-ray has angular fre-
quency w; and is reflected with angular frequency
wr. Show that

w; Sin 8; = w,- sin 0,
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where 8;, 6, are the angles of incidence and reflec-
tion, and

tan(6;/2) _ 1--v/c
tan(8,/2)  1-uv/c’

Visual appearances

(3.10)

(3.11)

(3.12)

(3.13)

Two observers move towards a smal! distant light-
source. At the event when one observer is over-
taken by the other, he finds that the source looks
twice as wide as it does to the other. Show that
the relative speed of the observers is 3¢/5. (Hint:
consider a single ray emitted from the edge of the
source and observed by both observers.)

§A rocket flies through a circular hoop, along the
axis, at speed ». How far past the hoop is the
rocket when the hoop appears to Lhe pilot to be
exactly in the lateral direction? Is the same answer
obtained in Galilean physics?

It is sometimes claimed that according to Spe-
cial Relativity it is possible to ‘sec round cor-
ners’. ls this true? (Hint: the answer is no!) The
claim is related to the change of angle of prop-
agation of light from one frame to another. For
example, light emitted from the back of a fast
train at a shallow angle to the surface (i.e., at a
large angle to the direction of propagation of the
train) will be ‘thrown forward’ and found to be
propagating somewhat in the forward direction in
another frame. A person standing on a platform
and watching the train pass from hig left to right
will therefore first see the back face of the last
carriage when he looks somewhat to his left: i.e.,
in a direction he might find surprising. This is
the basis of the ‘seeing round a corner’ claim.
Investigate this by calculation and diagrams. Does
the light propagate in a straight line? Does the
corner of the train get in the way of the light?

A rod of proper length Lo lies along the line
y = h and moves along that line at speed v. Define
the ‘apparent length’ of the rod as the length
of a stationary rod lying at y = h which would
have the same appearance (to a viewer at the
origin) as the moving rod. Establish that the
apparent length is yLo at t =0, and tends to
Loa and Lp/a at t = too, respectively, where

o= ((1—v/c)/(1+v/c)H™.
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We are now ready to carry out the sort of calculation one often meets
in mechanics problems: the motion of a particle subject to a given force,
and the study of collision problems through conservation laws.

Since the concept of force is familiar in classical mechanics, we shall
start with that, treating problems where the force is assumed to be
known, and we wish to derive the motion. However, since we are also
interested in exploring the foundations of the subject, one should note
that most physicists would agree that the notion of conservation of
momentum is prior to, or underlies, the notion of force. In other words,
force is to be understood as a useful way to keep track of the tendency
of one body to influence the momentum of another when they interact.
We define the 3-force f as equal to dp/dt, where p = y,mov is the
3-momenturn of the body on which it acts. This proves to be a useful
idea, because there are many circumstances where the force can also be
calculated in other ways. For example, for a spring satisfying Hooke's law
we would have f = —kx, where x is the extension, and in electromagnetic
fields we would have f = ¢(E + v A B), etc. Therefore it makes sense to
study cases where the force is given and the motion is to be deduced.
However, the whole argument relies on the definition of momentum, and
the reason momentum is defined as y,mpv is that this quantity satisfies
a conservation law, which we shall discuss in the next chapter.

In the first section we introduce some general properties of the 4-force.
We then treat various examples using the more familiar language of
3-vectors. This consists of various applications of the relativistic ‘second
law of motion’ f = dp/dt.

4.1 Force
Let us recall the definition of 4-force (eqn (2.73)):
4P /14E dp vdE
Fe—=(-=, —=]=(2 : -
dr (cdr’ dr) (c (.lt’jyf) (¢1)

where f =dp/dt. Suppose a particle of 4-velocity U is subject to a
4-force F. Taking the scalar product, we obtain the Lorentz-invariant
quantity

,( dE \
U-F=r (——d—t-—i—wf}. (4.2)



One expects that this should be something to do with the rate of doing
work by the force. Because the scalar product of two 4-vectors is Lorentz-
i,,\r;u'imtt., one can calculate it in any convenient reference frame and
ohtain an answer that applies in all reference frames. So let us calculate
it in the rest frame of the particle (u = 0), obtaining

o dmyg

dr ’
since in the rest frame y = 1,4 = 0, E = mgc? and dt = d7. We now have
the result all in terms of Lorentz-invariant quantities, and we obtain an
jmportant basic property of 4-force;

U:-F=—¢c (4.3)

when U - F =0, the rest mass s constant.

A force which does not change the rest mass of the object on which it
acts is called a pure force. The work done by a pure force goes completely
into changing the kinetic energy of the particle. In this case we can set
eqn (4.2) equal to zero, thus obtaining

dE

=~ f-u | for pure force, mq constant (4.4)

This is just like the classical relation between force and rate of doing
work. An important example of a pure force is the force exerted on a
charged particle by electric and magnetic fields. Fundamental forces that
are non-pure include the strong and weak forces of particle physics.

A 4-force which does not change a body's velocity is called heal-like.
Such a force influences the rest mass (for example by feeding energy into
the internal degrees of freedom of a composite system such as a spring
or a gas).

In this chapter we will study equations of motion only for the case of a
pure force. The next chapter will include general forces (not necessarily
pure), studied through their effects on momenta and energies.

4.1.1 Transformation of force

We introduced the 4-force on a particle by the sensible definition
F=dP/dr. Note that this statement makes Newton’s second law a
definition of force, rather than a statement about dynamics. Nonetheless,
Just as in classical physics, a physical claim is being made: we claim that
there will exist cases where the size and direction of the 4-force can
be established by other means, and then the equation can be used to
find dP/dr. We also made the equally natural definition f = dp/dt for
3-force. However, we are then faced with the fact that a Lorentz factor
7 appears in the relationship between F and f: see eqn (4.1). This means
that the transformation of 3-force, under a change of reference frame,
depends not only on the 3-force f but also on the velocity of the particle
on which it acts. The latter may also be called the velocity of the ‘point
of action of the force’.

Let f be a 3-force in reference frame S, and let u be the 3-velocity
In S of the particle on which the force acts. Then, by applying the

4.1

Foree

5

i
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Lorentz transformation to F = (v, W/ec, v.f), where W = dE/dt, one
obtains

1! dEf L
e = o ((AB/dt) e - Bfy).

Y £ = v (~B(AE/dt) /e + 1)),

'Yu‘ﬂ = Yull, (45)

where u’ is related to u by the velocity transformation formulae (2.27).
With the help of eqn (2.13) relating the « factors, one obtains
f“ i (V/Cg)dE/di fi > f_L ‘ (46)
1—uwv/e? To(l —uv/c?)

These are the transformation equations for the components of f’ parallel
and perpendicular to the relative velocity of the reference [rames, when
in frame S the force f acts on a particle moving with velocity u. (Note
the similarity with the velocity transformalion equations, owing o the
similar relationship with the relevant 4-vector).

For the case of a pure force, it is useful to substitute eqn (4.4) into
(4.61), giving

fy =

fy — v(f-u)/c?

ff =
I 1 —uv/c?

[ if mg=const. (4.7)

Unlike in classical mechanics, f is not invariant between inertial
reference frames. However, a special case arises when 7 is constant and
the force is parallel to the velocity u. Then the force is the same in all
reference frames whose motion is also parallel to u. This is easily proved
by using eqn (4.7) with f u = fu, uv =wwv and f; = 0. Alternatively,
simply choose S to be the rest frame (u = () so one has d£/dt =0, and
then transform to any frame S’ with v parallel to f. The result is f’ = f
for all such S'.

The transformation equations also tell us some interesting things
about forces in general. Consider, for example, the case u=0: i.e, f is
the force in the rest frame of the object on which it acts. Then eqn (4.6)
says f| = fi /: i.e., the transverse force in another frame is smaller than
the transverse force in the rest frame. Since transverse area contracts by
this same factor -, we see that the force per unit area is independent of
reference [rame.

Suppose that an object is put in tension by forces that are just
sufficient to break it in the rest [rame. In frames moving perpendicular
to the line of action of such forces, the tension force is reduced by a
factor v, and yet the object still breaks. Therefore the breaking strength
of material objects is smaller when they movel We will see how this
comes about for the case of electromagnetic forces in chapter 7.

The Trouton—Noble experiment nicely illustrates the relativistic
transformation of force; see Iig. 4.1.

Next, observe that if f is independent of u, then f’ does depend on u.
Therefore, independence of velocity is not a Lorentz-invariant property.
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Fig- 4.1 The Trouton—Noble experiment Suppose that two opposite charges are attached to the ends of a non-conducting
rod, so that they attract one another. Suppose that in frame § the rod is at rest, and oriented at angle ¢ to the horizontal axis.
The forces exerted by cach particle on the other are equal and opposite, directed along the line between them and of size f
(fig- (a)). Now consider the situation in a reference frame S’ moving horigontally with speed v. The rod is Lorentz-contracted
norizontally (the figure shows an example with v = 2.294). The force transformation equations (4.6) state that in S’ the force
is the same in the horizontal direction, but reduced in the vertical direction by a factor v, as shown. Therefore the forces f' are
not along the line between the particles in S’ (fig. (b)). Is there a net torque on the system? This torque, if it existed, would
allow the detection of an absolute velocity, in contradiction of the Principle of Relativity. The answer (supplied by Lorentz
(1904)} is given by fignres (c) and (d), which indicate the complete set of forces acting on each particle, including the reaction
from the surface of the rod. These are balanced, in any frame, so there is no torque. (There are also balanced stresses in the
material of the rod (not shown), placing it in compression.) In 1901 (i.e., before Special Relativity was properly understood)
Fitzgerald noticed that the energy of the electromagnetic field in a capacitor carrying given charge would depend on its velocity
and orientation (see exercise 16.10 of chapter 7), implying that there would be a torque tending o orient the plates normal to
the velocity through the ‘acther’. The torque was sought experimentally by Trouton and Noble in 1903, with a null result. The
unclerlying physics is essentially the same as for the rod with charged ends, but the argument in terms of field energy is more
involved, because there is a flow of energy and momentum in the field, discussed in chapter 16.

A force which does not depend on the particle velocity in one reference
frame transforms into one that does in another reference frame. This
is the case, for example, for electromagnetic forces. It is a problem for
Newton’s law of gravitation, however, which we deduce is not correct.

To determine the velocity-dependence of f” in terms of the velocity
in the primed frame, i.e. u’, use the velocity transformation equation
(2.271) to write

1

T—av/@ =71+ v/ (4.8)

4.2 Motion under a pure force

For a pure force we have dmy/dt = 0, and so eqn (2.74) is

_4d,. _ o dy
fl= T (ymou) = ympa +- my W (4.9)

dK
— =f-u 5
5 u (4.10)

We continue to use u for the velocity of the particle, so v = y(u), and we
rewrote eqn (4.4) in order to display all the main facts in one place, with
K = F — mpc? the kinetic energy. The most important thing to notice
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p+ft i

v+at

= -
~

p v

Fig. 4.2 Force and acceleration are
usually not parallei. The diagcam at
left shows the change in momentum
from p to pr = p + ft when a constant
force f acts for time t. The diagram at
right shows what happens to the veloc-
ity. The initial velocity is parallel to
the initial momentum p, and the final
velocity is paralle!l to the final momen-
tum pr, but the proportionality con-
stant + has changed, because the size
of v changed. As a result, the change
in the velocity vector is not parallel to
the line of action of the force, Thus
the acceleration is not parallel to f.
(The figure shows at where & is the
mean acceleration during the time ¢;
the acceleration is not constant in this
example.)

is that the relationship between force and kinetic energy is the familiar
one, but acceleration is not parallel to the force, except in special cases
such as constant speed (leading to dvy/dt = 0) or £ parallel to u. Let us
see why.

Force is defined as a quantity relating primarily to moemenlum, not
velocity. When a force pushes on a particle moving in some general direc-
tion, the particle is ‘duty-bound’ to increase its momentum components,
each in proportion to the relevant force component. For example, the
component of momentum perpendicular to the force, py, should not
change. Suppose the acceleration, and hence the velocity change, were
parallel with the force. This would mean that the component of velocity
perpendlicular to the force remains constant. However, in general the
speed of the particle does change, leading to a change in <, so this
would result in a change in p,, which is not allowed. We dednce that
when the particle speeds up it must redirect its velocity so as to reduce
the component perpendicular to f, and when the particle slows down it
must redirect its velocity so as to increase the component perpendicular
to f. Fig. 4.2 gives an example.

There are two interesting ways to write the dy/d¢ part. First, we have
E = ymge?, so when 1y is constant we should recognise dvy/dt as dE /dt
up to constants:

dy 1 dE _ f.u
dt  mpe? dt

4.11
mge?’ ( )

using eqn (4.4), so

fu
f =ympa + —ar i
c

(4.12)
This is a convenient form with which to examine the components of f
parallel and perpendicular to the velocity u. For the parallel component
one has f-u = fyu and thus

f“ = ymya + f"'tf.zfr.'z = f*l = 'rsmgﬂ.uA

The perpendicular component can then be found using

" g :
fi =f— fuu = ('ymua-l*f“?u) - fia

a= /e = N
=qymoa — fia/y* = ymg(a — o)) = ympa, .
To summarize,

fi = Y'moay, fL=mga,. (4.13)

These relationships are not special cases; they are true for any motion
(unlike equs (2.63), (2.62)). Since any force can be resolved into lon-
gitudinal and transverse components, eqn {4.13) provides one way to
find the acceleration, which would be hard to do directly from eqn
(4.9). Sometimes people like to use the terminology ‘longitudinal mass’
v*mg and ‘transverse mass’ ymg. This can be useful, but we will not
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The ‘lnsfantanecus rest frame"

The potion of an ‘instastaseoss rest frames' has to be cosrectly
understood in the cass of & particle underpoing accelerstion. It does
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For a particle undergoing any type of motion, one can always talk
shout the ‘rest frame’ of the particle for any given event A on the
particle’s worldline. This is the inertisl peierence frame in which the
velocity of the particle B mero 81 eeni A, Lo o call this feone
S4. This reference frame is moving inertially—at constant velncity —
whether or not the particle s IT the particle b acoclerating af event
A, then it iz at rest in 5, only momentarily. That does not mesn
54 b & pon-inertial frome, it jost monns that mmediadely before and
after A the frame Sy s nol the particle’s rest frame

We can imagme & continuous set of mertial reference frames moving
wroumd in any region of space. Each has constant welocity. As a given
particle sccelorates through the space, its rest frame is now one mem-
betr of Uiz st pow another. When we speak of ‘the instantaneous rest
frame” it means whichever inertial frame in the set is the rest frame
at the event under consideration. One may then naturally extend this.
idea to & sequence of events, and then the phrase ‘the instantasecus
rest frame' refers to n sequence of inertial frames; it s pumly and
simply & shorthand phrase for ‘the sequence of lnstantaneous rest
Frarms’,

4.2.1 Linear motlon and rapidity

For a particle undergoing straight-line motion, the rapidity is often a
simeful quantity to consider. This 18 because for this case thee = & simple
relationship hetween mpidity tn one frame and anothor

Considor & particle acoelerating afong a line. That is, the velooity is
abigned with the necelertion, and the acceleration i always in Lhe same
direction (but not. necessarily of conatant size). Lot 54 he the natan.
taneous resh framme ol some event A (see box above). At A tho particle
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has zero velocity in the frame under consideration, and in the next small
time interval dr it acquires a velocity dv = agdT, where ag is the proper
acceleration and d7 is the proper time, since both quantities are being
evaluated in the rest frame. Hence the rapidity pp increases from zero to
tanh™ ' (agdT/c) = agd7 /c. Therefore

dpo _ ao

dr ¢
where the equation applies in frame S4 for events in the vicinity of A.
Now recall from the discussion in section 2.3.1 that, for velocity changes
all in the same direction, rapidities add. It follows that the rapidity of
the particle, as observed in any other frame S moving along the line
of acceleration, is p = pa + po, where p4 is the rapidity of frame S4
as observed in S. I insist again that S, is an incrtial frame, not an
accelerating one, so p, is constant. Hence

(4.15)

dp _dpa  doo _dao _ 00

dr dr dr  dr c

where ag = ayp(7) is in general a function of proper time. This equation
applies for events in the vicinity of A, but now we can argue that it does
not matter which event A was chosen. Therefore, for linear motion, the
rate of change of rapidity with respect to proper time is equal to the
proper acceleration divided by c.

(4.16)

4.2.2 Hyperbolic motion: the ‘relativistic rocket’

Suppose that the engine of a rocket is programmed in such a way as
Lo maintain a constant proper acceleration. This means that the rate of
expulsion of rocket fuel should reduce in proportion to the remaining rest
mass, so that the acceleration measured in the instantaneous rest frames
stays constant. In an interstellar journey, a (not too large) constant
proper acceleration might be desirable in order to offer the occupants
of the rocket a constant ‘artificial gravity’. For this reason, motion at
constant proper acceleration is sometimes referred to as the case of a
‘relativistic rocket’.

If the proper acceleration is constant, then eqn (4.16) can be easily
solved for p as a function of 7:

p= 900 4 const. (4.17)
C

This gives the rapidity relative to a frame S of our chosing, as a function
of proper time. If we choose the frame S to be that in which the rocket
is at rest at proper time zero, then the constant of integration is zero
and we have (using the definition of rapidity, eqn (2.37))

v = ctanh p = ctanh(agr/c). (4.18)

(We are reverting to v rather than u for the particle velocity.) This is
the speed of the rocket, relative to the initial rest frame S, expressed as
a function of proper time on board the rocket.



We would also like to know the speed in frame S as a function of time
; in that frame. To this end, recall ¥ = cosh p (eqn (2.38)) and use

dt

dr
Integrating this gives

= v = cosh(ag7/c). (4.19)

t = (c¢/ag)sinhp (4.20)

where we settled the constant of integration by choosing ¢t = 0 at 7 = 0.
This formula can be used to carry out an exact calculation of the relative
aging of the twins in the twin paradox (see example below).

We can now get v as a function of ¢ by using

sinhp sinh p
coshp — (1+sinh?p)t/2’

tanh p =

hence
apl
(1 + adt2/ct)V/2’

The motion at constant proper acceleration has the following intrigu-
ing property. According to either eqn (4.18) or (4.21), the velocity
relative to frame S tends to a constant value (the speed of light) as
time goes on. Therefore the acceleration relative to frame S falls to zero.
The particle always finds itself to have the same constant acceleration
in its own rest frame, yet its acceleration relative to any given inertial
frame, such as the initial rest frame, dies away to zero as the particle
speed approaches c. It is like the Alice and the Red Queen in Lewis
Carroll’'s Through the looking glass, forever running to stand still. The
particle accelerates and accelerates, and yet only approaches & constant
velocity.

For a further comment on constant proper acceleration, see the end
of section 2.8.

Next we investigate the distance travelled. We have

4o _ dodt
dr ~ dtdr

using eqns (4.18) and (4.19), hence
(z — b) = (c*/ag) cosh p

(t) (4.21)

= (ctanh p) cosh p = esinh(agT /c)

(4.22)

where b is a constant of integration. Combining eqn (4.20) with (4.22)
gives

(z = b)? — c2t? = (c*/ag)?.

This 1s the equation of a hyperbola—see Fig. 4.3—and for this reason
motion at constant proper acceleration is called ‘hyperbolic motion’. Tt
should be contrasted with the ‘parabolic motion’ (in spacetime) that is
obtained for classical motion at constant acceleration. It is also useful to
notice that (z — b)? — ¢®t? is the invariant spacetime interval between

(4.23)
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Fig. 4.3 Spacetime diagram showing
the worldline of a particle undergoing
constant proper acceleration. That is,
if at any event A on the worldline one
picks the inertial reference frame Sj4
whose velocity matches that of the par-
ticle at A, then the acceleration of the
particle at A, as observed in frame S4,
has & value ap, independent of A. The
worldline is a hyperbola on the dia-
gram; see eqn (4.23). The asymptotes
are at the speed of light. The motion
maintains & fixed spacetime interval
from the event where the asymptotes
cross (cf. Chapter 9). The tick-marks
on the worldline indicate the elapse of
proper time. This type of motion can
be produced by a constant force acting
parallel to the velocity.
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Table 4.1 A sumoary of results foe straight-line molion at constanl proper pooel-
wrabbon ng [*hyperbabic motsan'), The hypertobc angle & has been ineroduced  Tor
sanvenience Il the origin s chosen: se that & = 0 then some [orther stmpliications
aire obdalmed, such as ¥ =4I v = 3“’:. Mote that the Lorenlz Ractor = incressas
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the event (L =0, =0 and the location [f, x| of the parficke at any
Ioetant. Thus the mobion mamtsins & constanl interval from a cerlisln
evenk situated off the worldline: This event is singled out by the initial
condibions and Lhe siee of the aeceleration.

The various results we have eajrulated are summerised in table 4,1

Example Twen parador A space rocket travels away fram Earth with
constant proper acceleration a = 9.8 ms~2 while 10 years pass on board
the roclet. T4 then reverses its motor and slows for 10 proper yems.
When it comes bo rest st oa distanl skar, how far bs i from Earth (in
the rést frame of Earth)? (it then roturns by the same method, how
meech bime will have passed on Earlh betwesn Initial depackure and final

el e

Sodution

T el Lhiz caleulation b is convenient W pobtice thal bn dnits of years
ang light-years, the acceleration 9.8 m/s? (which is the typical acceler-
dtbor due b gravity an Barth} is almost 1 {in fect gt s 10323 light-
yearafyear? ], During the first 10 proper years, from eqn (4.22) we learn
that the pocket travels cosh 10 = 11000 bght-vesrs from Earth During
the next part of its journey the rocked moves |ust as iFat had set out from
the star and accelerated towards Earth, but with time reversed, Buch a
Limne reverzal does nob alect the distance travelled, therafore the distance
iz again 11 WA ight-vears, mekiog e total of 22000 light-vears, From eqn
(4.20) we learn that during the initial scceleration, sinh 10 == |1 () years
pazs on Earth, o the total Lime on Earth between depariure and final
retuen 8 44 (00 verrs.

Thiz example shows how {0 estimate the range of interstallar vovapes
at given acceleration. Tt alsa Hlustrates that explorers can thus 'travel
inko the future’, but with no retuen ticket into the past. An important
application of all the above formulae is Lo the design of finear particle
ieelerators, where a4 tongtant proper acceleration is & vessonable firet
appprosimation to what can be achieved. The situalion of constant proper
aceeleration hes many forther fnscinstimg properties wed i discossed at
length inochipter D osa prebede to General Telativity



4.2.3 4-vector treatment of hyperbolic motion

If we make the most natural choice of origin, so that b = 0 in eqn (4.23),
¢hen the equations for x and ¢ in terms of  combine Lo make the 4-vector
displacement

X = (¢t, ©) = rp(sinh 6, coshp) (4.28)

where g - ¢?/ag and we suppressed the y and z components which
reniain zero throughout. We then obtain

dX dXdé
_— T = —— = .o i 6 429
u - c(cosh 8, sinh ) (4.29)
. 2
and U= S = gp(sinh §, coshé) = %0, (4.30)
dr c?
= UxU (4.81)

where the dot signifies d/dr. We shall now show thiat this relationship
between 4-velocity and rate of change of 4-acceleration can be regarded
as the defining characteristic of hyperbolic motion.

Suppose we have motion that satisfies (4.31): i.e.,

A=a’U (4.32)

where o is a constant. Consider A - A, and rccall A-A = a% (from eqn
(2.58)). Differcntiating with respect to r gives
d o A 2

— =2A-A=2(c"U)-A=0
ar (a5) (e”V)
where we used eqn (4.32) and then the general fact that 4-velocity is per-
pendicular to 4-acceleration (eqn (2.59)). It follows that ay is constant.
Hence eqo (4.32) implies motion at constant proper acceleration.

The constant o is related to the proper acceleration. To find out how,
consider A - U = 0. Diffcrentiating with vespect to 7 gives

AU+A-U=0 = A U=-d? (4.33)

(using egn (2.58)). This is true for any motion, not just hyperbolic
motion. Applying it to the case of hyperbolic motion, eqn (4.32), we
find —a%c® = —ad hence a — ap/c.

Eqn (4.32) is a second-order differential equation for U, and it can be
solved straightforwardly using exponcntial functions. Upon substituting
in the boundary conditions U = (¢,0) and U= {0,ap) at =0 one
obtains a cosh function for U° and a sinh function for the spatial part,
the same as we already found in the previous section.

To do the whole calculation starting from the 4-vector equation of
mofkion

F=mo - (4.34)

(valid for a pure force) we need to know what F gives the motion under
consideration. Clearly it must be, in component form, (vf-v/c, vf) in

4.2

Motion under o pure force
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! The matrix F is introduced in eqn
(4.36) mercely to show how to write the
equation of motion we need. In chapter
7 we shall learn that F is a contravari-
ant second-rank tensor, but you do not
to worry about that for now.

some reference frame, but we would prefer a 4-vector notation which
does not rely on any particular choice of frame. The most useful way to
write it turns out to be

F=FgU/c (4.35)
where g is the metric and
0 fo 00
F = ‘({0 g g 8 (4.36)
0 0 00

(for a force along the x direction)!, with constant fy. Substituting this
into eqn (4.34) we obtain

foUl/C=mol:J0
foU?/c = mpU?

where the superscripts label the components of U. This pair of simulta-
neous frst-order differential equations may be solved in the usual way,
by differentiating the second and substituting into the first, to find

it = (o N
maC ’

This is one component of eqn (4.32), whose solution we discussed above.

4.2.4 Motion under a constant force

The phrase ‘constant force’ might have several meanings in a relativistic
calculation. It could mean constant with respect to time in a given
inertial frame or to proper time along a worldline, and it might refer
to the 3-force or the 4-force. In this section we will study the case of
motion of a particle subject to a 3-force whose size and direction is
independent of time and position in a given reference frame.

The reader might wonder why we are not treating a constant 4-force.
The reason is that this would be a somewhat unrealistic scenario. If
the 4-force is independent of proper time then all parts of the energy-
momentum 4-vector increase together, and this means the combination
E? — p2¢? must be changing, so we do not have a purc force. It is
not impossible, but it represents a non-simple (and rather artificial)
situation. If the 4-force on a particle is independent of reference frame
time then its spatial part must be proportional to 1/7, where v is the
speed of the particle in the reference frame. Again, it is not impossible
but it is rather unusual or artificial.

The case of a 3-force f that is independent of position and time in a
given reference frame, on the other hand, is quite common. It is obtained,
for example, for a charged particle moving in a static uniform electric
field. Its treatment is very simple for a particle starting from rest:



dp

dt
since f is constant. If pg = 0 then the motion is in a straight line with
p olways parallel to f, and by solving the equation p = ymgv = ft for v
one finds

=k = p = po + ft

e (4.37)

Vm3 + 22/
This result is plotted in Fig. 4.5.

pxample An electron is accelerated from rest by a static uniform
clectric field of strength 1000 V/m. How long does it take (in the initial
rest frame) for the electron’s speed to reach 0.99¢?

Solution
The equation f = ¢E for the [orce due to an electric field is valid at
all speeds. T'herefore we have f = 1.6 x 10716 N and the time is t =

'yn‘Lo’U/f ~ 12 MUS.

In section 4.1.1 (the transformation equations for force) we saw that
in this case (f parallel to v) the force is the same in all reference frames
moving in the same direction as the particle. That is, if we were to eval-
vate the force in other reference frames moving parallel to the particle
velocity, then we would find the same force. In particular, we might take
an interest in the reference frame in which the particle is momentarily at
rest at some given time—the ‘instantaneous rest frame’. We would find
that the force on the particle in this new reference frame is the same
as in the first one, and therefore at the moment when the particle is at
rest in the new reference frame, it has the very same acceleration that it
had in the original rest frame when it started out! Such a particle always
finds itself to have the same acceleration in its own rest frame, so we have
an example of motion at constant proper acceleration—the ‘hyperbolic
motion’ already treated in section 4.2.2. A particle momentarily at rest
has v = 1 so, using eqn (4.9), the relationship between the force and the
proper acceleration is simply

f = mgayp. (4.38)

By substituting this into eqn (4.37) one finds that that equation is
identical to eqn (4.21). All the properties of the motion follow as before,
summarized in table 4.1,

When the initial velocity is not along the line of the constant force,
the proper acceleration is not constant (exercise 4.7).

4.2.5 Circular motion

Another very simple case is obtained when dvy/dt = 0, i.e. motion at
constant speed. From eqn (4.11) this happens when the force remains
perpendicular to the velocity. An example is the force on a charged
Particle moving in a magnetic field: then

-
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Fig. 4.5 Speed (full curve) and Lor-
entz factor (dashed curve) as a {unction
of time [or straight-line motion under
a constant force. The product of these
two curves is a straight line.
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2 For helical motion, see exercise 4.6.

f=qvAB=ymga. (4.39)

The solution of the equation of motion proceeds exactly as in the classica]
(low velocity) case, except that a constant factor vy appears wherevey
the rest mass appears. For an initial velocity perpendicular to B the
resulting motion is circular?. The particle moves at speed v around ga
circle of radius
o Ymov 1_
¢B  ¢B
In particle physics experiments, a standard diagnostic tool is to record
the track of a particle in a uniform magnetic field of known strength.
This equation shows that if the charge g is also known, then the particle’s
momentum can be deduced directly from the radius of the track. The
equation 1s also crucial for the design of ring-shaped particle accelerators
using magnetic confinement. It shows that to maintain a given ring
radius r, the strength of the magnetic field has to increase in proportion
to the particle’s momentum, not its speed. In modern accelerators the
particles move at close to the speed of light anyway, so v is essentially
fixed at ~ ¢, but this does not free us from the need to build ever more
powerful magnetic field coils if we want to confine particles of higher
energy.
The period and angular frequency of the motion are

(4.40)

2mr Ymyg qB

= . 4.41
v gB’ Y (4.41)

The classical result that the period is independent of the radius and
speed is lost. This makes the task of synchronizing applied electric field
pulses with the motion of the particle (in order to accelerate the particle)
more technically demanding. It required historically the development of
the ‘synchrotron’ from the ‘cyclotron’.

Combined electric and magnetic fields will be considered in chapter 13.

4.2.6 Motion under a central force

The case of a central force is that in which the force experienced by a
particle is always directed towards or away from one point in space (in
a given inertial frame). This is an important basic case, partly because
in the low-speed limit it arises in the ‘2-body problem’, where a pair of
particles interact by a force directed along the line between them. In that
case the equations can be simplified by separating them into one equation
for the relative motion, and another for the motion of the centre of mass
of the system. This simplification is possible because one can adopt the
approximation that the field transmits cause and effect instantaneously
between the particles, with the result that the force on one particle is
always equal and opposite to the force on the other. In the case of high
speeds this cannot be assumed. If two particles interact at a distance
it must be because they both interact locally with a third party-—for
example, the electromagnetic field—and the dynamics of the field cannot



be ignored. We shall look into this more fully in chapter 13. The main
ConcIUSiOH for our present discussion is that the '‘2-bady’ problem is
ceally @ ‘2-body plus field” problem and has no simple solution.

Nevertheless, the idea of a central force remains important and can
be @ good model when one particle interacts with a very much heavier

article and energy loss by radiation is small—for example, a planet
orbiting the Sun. Then the acceleration of the heavy particle can be
neglected, and in the rest frame of the heavy particle the other particle
experiences, to good approximation, a central force. This can also be
gsed to find out approximately how an electron orbiting an atomic
pucleus would move if it did not emit electromagnetic waves.

Consider, then, a particle of rest mass® m and position vector r subject
to a force

£ = f(r)t. (4.42)
Introduce the 3-angular momentum
L=rAp. (4.43)

By differentiating with respect to time one finds

L=rAp+rAp=rAaAf, (4.44)
(since p is parallel to © and p = f) which is true for motion under any

force (and is just like the classical result). For the case of a central force
one has conservation of angular-momentum:

dL

— L
It follows from this that the motion remains in a plane (the one contain-
ing the vectors r and p), since if ¥ were ever directed out of that plane
then L would necessarily point in a new direction. Adopting plane polar
coordinates {r, ¢} in this plane we have

0 = L = const. (4.45)

p = ymv = ymi7, ré) = (prs 'ymm'ﬁr). (4.46)
Therefore
L = ymr?¢. (4.47)

(the angular momentum vector being directed normal to the plane).
Using dt/dr =+, it is useful to convert this to the form
dp L

dr  mr?’

(4.48)

Note also that p? = p? + L?/r?, which is like the classical result.
Let E be the energy of the particle, in the sense of its rest energy plus
kinetic energy, then using E? — p?c? = m?c* we obtain
2 2
2 BT L7 20

Pr=-—g — 2 mec. (4.49)
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3 In this section we drop the subscript
zero on m; it always means rest rmass.
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To make further progress it is useful to introduce the concept of
potential energy V. This is defined by

V()= - /rf ~dr’. (4.50)

[1]

Such a definition is useful when the integral around any closed path is
zero so that V is single-valued. When this happens the [orce is said to be
conservative. Using eqn (4.10) (valid for a pure force) we then find that
during any small displacement dr the kinetic energy lost by the particle
is equal to the change in V:

dK = (f-u)dt = f-dr = —dV. (4.51)
It follows that the quantity
E=E+V (4.52)

is a constant of the motion. In classical mechanics V is often called ‘the
potential energy of the particle’, and then £ is called ‘the total energy
of the particle’. However, strictly speaking V is not a property of the
particle: it rnakes no contribution whatsoever to the energy possessed by
the particle, which remains £ = ymc?. V is just a mathematical device
introduced in order to identify a constant of the motion. Physically
it could be regarded as the energy owned not by the particle but by
the other system (such as an electric field) with which the particle is
interacting.
We can write eqn (4.52) in two useful ways:

yme? +V = const (4.53)

. L2
and  pic® + poRi mic! = (E-V)? (4.54)

(using eqn (4.49)). Since for a given force, V' is a known function of 7,
the first equation enables the Lorentz factor for the total speed to be
obtained at any given r for given initial conditions. Using the angular
momentum (also fixed by initial conditions) onc can then also find ¢ and
hence 7.

Eqgn (4.54) is a differential equation for r as a function of time (since
pr = ym7). It is easiest to seek a solution as a function of proper time
T, since

ﬂ_§2£_7: s
dr ~ dtdr ,Y_m
so we have

%m (3_:)2 =€ Vea(r) (4.55)



Whel‘G
- 52 _ 77'1,2(,'4 )
b= —a (4.56)
CV(@RE-V(r)) L?
Vern(r) = ——5—, ~+ 5 (4.57)

Eqn (4.55) has precisely the same form as an cquation for classical
motion in one dimension in a potential Veg(r). Thercfore we can imme-
diately deduce the main qualitative features of the motion.
Inverse-square-law force

Consider, for example, an inverse-squarce-law force, such as that arising

from Coulomb attraction between opposite charges. Writing f = —af /72
and thercfore V = —a/r, we have
1 /L2 - 20
Verr = - -—. 4.58
T~ gme? ( r? T (4.58)

The second term gives an attractive 1/7 potential well that dominates
at large . If the first term is nori-zero then it dominates at small » and
gives cither a barrier or an attractive well, depending on the sign. Thus
there are two cases to consider:

()L >Le, (i) L < Le, where L = % (4.59)

(i) For laxge angular momentum, the ‘centrifugal barrier’ is sufficient to
prevent the particle approaching the origin, just as in the classical case.
There are two types of motion: unbound motion (or ‘scattering’) when
£ > 0, and bound motion when £ < 0, in which case 7 s constrained to
stay in between turning points at Vea(r) = £.

(i1) For small angular momentum, something qualitatively different
from the classical behaviour occurs: when L < L. the motion has no
inner turning point and the particle is ‘sucked in’ to the origin. The
motion conserves L and therefore is a spiral in which v — 0o as 7 = 0.
In this imit the approximation that the particle or system providing
the central force does not itself accelerate is liable to break down; the
main point is that a Couloinb-law scattering centre can result in a
close spiralling collision even when the incident particle has non-zero
angular momentum. In Newtonian physics this type of behaviour would
require an attractive force with a stronger dependence on distance. For
a scattering process in which the incident particle has momentum p; at
infinity, and impact parameter b, the angular momentum is L = bp;. All
particles with impact parameter below b, = L./p; will suffer a spiralling
close collision. The collision cross-section for this process is

o To?

2
mhy = = o
¢ 22 T BT —m2cd

This is very small in practice. For example, for an electron moving in
the Coulomb potential of a proton, b, ~ 1.4 x 10~'2 m when the incident

4

9
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Fig. 4.6 Example orbit of a fast-
moving particle in a 1/r potential. Only
part of the orbit is shown; its continu-
ation follows the same pattern.

kinetic energy is 1 eV. Using the Newtonian formula for gravity to
approximate conditions in the solar system, one obtains b, =~ GM/vc,
where M ~ 2 x 103 kg is the solar mass and v < ¢ is the speed of an
object such as a comet. b. exceeds the radius of the Sun when the incident
velocity (far from the Sun) is below 640 m/s.

In the case L > L. and £ < 0, where there are stable bound orbits,
a further difference from the classical motion arises. The classical 1/r
potential leads to elliptical orbits, in which the orbit closes on itself after
a single turn. This requires that the distance from the origin oscillates
in step with the movement around the origin, so that after » completes
one cycle between its turning points, ¢ has increased by 27. There is
no reason why this synchrony should be maintained when the equation
of motion changes, and in fact it is not. The orbit has the form of a
rosette; see Fig. 4.6. In order to deduce this, we can turn eqn (4.55) into
an equation for the orbil, as follows. First differentiate with respect to
T, to obtain

” d?r  dVes
dr2 = dr
where we cancelled a factor of dr/dr which is valid except at the
stationary points. Apply this to the case of an inverse-square-law force,
for which the effective potential is given in eqn (4.58):
d?r L% —-o?/c? a&

dr2 T m23 | mick? (4.61)

(4.60)

Although this equation can be tackled by direct integration, the best way
to find the orbit is to make two changes of variable. Using eqn (4.48),
derivatives with respect to T can be expressed in terms of derivatives with
respect to ¢. Then one changes variable from 7 to u = 1/r, obtaining

d?r L\? ,d%
2 ol 62
dr? (m) e dep? 4:62)
and therefore eqn (4.61) becomes
d?u o? af ,
=1 fim) o (4.63)

This is the equation for simple harmonic motion. Hence the orbit is given
by

1 1
8= & = Aot = vo)) + B /(28— ) (4.64)
where A and ¢g are constants of integration, and
2 a?
W = 1-— m (465)

The radial motion completes one period when ¢ increases by 2r/&. A
Newtonian calculation gives @ = 1, which means that the orbit closes



(forming an ellipse). Note that the departure from the Newtonian predic-
tion is largest at small L, not large L. For the relativistic case far from the
aritical angular momentum: i.e., L > a/c, one has @ ~ 1 — a?/2L%c2.
Therefore, when r returns to its minimum value (so-called perihelion in
the case of planets orbiting the Sun) ¢ has increased by 27 plus an extra
bit equal to

To?

The location of the innermost point of the orbit shifts around (or
‘precesses’) by this amount per orbit. For the case of an electron orbiting
a proton, the combination o/ L¢ is equal to the fine structure constant
when L. = h, and this motion was used by Sommerfeld to construct a
semi-classical theory for the observed fine structure of hydrogen (sub-
sequently replaced by the correct quantum treatment). For the case of
gravitational attraction to a spherical mass, the result (4.66) is about
six times smaller than the precession predicted by Geuveral Relativity.

(4.66)

4.2.7 (An)harmonic motion*

Another important basic problem in mechanics is motion in a quadratic
potential well. In classical mechanics this gives simple harmonic motion:
i.e., sinusoidal oscillation with a period independent of the amplitude.

The relativistic problem is more complicated because we have the
non-linear equation of motion

2
—kx = %(Wno'u) {: ’yamo%} (4.67)
where k is the ‘spring constant’.

We can get some immediate insight by using energy methods We
introduce potential energy once again, by eqn (4.50), and the motion
is conservative: the ‘total energy’ £ = mgc? + K + V is a constant of
the motion, with

1 1 5
V(z) = ékxz = §m0w5a:2, (4.68)

where wy = /k/my is the angular frequency of oscillations in the clas-
sical (low-velocity) limit. This gives

= ymoc® + kz?/2. (4.69)
‘This immediately tells us vy as a function of z:
w2l
0
= —_ 4-7
TENT o (4.70)

where 5 = £/(mpc?) is another way of expressing the conserved total
energy. Thus v as a function of @ forms an inverted parabola. The
maximum excursion is when the speed falls to zero: i.e., v = 1. Putting
this into eqn (4.70) gives the amplitude of the motion:

4.2 Motion under a pure force
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8 —rc
s/f
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Fig. 4.7 The effective potential Vg
(eqn (4.74)) for the example case yp =
4, in units such that moug:l and
wo/c=1. The dashed lines show the
positions of maximum excursion of the
particle, eqn (4.71). The tucning points
in Veg are at z = t(c/wo)+v/270, which
is further from the origin than zmax, so
the motion never goes over the hump
and escapes. However, when -y is large
(ultra-relativistic case) the motion gets
close to the turning points and there-
fore a large proportion of the proper
time is spent there. This makes sense,
since this is where the particle is mov-
ing slowly.

4 W, Moreau, R. Easther, and R.
Neulze, Am. J, Phys. 62,5631 (1994).

.

{
Tmax = 53 V 2(,),0 ~1).

In the low-velocity limit, of course, all the usual classical results are
obtained. In the extreme high-velocity limit, o 3> 1, the amplitude is
large and the particle spends most of the time (in the lab frame) trav-
elling at v ~ ¢, apart from short turn-around periods at the maximum
excursion. Therefore, in this limit one quarter-period of the oscillatory
motion is approximately Zmax/c, so the period is T =~ 4/2~p /wo.

To obtain more information it is more convenient to find z as a
function of proper time rather than coordinate time. That is, we express
eqn (4.67) as

(4.71)

mo d2]1

g S2IT

YT ardt v dr?
where we used p = mpdz/dr and the familiar (I hope) dt/dr = . Sub-
stituting expression (4.70) for « in terms of %, we can convert this into
a differential equation for z(7):

d?z 204
—— = —yWhT + —= 2",
dr2 Yoo 2c2

This is like an equation for classical motion in an effective potential well:

(4.72)

4
0 o3 (4.73)

mowg z8
8c?
Thus the relativistic motion as a function of proper time looks like
classical motion in an anharmonic well formed by a combination of
quadratic and quartic terms. Fig. 4.7 shows the shape of the effective
potential well for an example case, with some general remarks in the
caption.

The differential equation has an analytic solution in terms of elliptic
integrals.? To convert from proper time back to coordinate time t one
uses eqn (4.70) again, now writing the left-hand side as dt/dr and
regarding it as a differential cquation for ¢ as a function of 7 (using
the solution of eqn (4.73) for z(7) on the right-hand side).

1 5 5
Veg = 5"/07720‘4-'0173~ =

(4.74)

Exercises

(4.1) Show that f = moa in the instantaneous rest
frame.

4.2) Does Special Relativity place any bounds on the
p
possible sizes of forces or accelerations?

(4.3) Obtain the transformation equations for 3-force,
by starting from the Lorentz transformation of
energy-momentum, and then differentiating with
respect to t’. (Hint: argue that the relative velocity

v of the reference frames is constant, and use or
derive the expression (2.12ii) for dt/d¢’.)

(4.4) In the twin paradox, the travelling twin leaves
Earth on board a spaceship undergoing motion
at constant proper acceleration of 9.8 m/ 52, After
5 years of proper time for the spaceship, the
direction of the rockets are reversed so that the
spaceship accelerates towards Barth for 10 proper



yecars. The rockets are then reversed again to allow
the spaccship to slow and come to rest on Earth
after a further 5 years of spaceship proper time.
How much does the travelling twin age? How
much docs the stay-at-home twin age?

(4.5) A particle moves hyperbolically with proper accel-

cration ap, starting from rest at ¢t =0. At — 0 a
photon is emitted Lowards the particle from a dis-
tance ¢?/ag behind it. Prove that the photon naver
calches up with the particle, and furthermore, in
the instanlaneous rest frames of the particle, the
distance to the photon is always ¢*/aq.

Show that the motion of a particle in a uniform
magnetic field is in general helical, with the period
for a cycle independent of the initial dircction of
the velocity. (Hint: what can you learn from £ - v?)
Constant force. Consider motion under a con-
stant force, for a non-zero initial velocity in an
arbitrary direction, as follows.
(i) Wrile down Lhe solution for p as a function
of time, taking as initial condition p(0) = po.
(if) Show that the T.oreniz factor as a function
of time is given by v° = | + o®, where & =
{(po + ft)/me.

Ezercises for Chopter {75

(iii) You can now write down the solution for v as
a lunction of time. Do so.

(iv) Now restrict attention to the case where po
is perpendicular to f. Taking the z-direction
along f and the y-dircction along po, show
that the trajectory is given by

z =S (m252 +p2+ f2t2)1/2 + const  (4.75)

f
y = % log (ft +/mic® + ] + fgtz)
+ const (4.76)

(v) Explain (without carrying out the calcula-
tion) how the general case can then be treated
by a suitable Lorentz transformation.

Note that the calculation as a function of proper

time is best accomplished another way; see
chapter 13.

(4.8) For motion under a purc (rest mass preserving)

inverse square law force f = —ar/r®, where o is
a constant, derive the energy cquation ~ymc? —
a/r = constant.
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The conservation
of energy-momentum

So far we have discussed energy and momentum by introducing the
definitions (2.68) without explaining where they come from. Historically,
in 1905 Einstein first approached the subject of force and acceleration by
finding the equation of motion of a charged particle subject to electric
and magnetic fields, assuming the charge remained constant and the
Maxwell and Lorentz force equations were valid, and that Newton's
second law applied in the particle’s rest frame. He could then use the
theory he himselfl developed to understand whal must happen in other
frames, and hence derive the equation of motion for a general velocity
ol the particle. Subsequently, Planck pointed out that the result could
be made more transparent if one understood the 3-momentum to be
given by ymgov. A significant further development took place in 1909
when Lewis and Tolman showed that this definition was consistent with
momentum conservation in all reference [rames. Nowadays, we can side-
step these arguments by proceeding straight to the main result using
4-vector methods. However, when learning the subject the Lewis and
Tolman argument remains a useful way in, so we shall present it first.

5.1 Elastic collision, following Lewis

and Tolman

The concept of conservation of momentum brings a great deal of insight
in Newtonian physics, so it is natural to ask what role it plays, if any,
once we accept that space and time are non-Galilean. Is momentum
conservation still valid in Special Relativity? The question must be asked
because the quantity mgv (the product of rest mass and velocity) is not
conserved—its sum over the members of an isolated set of interacting
particles can change when the particles interact. However, we can seek an
alternative conserved property as follows. We propose that there might
exist a vector property involving rest mass and velocity that is conserved,
and then we use the Principle of Relativity and the Light Speed Postulate
to find out as much as we can about such a property (without making
any other assumptions). [t turns out that this is sufficient. to specify the
property uniquely! In other words, if there is a conserved guantity, then
it has to be of a specific type. It will then require experiments to check
whether the conservation actually holds.
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This idea can be stated more precisely as follows. For a particle of rest
mass mo and velocity v, define the property

p = moa(v)v, (5.1)

where av) is some function of speed to be determined. Propose that
the function a(v) is universal—the same for all particles and physical
conditions—and propose that ), p; is a conserved quantity when the
sum is taken over the parts i of an isolated system. We can choose any
name we like for our newly invented quantity p, and we choose to call it
‘momentum’. Next, we examine a physical process of our own choosing
(it will be a collision) in one frame, and use the Lorentz transformation
o deduce the velocities in another reference frame. We will thus learn
what momentum conservation in one frame implies about the motion
in another. By requiring conservation in the second frame also, we shall
have two sets of equations for a single process. These equations can be
used to determine the function « (or to discover that there is no possible
solution).

The type of process we shall examine is an elastic collision between
pwo particles of the same rest mass. By ‘elastic’ we mean that there is
no change of rest mass of either particle during the collision; we only
need to argue that such collisions are possible.

There always exists a frame F relative to which the initial velocities are
equal and opposite, and we cau always choose axes such that the z axis
of F bisects the angle between the initial and final velocities, so that
the collision looks like Fig. 5.1. This choice automatically guarantees
the conservation of the z component of momentum during the collision,
because this is unchanged for both particles. It remains to consider the
y component.

We will not need to examine the momenta in frame F any further.
Instead we take an interest in two other frames: one moving to the left
(along the negative x direction) and keeping pace with the Arst particle,
the other moving to the right and keeping pace with the second particle;
see Fig. 5.2. Let the relative speed of these two reference frames be v
(this speed is related to the speeds of the particies in F, but we will
not need to know what the relation is). In the first (left-going) reference
frame the lower particle simply moves up and down at some speed u.
It follows by symmetry that in the second reference frame the upper

Fig. 5.1 A general collision of two
identical particles initially moving
towards omne another with identical
speeds. No matter what angles are
involved, we can always choose a set
of axes oriented as shown, relative to
the trajectories, in order to simplify the
analysis.

Fig. 5.2 The same collision as in Fig. 5.1, but viewed from two different reference frames—one moving left keeping pace witls
the lower particle, and one moving right keeping pace with the upper particle. The relative speed of these two frames is v. From
the overall syrmraetry one can deduce that the vertical speed of the upper particle in frame 1 is the same as the vertical speed
of the lower particle in frame 2, etc. w is a total speed; v’ and v are its components in the horizontal and vertical divections.
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particle must move down and up at that same speed u. Let the vertical
component of the speed of the other particle be u' in each case (this also
applies in both reference frames, by symmetry). This information has
been indicated in Fig. 5.2.

Now invoke the proposed definition of momentum, eqn (5.1). In the
first reference frame the momentum of the lower particle is mpo(u)u
vertically upwards before the collision, and mga(u)u downwards after
the collision, so it undergoes a nel, change of 2mpo(u)u.

The other particle has total momentwn mpo(w)w = moa(w)
(v+u') before the collision. Its horizontal and vertical components
are (moa(w))v and (mga(w))u’ respectively. Note that o(w) appears
in both of these formulae, not «(v) or afu’). Alter the collision, the
horizontal component remains the same but the vertical component
reverses. Therefore the net change is in the vertical direction and is
equal to 2mpa(w)u’.

Now we assert conservation of momentum:

2mga(u)u = 2moc(w)u’ = a(u)u = a(w)'. (5.2)

To find the function o we require a further independent relation
between w, u', and w. This can be obtained using a Loventz transfor-
mation to the other reference frame. Fig. 5.2 makes it clear that v’ is
related to u simply by a change of frame. This is a transverse velocity,
so0, using eqn (2.27),

W =2, (5.3)
Tu
We write v, because there are several speecls in play, and we need to be
clear which one we mean. Make sure you are convincer that the relative
speed of the two reference frames here is v, not 2v or anything else.

We now have enough information to deduce the function a in eqn (5.2).

Substituting eqn (5.3) in eqn (5.2), we have

a(w) = v, alu) (5.4)

where the = symbol is to emphasize that this is an identity: i.e., valid for
all values of u and v. To solve for the unknown function a(u), one can
use a power series expansion, having first observed from Fig. 5.2 that
w? = v? + (u')? and therefore, using eqn (5.3),

w? = v 4 u? — P2/ (5.5)
For u < ¢ we must have a(u) — 1 in order to produce the classical
momentum formula mu. From (5.5), w — v as uw— 0 and then (5.4)
becomes a(v) = v,- With this hint, we guess that Lhe general solution,
for all speeds, is

-1 (5.6)

7
W) =% = =
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[nvariant, conserved

Lorentz

invariant conserved
energy E X v
momentum P X 7
rest mass m v X
charge q v v
charge density p X X

If this is correct, then
1 1
and  a(u) =

= = V=

Substitution in eqn (5.4) confirms the guess: the equation is satisfied for
all w,v.

The conclusion is that if some function of particle velocity v is con-
served in simple elastic (= non-rest-mass-changing) collisions between
particles of the same rest mass, then that function must be y,v.

We have shown that a conserved quantity related to rest mass and
velocity must of necessity! have the form ymgv, but the argument
has not addressed the question whether that is sufficient to satisfy the
Principle of Relativity for all types of collision. By investigating further
collisions, one can explore the more general question. One finds that the
formula is sufficient to guarantee well-behaved (i.e. Lorentz covariant)
physics in all collisions. We shall prove this more simply by using a
4-vector approach in the next section.

Energy conservation and mass-energy equivalence

A further very interesting point emerges from a theoretical study of
momentum conservation in collisions. We shall present this in the next
section using 4-vectors, but it can also be deduced by applying the above
type of reasoning to inelastic collisions. The argument is presented, for
example, in The Wonderful World. One finds that, along with momen-
tum, there is another conserved quantity that comes along *for free’ i.e.,
without the need for any [urther assumptions. This further property is
a scalar, it increases monotonically with the speed of a particle of given
rest mass, and it can be converted between stored and motion-related
forms. In other words it has all the attributes we normally associate
with ‘energy’. Therefore that is what we call it. The conservation of
energy, and its connection to rest mass, 15 0 NECeSsSary CONSEqUEnce
of the requirement of momentum conservation combined with Lorentz
invariance.

This connection will be proved more generally in the next section. We
have mentioned it here at the outset in order to make clear that it can
also be found by careful reasoning using only simpler concepts such as
3-vectors,

L See exercise 5.2.
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5.2 Energy-momentum conservation
using 4-vectors

The Lewis and Tolman argument has the merit of being unsophisticate
for the simplest case, but it is not easy to generalize it to all collisiong
The use of 4-vectors makes the general argument much more straight.
forward.

By considering the worldline of a particle, we showed in chaptey
2.1 that various 4-vectors, such as spacetime position X, -’l-velocily
U = dX/d7, and 4-momentum P = myU could be associated with a single
particle. In order to introcuce a conservation law we need to define firsy
of all what we mean by the 4-momentwim of a collection of particles. The
definition is the obvious one:

That is, we define the total 4d-momentum of a collection of n particles
to be the sum of the individual 4-momenta. Now we can state what we
mean by the conservation of energy and momentum:

Law of conservation of energy and momentum: the total energy-
momentum 4-vector of an isolated system is independent of time. In particular,
it is not changed by internal interactions among the parts of the system.

In order Lo apply the insights of Special Relativity to dynamics, we state
this conservation law as an axiom. Belore going further we must check
that it is consistent with the other axioms. We shall find that it is. Then
one can use the conservation law to make predictions which must be
compared with experiment. Further insight will be provided in c¢hapter
14, where this conservation law is related to invariance of the Lagrangian
under translations in time and space.

Agreement with the Principle of Relatity

First we tackle the first stage, which is to show that energy-momenturm
conservation, as defined above, is consistent with the main Postulates
(the Principle of Relativity and the Light Speed Postulate). To show
this we write down the conservation law in one reference frame, and
then use the Lorentz transformation to find out how the same situation
is described in another reference frame.

Let P, P2, ... Py be the 4-momenta of a set of particles, as observed
in frame S. Then, by definition, the total 4-momentum is P,., given
by eqn (5.7). By calling the result of this sum a ‘4-momentum’ and
giving it a symbol Py, we ave strongly implying that the sum total is
itself a 4-vector. You might think that this is obvious, but in fact it
requires further thought. After all, we have already noted that adding
up 4-velocities does not turn oul to be a sensible thing to do—so why is
4-momentum any different? When we carry out the mathematical sum,
summing the 4-momentum of one particle and the 4-momentum of a
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i

X

dgﬁ-ﬁf'eﬂt particle, we are adding up things that are specified at different
events in spacetime. When the terms in the sum can themselves change
with time, we need to clarify at what moment each individual P; term
is to be taken. Therefore a more careful statement of the definition Pio;
would read:

Ptot(z = tu) = Pl(! = tu) + Pz(t = tg) 4+ 4 Pﬂ,(t = to) (58)

where tg is the instant in some frame S at which the total 4-momentum
is being specified.

Now, if we apply the definition to the same set of particles, but now
at some instant ¢}, in a different reference frame S, we find the total
4-momentum in S’ is

Plor(t' = tg) = P1(t' = tg) + Po(t' = tg) + -+ Po(t' =1p).  (5.9)
The problem is that the 4-momenta being summed in eqn (5.8) are
taken at a set of events simultaneous in S, while the 4-momenta being
summed in eqn (5.9) are being summed at a set of events simultaneous in
S'. Owing to the relativity of simultaneity, these are two different sets of
events (see Fig. 5.3). Therefore the individual terms are not necessarily
Lorentz-transforms of each other:

Pit' = t5) # AP(t = to). (5.10)
Therefore, when we take the Lorentz-transform of Py, we will not
obtain P{,,, unless there is a physical constraint on the particles that
makes their 4-momenta behave in such a way that APy, does equal
Pio. Fortunately, the conservation law itself comes to the rescue, and
provides precisely the constraint that is required! Proof: When forming
the sum in one reference frame, one can always artificially choose a set of
limes ¢, that lie in a plane of simultaneity for the other reference frame.
Compared with the sum at ty, the terms will either stay the same (for
particles that move freely between tg and their ;) or they will change
(for particles that collide or interact in any way between to and ti), but
if 4-momentum is conserved, such interactions do not change the total
Piot. Now the terms in one sum are Lorentz transforms of the terms in
the other, hence so are the totals. QED.

Fig. 5.3 A set of worldlines is shown
on a spacetime diagram, with lines of
simultaneity for two different reference
frames. The energy-momenta at some
instant in frame A are defined at a
different set of events (shown dotted)
from those obtaining at some instant in
frame B (circled). Therefore each term
in the sum defining the total energy-
momentum at some instant in A is
not necessarily the Lorentz-transform
of the corresponding term in the sum
defining the total energy-momentum at
some instant in B. Nevertheless, when
the terms are added together, as long
as 4-momentum conservation holds and
the total systern is isolated, the totals
Piot and P:m are Lorentz-transforms of
cach other (see text).
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4-momentum proof. Let A and B be two reference frames. Make
the following definitions (cf. Fig. 5.3):

Paa = sum of 4-momenta evaluated in frame A at events
simultaneous in A

Pas = sum of 4-momenta evaluated in frame A at events
simultaneous in B

sum of 4-momenta evaluated in frame B at events
simultaneous in B

]

Ps.

The events at which Ps s, Pap are evaluated are shown dotted,
circled, respectively in Fig. 5.3. By definition, Ps a is what is called
‘the total 4-momentum’ in frame A, and Ppp is what is called
‘the total 4-momentum’ in frame B. We would like to prove that
PB,B = APA.A. This is done in two steps.

(Step 1): P4 g is a sum of terms. By applying the Lorentz transfor-
mation to each term in the sum one obtains

PB.B = APA'B.

(Step 2): Because of conservation of 4-momentum, the evolution in
frame A only redistributes 4-momentum within the set of particles,
without changing the total, therefore

Pap = Paa.
It follows that
Pes = APja. QED.

If the system of particles were not isolated, then its 4-momentum
would not necessarily be conserved, and then we could not take
step 2. Consequently, the sum of the 4-momenta of a non-isolated
set of particles is not necessarily a 4-vector.

For the sake of clarity, the argument is repeated in the box above.

We originally introduced P in section 2.5.3 as a purely mathematical
quantity: a 4-vector related to 4-velocity and rest mass. That did not
in itself tell us that P is conserved. However, if the natural world is
mathematically consistent and Special Relativity describes it, then only
certain types of quantity can be universally conserved (i.e., conserved in
all reference frames). It makes sense to postulate a conservation law for
something like ymou (3-momentum) because this is part of a 4-vector.
The formalism of Lorentz transformations and 4-vectors enables us to
take three further steps:

(1) If a d-vector is conserved in one reference frame then it is conserved
in all reference frames.

(2) If one component of a 4-vector is conserved in all reference frames
then the entire 4-vector is conserved.
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A sum of 4-vectors evaluated at spacelike separated events is itself
a d-vector if the sum is conserved.

®

proof. We already dealt with item (3). For item (1), argue as follows.
The word ‘conserved’ means ‘constant in time’ or ‘the same belore and
afler’ any given process, For some chosen reference [vame let P be the
conserved quantity, with Ppegore signifying its value before some process,
and Patter- The conservation of P is then expressed by

Poefore = Patter: (511)

Now consider the situation in another reference frame. Since P is a
4-vector, we know how it transforms: we shall find

f ]
Pbefore = AP‘JB[DIE ' after — Apnf!«er'

By applying a Lorentz transformation to both sides of eqn (5.11) we shall
immediately find Py .. = Plg..: i.e., the quantity is also conserved in
the new reference frame, QED. This illustrates how 4-vectors ‘work’: by
expressing a physical law in 4-vector form we automatically take care of
the requirements of the Principle of Relativity.

To prove item (2) above we make use of the following lemma:

Zero component lemma: If one component of a 4-vector is zero in all
reference frames, then the entire 4-vector is zero.

Proof. Consider some 4-vector Q, pick a component such as the
z—component, and suppose this component vanishes in all frames. If
there is a frame in which the y or z component is non-zero, then we can
rotate axes to make the 2 component non-zero, contrary to the claim
that it is zero in all reference frames. Therefore the y and z components
are zero also. If there is a reference frame in which the time-component
QU is non-zero, then we can apply a Lorentz transformation to make Q'
non-zero, contrary to the claim. Therefore QU is zero. A similar argument
can be made starting from any of the components, which concludes the
proof.

The proof of item (2) in our list now follows immediately, by applying
the zero-component lemma to the d-vector Q = Pajer — Phefore-

5.2.1 Mass—energy equivalence

At first the zero component lemma might seem to be merely a piece
of mathematics, but it is much more. It says that if we have con-
servation (in all reference frames) of a scalar quantity that is known
to be one component of a 4-vector, then we have conservation of the
whole 4-vector. This enables us to recuce the number of assumptions
we need to make: instead of postulating conservation of 4-momentum,
for example, we could postulate conservation of one of its components,
say the z-component of momentum, in all reference frames, and we
would immediately deduce not only conservation of 3-momentum but
conservation of energy as well.
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In classical physics the conservation laws of energy and momentum
were separate: they do not necessarily imply one another. In Relativity
they do. The conservation of the 3-vector quantity (momentum) is no
longer separate from the conservation of the scalar quantity (energy).
The unity of spacetime is here exhibited as a unity of energy and
momentum. It is not that they are the same, but they ave two parts
of one thing.

Once we have found the formula relating the conserved 3-vector to
velocity, i.e. p = ymv (the spatial part of mU), we do not have any choice
about the formula for the conserved scalar, up to a constant factor, it
must be F oc ym (the temporal part of mU). Also, the constant factor
must be ¢? in order to give the known formula for kinetic energy in the
low-velocity limit, and thus match the classical definition of what we call
energy.

- 1 1
y=0Q=-v3/32y M~ 1+ E*vz/c2 = yme? ~me? + §mv2.

Thus the important relation ‘E = me?’ follows from momentum con-
servation and the Main Postulates. This formula gives rise (o a won-
derful new insight- -perhaps the most profound prediction of Special
Relativity—namely the equivalence of mass and energy. By this we mean
two things. First, in any process, kinetic energy of the reactants can
contribute to rest mass of the products, and conversely. For example, in
a collision where two particles approach and then stick together, there
1s a reference frame where the product is at rest. In that frame, we shall
find Mc? =Y vimic? and therefore M > 3 m;, where M is the rest
mass of the product and m; are the rest masses of the reactants.

The physical meaning of this rest mass M is inertial. It is ‘that which
increases the momentum’; i.e., the capacity of a body to make other
things move when it hits them. It does not immediately follow that
it is the same thing as gravitational mass. One of the foundational
assumptions of General Relativity is that this inertial mass is indeed
the same thing as gravitational mass, for a body at rest with no internal
pressure.

The second part of the meaning of ‘equivalence of mass and energy’
is that ‘rest mass' and ‘rest energy’ are simply different words for the
same thing (up to a multiplying constant: i.e., ¢?). This is a strict
equivalence. It is not that they are ‘like’ one another (as is sometimes
asserted of space and time, where the likeness is incomplete}, but they
are strictly the same—just different words used by humans for the same
underlying physical reality. In an exothermic reaction such as nuclear
fission, therefore, rather than saying ‘mass is converted into energy’ it is
arguably more correct to say simply that energy is converted from one
form to another. We have only ourselves to blame if we gave it a different
name when it was located in the nucleus. The point can be emphasized by
considering a more everyday example such as compression of an ordinary
metal spring. When under compression, energy has been supplied to the
spring, and we are taught to call it ‘potential energy’. We may equally



call it ‘mass-energy’: it results in an increase in the rest mass of the
gpring (by the tiny amount of 1077 kg per joule). When we enjoy the
warmth from a wooden log fire, we are receiving benefit from a process
of ‘conversion of mass to energy’ just as surely as when we draw on
tne electrical power provided by a nuclear power station. The ‘binding
energy’ between the oxygen atoms and carbon atoms is another name
for a rest mass deficit: each molecule has a smaller rest mass than the
<um of the rest masses of the separate atoms. The tiny difference ém is
enough to liberate noticeable amounts of energy (6mnc?) in another form
such as heat.

5.3 Collisions

We will now apply the conservation laws to a variety of collision-type
processes, starting with the most simple and increasing in complexity as
we proceed. We will make repeated usc of the formula E? — p?¢? = m2¢?
which we can now recognise both as a statement about mass and energy,
and also as a Lorentz invariant quantity associated with the energy-
momentum 4-vector.

The quantities E;, p;, m; will usually refer to the energy, momentum
and rest mass of the ith particle after the process. In particle physics
experiments one typically gathers information on p and F (e.g., from
cuwrvature of particle tracks and from energy deposited in a detector,
respectively), and some or all of the rest masses may be known. To
extract a velocity one can use v = pc?/E {eqn (2.69)). However, not
all the information is always available, and typically momenta can
be obtained more precisely than energies. Even if one has a set of
measurements that in principle gives complete information, it is still very
useful to establish relations (constraints) that the data ought to obey,
because this will allow the overall precision to be improved, consistency
checks to be made, and systematic error uncovered. Also, it is crucial to
have good systematic ways of looking for patterns in the data, because
usually the interesting events are hidden in a great morass or background
of more frequent but mundane processes.

1. Spontaneous emission, radioactive decay.
An atom at rest emits a photon and recoils. For a given energy level
difference in the atom, what is the frequency of the emitted photon? A
radioactive nucleus emits a single particle of given rest mass. For a given
change in rest mass of the nucleus, what is the energy of the particle?

These are both examples of the same type of process. Before the
Process there is a single particle of rest mass M* and zero momentum.
The asterisk serves as a reminder that this is an excited particle that
can decay. Afterwards there are two particles of rest mass m; and m,.
By conservation of momentum these move in opposite directions, so we
only need to treat motion in one dimension. The conservation of energy
and momentum gives

5.8 Collisions
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M*c? = B, + E, (5.12)
P1 = Pp2- (5.13)

The most important thing to notice is that, for given rest masses M*, i,
ma, there is a unique solution tor the energies and momenta (i.e., the sizes
of the momenta; the directions must be opposed but otherwise they are
unconstrained). This is because we have four unknowns, [y, Iy, py, pa,
and four equations—the above and E? — p?e? = mie? for i = 1,2.
Taking the square of the momentum equation, we have £ —mic! =
EF —mie". After substituting for £y using eqn (5.12), this is easily
solved for Ey, giving
B M*? - mi —m3 3
£ oM
When the emitted particle is a photon, my = 0 so this can be sim-
plificd. Let Fy = M*¢* — mac? be the gap between the energy levels
of the decaying atom or nucleus in its rest frame. Then M*? — mj =
(M* 4+ ma)(M* —ma) = (2M* — Eg/e*)Eg/c? s0

0
= [T Y 1
A (1 zM'cﬂ) ! 515)

The energy of the emitted photon is slightly smaller than the rest energy
change of the atom. The difference EZ/(2M*c?) is called the recoil
energy.

(5.14)

2. Absorption.

A moving particle collides with a stationary particle of rest mass mgy and
sticks to it or is absorbed. How does the change in rest mass relate to
the incident energy?

This is like spontaneous emission ‘run backwards®, except that the
final composite ohject of rest mass M* is left with a non-zero recoil
momentum p in the laboratory frame of reference. We adopt the nota-
Lion ‘incident (£, py) strikes stationary mg produocing (£,p, M) final
product’.

Energy-momentum conservation now gives

Ey+mgc? =E, p=p (5.16)

Using the same method of solution as [or spontaneous emission, one
finds in general

%2 2 2
M* —mi —m3 2
]

E, = % i ¢
! 21’?12 (5 )
and for the case of photon absorption
Ly
By =il Atk s | B :
1 (1 F 2m-zc?) Ey (5.18)

Now the recoil energy has to be provided by the incoming photon.
Note that if the atomic transition is narrow, then atoms at rest will
not absorb photons ol frequency tuned to match the internal resonance



energy Eo. Or if there are two atoms of the same type at rest relative
to one another, with one excited and one in the ground state, then if
the excited atom decays, the photon emitted will not be at the right
frequency to be absorbed by the other atom.

An important phenomenon related to this is the possibility of sup-
pressing the recoil. If M* or my is large compared to Ey/c? then the recoil
energy is negligible. This could in principle happen for a heavy atom or
nucleus with closely spaced energy levels. However, a more interesting
case is when the atom or nucleus is confined to a small region of space:
for example, in a fabricated atom trap or as part of a solid material.
When the region of confinement is small compared to the wavelength of
the electromagnetic radiation, the momentum of the photon is taken up
by the whole of the confining trap or solid. This is called the Mdssbauer
effect. The mass of the recoiling solid crystal can exceed that of an atom
by a huge factor, so the recoil energy is essentially completely suppressed.

3. In-flight decay.
We already noted that absorption and emission are essentially the same
process running in different directions, and therefore eqn (5.17) could
be obtained from eqn (5.14) by a change of reference frame. To treat
the general case of a particle moving with any speed decaying into two
or more products, it is better to learn some more general techniques
employing 4-vectors.

Suppose a particle with 4-momentum P decays into various products.
The conservation of 4-momentum reads

P=Y"P. (5.19)

Therefore

2

M2t = E? —p?? = (Z Ei) - (Z pi) (Z pi) c? (5.20)
Thus if all the products are detected and measured, one can deduce the
rest mass M of the original particle.

In the case of just two decay products (a so-called two-body decay), a
useful simplification is available. We have

P=P,+P,. (5.21)
Take the scalar product of each side with itself:
P.P=P2=P}+P%4+2P, Py (5.22)

All these terms are Lorentz-invariant. By evaluating P? in any convenient
reference frame, one finds P? = —M?¢?, and similarly P? = —m?2c?, P3 =
~m3c?. Therefore

2
M? = 771% + m% + C_4(E]E2 - P pgcz) (5.23)

(cf. eqn (2.77)). This shows that to find M it is sufficient to measure
the sizes of the momenta and the angle between them, if m; and mq are
known.

5.3 Collisions
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Table 5.1 Some particles and
their rest energies to six signifi-

cant figures.

e 0.510999 MeV

p 938.272 MeV

mo 134977 MeV

7w+ 139.570 MeV

Z (91.1876 + 0.0021) GeV

Fig. 5.

The P; Pz term in eqn (5.22) can also be interpreted using eqn (2.78),
giving

M?* = m? + m2 + 2mimay(u) (5.24)

where u is the relative speed of the decay products.

Some further comments on the directions of the momenta are given
in the discussion of elastic collisions below, in connection with Fig. 5.17
which applies to any 2-body process.

4. Particle formaltion and centre of momentum frame
A fast-moving particle of energy [, rest mass m, strikes a stationary
one of rest mass M. One or more new particles are created. What are
the energy requirements?

The most important idea in this type of collision is to consider the
situation in the centre of momentum frame. This is the inertial
[rame of reference in which the total momentum is zero. The total
energy of the system of particles in this reference frame is called the
‘centre of momentum collision energy’ Eoy or sometimes (by a loose
use of language) the ‘ventre of mass energy’. The quickest way to
calculate Ecy is to use the Lorentz-invariant ‘E# — p*c®* applied to the
fotal energy-momentum of the system. In the laboratory frame before
the collision the total energy-momentum is P = (E/c¢ + Me, p) where
p is the momentum of the incoming particle. In the CM frame the
total energy-momentum is simply (Eca/e,0). Therefore, by Lorentz
invariance we have

Eiy = (E+ M3A)? -pic?

=m2c* + M2 + 2MCPE. (5.26)

If the intention is to create new particles by crunching existing ones
together, then one needs to provide the incoming ‘torpedo’ particle with
sufficient energy. In order to conserve momentum, the products of the
collision must move in some way in the laboratory frame. This means
that not all of the energy of the ‘torpedo’ can be devoted to providing
rest mass for new particles. Some of it has to be used up furnishing
the products with kinetic energy. The least kinetic energy in the CM
frame is obviously obtained when all the products are motionless. This
suggests that this is the optimal case: i.e., with the least kinetic energy
in the laboratory frame also. To prove that this is so, apply eqn (5.25).
"I'his shows that the minimum £ (hence the minimum laboratory frame
energy) is attained at the minimum Egy (i.e., CM energy). Ecpm/c? can
never be less than the sum of the post-collision rest masses, but it can
attain that minimum if the products do not move in the CM frame.
Therefore the threshold energy is when

Ecm = 21111-{;2 {5.26)



where m; are the rest masses of the collision products. Substituting this
into eqn (5.25) we obtain the general result:

Threshold energy

(Soma)? —m? = M2

Een = oM

(5.27)

This gives the threshold energy in the laboratory frame for a particle m
hitting a free stationary target M, such that collision products of total
rest mass Y. m; can be produced.

Let us consider a few examples. Suppose we would like to create
antiprotons by colliding a moving proton with a stationary proton. The
process p+p — p does not exist in nature because it does not satisfy
conservation laws associated with particle number, but the process
p+Pp—p+p+p+pis possible. Applying eqn (5.27) we find that the
energy of the incident proton must be 7Mc?: i.e., 3.5 times larger than
the minirmum needed to create a proton/anti-proton pair.

In general, eqn (5.27) shows that there is an efficiency problem
when the desired new particle is much heavier than the target particle.
Suppose for example that we wanted to create Z bosons by smashing
fast positrons into electrons at rest in the laboratory. Eqn (5.27) says
the initial energy of the positrons must be approximately 90 000 times
larger than the rest-energy of a Z boson! Almost all the precious energy,
provided to the incident particle using expensive accelerators, is ‘wasted’
on kinetic energy of the products. In Rindler’s memorable phrase, ‘it
is a little like trying to smash ping-pong balls Aoating in space with a
hammer’, This is the reason why the highest-energy particle accelerators
now adopt a different approach, where two beams of particles with
equal and opposite momenta are collided in the laboratory. In such a
case the laboratory frame is the CM frame, so all the energy of the
incident particles can in principle be converted into rest mass energy
of the products. Getting a pair of narrow intense beams to hit each
other presents a great technical challenge, but formidable as the task
is, it is preferable Lo attempting to produce a single beam of particles
with energies thousands of times larger. This is the way the Z boson
was experimentally discovered in the ‘SPS’ proton-antiproton collider
at CERN, Geneva, in 1983, and subsequently produced in large numbers
by that laboratory’s large electron—-positron collider (‘LEP’).

The process of creating particles through collisions is called formation.
In practice the formed particle may be short-lived and never observed
directly. The sequence of events may be, for example, a+b— X —
@+ b, or else X may be able to decay into other particles (in which case
it is said to have more than one decay channel). The state consisting of X
i a state of reasonably well-defined energy and momentum (broadened
by the finite lifetime of the particle). It shows up in experiments as a
large enhancement in the scattering cross-section when a and b scatter
off one another; see Fig. 5.10. Such a signature is called a resonance.

5.8 Collisions
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Fig. 5.10 Data from several experi-
ments operating at different energy
regimes is here brought together,
showing a resonance in the cross-
section for electron—positron scatter-
ing at a centre-of-momentum energy of
91.1876 4 0.0021 GeV. This resonance
is interpreted as evidence that a par-
ticle with rest mass 91.1876 =+ 0.0021
GeV/c? is formed in such collisions.
The data is consistent with the Stan-
dard Model of the weak interaction; the
particle is the Z boson, whose discovery
and guantitative study was a major
success for the Standard Model. (Fig-
ure from Physics Reports 427 (2006);
the ALEPH, DELPHI, L3, OPAL and
SLD Collaborations)

Fig. 5.11
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8. CM frame properties
The velocity of the CM frame relative to the laboratory frame is

(5.28)

where pyor and [y, are the total 3-momentum and energy in the
laboratory frame. Proof: Without loss of generality, we can align the
z axis of the laboratory frame with py... Applying the standard Lorentz
transformation, we shall find that in another frame the momentum
components are

V= mecszmL

p:;ol.,z = '7(_‘}-;“t.cr!.'!"/“"“2 + Pto:.x)u p:ot,p B pgot,z =0

It follows that pi,, = 0 (i.e., the new frame is the CM frame) as long as
Eiotv/c% = proy, which is eqn (5.28),
If an incoming particle of momentum p strikes a stationary particle of
rest mass M, Lhen the momentum of either particle in the CM frame is
2
P = ﬂfr—”:x (5:29)
Fom
Proof: Since the particle of rest mass M is stationary in the laboratory
[rame, it has speed v in the CM frame given by eqn (5.28). Hence its
momentum is !

p Mpc? [ By Mpc*  _ Mc*p
=yMy=——=L200 = = = 5.30
y i-ralE, V. B W

6. 3-body decay. II a particle Y decays into three products 1,2, 3, then
the conservation of 4-momentum reads

py ‘-=P1 -+ p2+P3.

To find out about one of the products, say 3, bring it to the left and
square:

2 2.2

—mic? —m3c® — 2Py -P3 = —mic? —mic® +2(P,-Py)  (5.31)



Now adopt the CM frame, then Py has zero spatial part, so Py - P3 =
_my F3, hence

(m§ +m3 — mi — m3)c* + 2Py - Pyc?

By = 2my c?
B (mf, + mg — m% — -m%)c"l —2E1E5+ 2p; - p2(12 5.30
== By & (5.32)

There is now a range of values of E3, depending on the value of Py - P,
This is in contrast to the 2-body decay which gives a unique solution
in the CM frame. Suppose not all the decay products are detected (for
example because one of them is a neutrino), then a signature of 3-body
decays cornpared to 2-body decays is the presence of a range of values of
the energy of any one of the products, for a given direction of emission.
This was used to deduce the presence of a further particle (the anti-
neutrino) in radioactive S-decay, for example.
Now recall eqn (2.78), which we repeat here for convenience:

Pi- P2 = —mymac®y, (5.33)

where % is the relative speed of the particles. The maximum value
of E3 is when Py . Py reaches its highest (i.e., least negative) value,
which occurs when 1 and 2 have no relative velocity, and then P) - Py =
—mymayc?®. This makes sense, because then the 1+2 system has the least
internal energy. Hence the maximum possible value of Fj is

(m§ +m3 — (m1 + my)?)

2my

E3.ma.x = (5-34)
Further quantities are explored in exercise 5.14.

2-stage 3-body decay. If a 3-body decay takes place in two stages:
Y — 1+ X followed by X — 2 + 3 then the end result is the same, but
the presence of the intermediate particle X constrains the energies, since
now we have only 2-body processes with unique solutions. In many cases
the average lifetime of X is so short that it is never directly observed, but
as long as its rest mass is reasonably well-defined (subject to the energy-
time Heisenberg uncertainty limit) then its presence can be inferred. For
example, in the final situation, particle 1 has a unique energy in the CM
frame, and this shows up as a spike in the detected energy distribution.

5.3.1 ‘Isolate and square’

A method of algebraic manipulation that is often useful in collision
problems may be called ‘isolate and square’. The idea is useful when
a rest mass is known but the energy and momentum are not. In order
to simplify the equations, one wishes to focus on one unknown while
discarding others. To this end, pick a 4-momentum term. in the equation
that you do not know and do net wish to know. Malke this term the
subject of the equation (i.e., ‘isolate’ it), then square both sides of the
equation. The isolated term is thus converted into a squared rest mass.

Fig. 5.12
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Fig. 5,13 A generic elastic collision,
in which the incoming 4-momenta are
P,Q, the outgoing 4-momenta are P/,
Q'. The rest masses m;, ma are
unchanged.
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To illustrate the method, consider once again the simple case of 2-body
decay. The conservation of energy-momentum reads

P=P;+P,;

where subseripts 1,2 label the products. We assume the rest masses are
all known, and we would like to learn about particle number 1. In order
to discard unknown information about particle 2, isolate P2 and square
the equation:

(P—P1)? =P}
= P2 —2P .P; + P? = —m2c?
2 ;
= MZ-I-C—QP-Pl—I—mf:mg

This can now be solved for P,. For example, in the rest frame of the
decaying particle (which is the CM frame) we shall find P = (Mc, 0)
and P; = (Ey/c,p1) so PPy = —E; M and we find
M? +m2 —m3

Ei = #8 (5.35)
in agreement with eqn (5.14). For such a simple problem, the ‘isolate
and square’ method is not especially advantageous, but for more sophis-
ticated problems it is very useful.

5.4 Elastic collisions

We term a collision elastic when the rest masses of the colliding particles
are all preserved. Such collisions form an important tool in particle
physics for probing the structure of composite particles, and testing
fundamental theories—for example, of the strong and weak interactions.
They include particle formation processes of the form a+b— X —
o+ b, in which the formed parficle X does not emerge but may be
inferred from the presence of a resonance in the scattering cross-section.
Even in the absence of a resonance, the experiment still tests whatever
theoretical description exists for the scattering cross-section as a function
of the 4-momenta.

A generic 2-body elastic collision is shown in Fig. 5.13, in order to
introduce notation. To conserve energy-momentum we have P+ Q =
P’ + Q. Squaring this gives P2 + Q% + 2P - Q = P2 + Q"2 4+ 2P’ - Q’. But
by hypothesis, P2 = P’? and Q? = Q2. Tt follows that

P.Q=P.Q. (5.36)

Using eqn (5.33) it is seen that this implies the relative speed of the
particles is the same before and after the collision, just as occurs in
classical mechanics.

In the centre-of-momentum (CM) frame an elastic collision is so simple
as to be almost trivial: the two particles approach one another along a



line with equal and opposite momenta; after the collision they leave in
opposite directions along another line, with the same relative speed and
again equal and opposite momenta. The result in some other frame is
easily obtained by Lorentz transformation from this one. The velocity
of the CM frame relative to the laboratory is given by eqn (5.28).

5.4.1 Billiards

Consider the case of identical particles (‘relativistic billiards’); see
Fig. 5.14. We take an interest in the opening angle # = 6, + 6, between
the final velocities v, w after the collision, in the frame in which one of
the colliding partners was initially at rest. This angle can be obtained
from the dot product:

VW
cosf =

vw
For this calculation, in contrast to all the collision problems we have
considered up until now, we shall work in terms of velocity and Lorentz
factor rather than energy and momentum. The conservation of energy
and momentum yields (after cancelling common factors of m and ¢?)

Yut 1= +Yw,
Yull = VoV + YW
Squaring the second equation, and employing eqn (2.10), we have
vaiud = (2 — 1) = 20% + 2w + 27y v - W
Now substitute for v, using the first equation (energy), and we find
297V W = (1 + 0 — 1)%* = & — y50? — 2w’
= 2¢%(7y = (7w — 1).

Hence

Afiss, == = - =
cosf = (o = Dl — 1) = (7" 1) (7"' 2 . (5.37)
VWYy Y w+1l/) \ w1

At small speeds we obtain cosf — 0, which is the classical prediction
(products emerging at right angles). At high speed we obtain cosé > 0,
so the opening angle is reduced. The opening angle is less than 90°
because both particles are ‘thrown forward’ compared to the classical
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Fig. 5.14 An elastic collision between
particles of equal rest mass. The ‘lab
frame’ S is taken to be that in which
one of the particles is initially at rest.
The CM moves at speed ug relative to
S: given b}' ng = ')'uuf!('hl e 1)<
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Fig. 5.15 Compton scattering.

case; see Fig. 2.3. Elastic collisions with opening angles below 90°
are frequently seen in particle accelerators and in cosmic-ray events in
photographic emulsion detectors.

It is also useful to examine the result in terms of what went on in
the CM frame, In that frame the initial and final speeds are all ug,
where ug is the speed of the CM frame relative to the laboratory frame,
given by ug = Prorc?/Erot = Tutt/(Yu + 1). Choose the z axis along the
incident direction of one of the particles. If the final velocity in the
CM frame of one particle is directed at some angle fy to the z axis in
the anticlockwise direction, then the other is at 8y —7: ie, # — 6y in
the clockwise direction. The post-collision angles #, (anti-clockwise) and
f2 (clockwise) in the laboratory frame are related to fy and 7 — & by
the angle transformation equation for particle velocities (2.70), with
the substitutions # — (fg or m — fg), 8' = (6y or B2), w — ug, v = —ug.
Hence

sinﬁg
Y(ug)(—cosfp +1)'

Using these expressions we find, for 8y # 0, that the opening angle 6, +
# is given by

sinﬂo
Y(uo)(cosfp +1)"

tanfy = tan fly =

2Yuy

tan(fy + f2) = m

(5.38)
(The case fy = 0 has to be treated separately, but it has an obvious
answer.) In terms of the relative speed u we have ‘rﬁu = 5(7u+1) by
using the gamma relation (2.13). The relationship between 81 and 6,
can also be written:

tan #y tan @y = ‘y.[f. (5.39)

5.4.2 Compton scattering

‘Compton scattering’ is the scattering of light ol particles, such that
the recoil of the particles results in a change of wavelength of the
light (Figs 5.15, 5.16). When Arthur Compton (1892-1962) and others
discovered changes in the wavelength of X-rays and ~-rays scattered
by electrons, and especially changes that depended on scattering angle,
ib was very puzzling, becanse it is hard to see how a wave of given
frequency can cause any oscillation at some other frequency when it
drives a [ree particle. Compton's careful experimental observations gave
him sufficiently aceurate data to lend focus to his attempts to model the
phenomenon theoretically. He hit upon a stunningly simple answer by
combining the quantum theory of light, still in its infancy, with Special
Relativity.

Let the initial and final properties of the photon be P = (E/¢, p) and
P'=(E'/e,p"), and let Q, Q' be the initial and final properties of the
target, of rest mass m. Supposing that the initial conditions P and Q
are given, we would like to know the final properties of the photon: i.e,



p. To get rid of Q’, isolate it and square:
P+Q-PP2=Q%? = P*4P?4+2(P.Q-P-P'-Q-P)=0
= P.P=Q-(P-P) (5.40)

where we used first Q% = Q2 and then P? = P2 = 0.
Assuming the target is initially at rest, we have Q = (mc,0) so we
have

-EE' [/ 4+p-p=-m(E-E)

= EE'(1 - cos§) = mc*(E - E')
1 1 1
2 5~ F = oal—cosf). (5.41)

So far the calculation has concerned particles and their energies and
momenta. If we now turn to quantum theory then we can relate the
energy of a photon to its frequency, according to Planck’s famous relation
E = hu. Then eqn (5.41) becomes

N=X= h—(l —cos@). (5.42)
me
This is the Compton scattering formula.

A wave model of Compton scattering is not completely impossible to
formulate, but the particle model presented above is much simpler. In a
wave model, the change of wavelength arises from a Doppler effect owing
to the motion of the target electron.

The quantity

L

— (5.43)

Ag =
is called the Compton wavelength. For the electron its value is
2.4263102175(33) x 1072 m. It is poorly named because, although it
may be related to wavelengths of photons, it is best understood as
the distance scale below which quantum field theory is required; both
classical physics and non-relativistic quantum theory then break down.
The non-relativistic Schrodinger equation for the hydrogen atom is

1 1 i Oy
—aa Nl — i = T

i ¥ ?_Ib ac Ol
where ag is the Bohr radius and a is the fine structure constant. The
Bohr radius can be written as

_Ac

T 2ma’
Schrédinger’s equation tells us that for a bound state of an electron in
hydrogen, ay is the typical distance scale and ac the typical speed. Since
& < 1 we find that v < ¢ and ag > M. Therefore relativistic quantum
theory is not required to treat the structure of atoms, at least in first
approximation: Schrodinger’s equation will do.
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6=90°

wavelength

Fig. 5.16 Example spectrum in
a Compton scaltering experiment.
Observations at 6 # 0 typically show
two peaks—one at the incident
wavelength (indicated by a dashed
line) and one at a longer wavelength.
The first peak is due to scattering by
tightly bound electrons and nuclei, and
the second peak is due to scattering by
weakly bound electrons which behave
to good approximation as if they were
free.
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Elastic terminology. Compton scattering appears here under the head.
ing of ‘elastic’ processes because the rest masses do not change. However,
the word ‘elastic’ can also be used to mean that the energies of the
colliding parties are unchanged; Compton scattering is not elastic ip
that sense, except in the limit m — co.

Inverse Compton scatiering

Eqn (5.41) shows that a photon scattering off a stationary particle always
loses energy. A photon scattering off a moving particle can either lose
or gain energy; the latter case is sometimes called ‘inverse Compton
scattering’. It is of course just another name for Compton scattering
viewed from a different reference frame. In astrophysics such inversge
Compton scattering is more important (because a more useful source of
observational information) than Compton scattering.

Eqgn (5.40) is true for any initial conditions. We now assume the target
particle may be moving, and for the sake of simplicity we specialize to
the case of a head-on collision: i.e., P = £{(1,1), P =E'(1,-1), Q =
ym(Ll, —u) in one spatia} dimnension, and taking ¢ = 1. We thus find

—0EE =~m|-E+ E' —u(E + E")).
Solving for B’ yields

B vym(l + u)
T 24 ym(1 —w)/E’

(5.44)

When 1~ 1 (i.e., close to the speed of light) it is more useful to write
(14 w) ~2and (1 —u)=1/27°, so
Ym

B —————
L+m/{4vE)

(5.45)
which further simplifies to £’ = 44%E (hence wave frequency v’ = 4v?v)
when v£ <« m.

This process is relevant in various astrophysical phenomena, such as
X-ray emission from active galactic nuclei, gamma-ray emission in some
quasars, and X-ray emission in intergalactic space. For example, an
electron with v ~ 104 colliding with 2 photon from the cosmic microwave
background radiation {wavelength ~ 0.5 ¢m) can result in a scattered X-
ray photon. At higher energies the incident particle loses a large fraction
of its energy in a single collision.

Compton and inverse Compton scattering are also related to
bremsstrahlung or ‘braking radiation’, which is the radiation emitted
when charged particles are slowed, for example, by elastic collisions with
atomic nuclei.

5.4.3 More general treatment of elastic collisions™

Our treatment of ‘relativistic billiards’ above committed the treason of
failing to use invariants when they are available. This was because we



alveady had the angle transformation formula in hand. In this section we
covide some guidance on the more general problem of elastic scattering
ysing different particles. This is an important tool in high-energy physics.
Typically one is interested in a case where the outcome (e.g., the
distribution of scattering angles) is determined by a quantum mechanical
rocess, resulting in a probability function.
Let the collision involve 4-momenta P, Q, P, Q' satisfying

P+Q=P +Q. (5.46)
with
P2=p?=_m? Q=Q%=-ml (5.47)

where we have adopted units such that ¢ = 1. The subscripts 1,2 refer
to particles whose rest masses mi, ma may differ, but P is the 4-vector
of a particle with the same rest mass as P’ (see Fig. 5.13). It may be the
very same particle, but since we only assume the rest mass is the same,
the treatment can apply to a variety of processes, such as

T+p—=7T+p pion-proton scattering
p+p—=2p+D proton—antiproton scattering

pP+p—ow+T ditto

where to treat the last case we can use P, P’ for the proton and antipro-
ton, Q,Q’ for the pion and antipion, and in order that eqn (5.46) still
states the conservation of momentum, we must interpret —P’ as the
initial momentum of the antiproton, and —Q as the final momentum of
the pion. More generally, by appropriately interpreting the signs of the
momenta one can allow any pair of the 4-momenta to be incoming, then
the other pair must be outgoing (for an elastic process).

The example proton-antiproton processes show that more than one
type of process may happen in a given experiment, (We could also treat
p+p — m+ m but that process does not exist in Nature.)

For given rest masses, the probability amplitude of observing a given
outcome is some function of the 4-momenta, 7'=T(P,Q,P’, Q). It
appears from this that 7" may depend on sixteen variables. However,
we can whittle that number down to just two. We argue that T' must be
Lorentz-invariant (for, in a fixed large number N of trials, if N|T|? are
observed in some frame to give a particular outcome, for example given
outgoing particles arriving in a given pair of buckets, then all frames
must agree that that is where the particles went, and that it happened on
N|T|? occasions; furthermore a process involving further particles would
have interference terms whose probability depends on T itself, not just
IT|2, to which the same argument would apply). Therefore T depends
only on the ten invariants that can be formed from the 4-momenta:

5.4  Elastic collisions
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p=-m? P.Q PP, P.Q
Q*=-mi Q-P, Q-Q
P;’z — _mf‘ PI‘ _Q.f

Q2 = -mj.

Of these, four are constants, reducing the number to six, and the
conservation of energy-momentum equation (5.46) gives four constraints,
so there are just two independent, variables.

One cannol pick any pair, because some turn out to be equal to one
another. We have already noted that P-Q =P’ -Q’, (eqn (5.36)). By
rearranging the conservation of 4-momentum formula and squaring one
can obtain the other three constraints;

(P-QP=(F-QF = P.Q=P-Q (5.48)
(P-PP=(Q-Q°" = mi+PP =mi+Q-Q. (549)
(P+Q_Pr)? = Q»"E = m?:PQ—PP’—QP’ (550)

A possible (not the only) choice of independent variables is P-Q and
P.-Q.

Some general considerations concerning the directions of the momenta
are indicated in Fig. 5.17. For a 2-body process, the final momenta are
equal and opposite in the CM frame, and of a fixed size. Therefore, they
lie on a circle, when plotted on a diagram of the kind we introduced
in Fig. 2.9. In the lab frame, therefore, the observed momenta will
lie on an ellipse, as shown in Fig. 5.17. There may be more than one
possible outcome of the experiment, and the data will be noisy. By
looking for things like double peaks as a function of p at given 8 (see
the caption to Fig. 5.17) one can begin the process of interpreting

(a) (b)
P’
0’ p|
v
6, BE fe ’/
g
l S
-

Fig. 5.17 Two uses of the ellipse construction that was introduced in Fig. 2.9. The ellipse permits the set of sizes and directions
of momenta in the lab frame to be found, when the momentum in the primed frame (e.g., the CM frame) is of fixed size and
any direction. Both diagrams show a case where two particles have the same p' (the size of the 3-momentum) in frame $', and
therefore both give rise to the same ellipse, but their rest mass and therefore energy E' may differ. (a) The diagram at left
shows that, depending on whether SE’ is smaller or larger than cp/, the foot of the lab frame momentum vector lies inside or
outside the ellipse. This means that for a given observed direction of flight @ in the lab frame, there is either a single size of
momentum pj, or a pair of sizes p2 (corresponding to a single or a pair of directions in the CM frame). If one measures the
number of detections as a function of p at a given angle #, one sees either a single or a double peak., Also, in the latter case
(large rest mass) there is a maximum angle |#| < Omax that oceurs when p meets the ellipse at a Langent; in the former case
(small rest mass) all angles are possible. (b) The diagram at right shows a case where the momenta in the CM frame are equal
and opposite, as must be the case for a 2-body system.



the information and separating the data from the noise. By plotting
the lab frame momenta observed in many experiments one can find the
cllipse that best fits the observations. Similar considerations apply to
the interpretation of 2-body decay data, for example, if the identities of
the decay products are unknown, and their energies are hard to measure
accurately.

Now we consider a process wherc one particle (the ‘target’) is initially
at rest in the lab frame. Let P be the 4-momentum of the target. Then,
when written down in the lab frame, we will find that P has no spatial
(3_mornentum) part. If follows that when dotted onto other 4-vectors, it
‘picks out’ their energy part. Therefore, we can write the enevgies in the
lab [rame as

E;, =my target rest energy
Ey;=-P-Q/m; energy of incorming particle

E; = -P-P'/my energy ol target after scattering
5,

-P-Q'/m; outgoing cnergy of scattered particle

The scattering angle 6 is the angle between the 3-momenta q and q’ in
the lab frame, which can be obtained from

Q-Q' = —I5 1% + qq’ cosb.
Using g = (B2 — m3)"/? one finds
BBy +Q-Q
V(B2 — m3) (23— m3)
_ PP ®+mQQ)
V(PP = mim3)(P- Q) — mim3)
It is often helpful to introduce the Mandelstam variables
=-(P+Q)?*=—(P+Q)?
t=—-(P-P)=-(Q-Q"?%
= (P-Q@Y=-("-Q"

s is the square of the CM energy if P and Q or P’ and Q' are incoming;
¢t is the square of the CM energy if P and (—P’) or Q and (—Q’) are
incoming. The Mandelstam variables are not all independent, but (using
eqns (5.48)-—(5.50)) satisly

cosf = -

(5.51)

s+t+u=2(m?+m3).

In the CM frame? ¢ can be intcrpreted as minus the square of the
momentum transfer (a positive valuc for ¢ indicates that the scattering
i not elastic). One there has (P — P') = (0,p — p’) so

: 4
t = 2p*(cosh — 1) = —4p® sin® 3 (5.52)
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2 To avoid clutter we do not trouble to
introduce a prime or superscript (CM)
here; the reader must understand that
eqns (5.52) through (5.54) deal exclu-
sively with quantities in the CM frame.
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where we used the fact that p = p’ in the CM frame (the momenta change
direction but not size in that frame). Also

s =mi +mi+2(E B, —p-q).
When P, Q are incoming we have p = —q in the CM frame, so this is
s = ELy =mi+m3+2(E By 4 p%). (6.53)

We can convert this into a formula expressing p in terms of s and the
rest masses. First make F| 7 the subject of the formula, then square:

A(E1Er)? = 4(m3 +p*)(m3 +p°) = (s — m{ —mj ~ 2p?)?

= 4sp* = (s — m] —m2)? — dmIm3. (5.54)

Eqns (5.52) and (5.54) allow cos 8 to be expressed in terms of s,t, my, mo.

5.5 Composite systems

In the discussion of Special Relativity in this book we have often teferred
to ‘objects’ or ‘bodies’ and not just to ‘particles’. In other words, we
have taken it for granted that one can talk of a composite entity such
as a brick or a plank of wood as a single ‘thing’, possessing a position,
velocity, and mass. The conservation laws are needed in order to make
this logically coherent (the same is true in classical physics).

We use the word ‘system’ to refer to a collection of particles whose
behaviour will be discussed. Such a system could consist of particles
attached to one another, such as the atoms in a solid object, or it
could be a loose collection of independent particles, such as the atoms
in a low-density gas. In either case the particles do not ‘know’ that
we have gathered them together into a ‘system’: the system is just our
own selection, a notional ‘bag’ into which we have placed the particles,
without actually doing anything to them. The idea of a system is
usually invoked when the particles in question may interact with one
another, but they are not interacting with anything else. Then we say
we have an ‘isolated system’. This terminology has already been invoked
in the previous section, where we discussed the total energy and total
3-momentum of such a system. Now we would like to enquire what it
might mean to talk about the velocity and rest mass of a composite
system.

If a composite system can be discussed as a single object, then we
should expect that its rest mass must be obtainable [rom its total energy
momentum in the standard way: i.e.,
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PZ.=—E2./c +pi, = -m? (5.55)

This serves as the definition of the rest mass m of the composite system.
[t makes sense because the conservation law guarantees that Pioy Is
constant if the system is not subject to external forces.

One convenient way to calculate m is to work it out in the CM frame,
where Prot = 0. Thus we find

m = Ecm/c2 (5.56)

where Fcu is the value of By, in the CM frame. Note that the rest mass
of the composite system is equal to the total energy of the constituent
partic]es (divided by ¢?) in the CM frame, not the sum of their rest
masses. For example, a system consisting of two photons propagating in
different directions has a non-zero rest mass.® The photons propagating
inside a hot oven or a bright star make a contribution to the rest mass
of the respective system. The gluons (zero rest mass) propagating inside
a proton contribute most of the mass of the proton.

Relative to any other reference frame, the CM frame has some
well-defined 3-velocity ucwn, and therefore a 4-velocity Ucwy =
y(uem)(c, ucm). You can now prove that

Piot = mUcm (557)

(Method: both are 4-vectors and they agree in CM frame, hence in all
frames.) This confirms that the composite systemn is behaving as we
would expect for a single object of given rest mass and velocity.

5.6 Energy flux, momentum density,
and force

There is an important general relationship between fluz of energy S and
momentum per unit volume g. It is easily stated:

S =gc?. (5.58)

S is the amount of energy crossing a surface (in the normal direction),
per unit area per unit time, and g is the mornentum per unit volume in
the flow.

It would be natural to expect energy fux to be connected to energy
density. For example, for a group of particles all having energy E and
moving together at the same velocity v, the energy density is u = En
where n is the number of particles per unit volume, and the number
Crossing a surface of area A in time t is nAvt, so S = nvE = uv: the
energy flux is proportional to the energy density. However, if the particles
are moving in some other way—for example, isotropically—then the

3 For two or more photons all propagat-
ing in the same direction there is no CM
frame, because reference frames cannot
attain the speed of light.
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relationship changes. For particles effusing from a hole in a chambey
of gas, for example, we find § = (1/4)uv,

Eqn (5.58) is more general. For the case of particles all moving along
together, it is easy to prove by using the fact that p = Ev/c? for each
particle. The momentum density is then g = np, and the energy flux is
S = nvE = npc® = ge?. Il we now consider more general scenarios, such
as particles in a gas, we can apply this basic vector relationship to every
small region and small range of velocities, to obtain

Sior = Z niviE, = Zn,p,—cz = gtotcg-
i i

Since the proportionality factor is ¢ for every term in the sum, it remains
¢? in the total.

The particles we considered may or may not have had rest mass: the
relationship p = Ev/c? is valid for either, so eqn (5.58) applies equally
to light and to matter, and to the fields inside a material body. It ig
universal!

Another important idea is momentum flow.

We introduced force by defining it as the rate of change of momentum.
We also established that momentium is conserved. These two facts, taken
together, imply that another way to understand force is in terms of
momentum flow. When more than one force acts we can have a balance
of forces, so the definition in terms of rate of change of momentum ig
no longer useful: there is no such rate of change. In a case like that we
know what we mean by the various forces in a given situation: we mean
that we studied other cases and we claim that the momentum would
change il the other forces were nol present. In view of the primacy of
conservation laws over the notion of force, it can sometimes be helpful to
adopt another physical intuition of what a force represents. A force per
unit area, in any situation, can be understood as an ‘offered’ momentum
fux: i.e., an amount of momentum flowing across a surface, per unit
area per unit time. When a field or a body ofters a pressure force to
its environment, it is as if it is continually bringing up momentum to
the boundary, like the molecules in a gas hitting the chamber walls, and
‘offering’ the momentum to the neighbouring system. If the neighbour
wants to refuse the offer of acquiring momentum, it has to push back
with a force: it makes a counter-offer of just enough momentum flow
to prevent itsell from acquiring any net momentum. In the case of a
gas such a picture of momentum fow is natural, but one could, if one
chooses, claim that precisely the same flow is taking place in a solid, or
anywhere that a force acts. The molecules do not have to move in order
to transport momentum: they only need to push on their neighbours. It
is a matter purely of taste whether one prelers the language of ‘force’ or
‘momentum flow’.

These ideas are important when one considers energy and momentum
exchange between continnous systems. This discussion is postpouned until
chapter 16, since it requires the introduction of the important but more
difficult concept of the stress-energy tensor.,
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Exercises

(5.1) Energy relation. Show that, for a parlicle with
constant rest mass, d£/dp = v. This is the same
as the classical result. To get some insight into this
formula, suppose we have the formula p = ymov
for momentum, but not yet a formula for kinetic
energy. Define force by f = dp/dt, and suppose
that it can be derived from a scalar function V'
called potential energy:

f=-VVWV

Suppose further that the motion is conservative,
so that V + K is constant, where K is kinetic
energy. Then we can obtain X as follows. First
simplify to a purely one-dimensional case, so

dK = -dV = fdz and dp = fdi.
Therefore
dK dz
5 = E = =il = /tdp

Using the known relationship between v and p,
carry out the integration and hence dcrive K =
~ymoc?+ const. Note, however, that this method
is less general than those described in the main
text.

(5.2) Confirm that o = <y is the unique solution to eqn
(5.4) having o(0) = 1, as follows. We have already
shown that it is a solution; it remains to show
there is no other choice. Using the power series
a(z) = ¥, aiz® with the coefficients o; to be dis-
covered, show that eqn (5.4) takes the form

Z av;'ui (1 - uz/ng’)'z)i/2 =Y Z ai'u""
2 1

What can be learned from the coefficient of %0 in
this identity?

(5.3) The upper atmosphere of the Earth receives elec-
tromagnetic energy from the Sun at the rate
1400 Wm™2. Find the rate of loss of mass of the
Sun due to all its emitted radiation. (The Earth-
Sun distance is 499 light-seconds.)

(5.4) Calculate the mass reduction owing to heat loss
of a 100-kg bath of water (specific heat capacity

4.19 kJ/kg K) as it cools from 90°C to 20°C. How
many additional water molecules would be needed
to make up the loss? [Ans. 3.3x !0 kg; 10%¢]

(5.5) Find the energy, in joules, of a cosmic-ray proton
having v = 10'%.

(5.6) A particle of rest mass m and kinetic energy 3mc?
strikes a stationary particle of rest mass 2m and
sticks to it. Find the rest mass and speed of the
composite particle. [Ans. v/21 m, 0.646¢]|

(5.7) A system consists of two photons, each of energy
E, propagating at right angles in the laboratory
frame. Find the rest mass of the system and the
velocity of its CM frame relative to the laboratory
frame.

(5.8) A particle of rest mass m breaks up into two
particles of equal rest mass am. What are the
largest and smallest possible values of a?

Particle formation

(5.9) (i) A proton beam strikes a target containing
stationary protons. Calculate the minimum
kinetic energy which must be supplied to an
incident proton to allow pions to be formed by
the process p+ p — p + p + 7o, and compare
this to the rest energy of a pion.

(ii) An electron collides with another electron at
rest to produce a pair of muons by the pro-
cessete— e+ed p 4+ p7. Show that the
threshold momentum of the incident electron
for this process is

pen = 2Mc(1 + M/m)\/1 + 2m/M

where m, M are the masses of the electron
and nuon respectively.

(iii) A photon is incident on &. stationary proton.
Find, in terms of the rest masses, the thresh-
old energy of the photon if a neutron and a
pion are to emerge.

(5.10) A particle formation experiment creates reactions
of the form A+ B —- A+ B+ N where A is an
incident particle of mass m, B is a target of mass
M at rest in the laboratory frame, and N is a new
particle. Define the ‘efficiency’ of the experiment
as the ratio of the supplied kinetic energy to the
rest cnergy of the new particle, muyc?. Show that,
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at threshold, the efficiency thus defined is equal
to M;‘{m 4+ M + %mw)

(5.11) Two photons of energies Eg, E may collide to pro-
duce an electron—positron pair. Find the threshold
value of E for this reaction, in terms of Ey and the
electron rest mass m. Calculate this threshold for
the case of high-energy galactic photons travelling
through the cosmic microwave background radia-
tion, which can be regarded as a gas of photons of
energy 2.3 x 107 eV. [Ans. 1.1 x 10" eV]

Decay

(5.12) Particle tracks are recorded in a bubble chamber
subject to a uniform magnetic field of 2 tesla. A
vertex consisting of no incoming and two outgoing
tracks is observed. The tracks lie in the plane
perpendicular to the magnetic field, with radii of
curvature 1.67 m and 0.417 m, and separation
angle 21°. Tt is believed Lhat they belong to a
proton and a pion respectively. Assuming this, and
that the process at the vertex is decay of a neutral
particle into two products, find the rest mass of
the neutral particle. [Ans. 1103.8 MeV /c?

(5.13) $8A decay mode of the neutral Kaon is K° —
7wt 4w . The Kaon has momentum 300 MeV /e
in the laboratory, and one of the pions is emitted,
in the laboratory, in a direction perpendicular to
the velocity of the Kaon. Find the momenta of
both pions. [Ans. 166 MeV /¢, 344 MeV /¢ at 29°)

(5.14) Three-body decay A particle Y decays into
three other particles, with labels indicated by
Y — 142+ 3. Working throughout in the CM
frame:
(i) Show that the 3-momenta of the decay prod-
ucts are coplanar.
(i1) Derive eqns (5.32) and (5.34).

(iii) Show that, when particle 3 has its maximum
possible energy, particle 1 has the energy

my (mY Cg = ES.m&x)

Ey =
my +me

[Hint: first argue that 1 and 2 have the same
speed in this situation]

(iv) Let X be the system composed of particles 1
and 2. Show that its rest mass is given by

m?g =m} +m3— 2mvE3,!'('2

(v) Write down an expression for the energy E*
of particle 2 in the rest frame of X, in terms
of my, ms and mx.

(vi) Show that when particle 3 has an energy of
intermediate size, mac® < E1 < E3 max, the
energy of particle 2 in the original frame (the
rest frame of Y) is in the range

Y(E® = Bp’c) < E2 < ~(E™ + Bpc)
where p* is the momentum of particle 2 in the

X frame, and ~, 8 refer to the speed of that
frame relative to the rest frame of Y.

(5.15) This diagram illustrates a process in which an

electron emits a photon:

e

Prove that the process is impossible. Prove also
that a photon cannot translorm into an electron—
positron pair in [ree space. In the presence of
a nucleus, however, it can, Find the threshold
energy of the photon, if the nucleus of rest mass M
is initially at rest. Verify that in the limit of large
M the efficiency approaches 100% and therefore
the nucleus acts as a perfect catalyst.

(5.16) §Prove that a photon in free space cannot decay,

neither into a pair of photons with differing
directions of propagation, nor into a pair of co-
propagating photons with different [requencies.

(5.17) A ‘photon rocket’ propels itself by emitting pho-

tons in the rearwards direction. The rocket is
initially at rest with mass m. Show that when the
rest mass has fallen to am the speed (as observed
in the original rest frame) is given by

(Hint: conservation of momentum.)

It is desired to reach a speed giving a Lorentz
factor of 10. What value of « is required? Suppos-
ing the rocket cannot pick up fuel en route, what
proportion of its initial mass must be devoted to
fuel if it is to make a journey in which it first
accelerates to v = 10, then decelerates to rest at



the destination (the destination being a star with
negligible speed relative to the Sun)?

(5.18) §A rocket propels itself by giving portions of its

mass m a constant velocity u relative to its instan-
taneous rest frame. Let S’ be the frame in which
the rocket is at rest at time #. Show that, if v is
the speed of the rocket in S’, then to first order
in dv’,

(—dm)u = mdv’.

Hence, prove that when the rocket attains a speed
v relative to its initial rest frame, the ratio of final
to initial rest mass of the rocket is

_TE 3 (1 _v/c>c/2u

mi 1+uv/c

Note that the least expenditure of mass occurs
when u = ¢: i.e., the ‘photon rocket’.

Prove that if the rocket moves with constant
proper acceleration ag for a proper time 7, then
me/m; = exp(—aoT/u).
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(5.19) A collimated beam of X-rays of energy 17.52 keV

is incident on an amorphous carbon target. Sketch
the frequency spectrum you would expect to be
observed at a scattering angle of 90°, includ-
ing a quantitative indication of the frequency
scale.

(5.20) 8Consider a head-on elastic collision between a

moving ‘bullet’ of rest mass m and a station-
ary target of rest mass M. Show Lhat the post-
collision Lorentz factor v of the bullet cannot
exceed (m? 4 M?)/(2mM). (This means that for
large energies almost all the energy ol the bullet is
transferred to the target—very different from the
classical result). (Hint: consider P, + Qi where P,
is the initial 4-momentum of the target and Qj, is
the final 4-momentum of the bullet.)

(5.21) Particles of mass m and kinetic energy T are

incident on similar particles at rest in the lab-
oratory. Show that if elastic scattering takes
place, then the minimum angle between the final
momenta in the laboratory is given by cos8min =
(1+ 4mc?/T)~".
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Further kinematics

In this chapfer we return to kinematics: that is, the study of generic
properties of motion without regard to the forces which may be involved,
Kinematics is mostly concerned with the structure of spacetime, rather
than conservation laws. However, we will still feel free to bring in
dynamical ideas when they provide insight.

It will be useful to bring in some more 4-vectors—especially the idea
of a 4-gradient. T'his will enable us to discuss low and density, and wave
motbion. After that we will discuss accelerated motion and what happens
to the shape of bodies when they accelerate. It happens that acceleration
is inextricably related to a bending or distortion of the shape of a body,
which might otherwise have been considered to be rigid. Finally, we
discuss Lorentz transformations for motion in any direction (not just
along the coordinate axes), and we will discover a remarkable counter-
intuitive rotational eftect called ‘Thomas-Wigner rotation’. We begin,
however, with an important property of non-accelerated motion.

6.1

Given two time-like-separated events in spacetime, what worldline
between them has the most proper time? This is the kind of question
which a travelling salesman might like to ask. He has an appointment
at an agreed time and place in the fulure, and we suppose he wants
to maximize the time he has available for preparing his notes, or for
relaxation en reute. In view of the twin paradox it should not take you
long to guess that the salesinan should arrange that his worldline is
straight—in other words, he should travel at constant velocity from
one meeting to another. By contrast, a salesman who wants to stay
young between appointments should rush about making detours. Now.
constant-velocity motion is also (Newton’s First Law) inertial motion:
i.e., motion in the absence of applied forces. Thus we have a connection
between inertial motion and proper time. This connection is sullicient]y
important, especially in General Relativity, that we give 1t a name.

The Principle of Most Proper Time. Given two time-like-
separated events, of all worldlines connecting the events, that having the
most proper time corresponds to inertial motion.

The proper time of a worldline is, of course, the sum of all the dr
contributions along it. In Special Relativity the Principle of Most Proper
Time can be derived if we assume Newton’s First Law. However, in

The Principle of Most Proper Time



General Relativity it is better to regard Most Proper Time as axiomatic,
and derive Newton’s First Law from it. Therefore, we shall argue in that
direction here.

We wish to identify which worldline (among all the possibly wiggly
ones) has the most proper time between given time-like-separated events.
For the derivation, it is convenient to pick the inertial frame in which
the two events in question appear at the same place. Let t1,%5 be their
times in this frame. Then the proper time along an arbitrary worldline
W connecting the events is

{event 2) L2 v? 1/2
Af:/ d'r=f (1-—2) dt
(event 1) ty c

where we used dt/d7 =+, and in the integral v is some function of
time determined by the worldline W. Now, one possible worldline has
v = 0 everywhere along it (for the [rame we picked)—this is the straight
worldline. 1t gives A7 = t5 — ¢,. It is obvious that any other function
u(t) can only ever give a smaller Ar because —v? has to be negative. It
follows that the constant-velocity worldline is the ‘longest’ (most proper
time). QED.

Another way of looking at the same proof is to compare it to the
twin paradox. The straight worldline is that of the ‘stay-at-home’ twin.
As soon as the other twin ventures to move relative to home, her
accurnulated proper time, for a given amount (¢ — t,) of reference frame
time, has fallen below (t — t,), and she can never make up the difference
because the Lorentz factor « is always greater than or equal to 1. This
general idea may be called ‘proof by twin paradox’.

(6.1)

6.2 Four-dimensional gradient

Now that we have got used to 4-vectors, it is natural to wonder whether
we can develop 4-vector operators, the ‘larger cousins’, so to speak, of
the gradient, divergence and curl. A first guess might be to propose
a 4-gradient ((1/c)d/0t,0/0z,08/dy,d/dz). Although this quantity is
clearly a sort of gradient operator, it is not the right choice because the
gradient it produces is not a standard 4-vector. The reason is that it has
a sign error. According to the Lorentz transformation, events at positive
x and ¢ = 0 occur at negative t'. However, a function V' having positive
(0V /Ox) and (8V /0t) = 0 ought to give positive (3V /8t") (see Fig. 6.1).

The answer to this problem is that we must define the four-
dimensional gradient operator as'

DE(_EQ_ v%(ié s 9 2)_
cot’ cot' 9z’ dy' Oz
The idea is that with this definition, (0V is a 4-vector, as we shall now
prove.

We have in mind for V a scalar quantity that is itself Lorentz-
invariant. This means, if we change reference frames, the value of V

(6-2)

L
s .

X

Fig. 6.1 The shading represents
charge density p on a rigid glass bar
fixed in 5. As frame frame S' sweeps
from left to right, an observer there
will observe an increasing p(t’) at any
given position in ',

! The symbol O is commonly used for
the d'Alembertian operator shown in
eqn (6.22). In our notation that opera-
tor is written (J2. The student should
beware of this issue when consulting
other textbooks.
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at any particular event in spacetime does nof change. However, owing
to time dilation and space contraction the rate of change of V with either
of ' or 2’ is not necessarily the same as the rate of change with ¢ or .

Consider two neighbouring events. In some reference frame S their
coordinates are t,x,y,z and t+ dt,z 4 dz,y + dy, z + dz. The change
in the function V between these events is

v 1%
dv = (El—)zdu (a—:r)!d:r. (6.3)

where for simplicity we have chosen a potential function that is inde-
pendent of y and z. Therefore

v _(.a_v (?_t (v (é‘z
ot ), \ot) \ot), \o0z) \ot)_
av av it av Oz
o (@)r - (EL (a‘wf)p * (a—) (@) g

where t',2' are coordinates in some other frame S'. The coordinate
systems are related by the Lorentz transformation, so

t =9t + (v/c*)'), z =yt + )

AN AN
()= (38), =
(@)= (&).-
at I._W' o’ l,—T'

Substituting these into eqn (6.4) we have

(3). (&)~ (%))
(@), (F),+(5))

After multiplying the first equation by (—1/¢), this pair of equations can
be written
-1.8 19
)-8 )
o By )\ &

OV =ADOV. (6.5)

from which

which is

This proves that [V is a 4-vector.

To gain some [amiliarity, let us examine what happens to the gradient
of a scalar function V(t,z) = ¢(z) that depends only on z in reference
frame 8. In this case the slope (8V/dz) in S and the slope (8V/dz') in



g’ are related by a factor v:

oV oV
%:—’)’% [when%—‘:zﬁ

This is a special relativistic effect, not predicted by the Galilean transfor-
mation. It can be understood in terms of space contraction. The observer
§ could pick two locations where the potential differs by some given
amount AV =1 unit, say, and paint a red mark at each location, or
place a stick extending from one location to the other. This is possible
because V is independent of time in S. Suppose the marks are separated
by 1 metre according to S (or the stick is 1 metre long in S). Any other
observer §’ must agree that the potential at the first red mark differs
from that at the other red mark by AV = 1 unit, assuming that we are
dealing with a Lorentz invariant scalar field. However, such an observer
moving with respect to S must find that the two red marks are separated
by a smaller distance (contracted by <y). He must conclude that the
gradient is larger than 1 unit per metre by the Lorentz factor 7.

Similarly, when V depends on time but not position in S, then its rate
of change in another reference frame is larger than 9V/0t owing to time
dilation.

In classical mechanics we often take an interest in the gradient of
potential energy or of electric potential. You should beware, however,
that potential energy is not Lorentz-invariant, and peither is electric
potential, so an attempt to calculate a 4-gradient of either of thern on
its own is misconceived.? Instead, they are each part of a 4-vector, and
one may take an interest in the 4-divergence or 4-curl of the associated
4-vector. The definition of 4-divergence of a 4-vector field F is what one
would expect:

e e LOF®
D-F:D(gF)—Cat—wLV-f (6.6)
where f is the spatial part of F (i.e., F = (F° f)). Note that the minus
sign in the definition of O combines with the minus sign in the scalar
product (from the metric g) to produce plus signs in eqn (6.6).

The four-dimensional equivalent of curl is more complicated, and will
be discussed in chapter 12.

As an example, you should check that the 4-divergence of the space-
time displacement X = (ct,r) is simply

0-X =4. (6.7)

Example (i) If ¢ and V are scalar fields (i.e., Lorentz scalav quantities
that may depend on position and time), show that

O(4V) = Vg + ¢0OV.

(1) If ¢ is a scalar field and F is a 4-vector field (i.e., a 4-vector that may
depend on position and time), prove thal

O (¢F) =F - Op+ ¢ 0 - F.
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2 This does not rule out that one could
introduce a Lorentz scatar field & with
the dimensions of energy, as a. theoret-
ical device, for example to model a 4-
force by —[1®; such a force would be
impure. An example is the scalar meson
theory of the atornic nucleus.
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Fig. 6.2 A Howing fluid has, at each
point in the Aow, a local velocity u and
density p.

Selution
(i) Consider first of all the time component:

i A 1 /0¢ aVv

T (8tv+¢8t)
which is the time component of V¢ + ¢V . Proceeding similarly with
all the other components (paying attention to the signs), the result is
soon proved.

(ii) This is just like the similar result for V - (¢f) and may be proved
similarly, by proceeding one partial derivative at a time.

6.3 Current density, continuity

The general pattern with 4-vectors is that a scalar quantily appears with
a ‘partner’ vector quantity. So [ar, examples have included time with spa-
tial displacement, speed of light with particle velocity, energy witly
momentum. Once one has noticed the pattern it becomes possible to
guess at further such ‘partnerships’. Our next example is density aud
flux.

The density p of some quantity is the amount per unit volume, and
the fluz or current density j is a measure of flow, defined as ‘amount
crossing a small area, per unit area per unit time.’

Suppose some fluid is distributed throughont a region of space. In gen-
eral the fluid might move with different velocities at different places, but
suppose the velocities are smoothly distributed, not jumping abruptly
from one value to another for neighbouring places. Then, in any small
enough region, the fluid in it all has the same velocity (Fig. 6.2). Then
we can speak of a rest frame for that small region. We define the rest
density pg to be the density of the local fluid in such a rest frame. pg
can be a function of position and time, but note that by definition it is
Lorentz invariant, It earns its Lorentz invariant status in just the same
way that proper time does: it comes with reference frame ‘pre-attached’,
Now define

J = poU (6.8)

where U is the 4-velocity of the fluid at the given time and position.
Clearly J is a 4-vector because it is the product of an invariant and a
4-vector.

We shall now show that, when defined this way, J will turn out to
be equal to (pe,j), where p and j are the density and flux in whatever
reference frame we choose to consider. In order to do this, it will be
convenient to consider that the fluid is made of a large number of
closely-spaced particles, so that we can keep track of a given amount of
fluid by counting the particles. The particles could be water molecules,
in the case of a flow of water, or charge carriers in the case of electric
charge. We will take the limit where the flow is continuous, but using
the word ‘particles’ helps to indicate that we are considering the flow of 2
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3-surface. A flat section through spacetime, such as a time slice,
is called a ‘hyperplanc’ because it has one fewer dimensions than
spacetime. Since spacetime has four dimensions, such a ‘hyperplanc’
is three-dimensional. It could, for example, refer to the whole of space
at some instant of time in some reference frame. More generally, a
section through spacctime of some arbitrary shape (not necessarily
flat) is called a ‘3-surface’. The word ‘surface’ here indicates that
it has one fewer dimensions than spacetime; the '3 is a reminder
that such a region is three-dimensional. It could, for cxample, be a
three-dimensional volume of spacc at some instant of time, or a two-
dimensional spatial surface persisting through an extended duration
of time.

Lorentz-invariant quantity. For particles one can simply count the num-
ber of worldlines crossing some given 3-surface in spacetime (see box
above). Since this is merely a matter of counting, it is obviously Lorentz-
invariant. We do not need to assume that the particle number is a
conserved quantity. Non-conservation would mean that particles can
appear or disappear, which means that particle worldlines can begin or
end-—for example, this would happen for water molecules flowing around
a2 lump of sodium metal, or for positrons flowing through ordinary
matter. In such cases the particle number is not a conserved quantity,
but it is Lorentz invariant because the number of worldlines crossing a
given 3-surface is Lorentz invariant whether or not the worldlines are
infinitely long.

In the local rest frame there is density pg and zero flux, so J = (pgc, 0).
If we pass from the rest frame to any other frame, then, by the Lorentz
transformation, the zeroth component of J changes from pgc to ypoc.
This is equal to pc where p is the density in the new frame, because any
given region of the rest frame (containing a fixed number of particles) will
be Lorentz-contracted in the new frame, so that its volume is reduced
by a factor «. Therefore the number per unit volume in the new frame is
higher by that factor. Let u be the local flow velocity in the new frame.
Then the flux is given by j = pu. It is obvious that this u is also the
relative speed of the new frame and the local rest frame, so

J=pu=ypou. (6.9)

But this is just the spatial part of pgl. Since we can use such a Lorentz
transformation from the rest frame to connect py and U to p and j for
any part of the fluid, we have proved in complete generality that

polU = (pe,j). (6.10)

Hence J = (pe, j), as we suspected.
In the case of an electric current, p would be the charge density; in
the case of a flow of mass, p would be the density of rest mass—mnot
| the density of some other quantity such as E/c?, where E is the energy.

Fig. 6.3 Worldlines crossing a 3-sur-
face. (Since this spacetime diagram has
one spatial dimension suppressed, the
3-surface appears two-dimensional.)
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This is because J is, by definition, 8 measure of the density and flux of 3
Lorentz invarignt scalar quantity. Energy density can be defined as wejl,
but it is not a component of any 4-vector; it is part of & higher-order
guantity called a tensor, to be discussed in chapter 16.

Next, let us consider a special case: the flow of a quantity that ig
not only Lorentz-invariant but also conserved. This couvld be a flow of
water if there are no chemical reactions or phase changes, or a flow of
electric charge carriers, or the flow of the charge itseif if the carviers are
not conserved but the charge is (the question of two different signs for
charge is easily kept in the account and will not be explicitiy indicated
in the following). We will continue to use the generic word ‘particles’ £o
track whatever is flowing.

If the particles are conserved, then the number of particies present
in some closed region of space can only grow or shrink if there is a
corresponding net flow in or out across the boundary of the region. The
mathematical expression of this is

é pdV————/ j-ds (6.11)
where R signifies some closed region of space; the integral on the left i3
over the volume of the region, and the integral on the right is over the
surface of the region. The minvs sigo is needed because by definition, in
the surface integral, dS is teken to be an outward-pointing vector so the
surface integral represents the net flow out of R. By applying Gauss’s
divergence theorem, and arguing that the relation holds for all regions
R, one obtaius the continuily equaelion

a .

5€+V.J=O. (6.12)
This equation is reminiscent of the 4-divergence equation {6.6). Indeed,
by combining the definition of the 4-gradient operatoy with our 4-vector
equation (6.10), we can immediately see that the continuity equation
can be written

0-J=0. [ Continuity equation (6.13)

What we have gained fromn all this is some practice at identilying
d-vectors, and a useful insight into Lhe continuity equation (6.13).
Because the left-hand side can be written as a scalar product of a
4-vector-operator and a 4-vector, it must be Lorentz-invariant. So the
whole eguation relates one invariant to another (zero). Therefore, if the
continuity equation is obeyed in one reference frame, then it is obeyed
in all. The equation is said to he Lorentz-covariant.

The continuity equation is a statement aboul conservation of particle
number (or electric charge ete.). The 4-Aux 3 is not itself conserved, but
its null 4-divergence shows the conservation of the guantity whose flow
it expresses. The conserved quantity is here a Lorentz scalar. This is int
contrast to energy-momentum where the conserved quantity was the set
of all components of a 4-vector. The latter can be treated by writing the




divergence of a higher-order quantity called the stress-energy tensor—
something we will do in chapter 16.

6.4 Wave motion

A plane wave (whether of light or of anything else, such as sound, or
oscillations of a string, or waves at sea) has the general form

h = hgcos(k - r —wt) (6.14)

where h is the oscillating quantity (electric field component; pressure;
height of a water wave; etc.), hg is the amplitude, w the angular frequency
and k the wave vector. As good relativists, we suspect that we may be
dealing with a scalar product of two 4-vectors:

K-X=(w/c,k)-(ct,r) =k r— wt. (6.15)

Let’s see if this is right. That is, does the combination (w/¢, k) transform
as a 4-vector under a change of reference frame?

A nice way to see that it does is simply to think about the phase of
the wave,

¢p=k r—wt (6.16)

To this end we plot the wavefronts on a spacetime diagram. Figure 6.4
shows a set of wavefronts of a wave propagating along the positive z axis
of some frame S. Be careful to read the diagram correctly: the whole wave
appears ‘static’ on a spacetime diagram, and the lines represent the locus
of a mathematically defined quantity. For example, il we plot the wave
crests then we are plotting those evenls where the displacement h is at a
maximum. For plane waves in one spatial dimension, each such locus is a
line in spacetime. Note also that because the phase velocity w/k can be
either smaller, equal to, or greater than the speed of light, a wavecrest
locus (=‘ray’) in spacetime can be either time-like, null, or spacelike.

One may plot the wavecrests in the first instance from the point of
view of one particular reference frame (each line then has the equation
wt — kx — ¢). However, a maximum excursion is a maximum excursion:
all reference frames will agree on those events where the displacement is
maximal, even though the amplitude (ho or hf) may be frame-dependent.
It follows that the wavecrest locations are Lorentz invariant, and more
generally so is the phase ¢, because the Lorentz transformation is linear,
so all frames agree on how far through the cycle the oscillation is between
wavecrests: see Fig, 6.5.

We can now obtain K as the gradient of the phase:

2 9)s

=tr= (vcat’

= (w/e, k), (6.17)
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Fig. 6.4 Wavefronts (surfaces of con-
stant phase) in spacetime. It is easy to
get confused by this picture, and imag-
ine that it shows a snapshot of wave-
fronts in space. Tt does not. Il shows
the complete propagation history of a
plane wave moving to the right in one
spatial dimension. By sliding a space-
like slot up the diagram you can ‘watch’
the wavefronts march to the right as
time goes on in your chosen reference
frame (each wavefront will look like a
dot in your slot). The direction of the
wave 4-vector K may be constructed
by drawing a vector in the direction
up the phase gradient (shown dotted),
and then changing the sign of the time
component. The waves shown here have
a phase velocity less than ¢. (For light-
waves in vacuum the wavefronts and
the wave 4-vector are both null: ie,,
sloping at 45° on such a diagram.) The
wavelength A in any given reference
[rame F is the distance between events
where successive wavecrest lines cross
a line of simultaneity (=position axis)
of F. The period T is the time between
events where successive wavecrest lines
cross the time axis of F.



114 Further kinematics

Fig. 6.5 Phase of an oscillation. If the
hob A oscillates sinusoidally in one
frame, then it oscillates sinusoidally in
all frames since the Lorentz transfor-
mation is linear. 3,C,D are pointers
attached to a rigid [rame, with B and
D at the maximum excursion and C in
the middle. The distance CD depends
on reference [rame, but all frames agree
that A reaches D and does not pass
it. Therefore in all frames the event ‘A
meets D’ has phase 7/2 (plus a multiple
of 2x). Similar arguments apply to the
events ‘A meets B', 'A meels C', etc.
Therefore the phase at all events in the
eycle is Lorentz-invariant.

¥ Beware: zs noted previously, it has
become common practice to use the
symbol O (without the ?) for the
d'Alembertian, even though V2 is used
for the Laplacian. Confusing! This
practice arose in the context ol index
notation, which we will introduce in
chapter 12, where it makes sense as long
as some other symbol is used for the 4-
gradient, the standard choice being 8°.
However, in vector/matrix notation, [J
is a natural choice for the generaliza-
tion of W, and I believe this choice
to be the least confusing for learning
purposes (no one ever mistakes (1% for
a y-gradient, for example, and the 2
reminds us that it is n second deriva-
tive). Finally, the d'Alembertian may
also be defined as ¢—282/812 — V2 (the
negative of our [J%).

uging eqn (6.16). Since this is a 4-gradient of a Lorentz scalar, it is a
4-vector.
Writing v, for the phase velocity w/k, we find the associated invariant

o1 i
2 2
it (- a)

P

(6.18)

Therefore when v, < ¢ the 4-wave-vector is spacelike, and when v, > ¢
the 4-wave-vector is time-like. For light-waves in vacuum the 4-wave-
vector is null. The invariant also shows that a wave of any kind whose
phase velocity is ¢ in some reference {rame will have that same phase
velocity in all reference frames.

6.4.1 Wave equation

Wave motion such as that expressed in eqn (6.14) is a solution of the
wave equation

8%h 22
Writing this
18%h  v3_,

we observe that for the special case v, = ¢ the wave equation takes the
Lorentz covariant form

0%h = 0. [ Wave equation! (6.21)

The operator is called the d’Alembertian’;

1 o*
2 — .o 2
*=0.0= c28ﬁ+v
(a product of three minus signs made the minus sign here!). Hence the
general idea of wave propagation can be very conveniently treated in
Special Relativity when the waves have phase velocity c. This will be
used to great effect in the treatment of electromagnetism in chapter 8.

(6.22)

6.4.2 Particles and waves

While we are considering wave motion let us briefly look at a related
issue: the wave-particle duality. We will not try to introduce that idea
with any great depth, that would be the job of another textbook, but
it is worth noticing thal the introdnetion of the photon model for light
can be guided by Special Relativity, and de Broglie’s introduction of a
wave model for particles was guided by Special Relativity.

Max Planck is associated with the concept of the photon, owing to
his work on black-body radiation. However, when he introduced the
idea of energy quantization he did not, in fact, have in mind that this
should serve as a new model [or the electromagnetic field. It was sufficient
for his purpose merely to assert that energy was absorbed by matter



in quantized ‘lumps’. 1t was Einstein who extended the notion to the
electromagnetic field itself, through his March 1905 paper. This paper is
often mentioned in regard to the photoelectric effect, but this does not
do justice to its full significance. It was a revolutionary rethinking of the
nature of electromagnetic radiation.

When teaching students about the photoelectric effect and its impact
on the development of quantum theory, it makes sense, and it is the usual
practice, to emphasize that the energy of the emitted electrons has no
dependence on the intensity of the incident light. Rather, the energy
depends linearly on the frequency of the light, while the light-intensity
influences the rate at which photoelectrons are generated. This leads one
to propose the model E = hv relating the energy of the light-particles
to the frequency of the waves.

However, this information was not available in 1905. There was evi-
dence that the electron energy did not depend on the intensity of the
light, and for the existence of a threshold frequency, but the linear
relation between photoelectron energy and light-frequency was predicted
in Einstein’s paper, not extracted from experimental data. Einstein rea-
soned from thermodynamics and what we now call statistical mechanics:
he calculated the entropy per unit volume of thermal radiation, and
showed that the thermodynamic behaviour of the radiation at a given
frequency v was the same as that of a gas of particles each carrying
energy hr. The relationship E = hy as applied to what we now call
photons was thus first proposed by Einstein. However, his 1905 paper
was still far short of a full model; it was not until Compton’s experiments
(1923) that the photon idea began to gain wide acceptance, and a
thorough model required the development of quantum field theory, the
'work of many authors, with Dirac (1927) playing a prominent role.

In this section we shall merely point out one feature (which is not. the
one historically emphasized in 1905): if one is going to atlempt o particle
nodel for electromagnetic waves, then Special Relativity can guide you on
how to do it. That is, we shall play the role of theoretical physicist, and
assume merely that we know about classical electromagnetism and we
‘would like to investigate what kind of photon model might be consistent
with it.

Consider a parallel beam of light falling on a moving bucket (Fig. 6.6).
We shall use this situation to learn about the way the energy and
intensity of light transform between reference frames. In fact we have
already made a general observation about this in the discussion of the
headlight effect in section 3.2, in connection with egn (3.8). The present
discussion will proceed more simply, restricting the motion to one spatial
dimension.

Suppose that in frame S the light and the bucket move in the same
direction, with speeds ¢ and v respectively. Let u be the energy per unit
volume in the light-beam. The amount of energy flowing across a plane
ixed in § of cross-section A during time t is then wA(ct). The ‘intensity’
lor energy flux) [ is defined to be the power per unit area, so
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Fig. 6.6 A parallel beam of light falls
into a moving bucket.
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We would like to calculate the amount of energy entering the bucket,
and compare Lhis between reference frames, To this end it is convenient
to use the Lorentz invariance of the phase of the wave. We consider the
energy and momentum that enters the bucket during a period when N
wavefronts move into the buckel. In frame S these waves fill a total length
L = N where ) is the wavelength, so the energy entering the bucket is
E = NAAu. The portion or ‘lump’ of the light-field now in the bucket
(we can suppose the bucket is deep so the light has not been absorbe
vet) possesses energy E and propagates at speed e, It follows that itg
momentum must be p = E/e. Note that we have not invoked a particle
model in order to assert this: we have merely claimed that the relation
p/ 2 = v/c*, which we know to be valid for v < ¢, is also valid in the limit
v = ¢. (In chapter 13 we will show that electromagnetic field theory alsg
confirms p = E/e for light-waves,) Applying a Lorentz transformation
to the energy-momentumn of the light, we obtain for the energy part:

-8
1+4

By Lorentz transforming the 4-wave-vector (w/c, k), or by using the
Doppler effect equation (A.10), we obtain for the wavelength

}1 + B
M= [ —=A
1-8
Substituting these results in E' = NN Au' (using that the area A is

transverse so uncontracted) we find

,_ E _1-B E

E' =q(l-BE=

E. (6.24)

Y= NNATT+BNM
1-8
==ty 2
=5 155 (6.25)

where the last step uses eqn (6.23).

Two things are striking in this argument. First, the energy of the light
entering the bucket does not transform in the same way as its intensity.
Secoud, the energy does transform in the same way as the frequency.
When making an approach to a particle model, therefore, although one
might naively have guessed that the particle energy should be connected
to the intensity of the light, we see immediately that this will not work:
it cannot be true in all reference frames for a given set of events. For, just
as the number of wavefronts entering the bucket is a Lorentz invariant,
so must the number of particles be: those particles could be detected
and counted, after all, and the count displayed on the side of the buclet.
Therefore the energies F2 and £’ that we calculated must correspond to
the same number of particles, so they are telling us about the energy
per particle.

One will soon run into other difficulties with a guess that the particle
energy is proportional to VI or to I)\. It seems most natural to try



£ o v, the frequency. Indeed, with the further consideration that we
peed a complete energy-momentum 4-vector for our particle, not just
o scalar energy, and we have lo hand the 4-wave-vector of the light
with just the right direction in spacetime (i.e., the null direction), it is
completely natural to guess the right model, £ = hv and P = AK.

6.4.3 Group velocity and particle velocity

Recall eqns (2.70) and (3.3) for the angle change of the velocity of a
particle and the wave vector of a plane wave, respectively. We reproduce
these here for convenience:

sin @
tanf = —— = .
o v(cos B + v/up)’ (6.26)
oy (6.27)

v(cos by + vvp/c?)’

where the frames are labelled S and Sy, vp = wo/ko is the phase velocity
of the waves in the frame Sp, and ug is the speed of the particle in the
frame Sp. These are both examples of a direction-change of a 4-vector,
so they amount to the same formula: the fivst can be obtained from the
second by the replacement ug — (ko/wo)c?. However, the vesult is that
a particle travelling along at the phase velocity of the waves (i.e., having
the same speed and direction) in frame Sp does not in general have the
same speed or direction as the phase velocity in frame S (if it is riding
the crest of the wave, it still does so in the new frame but not in the
normal direction).

Something interesting emerges if we look at group velocity. The group
velocity of a set of waves is defined

dw

= o (6.28)
Thus the group velocity depends on the way the frequency of the waves
is related to their wavevector. There is no general formula for this,
because it depends on the physical conditions, such as the behaviour
of the refractive index for light-waves in a transparent medium, or the
dispersion relation for sound waves, etc. However, an interesting case to
consider is waves that have the property that K - K is independent of k.
Note that this does not necessarily have to happen: K - K is guaranteed
to be Loventz-invariant, but its value might in general be a function of
frequency. However, if it does not depend on frequency then we have

—w?/c* + k* = const.

After multiplying by ¢ and taking the derivative with respect to k, we
obtain
_ dw ke &2

%= = = (6.29)

(Note that v < ¢ if vy > 6),

6.4

Wave motion
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An instance of this case is de Broglie waves., Those waves satisfy the
condition K - K = const, the constant in question being —(me/A)?, where
m is the rest mass of the particle. The idea of de Broglie waves proceeded
historically in two stages. The suggestion to treat light-waves in termsg
of particles—photons—came first. The suggestion that all particles had
associated waves—de Broglie waves—was a profound further step and
came considerably later. The equation de Broglie proposed for his waveg
was strongly motivated by Special Relativity.

Consider a classical particle whose speed and direction ug, 8y in frame
Sp matches that of the group velocity of a set of waves, as given by
(6.29). Then we have u = ¢*/v,,. Substituting this into eqn (6.26) we
find now that the change in direction of the particle motion matcheg
that of the wave motion. Also, by using eqn (2.69), the size of the speed
continues to match the group velocity in the new frame. In short, a group
of waves at nearby frequencies (a ‘wavepacket’) behaves like a particle.
The de Broglie formula relating wavelength of a quantum mechanical
wavefunction to momentum of the associated particle, A = h/p, comes
essentially from the 4-vector relationship K = P/h and is fully consistent
with Special Relativity. It is more general than Schrédinger’s equation,
for example,

We have just seen that the group velocity of de Broglie waves behaves
like a particle velocity. The phase velocity can also be given a physical
interpretation by appealing to Special Relativity. Imagine a group of
particles sharing the same velocity, and furnish each one with a little
pointer that rotates. Let these pointers rotate in synchrony in the rest
frame. Then, in other frames, the events ‘pointer is vertical’ for the
group of particles are not simultaneous, but occur at tinies t = fyzg/e =
va/c? where g is the position in the vest frame and we considered
tg = 0 for convenience, Hence the sequence of events at which successive
pointers reach the vertical is a sequence that sweeps down the group of
particles at the velocity z/t = ¢*/v. This velocity is the phase velocity
of de Broglie waves. Thus the de Broglie wave can be regarded as a wave
of simultaneily in the rest frame. The little pointers we imagined in
this argument correspond, in quantum theory, Lo the complex numbers
describing the phase of the wavefunction.

6.5 Acceleration and rigidity

Consider a stick that accelerates as it falls. For example, suppose that in
some reference frame S(z,y, z) a stick is extended along the z direction,
and remains straight at all times. It accelerates in the y direction all as
a piece (without bending) at constant acceleration a in S. The worldline
of any particle of the stick is then given by

T =% (6.30)
1

y= -éat?‘ (6.31)
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Fig. 8.9 There is no such thing as
a body that does not deform when
struck.

Fig. 6.10 A fast train moves over a
bridge across a chasm. The rest length
of the train is equal to that of the
chasm. The picture shows the situa-
tion in the rest frame of the bridge, in
which the train is Lorentz-contracted
by a factor 3, and therefore the whole
of the train has to be supported by one
section of the bridge.

4 The following discussion is based
loogely on a treatment by Fayngold.

Fig. 6.11 The cable holding up the
bridge section cannot support the train,
It breaks, the section falls, and the train
drops into the chasm, eventually crash-
ing into the far wall.

is applied to one part of a body, only that part of the body is causally
influenced by the force. Other parts, outside the future light-cone of
the event at which the force began to be applied, cannot possibly be
influenced, whether to change their motion or whatever. It follows thag
the application of a force Lo one part of body must result in deformation
of the body. Another way of stating this is to say that a rigid body is
one for which the group velocity of sound goes to infinity, but this is
ruled out by the Light Speed Postulate.

There can exist accelerated motion of a special kind, such that the
different parts of a body move in synchrony so that proper distances are
maintained. Such a body can be said to be ‘rigid’ while it accelerates.
This is described in section 9.2.1 of chapter 9.

6.5.1 The great train disaster

Full fathom five thy father lies,

Of his bones are coral made:

Those are pearls that were his eyes,

Nothing of him that doth fade,

But doth suffer a sea-change

Into something rich and strange.

Sea-nymphs hourly ring his knell:

Hark! now I hear them, ding-dong, bell.
(Ariels’s song from The Tempest

by William Shakespeare)

The relativity of the shape of accelerated objects is nicely illustrated by
a paradox in the general family of the contracted stick gliding through a
hole (see, for example, The Wonderful World). Or perliaps, now that we
understand Relativity moderately well (let us hope), it is not a paradox
so much as another fascinating example of the relativity of simultaneity
and the transformation of force.*

So, imagine a super-train, 300 metres long (rest length), that can
travel at about 600 million miles per hour, or, to be precise, v/8¢/3.
The train approaches a chasm of width 300 metres (rest length) which
is spanned by a bridge made of three suspended sections, each of rest
length 100 metres. Owing to its Lorentz contraction by a factor v =3,
the whole weight of the train has to be supported by just one section of
the bridge; see Fig. 6.10. Unfortunately, the architect has forgotten to
take this into account: the cable snaps, the bridge section falls, and the
train drops into the chasm: Fig. 6.11.

At this point the architect arrives, both shocked and perplexed.

‘But. T did take Lorentz contraction into account’, he says. ‘In fact,
in the rest frame of the train, the chasm is contracted to 100 metres, 50
the train easily extends right over it [as in Fig. 6.12]. Each section of
the bridge only ever has to sipport one ninth of the weight of the train.
1 cannot understand why it failed, and | certainly cannot understand
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a bending downwards. The train which appeared ‘rigid’ in the planet
frame is revealed in the horizontally moving frame to be as floppy as a
snake as 1t plunges headlong through the narrow gap in the bridge.

6.5.2 Lorentz contraction and internal stress

The Lorentz contraction results in distortion of an object. The con-

traction is purely that: a contraction, not a rotation, but a contraction

can change angles as well as distances in solid objects. For example, g

picture frame that is square in its rest frame will be a parallelogram at

any instant of time in most other inertial reference frames. The legs of 3

given ordinary table arc not at right angles to its surface in most inertial

reference frames.

For accelerating bodies, the change of shape associated with a change
fj of inertial reference frame is more extreme. Examples are the twisted
i cylinder (see excrcise 6.4), and the falling train of the previous section.

Things that accelerate can suffer a Lorentz-change into something rich
and strange.

These observations invite the question: are these objects still in inter-
nal equilibrium, or are they subject to internal stresses? What is the
difference between Lorentz contraction and the distortion that can be

100 m brought about by external forces?

John Bell proposed the following puzzle. Suppose that two short
identical rockets are at rest relative to a space station S, one behind
the other, separated by a gap L = 100 metres. They are programmed to
blast off simultaneously in reference frame S, and thereafter to burn fuel
at the same rate. It is clear that the trajectory of either rocket will be

identical in S, apart from the 100-metre gap. If the front rocket moves as
@ z(t), then the back rocket moves as z(t) — L. Thercfore their separation
W remains 100 metres in reference frame S.
Now suppose that before they blast off, a string of rest length Ly = 100
Fig. 6.14 metres is connected between the rockets, and suppose any forces exerted

by the string are negligible compared to those provided by the rocket
engines. Then, in frame S the string will suffer a Lorentz contraction to
less than 100 metres, but the rockets are still separated by 100 metres.
So what will happen? Does the string break?

I hope it is clear to you that the string will eventually break. It under-
goes acceleration owing to the forces placed on it by the rockets. It will
in turn exert a force on the rackets, and its Lorentz contraction means
that that force will tend to pull the rockets together to a separation
smaller than 100 metres in frame S. This means that it begins to act as
a tow rope. The fact that its length remains (very nearly) constant at 100
metres in S, whereas it ‘ought to’ be Lg/7, shows us that the engine of
the rear rocket is not doing enough to ieave the tow rope nothing to do:
the tow rope is being stretched by the external forces. The combination
of this stretching and the Lorentz contraction results in the observed
constant string length in frame S.



Such a string is not in internal equilibrium. It will only be in internal
equilibrium, exerting no outside forces, if it attains the length Lo/v. As
the rockets reach higher and higher speed relative to S, v gets larger and
Jarger, so the string is stretched more and more relative to its equilibrium
Jength. If you need to be further convinced of this, then jump aboard
the rest frame of the front rocket at some instant of time, and you
will find the back rocket is trailing behind by considerably more than
100 metres. At some point the material of the string cannot withstand
further stretching, and the string breaks.

In the study of springs and Hooke’s law, the length of a spring when
it exerts zero force is called its ‘natural’ length. In Special Relativity
we call the length of a body in the rest frame of the body its ‘proper’
length: you might say this is the length that it ‘thinks’ it has. The proper
length is, by definition, a Lorentz invariant. The natural length depends
on reference frame, however, and the proper length does not have to be
equal to the natural length.

A spring with no external forces acting on it, and for which any
oscillations have damped away, will have its natural length. Suppose
that length is L,,(0) in the rest frame of the spring. In inertial reference
frames moving relative to the spring in a direction along its length, the
natural length will be Ln(v) = Ly (0)/7.

We now have three lengths to worry about: the length L that a body
actually has in any given reference frame, its natural length L,(v) in
that reference frame, and its proper length Lg. The Lorentz contraction
affects the length and the natural length. A stretched or compressed
spring has a length in any given reference frame different from its natural
length in that reference frame. Its proper length is Ly = vL. If L /&=L, (v)
then Lo # L,(0): i.e., a stretched or compressed spring has a proper
length different from what the natural length would be in its rest frame.

In the example of the rockets joined by a string, in reference frame S
the natural length of the string shortens, but the string does not, owing
to the forces on it. In the sequence of rest frames of the centre of the
string the natural length is constant but the actual length grows, owing
again to the forces which stretch it.

If a moving object is abruptly stopped, so that all of its parts stop at
the same time in a reference frame other than the rest frame, then the
length in that frame remains constant but the proper length gets shorter
(it was yL, now it is L). If the object was previously moving freely with
no internal stresses, then now it will try to expand to its new natural
length, but it has been prevented from doing so. Therefore, it now has
internal stresses: it is under compression.

Similarly, if an object having no internal stresses is set in motion so
that all parts of the object get the same velocity increase at the same
time in the initial rest frame S, then the length of the object in S stays
constant while the proper length gets longer (it was L, now it is yL).
Since the proper length now exceeds the proper natural length, such a
Procedure results in internal stresses such that the object is now under
tension.

6.5 Acceleration and rigidity
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More generally, to discover whether internal stresses are present, it
suflices to discover whether the distance between neighbouring particles
of a body is different from the natural distance. In the example of the
great train disaster, the train is without internal stress as it bends during
the free [all. The passengers too are without internal stress—except the
pyschological kind, of course. If the natural (unstressed) shape of au
accelerating object remains straight in some inertial reference frame,
then in most other reference [rames the natural (unstressed) shape will
be bent and/or twisted.

6.6 General Lorentz boost

So far we have considered the Lorentz transformation only for a pair
of reference frames in the standard configuration, where it has the
simple form presented in eqn (2.32). More generally, inertial reference
frames can have relative motion in a direction not aligned with their
axes, and they can be rotated or suffer reflections with respect to
one another. To distinguish these possibilitics, the transformation for
the case where the axes of two reference frames are mutually aligned,
but they have a non-zero relative velocity, is called a Lorentz boost.
A more general transforination, involving a rotation of coordinate axes
as well as a relative velocity, is called a Lorentz transformation but not
a boost,

The most general Lorentz boost, therefore, is for the case of two
reference frames of aligned axes, whose relative velocity v is in some
arbitrary direction relative to those axes. In order Lo obtain the matrix
representing such a general boost, it is instructive to write the simpler
case given in eqn (2.32) in the vector form:

ct' =~(ct - B x)

’ 42
X =X+ | —9ct+
(7 1+

5 x) 8 (6.35)

This gives a strong hint that the general Lorentz boost is

G —7@; ?gy —676;
_ . 14 o Qg af.f.

Alv) = i ﬂﬁf‘; B, B, (6.36)
1+ af?

where o = 72 /(1 + 7) and the lower left part of the matrix can be filled
in by using the fact that the whole matrix is symmetric. One can prove
that this matrix 1s indeed the right one by a variety of dull but thorough
methods; see the exercises.
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6.7 Lorentz boosts and rotations

guppose a large regular polygon (e.g., 1 km to the side) is constructed
out of wood and laid on the ground. A pilot then flies an aircraft around
s+his polygon (at some fixed distance above it); see Fig. 6.15a.

Let N be the number of sides ol the polygon. As the pilot approaches
any given corner of the polygon, he observes that the polygon is Lorentz-
contracted along his flight direction. If, for example, he considers the
right-angled triangle formed by a continuation of the side he is on and a
hypotenuse given by the next side of the polygon, then he will find the
lengths of its sides to be (Lgcos#)/v and Ly sinfl, where § = 27 /N, see
Fig. 6.15b. He deduces that the angle he will have to turn through, in
order to fly parallel to the next side, is 8 given by

tan§’ = ytanf. (6.37)
Having made the turn, he can also consider the side receding from him
and confirm that it makes this same angle §’ with the side he is now on.

For large N we have small angles, so

0"~ ~0. (6.38)

After performing the manoeuvre N times, the aircraft has completed
one circuit and is flying parallel to its original direction, and yet the
pilot considers that he has steered through a total angle of

NE = ~2m. (6.39)

Since v > 1 we have a total steer by more than two pi radians, in order
to go once around a circuit! The extra angle is given by

Af = NO' — 27 = (y—1)2m. (6.40)

This is a striking result. What is going on? Are the pilot’s deductions
faulty in some way? Perhaps something about the acceleration needed
to change direction renders his argument invalid?

It will turn out that the pilot’s reasoning is quite correct, but some
care is required in the interpretation. The extra rotation angle is an
example of a phenomenon called Thomas-Wigner rotation.? It is also

(a) _ (b)
Lysin

~
éf.fé,ﬂ cos 0
f
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6 The effect was discovered by Thomas
in the context of alomic physics, and
subsequently elucidated more generally
by Wigner.

Fig. 6,15 (a)} An aircraft flies around
a regular polygon. The polygon has IV
sides, each of rest length Lp. The angle
between one side and the next, in the
polygon rest frame, is 8 = 2a/N. (b)
shows the local situation in the rest
frame of the pilot as he approaches a
corner and is about the make a turn
through 8. Since 6’ > 0, the pilot con-
siders that the sequence ol angle turns
he makes, in order to complete one cir-
cuit of the polygon, amounts to more
than 360°.
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often called Thomas precession, because it was first discovered as a
changing direction of an angular momentum vector. We will provide
the interpretation and some more details in section 6.7.2. First we need
a result concerning a simple family of three inertial reference frames.

6.7.1 Two boosts at right angles

Fig. 6.16 shows a set of three reference frame axes, all aligned with
one another at any instant of time in frame $’. Frame S” is moving
horizontally with respect to S” at speed v. Frame 8 is moving vertically
with respect to S’ at speed . Let A be a particle at the origin of S, and
B be a particle at the origin of S”.

We will calculate the angle between the line AB and the z-axis of S,
and then the angle between AB and the x"-axis of §8”. This will revea]
an interesting phenomenon.

First consider the situation in S. Here A stays fixed at the origin, and
B moves. We use the velocity transformation equations (2.27), noting
thal, we have the siinple case where the pair of velocities to be *added’ are
mutnally orthogonal. In 8 the velocity components of B are (horizontal,
vertical)=(v, 0), thercfore in S they arve (v/4(u), —u). Therefore the
angle ¢ between AB and the x—axis of frame 8 is given by

A A

S Lt . o

A

,—+V

r-',—-?"
R >
N\ Ji /f X X
F
B ~~_ 7

Fig. 6.16 Two squares (i.c., ench is a solid object that is square in its rest frame: it helps to think of thom as physical bodies,
not just abstract lines) of the same proper dimensions are in relative motion. In frame §' the white square moves upwards at
speed u, and the grey square moves to the right at speed v. The central diagram shows the situation al some instant of time in
8': each square is contracted along its direction of motion. Frame S is the rest frame of the white square; S is the vest [rame of
the grey square. A and B are particles at the origins of § and §” respectively. The left and right diagrams show the situation
ut some instant of time in § and 8§ respectively. The reference frame axes of S and 8” have been chosen parallel Lo the sides
of the fixed square in each case; those of 8’ have been chosen parallel to the sides of both objects as they urc observed in that
frame. Note that there are three diagrams here, not one! The diagrams have been oriented so as to bring out the fact that S
and 8’ are mutually aligned, and S’ and 8" are mutually aligned. However the fact that S and S” are not mutually aligned
is not directly indicated, it has to be inferred. The arrow AB on the left diagram indicates the velocity of 87 relative to S-
The arrow BA on the right diagram indieates the velocity of § relative to 8. These two velocities are colinear (they are equal
and opposite). The dashed squares in S and 8 show a shape that, il Lorentz contracted along the relative velocity AB, would
give the observed parallelogram shape of the moving object in that reference frame. IU is clear from this that the relationship
between S and S” is a boost combined with a rotation, not a hoost alone. This rotation is the kinematic effect that gives rise
to the Thomas precession. Take a long look at this figure: there is a lot here—it shows possibly the most mind-bending aspect
of Special Relativity!
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U Yy,

Now consider the situation in §”. Here B is fixed at the origin, and A
moves. In §’ the velocity components of A are (0, ©) so in §” they are
(-v, u/v(v)). Therefore the angle 6” between AB and the z”—axis of
{rame S is given by

tan " = —. (6.42)
UYy

Thus we find that 6 A~8”. Since the three origins all coincide at time
sero, the line AB is at all times parallel to the relative velocity of S
and S”. This velocity is constant, and it must be the same (equal and
opposite) when calculated in the two reference frames whose relative
motion it describes. Therefore the interpretation of § /~6” must be that
the coordinate azes of S are not parallel to the coordinate azes of S”
(when examined either in reference frame S or in §”).

This is a remarkable result, because we started by stating that the
axes of S and S” are mutually aligned in reference frame S’. It is as
if we attempted to line up three soldiers, with Private Smith aligned
with Sergeant Smithers, and Sergeant Smithers aligned with Captain
Smitherson, though somehow Private Smith is not aligned with Captain
Smitherson. With soldiers, or lines purely in space, this would not be
possible. What we have found is a property of constant-velocity motion
in spacetime, owing to the relativity of simultaneity.

The sequence of passing from frame S to S’ to S” consists of two
Lorentz boosts, but the overall result is not merely a Lorentz boost to the
final velocity w, but a boost combined with a rotation. Mathematically,
this is

A(V)A(—u) = R(AB)A(w) (6.43)

where AG =0 — 6" and w = (v/7y,, —u, 0) is the velocity of §” relative
to S. We have proved the case where u and v are orthogonal. We will
show in sections 6.8 and 6.9 that the pattern of this result holds more
generally: a sequence of Lorentz boosts in different directions gives a
net result that involves a rotation, even though each boost on its own
produces no rotation. The rotation angle for orthogonal u and v can be
obtained from equs (6.41) and (6.42) using the standard trigonometric
formula, tan(d — #”) = (tanf — tan#”)/(1 + tan 6 tan 8"):

tanag = 0w~ 1) (6.44)
U Yy + VY

Note that the rotation effect is a purely kinematic result: it resulis
purely from the geometry of spacetime. That is to say, the amount
and sense of rotation is determined purely by the velocity changes
mvolved, not by some further property of the forces which cause the
velocity changes in any particular case. It is at the heart of the Thomas

Precession, which we will now discuss.
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Fig. 6.17 Parallel transport on the
surface of a sphere (see text).

6.7.2 The Thomas precession

Let us return to the thought experiment with which we began section 6.7
the aircraft flying around the polygon. This thought experiment can be
understood in terms of the rotation effect that results from a sequence of
changes of inertial reference frame, as discussed in the previous section.
The pilot’s reasoning is valid, and it implies that a vector carried through
a sequence of velocity changes by parallel transport in velocity-space wil
undergo a net rotation: it will finish pointing in a direction different to
the one in which it started.

Parallel transport is the type of transport when an object is translated
as a whole, in some given direction, without rotating it, For example, if
you pass someone a book, you will normally find that your action will
rotate the book as your arm swings. However, with care you could adjust
the angle between your hand and your arm, as your hand moves, so as
to maintain the orientation of the book fixed. That would be a paralle]
transport.

Parallel transport in everyday situations (in technical language, in
flat Buclidean geometry) never results in a change of orientation of an
object. However, it is possible to define parallel transport in more general
scenarios, and then a net rotation can be oblained. To get a flavour of this
idea, consider motion in two dimensions, but allow the ‘two dimensional’
surface to be curved in some way, such as the surface of a sphere (Fig.
6.17). Define ‘parallel transport’ in this surface to mean the object has
to lie in the surface, but it is not allowed to rotate relative to the nearby
surface as it moves. For a specific example, think of carrying a metal bar
over the surface of a non-rotating spherical planet. Hold the bar always
horizontal (i.e., parallel to the ground at your location), and when you
walk make sure the two ends of the bar move through the same distance
relative to the ground: that is what we mean by parallel transport in this
example. Start at the equator, facing north, so that the bar is oriented
east-west. Walk due north to the north pole. Now, without rotating
yourself or the bar, step to your right, and continue until you reach the
equator again. You will find on reaching the equator that you are facing
around the equator, and the bar is now oriented north-south. Next,
again without turning, walk around the equator back to your starting
point. You can take either the long route by walking forwards, or the
short route by stepping backwards. In either case, when you reach your
starting point, the bar, and your body, will have undergone a net rotation
through 90°.

In the case of the aircraft flying around a polygon, the transport of
the rod is not a parallel transport in spacetime (spacetime is not curved
in Special Relativity), but the rotation can be conveniently understood
by relating it to a parallel transport in a certain abstract space. This
is a 4-velocity space which we define by setting up axes in the U*, U%,
U¥, U# ‘directions’. Then the set of allowed 4-velocities does not fill the
space, but lies on the region defined by the constraint U - U = —¢%. This
is the equation of a hyperboloid of revolution:



6.7

UZ—U2-U2-U2=¢2 (6.45)

This hyperboloid of revolution is a curved 3-surface (Fig. 6.18); let
us call it H. Now use the fact that, in any frame with 4-velocity U,
the hyperplane of simultaneity for that frame is orthogonal to U, and
therefore it is parallel to (i.e., tangential to) the surface H. As a physical
object, such as a straight rod, is accelerated from one velocity to another,
its 4-velocity moves around H, and we can imagine that the object also
casts a short straight ‘shadow’ onto H, signifying its spatial orientation.
A Lorentz boost through a small velocity change will move the 4-velocity
to a nearby point in H, in such a way that the shadow moves by a parallel
transport: this signifies that the object was accelerated without rotating
it relative to the instantaneous rest frame. Nonetheless, after a series
of such boosts, finishing back at the initial velocity, the shadow has
rotated owing to the fact that H is not flat, and this implies that the
physical object (the straight rod, or whatever) must have undergone a
net rotation in space, relative to any unaccelerated object.”

In the aircraft example, the aircraft did not undergo such a transport,
but if the pilot kept next to him a rod, initially parallel to the axis of
the aircraft, and made it undergo acceleration by a sequence of Lorentz
boosts without rotation, then after flying around the polygon he would
find the rod was no longer parallel to the axis of the aircraft. He could
ensure that the rod had a parallel transport in velocity space by applying
each required velocity change to all particles of the rod simultaneously
in the instantaneous rest frame. His observations of his journey convince
him that the angle between himself and such a rod increases by more
than 360°, and he is right. On completing the circuit in an anticlockwise
direction, the aircraft is on a final flight path parallel to its initial one,
but the rod has undergone a net rotation clockwise; see fig. 6.19. If
instead of a rigid rod we consider a gyroscope, with its axis aligned with
the rod, then this axis also will rotate, by exactly the same amount as
the rod, and such a rotation is called ‘Thomas precession’.

More generally one may speak of Thomas- or Wigner- rotation of
a ‘vector’. This is simply to liberate the definition from the need to
tallk about any particular physical object, but note that such a vector
ultimately has to be defined in physical terms, It is a mathematical
quantity behaving in the same way as a spatial displacement in the
instantaneous rest frame, where, as always, spatial displacement is dis-
placement relative to a reference body in uniform motion.

Is there a torque?

Students (and more experienced workers) are sometimes confused about
the distinction between kinematic and dynamic effects. For example,
the Lorentz contraction is a kinematic effect because it is the result of
examining the same set of worldlines (those of the particles of a body)
from the perspective of two different reference frames. Nonetheless, if
a given object starts at rest and then is made to accelerate, then any
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Fig. 6.1B The d-velocity surtace H.

7 For further details, see S. Ben-
Menahem, J. Math. Phys. 27, 1284
(1936).

Fig. 6.19 The evolution, in ordinary
space, of an object (e.g., a wooden
arrow) when it undergoes a parallel
transport in velocity-space, such that
it is carried around a circle in some
inertial reference frame. ‘Parallel trans-
port in velocity-space’ means that at
each moment, the evolution in the next
small time interval can be described by
a Lorentz boost—that is, an accelera-
tion without rotation.
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Fig. 6.20 Analysis of motion around
a circle. The ‘lab’ frame S is that of the
fixed circle. Frames S’ and 8" are suc-
cessive rest frames of an object moving
around the circle. The axes of S and
S’ are arranged to be parallel in either
of those frames. (Therefore they are not
parallel in frame S which has been used
to draw the diagram). The box shows
the velocities of S and S relative to §'.

change in its shape in a given frame (such as the initial rest frame)
is caused by the forces acting on it—a dynamic effect. The concept of
Lorentz contraction enables us to see what kind of dynamical contractior,
is the one that preserves the proper length. To be specific, if a rod startg
at rest in S and then is accelerated to speed v in § by giving the same
velocity-change to all the particles in the rod, then if the proper length ig
to remain unchanged, the particles must not be pushed simultaneously
in S. Rather, the new velocily has to be acquired by the back of the roq
first. No wonder, then, that it contracts.

In the case of Thomas rotation, similar considerations apply. Recall
the example of the aircraft, and suppose that the aircraft firsg
approached the polygon in straight line flight along a tangent, and then
flew around it. From the perspective of a reference frame fixed on the
ground, the rod initially has a constant orientation (until the aircraft
reaches the polygon), and then it begins to rotate, It must therefore be
subject to a torque to set it rotating. It is not hard to see how the torque
arises. Iransverse forces on the rod are needed to make it accelerate
with the aircraft around the polygon. If the application of these forces
is simultaneous in the rest frame of the aircraft, then in the rest frame
of the polygon the force at the back of the rod happens first, so there is
a momentary torque about the centre of mass.

In the case of a gyroscope there must exist a torque in any inertial
frame relative to which the gyroscope precesses, because its angular
momentum vector changes. This is explored further in chapter 15.

The two effects (Thomas rotation and Lorentz contraction) are close
companions. They both arise from the way planes of simultaneity asso-
ciated with one inertial reference frame or another ‘slice up’ spacetime
differently.

6.7.3 Analysis of circular motion

We shall now analyze the case of motion around a circular trajectory. We
already know the answer because the simple argument given at the start
of this section for the aircraft flying above the polygon is completely
valid, but to get a more complete picture it is useful to think about the
sequence of rest frames of an object following a curved trajectory.

Fig. 6.20 shows the case of a particle following a circular orbit. The
axes ry are those of the ‘laboratory’ frame S in which the circle is at
rest. The particle is momentarily at rest in frame S’ at proper time 7 and
in frame 8" at the slightly later proper time 7 | dr. The axes of both
S and of §” are constructed to be parallel to those of 8 for an observer
at rest in §'. Nevertheless, as we have already shown in section 6.7, the
axes of S and 8" are not parallel in S or S”.

Let ap be the proper acceleration of the particle at proper time 7.
This is the acceleration it has in the instantaneous rest frame S’. During
the next small time interval, the velocity change, as observed in [rame
g is
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dvg = apdr. (6.46)

This gives the velocity of S" relative to S’. The acceleration ag is directed
rowards the centre of the circle, which at the instant indicated in the
diagram is in the vertical direction, so the velocity of 8" relative to §'
pas components (0, dvg).

Let v be the velocity of S relative to S. This is horizontal at the
chosen instant. v and dvgp are mutually perpendicular, so we have a
situation exactly as was discussed in section 6.7, with the speeds u and
» now replaced by dvg and v. Angles 8 and 6" (eqns (6.41) and (6.42))
are both small, so we have

_ dugy(duy) o — . duy

= ——— = 3
v ' vy(v)

(6.47)

Using y(dvg) ~ 1, we find that the rotation of the rest frame axes is by

A== T (1 = 1). (6.48)
v B

In this equation, dwvy is a velocity in the instantaneous rest frame,
whereas v is a velocity of that frame relative to the centre of the circle.
It is more convenient to express the result in terms of quantities all
in the latter frame. The size of the change in velocity observed in S is
|dv| = dwo/y (by using the velocity addition equations, (2.27)). Hence

do = @ (v —1). (6.49)

The motion completes one circuit of the circle when [|dv|= 27v, at
which point the net rotation angle of the axes is 2m(~ — 1), in agreement,
with eqn (6.40).

We conclude that the axes in which the particle is momentarily at
rest, when chosen such that each set is parallel to the previous set for
an observer on the particle, are found to rotate in the reference frame
of the centre of the circle (and therefore in any inertial reference frame)
at the rate

dd a

i (y—1), (6.50)
and it is easy to check that the directions are such that this can be
written in vector notation

aAv v?

¢ 147’

wp = (6.51)
where we made use of eqn (2.10). In fact, the derivation did not need to
assume that the motion was circular, and we can always choose to align
the axes with the local velocity, so we have proved the vector result (6.51)
for any motion where the acceleration is perpendicular to the velocity.
By analysing a product of two Lorentz boosts, it can be shown that the
result is valid in general.
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Application

In order to apply eqn (6.51) to dynamical problems, one uses a standard
kinematic result for rotating frames (whether classical or relativistic):
namely, that if some vector s has a rate of change (ds/dt)... relative to
axes that are themselves rotating with angular velocity w, then its rate
of change relative to non-rotating axes is

ds ds
ik = (= A 8. 6.
(dt\ (dt)mwf ’ (6.52)

/ nonrot

The dynamical equations applying in the instantaneous rest frame wil|
dictate the proper rate of change ds/dr of any given vector s describing
some property of the particle. For a particle describing circular motion
the sequence of instantaneous rest frames supplies axes rotating at wp,
to which eqn (6.52) applies, with the substitution

®).-1(8)
di rot g dr rest frame

For motion which is curved but not circular, the equation applies to each
short segment of the trajectory.

For electrons in atoms there is a centripetal acceleration given by the
Coulomb attraction o the nucleus, a = —eE/m where E is the electric
field at the electron, calculated in the rest frame of the nucleus, and -¢
is the charge on an electron. For atoms such as hydrogen, the velocity
v <« ¢ 80 we can use v ~ 1 and we obtain to good approximation,

evAE

2me?
The spin-orbit interaction calculated in the instantaneous rest frame of
the electron gives a L.armor precession frequency

W = (654)

—gspig VA E
wy, = —g;“ﬁ — (6.55)
where gs is the gyromagnetic ratio of the spin of the electron and the
Bohr magneton is pg = eh/2m. To find what is observed in an inertial
frame, such as the rest frame of the nucleus, we must add the Thormas

precession to the L.armor precession,

2 T om

—gsiiB e \VAE e vAE
w:wL—FwT:(f i +2m> = (gs — 1) P (6.56)

If we now substitute the approximate value g, = 2, we find that the
Thomas precession frequency for this case has the opposite sign and
half the magnitude of the rest frame Larmor frequency. This means that
the precession frequency observed in the rest frame of the nucleus will
be half that in the electron rest frame. More precisely, the impact is to
replace gs by gs — 1 (not gs/2): it is an additive, not a multiplicative
correction (see exercise 6.12).

The above argument treated the motion as if classical rather than
quantum mechanics was adequate. This is wrong. However, upon
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re,examining the argument starting from Schrédinger’s equation, one
finds that the spin-orbit interaction gives a contribution to the potential
energy of the system, and the precession of the spin of the electron
may still be observed. For example, when the electron is in a non-
stationary state (a superposition of states of different orientation), the
spin direction precesses at wy in the rest frame of the electron, and
ot wr +wr in the rest frame of the nucleus. This precession must be
related to the gap between energy levels by the universal factor A, so
it follows that eqn (6.56), after multiplying by %, must describe the
observed energy level splittings.

6.8 Generators of boosts and rotations

For frames in the standard configuration, the Lorentz transformation
matrix can be written, to first order in g, as

01 00
1000
A—I'ﬁoooo
00 0 0

where I is the identity matrix. Since v(v) is an even function, the lowest
order neglected terms are O(3?) on the diagonal and O(3?) clsewhere.

It is easy to see that boosts in the other two coordinate directions can
be written in matrix terms in a similar way, and so can pure rotations.
We introduce the sets of matrices

0 0 O 0 01 00
000 O 1 000
2=l 000 -1 " =000 o0 |0 ©5
001 0 0 0 0O
0 0 0 0 0 010
10 0 01 1 0 0 0 O
=10 o000l = 1000/ (65
0 -1 0 O 0 0 00O
00 00 0 0 01
00 -1 0 0 0 0O
=lo1 ool %=|loo0 o0 0 (B0}
00 00O 1 0 00
Then a small boost in an arbitrary direction can be written

i — (IBIK:Z + ﬁyKy + 52Kz)
and a small rotation can be written
I— (05, +8,5,+8,5.)

where the direction of 6 = (0,0,,0,) gives the rotation axis, and the
size @ (which is here small) gives the amount of rotation.
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5 The exponential of a matrix M
is defined exp(M) = 1+ M + M2 /2! +
M3 /3] 4.+ It can also he calculated
from exp(M) = U exp(Mp)Ut, where
Mp is a diagonalized form of M: ie.,
Mp = U'MU where U/ is the (unitary)
matrix whose columns are the normeal-
ized eigenvectors of M.

The matrices Kz, Ky, K. do not commute:
[K:,Ky]EKIKy_KPK:g:_Sz (6<60)

which the reader is invited to verify. It follows that Lorentz boosts iy
different divections do not commute, and the Thomas-Wigner rotatioy
also follows. Consider, for example, a sequence of four boosts around 5
square—that is, the sequence

A = (I+BK, I+ BK:)(I - BK,)(I - BK:) (6.61)

(plus terms of O(B?)). This corresponds to a boost by fc in the z.
direction, then the y-direction, then the negative z-direction, then the
negative y-direction. The term of O(f) in this expression is

BK, + BK, - K, - BK; =0

therefore the lowest order term involving 3 is the quadratic term, and
in order to calculate it fully we should include the O(3?%) terms in the
expression for each boost, replacing eqn (6.61) by

ﬂz ﬁ? 3?2
A= (I+ BKy + ?Kj) (I+ BK: + '5*‘3) (I ~ BKy + ?KE)

2
(I - BK, + %1{3)

By expanding the brackets and neglecting terms of O(?) one finds
A=1-p%[Ks, K. (6.62)

Using eqn (6.60), this is a rotation about the z axis by an angle —?, in
agreement with two applications of eqn (6.44).

The matrices K., Ky, K, are said to generate Lorentz boosts, and the
matrices Sz, Sy, S, are said to generate rotations. All possible boosts
and rotations can be formed by combining them (e.g., a large rotation
can always be decomposed into many small rotations).

It can be shown that a general boost and rotation can be written®

A=ePK-08 (6.63)

where p is a rapidity vector, @ is a rotation angle (the direction of the
vector specifying the axis of rotation). This result is easy to verify for
simple cases. For example, a boost in the z direction would be given by
6@ =0 and p = (p,0,0) with tanhp = v/c.

6.9 The Lorentz group*

A product of two rotations is a rotation, but a product of two Lorentz
boosts is not always a Lorentz boost (cf. eqn (6.43)). This invites one
to look into the question: to what general class of transformations does
the Lorentz transformation belong?



e define the Lorentz transformation as that general type of transfor-
pation of coordinates that preserves the interval —(ct)? + z% +y? + 2*
unchanged. Using eqn (2.48) this definition is conveniently written

L={A: ATgA = g). (6.64)

where L is the set of all Lorentz transformations, A is a general Lorentz
transformation, and g is the Minkowski metric defined in eqn (2.46).
We will now prove that the set L is in fact a group, and furthermore
it can be divided into 4 distinct parts, one of which is a sub-group. Here
» roathematical group is 2 set of entities that can be combined in pairs,
such that the combination rule is associative (i.e., (ab)c = a(bc)), the set
is closed under the combination rule, there is an identity element and
every element has an inverse. Closure here means that for every pair of
glements in the set, their combination is also in the set. We can prove all
these properties for the Lorentz group by using matrices that satisfy eqn
(6.64). The operation or ‘combination rule’ of the group will be matrix
multiplication. The matrices are said to be a representation of the group.

(1) Associativity. This follows from the fact that matrix multiplication
is associatbive.

(2) Closure. The net effect of two successive Loreutz transformations
X — X' = X can be written X” = A, A1X. The combination AsA; is a
Lorentz transformation, since it satisfies eqn (6.64):

(AaA)TghoAy = ATATgAsAL = AT A, = g.

(3) Inverses. We have to show that the inverse matrix A™! exists and is
itself a Lorentz transformation. To prove its existence, take determinants
of both sides of ATgA = g to obtain

A9l = gl
but |g| = —1 s0
[AP=1, |A|=+1 (6.65)

Since |A] /A= 0 we deduce that the matrix A does have an inverse. To show
that A™! satisfies equ (6.64) we need a related formula. First consider

(Ag)(ATgA)(gAT) = Ag°AT = AgAT
Now (following Taylor) pre-multiply by (AgATg)~L:
AgAT =g (6.66)

where we used (AB)™ = B7! 47! (eqn (1.13)), and we can be sure that
(AgATg)~' exists because |AgATg| = |A?|g|* = 1. Now, to show that
A~1is a Lorentz transformation, take the inverse of both sides of (6.66):

(AT)y g™ 'AT =9 = (A™HTgA™ = g (6.67)

which shows A1 satisfies the condition eqn (6.64).
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Tl
Fig. 6.21 The structure of the Lore-
ntz group. The proper orthochronous
set L}" 15 a subgroup. It is continuous

and six-dimensional. The other subsets
can be obtained from it.

(4) Identity element. The identity matrix satisfies eqn (6.64), and so
can serve as the identity element of the Lorentz group.

Since the complete set of 4 x 4 real matrices can themselves be
considered as a representation of a sixteen-dimensional real space, we
can think of the Lorentz group as a subset of sixteen-dimensional rea)
space. The defining condition (6.64) might appear to set sixteen separate
conditions, which would reduce the space to a single point; but there is
some repetition since g is symmetric, so there is a continuous ‘space’ of
solutions, There are ten linearly independent conditions (a symmetric
4 x 4 matrix has ten independent elements); it follows that L is a six-
dimensional subset of R'®. That is, a general member of the set can
be specified by six real parameters, you can think of these as three to
specify a rotation and three to specify a velocity.

We can move among some members of the Lorentz group by continu-
ous changes, such as by a change in relative velocity between reference
frames or a change in rotation angle. However, we can show that not all
parts of the group are continuously connected in this way. The condition
(6.65) is interesting because it is not possible to change the determinant
of a matrix discontinuously by a continuous change in its elements. This
means that we can identify two subsets:

Ly={AeL: |A=+1}
Li={AeL:|A=-1} (6.68)

and one cannot move between L; and L; by a continuous change of
matrix elements. The subsets are said to be disconnected. One can see
that the subset L is not a group because it is not closed (the product of
any two of its members lies in L;), but it is not hard to prove that Ly is
a group, and therefore a sub-group of L. An important member of L is
the spatial inversion through the origin, also called the parity operator:

=(t—=t r—> —1).
Its matrix representation in rectangular coordinates is

1 0 0 o0
0 -1 0 0
P=ilG 6 =1 @l (6:69)

0o 0 0 -1

What is interesting is that if A € Ly then PA € L;. Thus to understand
the whole group it suffices to understand the sub-group L4 and the effect
of P. The action of P is to reverse the direction of vector quantities such
as the position vector or momentum vector; the subscript arrow notation
Ly, Ly i1s a reminder of this. Members of Ly are said to be proper and
members of L improper. Rotations are in Ly, reflections are in L.

We can divide the Lorentz group a second time by further use of eqn
(6.64). We adopt the notation A¥ for the (p, ) component of A. Examine
the (0,0) component of eqn (6.64). If we had the matrix product ATA



¢his would be Z#(AS)Z, but the ¢ matrix in the middle introduces a
gign change, so we obtain

3
~(A9P + D (AD)? = goo = —1
1=1

3 1/2
= AJ=+ (1 + Z(A@)Z) : (6.70)

=1

The sum inside the square root is always positive since we are dealing
with real matrices, and we deduce that

either A8 >1 or A8 < —1.

That is, the time-time component of a Lorentz transformation can either
be greater than or equal to 1, or less than or equal to —1, but there is a
region in the middle, from —1 to 1, that is forbidden. It follows that the
transformations with A3 > 1 form a set disconnected from those with
A £ 1. We define

LY ={AcL:A§>1} (6.71)
L-={AeL:Aj<1}. (6.72)
An important member of L~ is the time-reversal operator
T=(t—->-t,ror)
9

whose matrix representation is

(6.73)

oS O = O
o= O O
— O O O

It is now straightforward to define the sub-sets Ly L} L: L] as
intersections of the above. It is easy to show furthermore (left as an
exercise for the reader) that L'TF is a group and the operators P, T and
PT allow one-to-one mappings between L}F and the other distinct sets,
as shown in Fig. 6.21.

A member of LT+ is called a ‘proper orthochronous’ Lorentz transfor-
mation. All transformations in this group can be written as shown in
eqn (6.63).

All known fundamental physics is invariant under proper ortho-
chronous Lorentz transformations, but examples of both parity violation
and time reversal violation are known in weak radioactive processes.
Thus one cannot always ask for Lorentz invariance under the whole
Lorentz group, but as far as we know it is legitimate to require invariance
under transformations in L%L. This group is also called the ‘restricted’
Lorentz group.
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9 The time-reversal operator is not
the same as the Minkowski metric,
although they may look the same in
a particular coordinate system such
as rectangular coordinates. Their dif-
ference is obvious as soon as one
adopts another coordinate system such
as polar coordinates.
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6.9.1 Further group terminology

The Lorentz group consists of boosts, rotations, and combinations of
those. One can therefore regard it as the group of symmetry operations
on spacetime that leave the origin fixed. It is a subgroup of the Poincarg
group, which consists of the Lorentz group plus translations. Operations
such as rotation, boost and translation, which can act on elements in 5
space with a metric (here, spacetime), while preserving the metric, are
called isometries.

The general theory of groups can be used to find connections between
mathematical or physical entities whose close relationship might not
otherwise be obvious. This can give some very useful insights. We have
already exhibited one such connection: on the one hand we have 4 x 4
real matrices obeying eqn (6.64), and on the other we have the operations
of boost and rotation, regarded as abstract mathematical operations in
spacetime. We have found that the former can be used to mathematically
model the complete behaviour of the latter. To be precise, we have found
that the Lorentz group (the group of boosts and rotations) is the same as
the ‘indefinite orthogonal group O(1, 3)’. The latter is defined as a matrix
group whose elements are matrices of real numbers, whose operation
is matrix multiplication, and whose members have the property that
when acting on a 4 x 1 vector the combination % — 23 — 22 — 7% is
preserved. The term ‘indefinite’ in the group name alludes to the fact
that this invariant is not positive definite but may have either sign or
none. The notation O(1, 3) arises because this can be generalised to more
dimensions with more terms in the metric. The technically correct way
to say the groups are ‘the same’ is to say they are isomorphic. This
means there exists a one-to-one mapping between elements of the first
group and elements of the second, such that the structure of the group
is preserved: i.e., if M;M; = M, for elements M, in the first group, and
the mapping to elements N, of the second group is M, ¢ N4, then
N.;!Vj = Ng.

The groups we are discussing are also called Lie groups. A Lie group
15 a group where the members can be described in terms of smoothly
varying parameters such as real or complex numbers. These parameters,
as they vary in combination with one another, can be regarded as
mapping out a smooth space. If the space is indeed smooth, according
to a technical definition, then it is said to be a ‘differentiable manifold’
(often abbreviated to ‘mamnifold’) and we have a Lie group (as long as
the members also obey the four defining properties of a group, of course:
closure, inverses, identity element, associative).

Now we can have some fun with group theory.

The four parts of O(1,3) are called its four connected components:
each is a component that is smoothly connected within itself. The
two components giving all the proper Lorentz transformations form a
subgroup called SO(1,3) (the ‘special indefinite orthogonal group of order
1,3"). The two compoenents giving all the orthochronous Lorentz trans-
formations form a subgroup called O¥(1,3). The single component that
includes the identity operation is called the ‘identity component’; this



is the proper, orthochronous Lorentz group, also called the ‘restricted
Lorentz group’ SO*(1,3).

For matrix groups, it often happens that the restriction to matrices
of determinant +1 is itself a group, a subgroup of the original group.
It is called the ‘special’ subgroup: hence ‘SO(1,3)’. (Another example,
gU(2), is described in volume 2.)

The discrete set

{1, P, T, PT}

itself forms a group! This is called the Klein group V (for ‘Vierergruppe’).
Because all of O(1,3) can be reconstructed precisely by a combination
of SOT(1,3) and V, we say that O(1,3) contains a ‘quotient group’
0(1,3)/S0O*(1,3), and this ‘quotient group’ is isomorphic to the Klein
group.

The restricted Lorentz group is closely related to another group: the
special linear group’ SL(2,C). This groups consists of all 2 x 2 matrices
of complex numbers, with determinant 1:

M:(a b), ab—cd = 1.
¢ d

To make the connection, consider Hermitian matrices (those such that
H!' = H, where H' = (HT)*: transpose and complex conjugate). Any
2 x 2 Hermitian matrix X can be described by four real numbers, and
we can make the clever choice

X:<t+z I—iy)l (6.74)

r+iy -z
then the determinant of X is
|X| =% — 2% — 9% — 22
Now, if we allow members of the group SL(2,C) to act on such X by
X - MXM! (6.75)

then the determinant of X is preserved. Looking into this a little further,
one finds that the Lie group SL(2,C) can provide an exact copy of the
Lie group SO™(1,3). In fact, SL(2,C) provides not just one copy of
SO™*(1, 3), but two, because replacing M by —M will result in the same
transformation of X. That is, for every member N; of the restricted
Lorentz group SO™(1,3), there are two members M; and —M; of the
special linear group that map onto it. Such a ‘2 to 1’ mapping is called
a double cover. If one takes just one of the two parts of SL(2,C), one
has the ‘projective special linear group’ PSL(2,C) and then one has an
isomorphism (i.e., one-to-one mapping) with SO+ (1, 3).

It is also known that PSL(2,C) is isomorphic to yet another important
group: the Mébius group. This opens up further insights into the Lorentz
group, many of which are important in particle physics.

The connection between the Lorentz group and the SL(2,C) group
leads to the concept of spinors, discussed in volume 2.

6.9 The Lorentz group
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—

Exercises

(6.1)

(6.2)

(6.3)

(6.4)

An oscillator undergoes periodic motion. State,
with reasons, which of the following are Lorentz-
invariant:

(i) the amplitude of the oscillation,

(ii) the phase of the oscillation,
(iit) the maximum velocity.

The 4-vector Geld F is given by F = 2X + K(X - X)
where K is a constant 4-vector and X = (et, z,y, 2)
is the 4-vector displacement in spacetime.
Evaluate the following:

@) a-x

(i) OX - X)
Gii) O*(X - X)
(iv)y O F

(v) OME-F)
(vi) O%sin(K - X)

|Ans. 4, 2X, 8, 84 2K - X, 2K, —K?sin(K - X)|
Prove that if a distribution of current density j is
confined to a finite vegion, then

/:cV-jdV:—/jth

where dV = dxdydz and the integral is over
all space. (Hint: write V .j=(87./0z)+
(034/08y) + (0j-/0%) and treat the three integrals
separately.) Hence, show that if p and j are the
density and flux of a conserved quantity, then

d
— xdV = jdVv.
dt/p‘( /Jd

Note the physical interpretation: the LHS is the
rate of change of dipole moment, and the RHS
is the total current. A non-zero current means
charge is being carried from one place to another,
hence changing the dipole moment; if the dipole
moment 1§ constant then the currents must be
flowing in loops.

(6.76)

A cylinder has no translational motion in some
reference frame S, but rotates rigidly: i.e., all its
particles move around the axis of the cylinder with
the same angular velocity w in S. Show that in
other reference frames moving in the direction of
the cylinder’s axis, the cylinder is twisted. Find

the speed of a reference frame in which the tota]
twist from one end of the cylinder to the other is
by 27 radians. (Hint: write down the trajectory
of a particle, or, as suggested by Rindler, refer to
exercise 2.3 of chapter 2.)

(6.5) Explain qualitatively what sort of mation should

be given to a banana, relative to a given inertial
reference frame, in order that its natural shape
would be straight in that reference frame.

(6.6) Rotaling disk paradoz. A disk of radius a sits

on top of a piece of paper, both initially at
rest in frame S. A line is painted on the paper
around the edge of the disk; such a Jine must have
length 27y, equal to the circumference of the disk.
A device now puts the disk into rigid rotation
at angular frequency w, such that all parts of
the disk acquire the appropriate initial velocity
simultaneously in S. It is observed that the edge
of the rotating disk still lies directly above the
circle painted on the paper—whose circumference
remains 2ma. However, any small region of the
disk’s edge is moving at speed we¢ relative to S and
so suffers a Lorentz contraction by a factor v =
(1 —w?a?/c?)~*/% The circumference of the disk,
observed in S, is therefore Lorentz-contracted by
this amount. Yet the disk still matches with the
painted line, How is this to be explained? (Hint:
section 6.5.2). If a = 10%m, w = 100s"', what is
the circumference of the disk as observed in frame
57 How many sticks of rest length 1 metre can be
attached to the disk, laid end to end around its
circumference?

(6.7) Here are two ways to find the general Lorents

boost, eqn (6.36). (i) Firsl rotate the axes of S so
that the relative velocity v lies along the rotated
z-axis, then apply the simple boost for frames in
the standard configuration, then rotate axes back
again. (ii) Confirm that a particle at rest in §’ has
velocity v = Bcin S, that the coordinate axes of S
and 8’ are aligned, and that ATgA = g. Pick one
or both of these methods, and carry it through to
check egn (6.36).

(6.8) In S’ a rod paralle] to the z' axis moves in

the ¥ direction with velocity 1. Show that in
S the rod is inclined to the z-axis at an angle
—tan"*(yuv/c?). (Hint: let one end of the rod



pass through the origin at ¢ =0 and locate the
other end at t = 0.)

(6.9) A 10 foot pole (proper length) remains parallel to
the z axis of frame S while it glides at velocity
(v, —w,0) towards a hole of diameter 5 feet in
a steel plate lying in the plane y = 0. Describe
how the pole passes through the hole, in three
frames: the rest frame of the pole, the frame S,
and the frame S in standard configuration with
S (i.e. S’ moves relative to S at speed v in the
z direction).

(6.10) §A certain elastic band will break when it is
stretched to twice its natural length. Such a band
has initially its natural length and lies at rest
on the z axis of some frame S. The ends are
then made to move in the z direction with con-
stant proper acceleration ap, starting simultane-
ously in S. Show that the elastic breaks at time
t=V3ao/c.

(6.11) Prove eqn (6.43) by calculating A(v)A(—u)A ™ (w)
explicitly.

Exercises for Chapter 6 141

(6.12) According to Quantum Electrodynamics, the g-
factor (gyromagnetic ratio) of the electron is
given by gs = 2+ (a/m) — 0.657(c/m)® + - -, and
therefore ¢gs —1~14 a/m whereas g./2~1+
a/2m. Calculate the fractional error introduced by
using gs/2 instead of the correct value gs — 1 in a
theory of the spin-orbit interaction in hydrogen.
Compare this with the precision of the most accu-
rate measurements of the spin-orbit splittings in
hydrogen.

(6.13) Prove (e.g., by evaluating the power series expan-
sion) that exp(—pK:) gives the Lorentz boost
matrix shown in eqn (2.39), where K, is given
in eqn (6.57).

(6.14) Confirm that eqns (6.62) and (6.44) are mutually
consistent. (Check both the size and sense of rota-
tion.)

(6.15) For any two future-pointing time-like vectors V,,
Vs, prove that V) - Vy; = —V1 V5 cosh p where p is
the relative rapidity of frames in which V; and V2
are purely temporal.
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Relativity and
electromagnetism

Relativity and electromagnetism go hand in hand. Historically, the basic
equations of the theory of electromagnetism were discovered first, but its
application to complicated problems such as the structure of materials
was haudicapped by a lack of insight into fundamental principles, such
as Lhe invariance of the speed of light in vacuum. On the other hand, it
opened the way to the discovery of Special Relativity. Einstein himsel{
remarked that one of his guiding principles, leading him to the discovery
of Relativity, was the hunch that magnetic effects were none other than
a manifestation of electric effects under another guise.

We can now recognize that the essential idea of Relativity is a kind
of symmetry principle: both the Principle of Relativity and the Light
Speed Postulate speak of syminelry: i.e., the idea that a system or a
dynamics should stay unchanged when an operation such as a change
of reference frame is performed. It is natural to regard this as the more
basic insight into the Laws of Nature, so that whereas it would interest
us but not unsettle us too much to find that Maxwell’s equations were
wrong, it would be very disturbing if their replacement did not obey the
Main Postulates of Relativity.

With the hindsight, or insight, of Relativity theory, we can now return
to electromagnetism and use it as an object lesson in how to discover
physics by using fundamental symmetry principles, That is, supposing
we did notl already know Maxwell's equations, could we discover them
from a few simple observations by applying the powerful machinery
of Lorentz transformations? Also, was Einstein’s hunch true: can the
magnetic force be regarded as none other than the electric force seen
from another point of view? What else can Relativity teach us about
eleclromagnetism?

We have already partially answered the last question: all the exam-
ples of physical behaviour, such as contracting bodies, headlight effect,
Doppler shifts, collisions, time dilation, could be regarded as predictions
from Maxwell's equations, many of which we would be hard pressed to
derive with confidence directly from the latter. The answer to the second
question—are magnetic forces just electric forces in another reference
frame?—will turn out to be ‘sometimes’. The full answer is that electric
and magnetic fields should be regarded as two parts of a single thing: the
electromagnetic field. They are like two components of a single vector
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actually, two parts of a single matrix-like quantity called a tensor— but
more of this later).

In this chapter we shall start by considering electric and magnetic
fields as essentially fields of force. That is, we say there is a ‘something’
which exerts forces on charged matter, and our starting point is an
equation saying how the force depends on the charge and motion of
the matter (the Lorentz force equation). We then get to work with
Relativity and discover what we can about the ‘something’, such as how
it changes from one inertial frame of reference to another. After that we
shall introduce Maxwell’s equations without attempting to derive them,
and work our way towards showing their full consistency with Relativity
(‘Lorentz covariance’) and finding solutions, such as the fields due to a
moving particle.

In chapter 13 we shall adopt some more powerful mathematical meth-
ods, and this will allow us to take a different perspective on the whole
subject. There we shall take the view that the electromagnetic field is
itself the primary thing, whose existence can be postulated. By claiming
that it is a tensor field we will automatically know how it behaves under
Lorentz transformations, and one can argue that the Maxwell equations
and the Lorentz force equation are to be expected, since they amount to
one of the most simple and natural field theories that Special Relativity
allows.

Both approaches yield important insights. It is not a case of one being
‘better’ than the other. The tensor methods are needed to get certain
insights, especially into the energy and momentum of the field itself, but
the vector methods are more straightforward for obtaining solutions to
many types of problem. First of all, then, let us take thie more ‘humble’
approach of 3-vectors and 4-vectors.

7.1 Definition of electric and
magnetic fields

Who has seen the wind?

Neither you nor I.

But when the trees bow down their heads,
The wind is passing by.

Christina Rossetti

The very concept of a ‘field’ is unsettling when one first meets it as
a student of physics. We naturally wonder what a magnetic field or an
electric field ‘is’, when it seems that we caunot smell it or touch it.
Is it there at all? The current-carrying wire is visible enough, and the
compass needle certainly swings, and we can believe that the electrons
in the wire somehow pushed on the electrons in the needle, but what is
this ‘feld’ our teachers are telling us about? We suspect that it is just
some sort of mathematical method, such as integration. Integration is

143



144  Relativity and electromagnetism

fine: we know what that is—it is just adding up lots of little bits. Sg
what is the field really? What are its bits?

These same questions were much discussed in the nineteenth century,
and perturbed some of the greatest minds in science. We should nog
dismiss them or imagine that scientists such as Maxwell, Lorentz, and
Poincaré were somehow less intelligent than modern physicists. 1t ig
just that we have learned that the fields do not have any ‘bits’: they are
themselves fundamental, and we just have to get used to them. However,
we have learned that it does make a lot of sense to regard these fields
as real physical things. They store energy, they carry momentum, and
they move energy and momentum around from one place to another,
This does not rule out that new insights in the future may te!l us more
about fields, but we are pretty sure that any such insights will not make
fields seem more everyday,

The best way to define an electric field seems to be to define it in
terms of the effect it has on charged particles. So our first attempt is:

Throughout all of spacetime there is a vector field called an electric field (whose
size tends to zero a long way from matter). Tts value at any given position and
Lime is equal to the force per unit charge exerted on a small fixed test charge
at that position and time:

f(t,z,y,2)

= (7.1)

E(t,z,y,2) = lim
q—0

It has to be understood that the force talked of here is the one that
cannot be accounted for in other terms. For example, it does not include
any gravitational force there may be. We could handie that by adding
a condition that we take a limit of zero mass for the test charge, or else
insist that we are referring only to that part of the force which changes
with the amount of electric charge. (The definition of electric charge
can be handled separately: the main point is that it is something that
particles can possess and it is conserved.)

The trouble with the above definition is that there exist physical
scenarios where an electric field is present in a region of spacetime when
we apply the definition in one inertial reference frame, but it vanishes
when we pick another inertial reference frame! (For an example, put a
permanent magnet on board a train, and consult eqns (7.13)). So what
does it mean to say ‘there is an electric field’, when a mere change of
inertial reference frame can make it vanish?

To do better we have to define electric and magnetic fields together,
as follows:

Throughout all of spacetime there is a tensor field called an electromagnetic
field (whose size tends to zero a long way from maltter). Its value at any
given position and time can be expressed in terms of two vector fields E and
B, through the force per unit charge exerted on a small test charge at that
position and time, The ‘electric’ part is defined as above, and the ‘magnetic’
part is defined through
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_ . flt.z,y,z2)
vABG2) = li {E2R) g5y (7.2)
where v is the velocity of the test charge in the reference frame in which the
felds are being evaluated.

This definition survives a change of reference frame, because under
such changes electric fields and magnetic fields can come and go, but the
clectromagnetic field survives (this is like the way the components of a
vector can vary under rotations, but the vector is still there). Note that
the force can itself change under a change of inertial reference frame—-n
fact, we already know how: eqn (4.6). It will turn out that this 3-force
is v~ times the spatial part of a 4-vector 4-force.

The main point is to arrive at the

Lorentz force equation

f=¢q(E+vAB) (7.3)

and remark that this can be regarded as the defining equation of the
electric and magnetic fields. In the Lorentz force equation, f is the force
on a particle located at some position, E and B are the electric and
magnetic fields at that position, produced there by everything other
than the particle in question, and ¢ and v are the charge and velocity
of the particle.

7.1.1 Transformation of the fields (first look)

The Lorentz force equation (7.3) together with the equations (4.6)
describing the transformation of force between one reference frame and
another can teach us some of the properties of electric and magnetic
fields. In tact, if you think about it, it ought to be possible to discover
from them how electric and magnetic fields transform under a change
of reference frame. In order to do this, we need to assume that we have
a sensible theory: i.e. one that respects the Postulates of Relativity,
and in particular the Principle of Relativity. This means that we shall
assume the Lorentz force equation is valid in all reference frames. We
shall further assume that it describes a pure force (one that does not
change the rest mass of particles on which it acts): this is not required
by the Principle of Relativity, but it will turn out to be right for
electrornagnetic forces. It means that we can use the simpler form (4.7)
for the transformation of fj. Finally, we assume the charge on a particle
is Lorentz invariant. If it all works out, then these assumptions will
have been shown to be consistent. After that we can march in hope (o
an experimental laboratory, to determine whether the theory matches
experimental observations.

The idea is to start with a reference frame S in which there are fields
E and B, then pick another frame S’ moving at velocity v relative to
the first. We can probe the field by putting a test particle of charge ¢
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in it. We use the transformation of force to tell us what the force on
this test particle is in the new frame, and we can use its dependence on
velocity to unpick which part is electric and which part magnetic. Thus
we deduce the fields E' and B’ in the new frame.

It is convenient to treat the fields in S one at a time, and then add
them together at the end. So, first suppose there is an electric ficld E
but no magnetic field in S. Let our test particle have velocity u in §.
The force on it, in frame S, is

f =qE.
In S’ the force on the test particle is given by eqn (4.6):
- q(E“ == V(E 4 Ll)/CQ) . qE_L
1= —— M= (7.4)
1-u-v/e? Y1 —u-v/c?)

where the subscripts || and L refer to parallel and perpendicular to v,
the relative velocity of the reference frames, and 7y is ,.

For any v, we can pick u = v, then S is the rest frame of the test
particle, and we expect the force on it to be wholly electric in nature.
Eqns (7.4) give for this case fj; = ¢E| and f| = y¢E |, so we deduce

This is the complete behaviour of the electric field when there is no
magnetic field in the first frame.

Now to find the magnetic field in the second frame.

Do not forget that we can choose any velocity u we like for our probe:
we are using it to explore the fields. So, next let us choose u parallel to
v but not equal to it. Then eqns (7.4) give the same result as before for
fi, and, after using eqn (4.8),

fl =qE 1 y(1+u' - v/c?). (7.6)

When u is parallel to v, so is u’, so u’ A B’ is perpendicular to v.
Therefore the magnetic contribution to the Lorentz force in S’ goes
completely into f {not f,’!), and we must have

L =gq(E} +u' AB)
Substituting this into eqn (7.6) and using eqn (7.5), we have
W AB =E yuv/c?. (7.7)

After thinking about the directions you should be able to see that the
solution for B’ is
—-vAE

= (7.8)

B =7

We cannot learn anything about Bir from this case because we launched
our probe in such a way that its velocity in ' is along v, so even if
there were a non-zero Bi it would not exert a force on the test particle.
To get further information we would need to launch the probe in other
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divections. The general case (an arbitrary u) involves a lot of rather
gnenlightening algebra, but it is not necessary to treat it. It suffices to
examine the case u perpendicular to v; this is not too hard and is left as
an exercise for the reader. One finds that, when the field in S is purely
electric, the magnetic field in §' is perpendicular to v: i.e., Bil =0 (and
B/, is still given by eqn (7.8), of course). This completes the calculation
of the field transformation for this case.

Next let us perform a similar analysis for the case where the field in
g is purely magnetic:

f=quAB.

To keep things simple we shall assume from the outset that u is parallel
to v, 80 we have flll =fj =0 and

o quA B
= = S 7
L7 41— w/e?) (7.9)
As before, firsl Lake u = v to get the electric feld:
E =~vAB. (7.10)

Then substitute this in to the Lorentz force equation in reference
frame S’
qunAB

AB "AB') = ———,
q(fyv + u ) ‘_"(1 U'U/Cz)

(7.11)

After some algebra similar to that we employed for eqn (7.7) you can
confirm that the solution for B’ is

' =9B1. (7.12)

As before, we gain no knowledge of B from a test particle launched
along it, but by considering other directions for the test partic'e it is not
hard to prove that Bh =By.

Finally we can gather all the results together, using linearity of the
Lorentz transformation. The effect of a combination of both an electric
and a magnetic field in S is to produce a sum of forces, and the Lorentz
transformation results in a sum of corresponding terms in the new frame.
Therefore the complete set of equations for the transformation of the
electromagnetic field between one reference frame and another is

Transformation of electromagnetic field
By = E
E\ =vy(EL+VvAB),
By =By
/ ¥ b
" =v(BL-vAE/?). (7.13)
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As usual, Lhe subseripts || and L refer to the components paralle! and
perpendicubir to the relative velocity v of the reference frames. By using
Ep = (E . vjv/v? and B; = E - E| the results can also be written as

T
B = Bl vaBy~ X By
14 =
8
v % coay ¥ By
B = ~B-vAE/R") T

(el see exercise 114 of chaplor 13 for yel another form),

The derivatbon of eqa (7.13) that we have given is perfectly correct amd
comiphete, nod st the gume timeowe live completed nnobher bask: namely,
o prove Lhat the Loreeds Rroe sguation ie valkd in al] veforence franig
il it in vnlid in one (nuder the assumplion thit we are doaling with o
panre foree). Wi did not explicitly show the ease of & test particle moving
in an arbitrary direstion, bt any velocity can be written u = up+ o
dire] Lh Fores by loeap o w 8o can be obtained by summing the cases we
did treat, The main ks=son iz thet this method of proof s quite correct
aiid eomplets, shiould vou wish to check it furthes.

We shall present altermetive decivatioos of ogn [ 7.018) wsing bwoe dif
feremib d-weckor frethods. ab the el of this chapter, one of which i
rosceh mora divect, Wa shall also exhibit the Lovents forto as part of
i devector 4-force. Indeed, at this polnt 1 must ‘rome clean’. A modern
thooretical physicist teading the sbowe treatment, sqns (7.4) to (7.12),
woild fesl a certain impatience. “Why is8 hoe offéring this labarions
Svectar treatmemt ', an export would sueely agk, ‘when |4 can be done so
el e easily nnd elegantly using the proper languesge of Relativity,
which is d-veetorg mitel tessars?’ The answer is that | think you can leirn
sotmething wselul from looking &b e 3ovectors dnd thinking it theough.
However, my hope iz that by the lime you finkh this book you will ba
that impatient expect!

Generabigng from Cawdomb's b

The whove argument invoked the transformation of force. Suppose that
by sbart with we only krew Coulomb's law for the foree betwean skatic
point charges. ‘Then by lovoking a change of referonee frame we would
jmmedintoly dedueo that thore miust be furtber contributions o the foree
when charges ape in moticn—wlist we coll the msgoetic conteilmition. 1§
is interesting thul quite a lot of electromagrlism can thas be discowered
by bullding oo Coulomb's law and insisting on consistency with Speciad
Relutivity, One ranmot diseower the whole subject by this method,
becaise it does not reveal the effect of accelerations, for example, but if
we had to discover electromagnatism without the beneht of Ampéra’s [aw
of Paradav's [nw, then Relativity would provide sooe strong polnbes
It would show us, for example, that forees of the foom v 8 B musd
exlst when charged particlss are o motbon, which sould direct g o
the magnetic feld definition (7.2). A similer dismussion of the force




due to gravity suggests that it too should have a contribution that
depends on motion of the source, as indeed it does, according to General
Relativity,

7.2 Maxwell’s equations

The theory of electromagnetism discovered by Faraday, Ampére,
Maxwell and others is encapsulated by the Lorentz force equation (7.3)
and the

Maxwell equations:

vE =2
€0
V.B =
dB
VAE = -3
2 _ 4 OE
AVAB = 4. (7.14)

where p is the charge per unit volume in some region of space, j is the
current density! and g is a fundamental constant called the permittivity
of free space.

In relativity theory the issue immediately arises: are these equations
satisfactory? Can we proceed and apply them in any reference frame we
might choose, or do they include a hidden assumption that one reference
frame is preferred above others?

The answer turns out to be that the equations are fine as they are:
they do not prefer one reference frame tc another. To prove this, we
can consider a change of reference frame, and work out how Maxwell’s
equations are affected. We already know how the position and time
coordinates will change, and we know how the charge density and current
density will change (because together they form a 4-vector, eqn (6.10)),
so we can work out how Maxwell’s equations and the Lorentz equation
will look in the new coordinate system. After a lot of algebra, the answer
turns out to be

ve =2
€0
V=B =
i . i oB’
V AE = o0
i, OF
Vi wil Br — -]_ = ;
V' A <t (7.15)

f = q(E'+u AB) (7.16)
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L In SI units the last equation is often
written WV A B = ugj + couo(GE/8t),
where pg is another constant called the
permeability of [ree space, defined by
po = 1/(eoc?). In the Sl system ¢, €
and pp all have exactly defined values;
these are given in the inside cover.
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where V- and V'A are the div and curl operators in the primed
coordinate system (1.e. V' = (8/0a’,8/8y',0/07")), and E/, B are given
by eqns (7.13).

Eqn (7.16) confirms that the symbols E’ and B’ refer to vector fields
which fit the definition of electric and magnetic fields in reference frame
S’. Egns (7.15) then confirm that the Maxwell equations are the same
in the second reference frame as they were in the first one. Therelore
every physical phenomenon they describe will show no preference for one
reference frame above another, so the Principle of Relativity is upheld,
The set of equations is said to be Loreniz covariani. The word ‘covariant’
rather than ‘invariant’ is used for technical and historical reasons. One
can think of it as expressing the idea that whereas all the bits and pieces
in the equations (E, B, j, p, t, z,y, 2) do change from one reference frame
to another, they all conspire together, or co-vary, in such a way that the
form of the equations does nol change.

The lengthy algebra we mentioned (but did not go into), to derive
eqns (7.15) and (7.13), can be considered a ‘brute [orce’ method to show
that Maxwell’s equations are Lorentz covariant and to find out how the
fields transformi. One of the aims of this chapter is to introduce some
powerful concepts and tools that will enable us to prove the former and
to derive the latter in a slicker way, We will re-express the equations
using 4-vectors and the [l operator, so that their Lorentz covariance is
obvious. This will make the result seem less like a ‘conspiracy’ and more
like an elegant symmetry.

7.2.1 Moving capacitor plates

To get some insight into eqns (7.13) let us consider some simple cases.
Consider, for example, a parallel plate capacitor, carrying charges @, —@Q
on two parallel plates of area A and separation d, at rest in reference
frame S (see Fig. 7.1). The electric field between the plates of such a
capacitor is uniform, directed perpendicular to the plates, and of size
E=Q/eA

Now consider a reference frame S’ moving parallel to E. The charges
on the plates are invariant, the area is unchanged since it is transverse to
the motion, while the plate separation is Lorentz-contracted to d' = d/v.
However, the electric field is independent of d'. One finds, therefore,
E' = E, in agreement with eqn (7.13i).

Next suppose that instead of moving parallel to E, 8’ moves relative to
S in a direction perpendicular to E (i.e., it moves parallel to the plates).
Now d' = d but the Lorentz contraction leads to A' = A/, therefore the
charge per unit area on the plates is larger in §', and we have E' = vE,
in agreement with eqn (7.13ii).

In fact, this simple argument from the capacitor plates is sufficient to
prove (7.13i) and (7.13ii) in general when the relative velocity is either
parallel to or perpendicular to E, and there is no magnetic field in the
first (unprimed) reference frame. This is because the field at a given
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(a) (b) ()
] A= Af~
: A A i [
Q F ol
d : [ d = d/y
9 - It" i
- @ f_ "
Bi= % E=E E =qF
B=0 B'=0 Bt =R

Fig. 7.1 The moving capacitor. (a) The situation in frame S where the capacitor is at rest. (b) The siluation in a frame
moving along the field direction, normal to the plates. (¢) The situation in a frame moving perpendicular to the field direction,
parallel to the surface of the plates. The charges are invariant; the capacitor dimensions change as shown. (Thesze simple cases
are easily remembered and cover much of what one needs to know about field transformation.)

point must transform in the same way, independent of what charges or L
movement of charge gave rise to it.
The capacitor example also illustrates the second term in eqn (7.13iv). 5
A flat sheet of charge moving parallel to its own plane represents a sheet: w B
of current (Fig. 7.2). It gives rise to a magnetic field above and below — V

it, in a direction parallel to the sheet and perpendicular to the current,
of size pol/2w where I is the current Aowing through a width w of
the sheet (this is easily proved from Ampere’s Law or by integrating
the field due to a wire). Applying this result to the case of a capacitor, Fig. 7.2
we have two oppositely charged sheets moving at speed v in reference

frame S’. For v perpendicular to E the magnetic fields of the two sheets

add (in the region in between the capacitor plates) to give B = pol’ /w/’,

where I’ = Qu/L’ and L', w' are the dimensions of the plates in §'. Using

w' [/ = A' = A/~ owing to Lorentz contraction of L, we have

g Qv _ Qv _ vE

A e L

in agreement with eqn (7.13iv).

Charge from nowhere?

Similar arguments can be made concerning the transformation of mag-
netic fields, but one needs to be more careful because there are more
movements of charge to keep track of. Consider the following, which
seems paracdoxical at first. An ordinary current-carrying wire is electri-
cally neutral, but has a current I in it. Therefore the 4-vector current
density is J = (pe,j) = (0,1/A4), where A is the cross-sectional area
of the wire. Now adopt some other reference frame, moving parallel
to the wire, which we shall take to define the z axis. The Lorentz
transformation gives the charge density in the new reference frame: it
is p' = y(p —vj/c?) = —yul /(Ac?). This charge density is non-zero! So
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Fig. 7.3 A neutral current-catrying
wire consists of positive and negative
charges of equal number density in
frame S (upper diagram). The nega-
tive charges are shown as dots; the
arrow indicates their drift velocity. In
frame S’ moving at the drift velocity
the current is caused by the positive
charges moving to the left. Compared
with frame S, the lattice of positive
charges suffers a Lorentz contraction,
while the opposite happens to the neg-
ative charges (since in S they were mov-
ing and in S’ they are not). Therefore
in 8 the wire is not neutral: it carries
a net positive charge density. Charge
is still conserved (count the dots and
crosses!); the extra density has come at
the expense of the charge distribution
elsewhere, where the current flow must
be in the opposite direction to complete
the electrical circuit,

where did the charge come from? It was not there in the first reference
frame; now it has ‘magically’ appeared.

Before we resolve this, consider another puzzle. A stationary electron
in the vicinity of the wire, say 1 metre from i, experiences no force in
the first reference frame, since its velocity is zero and a neutral wire does
not produce an electric field. Therefore il does not accelerate. But now
consider a reference frame moving at the drift velocity v of the electrons
in the wire. This drift velocity is small. It is related to the current by
I = Angu, where n is the number density of electrons in the wire and
g is the charge of an electron. For a typical metal such as copper, n ~
8 x 10%® m—3, so for a 10-amp current in a wire of diameter 1 mm, we
find v ~ 1 mm/s. In the new reference frame the electron How is zero, but
now all the other parts of the wire (the nuclei and bound electrons) are
in motion. They carry a net positive charge, so their motion constitutes
a current I’ = ~I, where the « comes from the Lorentz transformation
of J. (We could neglect v here because it is extremely close to 1, but
let us keep it anyway.) In the new frame, therefore, there is a magnetic
field around the wire B" = pyyI /(2nr): this is an example of equ (7.13iv),
Now, the interesting part is that in the new reference frame, the electron
situated near the wire is in motion, so it experiences a magnetic force!
The force is

qupayl
2mr

F=quB = (7.17)
We find the B field is about 2 micro-tesla, and the force is f' ~ 3 x
10728 newton, leading to an acceleration approximately 350 ms~? away
from the wire. So, according to this argument, the wire will very quickly
accelerate electrons in a large volume around it...whereas in the first
reference frame we found no such acceleration.

These two paradoxes are, of course, related. The non-zero charge
density in the new refercnce frame is correct. It creates an electric field
in the second frame and thus a further contribution to the force on any
particle near the wire: this exactly balances the magnetic force we have
just calculated.

Fig. 7.3 explains what is going on. An object that is overall electrically
neutral but which carries a current must have two sets of charged
particles in it: one positive and one negative, The overall neutrality,
in a given reference frame S, means these sets have equal densities,
ny =mn . =mn,in S. The non-zero current means that one set of particles
is moving and the other is not, or else they both move with different
velocities. When we change to another reference frame, the Lorentz
contraction is by a different amount for one set of particles than for
the other, because of their different velocities. Indeed, in going from
the frame where the copper nuclei are at rest to the frame where the
conduction electrons are at rest, the nuclei get closer together while the
conduction electrons spread out because we are transforming to their
rest frame. So n/, = yny and n’. = n_/v. The charge density in S’ is
then
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where we used § = ngu = n(—q4)v. 7 is the current density in S, and g4+
is the charge on a proton. (Here j and v are in opposite directions so p’ is
positive.) This result agrees with the one we obtained by transforming J.

To complete the analysis let us check the electric field produced by
this non-zero charge density. We have a line of charge, with charge per
unit length X' = g/ A. The electric field at distance » from such a line
charge is

s N mav®A wpeyl

T Dmegr 2mwegctr 2rr

Compare this with eqn (7.17). You can see that the electric and magnetic
forces in S’ are everywhere balanced.

Such a perfect balance of forces that, if they were not balanced, would
have substantial effects, should arouse our suspicion. It looks like a
conspiracy, but we do not like conspiracies in Nature. We think they
are a sign that we do not have the right perspective on something. In
this case the answer is that the two forces are not two but one: we must
regard the electric and magnetic parts as two parts of one thing. If the
‘one force’ is zero, then we have only ourselves to ‘blame’ for supposedly
‘marvellous’ effects if we start interpreting it as two forces. Of course,
we will find that they are balanced.

The strength of materials

Let us examine another issue nicely illustrated by the parallel-plate
capacitor. In section 4.1.1 we noted that a moving body loses its strength
in the direction transverse to its motion. Now, most ordinary bodies are
made of atoms, and the forces inside them, when they are stretched
or compressed away from their natural length, are almost entirely elec-
tromagnetic in origin: a complicated combination of the electrostatic
attractions between the unlike charges (nuclei and electrons), repulsions
between the like charges, and the magnetic forces. It requires a quantum-
mechanical treatment to treat materials correctly, but to get a simple
Insight, suppose we argue that an attempt to break an ordinary object
by pulling on it is somewhat like pulling apart a pair of capacitor plates.
You should not treat this simple idea as anything like a quantitative
model of the structure of materials, but it does illustrate the kind of
thing that happens to electromagnetic forces inside an object when it is
set in motion.

For a stationary capacitor, the force on any given charge ¢ in one of
the plates is equal to ¢ times the electric field due to the other plate (you
can soon convince yourself that the forces from other charges within the
same plate will cancel to very good approximation near the middle of a
large enough plate). Therefore the force on such a charge is

7.2  Mazwell’s equations
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2 .but not always: it is found that

magnetic dipoles are associated with
the intrinsic spin angular momentum of
charged particles; this spin cannot be
associated with a movement of matter.

9Q
f —Q‘E‘I = 26[]/4)
where E; is the field due to the charges on one plate (this is half
the total eld between the plates). Now consider a reference frame iy
which the capacitor is moving in a direction parallel to the plates: i.e.,
perpendicular to B. According to eqn (7.13) the electric field betweey
the plates is now larger, but according to eqn (4.Gii) the force on the
particle we picked is now stnaller. What is going on?

[n the new reference frame there is a magnetic as well as an electrig
contribution to the force. The magnetic field due to either one of the
plates on its own is

' ywkE
g = B
LI c?

and the charged particle now has speed v, in a direction perpendicular
to BY. The magnetic force in this example has a direction opposite to
the electric force. Tt follows that the total force on the particle in the
new reference frame is

I’ = q(E| -vB})=qE{(1 —v*/c?) (7.18)
vEy  qE)

— {; =5 i 7.19

15 = (7.19)

Thus the argument from Maxwell's equations does agree with the predic-
tion from the Lorentz transformation of forces: physical objects become
weaker in the transverse direction when they are in motion (see the box
above, however, for a commenl on all this).

At speeds small compared to ¢, the magnetic contribution to the force
is very much smaller than the electric contribution. Some people, on
observing the factor v*/c* in eqn (7.18), like to say that it is as if
magnetic effects are a ‘relativistic correction’ to electric effects. When we
put a current in a wire, and observe the magnetic field through its effect
on a nearby compass ncedle, for example. one might say that we are
observing at lirst hand the infuence of a tiny relativistic correction! In
practice, magnetic effects can very often be traced to a moving electric
charge.? Since no magnetic monvpoles have ever been discovered, and
since motion is relative while charge is not, one may well feel that the
electric field is the ‘senior partner’. I would prefer to say that magnetic
and eleetric fields are two parts of a single thing, as [ already mentioned,
but it is good to be aware of the relative sizes of the effects. In the case
of a current-carrying wire, the electrostatic effects have been cancelled
extremely well by the presence of equal amounts of positive and negative
charge in the wire, to a precision of order v?/¢* ~ 10723, which allows
us to see the tiny magnetic contribution.

At speeds approaching ¢, on the other hand, the electric and magnetic
contributions have similar sizes.
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Ask a silly question ... “Who cares about the 3-forea? It is just
part of & d-vector, and it is not really fundamental: % |5 & way of
jeeping track of momentum changes. If the gpatial part of & 4-vector
changes b pome way, Wi gimply & hang-over from pre-specetime
thinking to agonise about this. We need to think in terme of tho
whols d=vector, including the temporal part The 4-vector F s whal
it Ig, independent of reference frame.'

Andwer. I agres with this position, up to & point: It is trud that
spacetime physcs shoubd be discussed with the Hght language ie.,
j-vectors. Howewer, in the applicetion to physical axamples we hive
to pick a reforence frame. The fact that at high apeeda the electric
and magnetic contributions tend to cancel for transverse forcoe is
memorable, and worth noticing. Also, we find that to treat the motion
of particles subject bo forces, the 3-foree can sometimes provide the
mesml direct route to [he reauls.

7.3 The fields due to a moving
point charge

A point charge al rest produess i alectrie beld in the vadisl divroetion
and no magnetie field. By using the feld transformation equations, il s
straightforward to find the felds produced by a point chearge in uniform
i 108,

Place a polnt eharge & Is al the origln of frame 8, In standard
comfiguration with 8 The fiolds in 8 are then
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Consider the event at {of' o', ¢, 5"}, The Belds ab Uhis same event, but
einhiiabed in freene B, pre; by usimg ogn [T.13),
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Thitw i# the complote snd poreect expression for the clectric field in S, but
Wi would profer to hawve 10 1o terms of the pesitlon ad Liooe eoordinnbes
of 5, To this end, wo use the Toventz tranaformation {or the coordinates,
Wiiich gives
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Fig. 7.4 Electric field lines due to a
stationary charge (left) and 2 moving
charge (right). The lines are along the
field direction; their density (per unit
area in three dimensions) represents
the field strength. A remarkable prop-
erty is that the nght diagram (moving
charge) could be obtained by applying
a Lorentz contraction to the left dia-
gram (stationary charge).

The field at any given place in S is time-dependent. The most usefu|
way to understand the result is to pick the moment t = 0, because s
this moment the moving charge is at the origin of S. At any time,
the coordinates (z,y,z) give the vector from the origin, but at ¢t =0
this is also a vector from the point charge to the place where we are
calculating the field. At this moment we have ' = vya and we obtain the
result:

Electric field of point charge moving with constant
velocity

¥Qr

T Ameo(v22? + P + 222

(7.20)

where the charge is at the origin and moviug in the z-direction, and r is
the vector (z,y, z).
Using eqns (7.13) we obtain for the magnetic field,

B|| =0 e vAE
B, =v¥%E
(the final expression for B correctly matches both B and B, because

the cross product only involves E’| ). In the limit of low velocities, eqns
(7.20) and (7.21) lead to the Biot-Savart law.

(7.21)

Transverse and longitudinal directions

Eqn (7.20) states that compared to a charge at rest, the field is reduced
in the longitudinal direction and enhanced in the transverse direction;
see Fig. 7.4. In view of the fact that Gauss’s law holds in any frame, and
the charge @ is a Lorentz invariant, the flux of E out through a closed
surface around the source particle must be the same in the two [rames.
Therefore we must expect that an enhancement in one direction must
come at the expense of a reduction in another.

It is useful to ask whether we can understand the result for these cases
by simple arguments.

For points on the line of motion of the charge—i.e., directly in front or
behind—the field is parallel to the motion, so naively one might expect,
from the equation E’” = By, that the field at such points is the same for
the moving charge as for a stationary one. However, the distance of the




oint from the charge is contracted by the Lorentz factor . Therefore
we have the saroe field at a closer distance, hence at any given distance
the field is smaller, and from the inverse-square law in the rest frame
it must be smaller by a factor 42, in agreement with egn (7.20). To be
clear that we have accounted correctly for Lorentz contraction in this
argument, imagine that the charge is situated at one end of a rigid rod,
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and let the rod lie along the x axis. Owing to Lorentz contraction of this
rod, any given event at the far end of the rod is further from the charge
in the rest frame S’ than in the lab frame S; cf. Fig. 7.6.

Now consider a point in the transverse direction, as in Fig. 7.5(b). The
relative motion of the frames is perpendicular to the field, so we expect
an enhanced field, E = yE’. The distance being a transverse distance,
it is uncontracted. However, this is not completely obvious, because
the source is moving, and we need to keep in mind the relativity of
simultaneity. To see it, imagine again a rigid rod attached to the particle.
For example, suppose the arrow used to indicate the vector r in Fig. 7.5b
were a solid material object attached to the source particle Q. This arrow
will be found to have the same length in either frame, because there is
no contraction in a transverse direction, and the event when ¢ reaches
the end of the arrow is one and the same event no matter what frame is
adopted. The conclusion is, then, that at any given distance the field at
points in the transverse direction is enhanced.

Both these results follow equally from a consideration of force per
unit charge. For a given situation, the force in the transverse direction is
higher in the frame where the particle on which the force acts is at rest,
says eqn (4.6). A test particle at rest in S experiences only the electric,
not. magnetic, contribution to the force in either frame (in S because it
is not moving, in $§’ because there is no magnetic field).

Discussion of the result

Eqn (7.20) has some remarkable properties. For one thing, it says that
the electric field due to a moving source particle is in a direction radially
outward from the particle; see Fig. 7.4. This seems sensible at first, but
on reflection one realizes that the field has no business pointing outwards
from the present location of the particle! The field at z, ¥, z at time { = 0
can only ‘know about’ or be caused by what the source particle was doing
earlier on, in the past light-cone. If one had to guess, one might guess
that the ficld at any event t,z,y,z would point in the direction away
from the source’s earlier position, not from where it is now. But instead
the field seems to ‘know’ where the moving source is now. Of course, we
are cliscussing a wniformly moving source, so the information on where
the source is going to be is contained in its past history, assuming the
uniform motion continues, That the result should turn out so simple is,
however, important. If the field were not radial from the present position,
then a system of two particles moving uniformly abreast would exert a
non-zero net total force on itself, leading to a self-acceleration in the
absence of external forces. This would violate momentum conservation.

Fig. 7.5 Two simple cases of forces
between point charges. (a) Source par-
ticle moves directly towards the test
particle, r and v are parallel. (b) Source
particle moves past a test particle, we
consider the force on the latter at the
event when r and v are perpendicular.

Fig. 7.6 Spacetime diagram for the
situation (a) in Fig. 7.5. The (ull lines
show the worldlines of the source @ and
test particle g. The dashed lines show a
set of events at given distance »/ from Q
in its rest frame S’. The dotted lines are
lines of simultaneity; the one through
A is a line of simultaneity for g¢'s rest
frame S. The distance from @ to g at
event A is smaller in frame S than in
frame S’.



Fig. 7.7 'B of the Bang" a sculpture
designed by Thomas Heatherwick, and
erected in Manchester, England. The
sculpture draws its inspiration from
the explosive start of a sprint race
at the 'bang’ of the starting pistol;
but to a physicist it is also remi-
niscent of the electric field due to a
fast-moving charged particle—perhaps
a muon arriving in Manchester from a
cosmic-ray event. (Photograph by Nicl
Smale.)
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Fig. 7.8 Magnetic field due to a uni-
formly moving point charge. The field
lines loop around the line of motion
of the charge. There is no magnetic
field directly in front of or behind the
charge.

The equations succeed in avoiding that situation. It is as if the source
gives its ‘marching orders’ to the field in the form ‘line yourself up on
my future position, assuming that I will continue at constant velocity’.
We shall re-examine this point in section 8.2.3.

Eqgn (7.21) says that the magnetic field has a similar forward-back
symmetry. It loops around the direction of motion of the charge, with a
maximum strength at positions to the side, falling to zero in front and
behind (Fig. 7.8).

We have already noticed that the electric field is diminished in front
and behind the moving particle, and enhanced at the sides. The next
remarkable feature is that the size of these changes is just as if the
field lines of a stationary particle had been ‘squeezed’ by a Lorentz
contraction. This is not self-evident, but is suggested by Fig. 7.4. The
field lines from a point source transform like rigid spikes attached to the
source. You should not deduce that this is a universal feature of electric
field lines: just add a magnetic field in the first reference frame and this
behaviour is lost. However, the picture does give a good insight into the
way the Lorentz contraction of moving objects is brought about and
embodied by the fields inside them.

In the ‘relativistic limit’—i.e., as the speed approaches c—a charged
particle such as an electron appears like a stealthy pancake with a mighty
force field around it. There is little sign of its approach, but as it whizzes
by it exerts, for a moment, a powerful lateral force, like a shock wave.
However, because this force appears in a short burst, the net impulse
delivered is not enhanced, but varies in proportion to 1/v (exercise 7.4).



7.4 Covariance of Mazwell's equations

7.4 Covariance of Maxwell’s equations

We have already stated that Maxwell’s equations are Lorentz covariant:
they take the same form in one reference frame as they do in another.
However, when written down in the standard way, eqns (7.14), this
covariance is far from obvious. Now we shall develop some concepts that
allow the covariance to be easily seen.

Any textbook on electromagnetism will tell you that the electric and
magnetic fields can be obtained from two potentials ¢ and A, called the
scalar and vector potential, through

_oa
ot
B = VAA. (7.22)

E = -V

1t is not hard to see where this idea comes from. If you look at M2
(the second Maxwell equation, (7.14ii)) you will see that B has zero
divergence. This implies that B can be written as the curl of something,
so we write it that way and call the ‘something’ a ‘vector potential’ A.
You should also see that another vector A = A + V¢ -for any scalar
field x --would be just as good, because it has the same curl: more on
that in a moment. Next turn to Faraday’s law M3. Now it looks like
o

VAE=-—-VAA.
ot

The order of differentiation with respect to time and space can be
reversed, so this can be written

OA
VA (E+E) =0

The combination in the bracket has zero curl, therefore it can be written
as the gradient of something. We write the something —¢ with ¢ called
the ‘scalar potential’ (the minus sign comes in for convenience: it means
that this potential behaves like a potential energy per unit charge in
electrostatics).

By using the potentials A and ¢, and eqns (7.22) we guarantee that
no matter what functional form we put into A and ¢, two of the Maxwell
equations will be automatically satisfied! Our work is reduced because
now we only have to find four potential functions (¢ and the three
components of A) instead of six field components.

When looking for solutions for A and ¢ it proves to be very useful to
keep in mind that we have some flexibility, as we already noted. We can
add to A any field with zero curl, without in the least affecting the B
field that is obtained from it, eqn (7.22ii). However, since A influences E
as well we need to check what goes on there. You can easily confirm that
we can keep the flexibility if both potentials are changed together, as

ox

(7.23)
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where x is an arbitrary function. If the potentials are changed in thig
way, the derived fields are not changed at all. This is no more mysterious
than the well-known fact that the gradient of a function does not change
il you add a constant to the function; it is just that in three dimensiong
the possibilities are more rich. The change from A, ¢ to A, ¢ given iy
eqn (7.23) goes by the fancy name of a ‘gange transformation’. We
say that the electric and magnetic lields are ‘invariant under gauge
transformations’. A simple example is to shift the scalar potential by
a constant: ¢ = ¢ + Vy. This is a gauge transformation with x = —Wyt.

Now, anyone studying Relativity who comes across a vector paired
with a scalar, and who sees eqn (7.23), begins to suspect that we have
4-vector in play. Let us see if it works. We form the *d-vector potentia]’

A= (p/c, A) (7.24)
and note that the gauge transformation equation (7.23) can be written
A=A+Oy (7.25)

We have not yet proved that A is a four-vector, but the fact that we can
write the gauge transformation in four-vector notation is promising,

Next we shall plug the forms (7.22) into Maxwell's equations M1 and
M4 (eqns 7.14i and iv). One obtains

0 P
N = A = 7.2
¢ 5 = (7.26)
. 92 A . j
2U(V-A)+ —Vo+— —c?VZA = =, 7.2
EWVEA) T Ve g & (7:27)

As things stand this does not look very simple! However, the second
equation is suggestive. The last two termns look like —¢*[1% acting on
A (recall that the d’Alembertian (0° was defined in eqn (6.22)). The
trouble is that we also have the first two terms, which together form
the 3-gradient of (¢*V « A + 8¢/0t). Now we take a clever step. We are
going to take advantage of the idea of gauge transformation. We recall
that we have some fexibility in picking the potential functions, and we
propose that by taking advantage of this Hexibility it is always possible
to arrange that

V-A+ Elgaa—f = 0. [ Lorenz gauge (7.28)
When we impose this condition, the first two terms in eqn (7.27) cancel
and the equation reduces to the simple form

et =2 (7.29)
Ce€p
You can also confirm that eqn (7.26) becomes

P¢ = = (7.30)
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Eqn (7.28) is called the Lorenz gauge condition,® and imposing it is
called ‘choosing the Lorenz gauge’. One needs to be aware that once such
a gauge choice has been made, results based on it no longer have the full
fexibility offered by eqns (7.23). However, that is merely a statement
about the potentials. The fields that are obtained through any given
choice of gauge are completely valid and ‘care nothing’ about how they
were calculated.

Before commenting on the beautifully simple eqns (7.29) and (7.30)
we need to check that it is always possible to impose the Lorenz gauge
condition. To this end, first suppose we have some arbitrary A and ¢
not necessarily in the Lorenz gauge. They have
1 0¢
VAT c? Ot
for some function f. Let us try a gauge transformation and see what
lhappens:

= f(r,1)

1 d¢
c? ot 0
If follows that we can achieve the Lorenz condition as long as x can be
chosen such that it satisfies the equation

1 0

Zan VT
This is a wave equation with f as source. The important point is that it is
known that there always exist solutions to this equation, no matter what
form the source function f takes. The method of solution is explained in
section 8.2.2. If follows that we can always adjust the potentials so that
they satisfy the Lorenz gauge condition.

Eqgns (7.29) and (7.30) are important because they are uncoupled
(you can solve them for ¢ on its own, and then for A on its own) and
because they are both wave equations with a source term, for which
powerful methods of solution exist. Furthermore, they open the way to
writing down Maxwell’s equations in a 4-vector notation that malkes
their Lorentz covariance explicit and obvious.

We have already learned in chapter 6 that for the flow of a quantity
such as electric charge, the combination (pc, j) is a 4-vector. We can
write all the formulae leading up to eqns (7.29) and (7.30) in 4-vector
notation. We have

. 1 6°
V-A+ 5

= flr, )+ V- 5 X

A= (¢/c, A).
The Lorenz gauge condition is [1- A = 0, and the final result is

J=(pc, i),

Maxwell’s equations

[’A = "—1J,

3 with O-A=0.
Ce€

(7.31)
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3 The gauge condition (7.28) was
derived and exploited by Ludvig Lorenz
in 1867. However, it is commonly
named the Lorentz gauge, after Hen-
drik Lorentz (1853-1928). It seems
somehow unfair to Lorenz to perpet-
uate that terminology; see Jackson’s
book for further comments.
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This equation does two jobs at once. First it shows that A is indeed a
4-vector as we suspected (because we already know that J is a 4-vector,
c? and ¢g are constants, and [? is a Lorentz scalar operator). Secondly,
it expresses all of Maxwell’s equations in one go, in explicitly Lorentg,
covariant form! I say ‘all’ because we have already noted that two of
the equations were already taken care of when adopting the potentials,
so there are only two left to worry about. The point is that we can
see immediately that a change of reference frame will give the equation
O72A = —J//(CQEO)Z l.e., the same equation with primed symbols, and
therefore, by reversing the argument, we would obtain Maxwell equations
in their 3-vector form just as we claimed in eqns (7.15).

Coulomb gauge

We chose the Lorenz gauge above because it leads to a simple statement
of Maxwell’s equations. For some calculations, another choice of gauge
(i.e., choice of constraint to impose on A) can be more convenient. There
is an infinite variety of constraints one could choose. One that has proved
sufficiently useful to earn a name is the Coulomb gauge, also called
rediation gauge, where the constraint is

VvV A=0, [ Coulomb gauge (7.32)

i.e., the divergence of the 3-vector potential is zero. Note that this is a
three-vector equation. Therefore, if the potentials are in Coulomb gauge
in one inertial frame, they are not guaranteed to be in Coulomb gauge
in all inertial frames. This does not make the calculations invalid: the
fields are obtained correctly, no matter what gauge is adopted.

If the scalar potential is independent of time then the potentials can
satisfy both Lorenz and Coulomb gauge conditions.

The proof that it is always possible to find a gauge transformation so
as to satisfy the Coulomb gauge condition is left as an exercise for the
reader. In the Coulomb gauge, the first Maxwell equation (7.26) becomes
Poisson’s equation

V29 = —p/eo.

This is the same equation as one would obtain in electrostatics, but
now we are treating general situations! If p changes with time, the
influence on ¢ happens instantaneously in the Coulomb gauge. However,
the influence on the fields is not instantaneous: once the contribution of
both the scalar and the vector potential is taken into account, one gets
the same result as one would in any other gauge: i.e., light-speed-limited
cause and effect.

7.4.1 Transformation of the fields: 4-vector method*

Now that we have established that A is a four-vector, we know how
it transforms for a change of reference frame: A’ = AA. Hence for two
reference frames in standard configuration,
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¢'fe = (/e - BA;)
A:c = 7(_5¢/C+Aﬂ,)
A, = A

Yy v
A = A, (7.33)

One can now plug these into eqn (7.22) and thus find the fields in the
primed frame in terms of the potentials in the unprimed frame. With a
Jittle carc one can then derive egn (7.13). It is not particularly quick,
put at Jeast it is thorough and automatic. The only way to get a full
appreciation of the virtues and pitfalls of this method is to try it oneself,
but to help you I shall show how it works for E'.
To reduce clutter we will drop ¢ from all the equations, and then put
it back in at the end using dimensional analysis.
First we would like to find E;i = E., given by
g 08 ok
* ox O
We have ¢’ and A’ in terms of ¢ and A,, eqn (7.33), but the problem
is that the derivatives in egn (7.34) are with respect to z’ and ', not z
and t as we would like (since we are trying to relate the field to E,). We
shall have to make use of the standard result for partial derivatives,

(7.34)

o 3¢ ¢ ()¢ ¢’
dor = d a Ay Oz
8¢ 04 Ot 04 Ou  OF By . O Oz
¥ B T Btoar  ocor  mow  0z0%

Note that this is nothing especially to do with 4-vectors or the [J opera-
tor; it is just what happens when you express a change in a function in
terms of its changes with respect to different sets of coordinate variables.
We can find out what 9t/8x’ etc. are by using the inverse Lorentz trans-
formation of coordinates, ¢ =~{t' +vz’) and z =~(vt' + 2'), y =1/,

z=2',s0
ot _ ot —
o Oz
9
(2) = i

and all the others are zero (all these partial derivatives are simply the
elements of the matrix A~!). Using these results along with the potential
transformation equation (7.33), we find
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4 Do not forget that we have dropped
¢, 30 ¥*(1 — v?) = 1 here.

ot Oz
¢ A
'Y2 (t]% —_ 1;2% + ?‘—ﬁ - 8 .‘C) . (735)
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an it v dx dx

When these are added to make E, four terms cancel, leaving?

v o228 _ _25“11)__@_%_‘
BI—-'y\(l v*) (1 v)at =~ 5 = Bl

(7.36)

oz

It seems like a lot of trouble just to get the simplest of the results,
but the other terms now go smoothly, because 8¢’ /0y’ = 8¢’ /dy and
o' /02 = 0¢' [0z, and A4 = A, leads to

OA, 04, 04,

or ot ' oz "

Hence

v oo [ 00 04y (0Ay 04\ _
E”_y( dy oy (33: @))-Y(Eyﬂw\mw

and the calculation of £ is similar. We have now derived the full
transformation equation for E; without restriction. The calculation for
B is left as an exercise for the reader. If the reader would rather avoid
it, then read on!

7.5 Introducing the Faraday tensor

We would now like to introduce a new mathematical tool that, among
other things, can greatly simplify the calculation presented in the previ-
ous section. The idea is to extend the ‘apparatus’ of 4-vector analysis by
introducing a matrix-like quantity called a tensor. In fact, this is part of
a more extensive apparatus called tensor analysis that is introduced in
chapter 12, but here we shall not need the whole apparatus, so to keep
things simple we will concentrate on the minimum we need in order to
gain some useful insights into electromagnetism.

7.5.1 Tensors
Take two arbitrary 4-vectors A and B and form the product
ABT

where, as usual, we have in mind that the 4-vectors are considered to
be column vectors. By the rules of matrix multiplication, this is a valid
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combination because it is the product of a 4 x 1 ‘matrix” with a 1 x 4
ymatrix’. The outcome is a 4 x 4 matrix, and the operation is called
(aking the outer product’. You can confirm that the resulting matrix is

AOBO AOBI AOBZ A083

Al BO Al BTL Al B2 Al BB

AQBO AZBl A2 BZ AZBB !

ASBO ASBI ASB’Z A.’}BS

In other words, we just write out every possible combination of elements
of A and B and arrange them in a matrix. For example:

N/ 1\ /2 2 .20 0 -4
3| w0 g . |33 0 -6
o | = 1|00 =2)=1 1 15 o _o
5/ \-2 5 5 50 0 —10

The result can also be expressed conveniently by writing down the
expression for an arbitrary element of the matrix. If M = ABT, then

M™ = A™B" (7.37)

where the indices m, n run over the values (0, 1,2, 3).

Note the contrast with the inner product A7 gB which leads to a scalar.
Both inner and outer product are much used in quantum theory, where in
Dirac notation they are expressed (¢|v) and |¢) (3|. They are different
again from the ‘tensor product’ (written |¢) ® [)), which we shall not
need>.

Clearly, since A and B are 4-vectors, their outer product M = ABT
cannot be Lorentz invariant, but must transform as

A — AA

T T _ T T
B AB} = AB* — AA(AB)" = AAB A",

In other words, under a change of reference frame the matrix M trans-
forms into M’ given by

M’ = AMAT. (7.38)

We now have two different types of matrix in play. A is a matrix
describing the transformation from one frame to another, whereas M
s a matrix that can be written down in any one frame, and which
transforms as shown in eqn (7.38) under a change of reference frame. To
distinguish them, M is called a tensor whereas A is not.

More generally, we define a tensor (or, to give the full name, a ‘con-
travariant second-rank tensor’) to be any 4 x 4 matrix that transforms,
under a change ol reference frame, as given in eqn (7.38), whether or not
the matrix can be written as an outer product of 4-vectors. This makes
perfect sense, because one can show that any such tensor can be written
as a sum of outer products.

Having introduced the tensor, it is natural to ask whether or not it
can multiply a 4-vector, as in the product MU. Why should it not?
It is a perfectly well-defined mathematical operation, obeying the rules
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5 Alternative notalions. Sometimes the
outer product is written A®B and
sometimes you see simply AB. In the
latter form it is to be understood that
the outer product is intended. The
outer product is also called ‘dyadic
product’, The symbol @ is also used,
in other contexts, for a tensor product,
and sometimes you will find the dyadic
product called a ‘tensor product’, but
strictly that is an abuse of terminology.
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of matrix multiplication. However, beware! The outcome is a columy
vector, but it is not a 4-vector, because it does not transform the righy
way:

MU = ABTU = A(BTU)

This is the product of a 4-vector A with a scalar quantity (BTU) tha
is mathematically well-defined but is not a Lorentz-invariant scalar,
because it is missing the crucial metric g in the middle. Therefore the
combination MU is not a d-vector. It is well-defined but not useful. Ty
get a more useful quantity, it is ohvious what we need to do: put the
metric into the caleulation. That is, we consider the product

MigU = ABTgU = A(B - U). (7.39)

This is a 4-vector because it is the product of an invariant and a 4-vector,

More generally, we can now show that any tensor (that is, any entity
transforming as eqn (7.38)), when multiplying the combination gU for
an arbitrary 4-vector U, yields a 4-vector, whether or not the teusor can
be written as an outer product. The prool is casy:

MgU — (AMAT)gAU = AM(ATgA)U = A(MgU) (7.40)

by using the definition of A, eqn (2.48). In view of this, we extend the
dot notation already employed for inner products, such that, for any
tensor M and 4-vector U,

M- U=MgU and U-M=UTgM. (7.41)

Thus the use of a dot takes care ol the presence of g, and also makes
sense, because these types of matrix multiplication are closely related to
inner products,

We will show in chapter 12 that g is itself a tensor, though of a different
type, that transforms as g — (A~')TgA~", but since this equals g, we
do not need Lo worry about it. We shall take it for granted, just as we
have done all along in the discussion of d-vectors. It is only in General
Relativity that this property is no longer guaranteed.

The tensors that ave relevant to physics tend to be either symmetric
(M = M7) or antisymmetric (M = —MT). The antisymmetric type are
the simplest, because they have only six independent elements: the
diagonal elements must be zero, and elements in the lower left triangle
must be the negative of those in the upper right triangle. It is useful to
write a generic antisymmetric tensor in the form

0 a' a® @ 0 a a, a
-a' 0 ¥ b | _|[-az 0 b, -b,

M= 2 » o o|"|-a b o0 o |72
-a® ¥ = 0 —a, by, —by 0

where (a', a2, a®) and (b', 6%, b®) are the six independent numbers, and
the second version implies (correctly, as we shall see) that these numbers
in fact form the elements of two 3-vectors. Note carefully the placement
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of the signs in the b part. The logic is that by goes into the (y, 2) slot
of the tensor (third row, fourth column), and the other components
o as given by cyclic permutation: i.e., b, goes into the (2,2) slot and
p, into the (z,y) slot. This assignment is like the rules for a vector
roduct of two 3-vectors; we shall display that connection in full in
chapter 12.

7.5.2 Application to electromagnetism

We shall now make a claim: the Lorentz force equation (7.3) can be
written

F=gqF U (7.43)

where F is the 4-force on a particle of charge ¢, U is the 4-velocity of
the particle, and [ is a tensor. To be precise, the Lorentz force equation
emerges as the spatial part of this 4-vector equation.

We shall prove the claim by finding the tensor F. As a first step,
consider

F-U=g(F-U) U= q(FgU)TgU = qUT g(FTgU) = qU - (FT- U). (7.44)

On the right-hand side we have the scalar product of U with the
4-vector g(FT - U), which is almost the same as F. If F were symmetric
then this combination would be exactly equal to F and we would have
F-U=U-F, which is true, but it is not the only possible solution. If
F were antisymmetric then we would have g(FT - U) = —¢(F - U) = —F,
and then eqn (7.44) reads

F-U=-UF=-F.U.

This is more interesting, because it implies F - U = 0. This means that the
force is a pure force (cf. eqn (4.3)). Therefore, if our claim (7.43) is valid,
then the use of an antisymmetric tensor will guarantee that the resulting
force is pure. This is the very property we require for electromagnetism,
so we propose that F is antisymmetric.

Any antisymmetric tensor can be written as in eqn (7.42). We have,
therefore,

0 a ay a —ve a- v
Fo —Qy 0 b, —by yur | azc+ bv, — by,
7 —a, —b, 0 b yu, |~ v ayc + byu, — byuy
—a, by —bg 0 YUy azc + byvz — by,

” a-Vv
! ac+VADb

where we first multiplied U by g and then completed the calculation.
If this is to give the Lorentz force equation, then the spatial part must
be equal to y(E+ v AB) (do not forget the factor v in eqn (2.75)).
Therefore we have the correct force as long as

a=E/c, b =B. (7.45)

Introducing the Faradoy tensor
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8 The symbol O™ is often written 6™,
in view of the fact that

a

Dm = - -
9 dxm

where 2™ = (ct, z,y, z); note that g is
needed here in order to get the signs
right.

The conclusion is that the electric and magnetic field vectors can noy,
be regarded as two parts of a single entity: the electromagnetic fielq
tensor, often called the Faraday tensor. Here it is written out in full;

0 E;/c E,fc E,[c

po | —Bete 0 B -B
=| -Bye -B. 0 B,
—E.c B, -B, 0

(7.46)

For example, a uniform electric field pointing in the z-direction woulg
be expressed by the field tensor:

0
E| -1
el O
0 0

IF:

SO e
cooo
cooco

Using this in eqn (7.43) gives the explanation for eqns (4.35) and (4.36),

All the equations of electromagnetism can now be written in terms
of the field tensor F instead of the 4-vector potential A. For example,
consider the combination®

_18A' _ 184 _184¥Y _ 1847

c Ot c dt c ot c &t

r b dA* aA* gAY 2A*
T _Me = Ox oz O ax
ay Ay dy dy

aAt a4= oAY aA*

dz oz dz Oz

This is a kind of ‘gradient of a vector’, saying how every component of
the vector changes in every direction. You may recognize it as a Jacobian
matrix. You can now use this to show that the field tensor is related to
the 4-vector potential by

Fm" =[0OmA™ - O"A™ (7.48)

where the equation gives the matrix element-by-element, with indices m
and n running over (0, 1,2, 3). For example, (m = 0, n = 1) gives
10 a ¢
F!' = o = — =
cot” " Ore
which is equal to F; /e, in agreement with eqn (7.46).
Recalling the version of Maxwell’s equations that we obtained before,
eqn (7.31), it should now not surprise us too much to learn that those

equations can also be expressed in terms of a first derivative of F. We
have

0 | ~-E/ec
(14 o B B,
D'F‘(carv') _E/c|-B, 0 B,
B, -B: 0

o S V75 -

c ' b

(—V-E 1 OE )
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where the matrix is gIF). Therefore Maxwell’s equations M1, M4 can be
wl'“.ten

O F=—peJ7. (7.49)

we will explore this approach further in chapter 13. The main point to
register at this stage is that we now have in clear view the idea that
pas been a repeated theme of this chapter: namely, that the electric
and magnetic fields ore two parts of one thing. That ‘thing’ is a tensor
field. It is a set of values (six of them altogether) that is associated with
overy event in spacetime, and that captures something of the physical
nature of, or situation at, every event in spacetime. It results in a
four-force on any charged particle that happens to be at the event in
question. This tensor is of a type (the antisymmetric type) that can also
be interpreted as a pair of vectors. It is not that the magnetic field is
derived from the clectric field, nor vice versa, but that they each furnish
part of the larger thing (the tensor field). The relative contributions
they make at any given event can vary from one reference frame to
another.
The fields due to a uniformly moving point charge are given by

g qc UmR» — RmyU"
T dweg  (-R-U)3

(7.50)

where U is the 4-velocity of the charge and R is a null vector from an
event on the worldline of the charge to the event at which the fields
are being calculated. These events are called the source event and the
field event. They will be studied in detail in the next chapter, which will
elucidate the expression in full.

Finally, we are now in a position to do the calculation promised at the
end of section 7.1.1: namely, to obtain the field transformation equations
by an algebraically ecasier method. All we need to do is some matrix
multiplication:

0 [t ,y([pf.y ‘IBIFJ:y) ,y([[ptz g ,B[F‘“)
0 Y(F™ — BF*) (F** — BF*)

0 Fv*

0

F' = AFAT = ., (7.51)

where we wrote down the result for two frames in standard configuration,
and the dots indicate that the lower elements are to be assigned in an
antisymmetric fashion. By extracting the two vectors, and recalling that
the direction of relative motion is along z, one finds our old friend eqn
(7.13). This is undoubtedly the most direct route to that result (and we
shall present in section 12.2.3 a method to obtain F’ that even avoids
the need to perform the matrix product).
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Exercises

(7.1) Examine the effects of Lorentz contraction and B = Y9
time dilation on a long straight solenoid in (d? + (yot)2)*/?
motion along the direction of its axis, and hence
prove that the magnetic field inside the solenoid
is unaffected by such motion (an example of

i| =By.) (7.5) A circular ring of proper radius a carries current, J
and lies in the 2’y plane at the origin of frame §’,
in standard configuration with S. Find the electric

field in S at points on the z axis when ¢ = 0.

(0, 0, dv/c).

Show that the time integral of the field is propor-
tional to 1/v.

(7.2) Find the magnetic field due to a long straight
current by Lorentz transform from the electric
field due to a line charge.

(7.6) Electrostatic problems are usually treated using
¢ = ¢(r), A =0. Show that the same physical
results can be obtained using potentials ¢ =0,
A=tV

(7.7) Show~l:l1at. the vector potentials A = (—y,z, 0)
and A = (—2y,0,0) both give rise to the same
uniform B field, and find a scalar function x such
that A = A + Vx.

(7.8) Confirm that eqn (7.48) gives eqn (7.46).

(7.4) Suppose a particle of charge ¢ moves at constant (7.9) A rectangular loop carries current [ and lies in the

(7.3) A pair of paralle] particle beams separated by
distance d have the same uniform charge per unit
length A. They propagate in a region where a
magnetic field is applied with a direction and
strength just sufficient to overcome the repulsion
between the beams, so that they both propagate
in a straight line at constant speed ». Find the size
B of this applied magnetic feld, and comment on
the limijt v — ¢.

velocity v at distance d above a surface. Let the
zy plane be parallel to the surface, and let the z
axis be along the path of the particle. Show that
the fields at a point on the surface are

- 9 -
BT @agupr 00

zy plane with sides a, b parallel to z,y axes respec-
tively. lIts magnetic dipole moment is m = Jabz
in its rest frame. Show that, in a frame where
the Joop moves in the z direction at speed v,
there is a charge falv/c* on the two sides sep-
arated by b, and thus an electric dipole moment
p=vAm/c



Electromagnetic radiation

In this chapter we examine the solution of Maxwell’s equations in
general, and in particular the phenomenon of electromagnetic radiation,
We start with the fact that even in the absence of any charge or
current, Maxwell's equations have a rich variety of solutions (in addition
to the solution E =0, B = 0): namely, the plane wave solutions and
their superpositions. This fact comes first because it is needed in the
analysis of whaf happens when there is an accelerating charge or a
changing current. We then consider the general problem of calculating
the fields for any arbitrary situation, when the distribution of charge,
and how it is moving, have been given and it is desired to find the
fields. This seems to be an ambitious calculation, but by using the
scalar and vector potential it becomes tractable. We then go on to
consider electromagnetic radiation in more general terms, and especially
the power radiated by simple sources such as moving point charges and
oscillating dipoles. The chapter contains much that might be found in a
moderately advanced textbook on electromagnetism, but we will focus
our interest on areas where Lorentz covariance has something to teach
us, or where charges are moving [ast.

8.1 Plane waves in vacuum

First we shall derive the possibility of electromagpetic plane waves
in vacuum, assuming the Maxwell equations as a starting point. The
quickest way is simply to present them as trial functions and prove that
they are solutions.

It is convenient to write a general electromagnetic plane wave using
the complex number notation:

E=E, ei(k»r—ut)‘ B= BO ei(k-r—ut}, (81)

where Eq and By are constant vectors, independent of both time and
space, as is k, the wave vector. It is understood that the physical fields
are given by the real part of this solution, Eopserved = R|E}, Bobserved =
R[B]. If the constant vectors Eg and By are real then the plane waves
are linearly polarized; if one allows Ey and By to be complex then one
can treat any type of polarization. The waves are plane because we are
assuming k is constant, so the wavefronts are flat and the direction of
Propagation is everywhere the same.

8.1
8.2

8.3

Plane waves in vacuum

Solution of Maxwell's
equations for a given
charge distribution

Radiated power
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172 Blectromagnetic radiation

Fig. 8.1 Field directions in a linearly
polarized plane wave.

It is very easy to ‘plug' this trial solution into Maxwell’s equations if
one once learns (e.g., by exhaustive coordinate analysis) that for vectorg
a, k that are independent of time and position, and constant w:

d ; )
—> Li(kr—wt) e i(k-r—wt)
ot (a ‘ ) woaRe ) (82)
v (a Bt’(k-r—wt)) = ik-aekrwt) (8.3)
V A (a e'i(k-r—wt)) = ik Aa e_“"""‘“’*’v)_ (84)

It is useful to learn these, and they are easy to remember. They are
saying that in the case of the function ‘position-independent vector times
exp(ik - r)’ the V operator performing a div or curl acts just like the
vector k producing a scalar or vector product. This makes the process
of putting our trial solution in to Maxwell's equations in free space
extremely easy. In the case of waves in [ree space {zero charge and curreng
density), we find by using the above and dividing out the exp function:

M1: ik -Eg=0. E is orthogonal to the wave vector.
M2: k-Bg=0. B is orthogonal to the wave vector.
M3: kA Eg = wBy Eis | to B; Ey = (w/k) By

M4: %k A By = —iwEyg w = ke, By = ¢By

The last equation (M4) on its own gives a statement about the mutual
directions, and it says the sizes are related by ¢?kB = wE. The directions
are consistent with M3, and the sizes agree with M3 as long as ¢’k = we,
leading to the conclusion w = ke and Ey = ¢By that has been given on
the last line of the table.

Since the above are all mutually consistent, they confirm that the trial
solution is indeed a solution, and we find the constraints on the plane
waves: they must be transverse (with E, B, k forming a right-handed
set), the sizes of the fields must be ‘equal'—i.e., related by | Fy| = ¢|Bg|—
and the phase velocity w/k must be equal to c.

In terms of the 4-vector potential, the Maxwell equations in Lorenz
gauge (7.31) in free space (J = 0) give the wave equation, so there are
plane wave solutions

A= A(}BiK'x

where Ag is a constant 4-vector amplitude. The choice of Lorenz gauge
0 A =0 (eqn (7.28)) is required in order to get the wave equation, so
we have the constraint

O.A=iK-A=0 = K-Ap=0. (8.5)

Therefore the waves of A are ‘transverse’ in spacetime. Often, a polar-
ization 4-vector € is introduced, such that

A= Ae, (8.6)



where A = (A2 + A2 + A2)Y/? and then the Lorenz condition is

e K=0 = EOEE-}{EZE-IA(. (8.7)
Note that £ can have a component along k. This possibility is called lon-
gimdi'nal polarization. It does not mean that the fields have longitudinal
polarimtion: they remain transverse.

In free space we can always choose that the scalar potential is zero,
¢ =0 (in addition to the Lorenz gauge condition), since there exists a
gauge transformation within the Lorenz gauge that accomplishes this
(see below). Then O0-A =V - A so the Coulomb gauge condition is
satisfied as well. In this case the polarization vector has g0 = 0, and
then eqn (8.7) implies that e is transverse (i.e. A -k = 0).

Example A plane wave in free space is described by a 4-vector
potential A = Ag exp(iK - X) satisfying the Lorenz gauge condition, with
A% = ¢/c # 0. Find a gauge change A — A thatl results in a 4-potential
still in Lorenz gauge, but with ¢ = 0.

Solution

Since we want to get rid of ¢, we suggest the gauge function x = [ ¢dt,
so that 9x /0t = ¢. In order to stay in the Lorenz gauge we need this x
to satisfy the wave equation. It does, becanse (?x = 12 [¢dt = [P pd¢
which is zero because here ¢ satisfies the wave equation.

More generally, a change of 4-polarization by
e - e+aK, (8.8)

where a is an arbitrary constant, amounts to a gauge change and
therefore does not affect the fields. Since K is null, eqn (8.7) is still
satisfied so the 4-potential remains within the Lorenz gauge. In this way
one can always arrange that one of the components of ¢ is zero. The
Lorenz condition gives a further constraint, and thercfore there rermain
just two independent components of the polarization 4-vector.

We have already discovered some of the kinematics of these plane
wave solutions, through our study of the headlight effect and the
Doppler effect, and the energy falling into a bucket. A Lorentz trans-
formation applied to the 4-wave-vector, and eqns (7.13) to transform
the fields, must reproduce all those eflects. For example, suppose a
linearly polarized plane wave has its electric field along the y direction,
its magnetic field along the z direction, and propagates along the z
direction. In another reference frame S’ in standard configuration with
the first, one finds

E., = E, =0, E, = ~(Es—uBo)e® =y(1-B)Ese™
Bl =B =0, B, = ~(By—vEp/c?) e =~(1- B)Bye'

where the phase ¢ = kz —wt = k’'z’ — w/t’ is an invariant. Notice the
Similarity with the longitudinal Doppler effect: the field amplitudes
transform in the same way as frequency.

8.1

Plane waves in vacuum
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174 Electromagnelic radiation

We shall show in section 16.4 that the intensity (power per unit area)
is proportional to E A B, so we have I’ = v%(1 — B)?I, in agreement wit},
egn (6.25).

8.2 Solution of Maxwell’s equations
for a given charge distribution

‘We shall now use the potentials to acquire some more information about
electromagnetic fields. A cormmon type of problem would be of the form,
‘given that there are charges here and here, moving thus, what can yoy
tell me about the fields?’ That is, we would like to solve the equations in
such a way that we can obtain the fields from given information about
the charges and currents.

An important example is the case of no charge and no current. One
possible solution for this case is zero field everywhere, but that is not the
only solution: in vacuum the fields also can have forms that propagate
as waves at the speed of light, as we saw in the previous section.

Another simple case is that of a single point charge in uniform motion,
We studied this in section 7.3. It will serve as a uselul introduction to
methods based on potentials.

8.2.1 The 4-vector potential of a uniformly
moving point charge

As in section 7.3 we suppose a point charge is at rest in one reference
frame and therefore moving in another. As before we will choose the
primed frame S’ to be the one in which the source particle is at rest,
and S to be the frame for which we want to write down the result. We
are preparing now for a more general treatment in which we want to
learn the potentials in a given reference frame in terms of the charge
and current distribution in that frame. It will save a lot of clutter if
we adopt unprimed symbols for the reference frame that is the ‘final
destination’ of our calculation.

So, suppose a charge ¢ is at rest in frame S’, and this frame is in
standard configuration with S. Then the charge is moving along the -
axis of S with speed v. The potentials for the case of a point charge at
rest. are

! q 14
¢ = e A'=0. (8.9)
By applying an inverse Lorentz transformation to the 4-vector A” we
obtain

i/ A/. —
¢ v(¢' +vA;) Y dmeor’

Ay (v [ + A7) = vg/ P,
A, = A,=0. (8.10)

Y
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Now
= () + ()P () = (Y )yt )
(by Lorentz transformation of the coordinates) so
q B

b =
T dmeg (v = wt)2 4yt + 2V
A=vi/e (8.11)
The source particle is located at r, = (vt, 0, 0) at any given time ¢

inS.
Now we apply eqns (7.22) to find the fields. One obtains

q y(r —rp) (
L 12
drep (V2 (z — )2 + y? + 22)3/2 (8.12)

in agreement with eqn (7.4), and*

__4q v A (r—rp)
4megc? (v2(m — vt)? 4+ y? + 22)3/2

(8.13)

One can notice that B = v A E/c?, as previously remarked.

So what have we learned from this? We knew the fields already
(section 7.3), though perhaps the new method of calculation is simpler
because it does not need to asswme the field transformation equations.
The more important point is that we have the potentials, eqns (8.11).
They will prove to be very useful in what follows.

8.2.2 The general solution

Sa far we have mentioned two types of solution to the Maxwell equations:
the waves in free space, and the field due to a uniformly moving point
charge. Next we shall consider the general solution for the type of
problem where the distributior of charge and current is known.
Our aim js to solve eqns (7.29) and (7.30), which we shall rewrite here
for convenience:
iy y— OPA = > (8.14)
0 (st )
There are four equations (three for the components of A, and 1 for ¢)
but they arc all of the same form,
1 9%f
L 9% f = s(x,t). 15
LAV = s(r) (815)
This equation is called the inhomogeneous wave equation or wave equa-
tion with o source term. We want to solve such equations for the unknown
function f(r,t) when the source function s has been given.

The Poisson equation

To get the general idea, first consider the situation of electrostatics: i.e.,
there are just fixed charges and no currents, with no time-dependence.

1 The veclor in the numerator of B is
found to be (0,—2z, y) multiplied by z;
here, cwing to the fact thav the source
travels through the origin, r, and v are
parzllel so one can write this either as
VATorasvA(r—rp). A shift of ori-
gin must nof affect the result, however,
so the Jatter form is morc general.
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Fig. 8.2

The Dirac d-function. The Dirac &funcllon 5 & mathemiatic)
tool that can be employed to simplify some caloulations involving
integratbon, It is a fanction of = that i dofined by taking the limit of
o narrow fall function of Axed area, ae the width tendn {0 2ero andg
the helght tends o infinity. The result is 4(x) = 0 everywhere excep
at ome point, the point £ =0, &nd Ity valué there (& infinite in such 4
way that [* §{xjdz = 1. A &function in three dimensions takes the
torm 8{z)8{y)6(=}, which may be abbreviated to 5/ (r).

In thig cuse the vector potentiul is wero, and egn (8.141) for the scolss
potentind becomes bhe Polsson equation

Vi = -

£y

sinee O/ = {1 We know that the potential due tooa fixed point chargs
ig ¢ = q/dmepr where r 18 the distence from the charge o the poing
whepe Lhe polentlal 15 b be evalusbed. We gay ¢ s the diptance from
the source point to the field point. The potential due to a set of charges
can be obteined smply by addiog the contributbons from cech charge
Thin follows from the fact that the Poisson oquation is linear. Ye cun
consider any charge distribution p to be made of many tiny élements,
each containing an amount of charge dg = pdb; where d 5 o volums
eloment at the source pont. Therefors the solution for the potential can
b written

(8.16)

ey = | 2 dy, (817)

This method of solibion, by dividing up the source finction g inko many
tiny pieces, is called Green’s method, and one can see that il will work
whonever Lhe differential equation & Bnear, The function
-1
drlr — 1|

ks called the Gresn function (or Green's funetion) for Poissoo's squeation,
It ig the solution of eqn [8.16) when the right-hand side tokes the forim
of & sharp spike having unit integral over volume: ie. a d-function (@
box show)

Cantionary note. The solution we have just presented s perfactly
walid, but by quoting the known answer for n point charge we avoided
a mathematical meue that needs to be cxamined for a thorough under-
standing of the method. For the case of s point charge ab the originwe ae
considaring Vi with @ ¢ |/r. But W91 /) is & strange [unction. We will
ghow that ¥2(1,/r) = D forv £ 0, but ¥2(1/r) = —oo for r =1, It is nol
that the function tends gradually to infinlty a8 ¢ beoomes smaller, but
rather, ¥23({ 1 /v] 18 zero, and zero, and still zero, as r becomes smaellor, and
then it suddenly shoots off to infinity when r reaches zere! To understand
this, consider
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vi_l; (8.18)

This gradient tends to infinity smoothly as 7 — 0. When we take its
divergence, for r # 0 there is a cancellation of terms that may be very
Jarge but of opposite sign. It is only at r = 0 that the cancellation fails,
and then the terms are infinite and they add up. Here is the proof:

1 —r V.r 1 3 3r
2—: - e = — —r- — = —— —_
v r v (7‘3> 3 f V(T3> 7‘3+1‘4
3 /7
=5 (; _ 1) . (8.19)

It is extremely tempting to evaluate the bracket as equal to zero, and
pence obtain V2(1/r) = 0. This is correct almost everywhere. However,
at 7 = 0 it is not legitimate and our expression is there ill-defined.

To understand the behaviour at 1 = 0 we can use a nice trick. Rather
than working with the troublesome V2(1/7) directly, we integrate it over
a vojume of space and then apply Gauss’s divergence theorem:

/V2<%)dV:/V»<—%>dV:j{;—:f-dS.

Now choose the region integrated over to be a sphere centred at the
origin. The surface integral then evaluates to the surface area of the

sphere, and we find
2 (1
V2 (= ]dV = —4r. (8.20)
T

The volume integral thus ‘tames’ the function, and we conclude that
V2(1/r) is not zero at the origin, but takes such a value there that its
volume integral is finite and equal to —4n. Using é-function notation,
the result is expressed as

V21 = —418(z)6(y)é(2) = —4r6P(r). (8.21)

s

The wave equation

Now we are ready to tackle the inhomogeneous wave equation. The
equation is linear, so it can be treated by Green’s method. To use the
full method we would start by finding the solution of the wave equation
when the source term is concentrated in a tiny region of both space and
time. However, it saves a little working if we use some general knowledge
of waves to jump straight to a solution where the source is unrestricted in
time. That is, we suppose the function s on the right-hand side of (8.15)
can have any time-dependence, but it is zero everywhere except near one
spatial point, which we may as well take to be the origin. This means
that elsewhere, away from the origin, the differential equation is just the
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Fig. 8.3 A spherioal wave: In general,
the time-dependenne need nnt be sinu-
smidal, but e amplitale slewsss Lslls
68 1/ a4 Lk wassi{nrm propagites mut,

Spherical waves

We seck a spherieally symmetric solution to the wave squation (P f -
0}, For spherical symmetry, the function f does not depend an anigleg
gd the Laplacian reduces to
18 ,flf) 28y #5 18
ki i = ( g Bt == R = AL
Now let w=rf and substitate Into T*f =0, For » 20 we can mul.
tiply both sides of the resolting equetion by v, snd we obiain

1 #u > ﬂ g

A8 BT
Thie is the one-dimensional wave equation: 1ts general solution i
wir, i) = git —vfe) + bt + r/c) where g, & are arbitrary functions,
The general spherically-symmetric solution of the three-dimensiong]
problem |s therefore

!

This solves the homogeneous weve equation everywhere ecepl ut
the origin (r = 0), which requiros specinl consideration: see main
text. The t — r/e dopendence menna that § gives waves propagating
towards posmtive r Lo oubwerds from the onging b gives waves
propagating inwards towards the origin. These are also called the
retarded and advanced parts of the solution, respectively, see Fig. 8.4
For a sttuation In which the waved are cansed by 4 source In Bhe past,
the h function is soro: the sointion & purely retarded.

_git=rjc} kit tefe)

r r

wiswe eqiation (o free spoce We slready kniw that thus hes plane wave
solutiong, but they pre pot the eolutions we need here because they will
et howe the right behaviour near our souree ab v = 0, However, saother
type of wave is the sphefical wave, which his the general form

gl —rfel
r

I (823}
nndd Lhiz does have a non-trivial behaviour near v =0, You can check
thal this is a solution of CF f = 0 for any function g, except at the origin
(mee box above),

Physically Lthis cormesponde to waves exeibed by a point source that
ascillatod with some time-dependence desceibed by the funstion g The
wives  Lrave] outwards from the source, with speed o and spherical
wavefronts, The 1/r factor means they diminish in amplitude as they
g0, thus ensuring energy conservation Another solution is kit & rfe)/r
for mny function h: thie corresponds to waves collapsing in towards the
orfgin,



A& Splutien of Mapwnedl's equalions for 4 given charge dutribubion

fiy comparing the situation with the one we hove slready treated
{Fﬂi;piﬂ[l'fi ecpuation ), wie can now giess the snswer, The general soalution
o the inhomogeneons wave equation (B.153), using rebarded contributione
pnly, is (see Fig. B.5)

.f':.rl t} _ fﬂ{ru: = I.-‘-' - rlfe) d¥,

=i {524)

That ia, weadd up sl the spheoesl wvaves produced by the sources, whers
prch soured hias o strength #d%e. We have shown most of e prool of
this. In nrdar to completo the proof, we need {0 show thet eqgn (B.24)
peconts correctly for the time-dependence of the source for polnts near
to and right ab a given source. To do this we return to the ckese of &
sinple point source aml congider again the fnction [ = gt —r /el fr.
We already know that this function has (2 = 0 except at v = 0 (see
boot abiove, or exercise 8.2), To find the behaviour at v = 0, firgt consider
the situntion st small but non-zero veiues of v, The first decivatives with
fespeiech tok #oand §onee

A fple—rfe)y _  gli—rfo)  1g{t—ric)

ar ( = J = = . = . (525}
& gl =) B k= rfc) :
H_t( s ) = i {B.26)

whire ' vefers bo the first derivative of the function g, In the lmit e -5 0,
the g /r? term dominates all the others, unless ' tendz to infinity. We will
agayire g varies gmoothly, newr baving an abrupt change, and therefore
¢ ie finite and hence we cnly néed to keep the g/v? term. Applving this
argument again to the second dermmtive, wa bave

(5’—“ ‘r"'“] ) — lim O ( @) = g{t} lim ¥ G ) R

=l

lirn ¥

T+

where we can roplace gt = r/a) by git) beonase the spatial dependence
of git — v/} only introduces torims Hia: the sorond term on the right of

17

Fig. 8.4 Redanded and alvnon] sole-
tions ol L wovs euistlon, A petanded
sliibn propagatos outwaeds frmn the
aoureg, forming & light-come 0 the
Mture aof the sogree. An adwadcod
solutsan propogaies inwnrds  Liwards
the w=mtral point, b & possibie for
auch waves to acour, Bun khe poand
towards which they propamie is nod
thnir gource. When calcalating the eld
ibue bo g, we only need retardsd
anlutsons becouse Lhe seoros influone-
ing any given [Srlid owenl: Bin in ika pasl

A=ryc 0

Fig. 8.6 Caloulnning the  porentlals
b s arbirary distribation of anarlhi-
trmcily moving charpe. For a given [lehi
evemt (P 1] wWe SN Ve Sirne PYents
The spuroe evenls occur ab Lhe peaomi
tiores ry and times § — rypfo
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eqn {8.25), which we have jost shown are negligible, and then we ey
ignore the time-derivatives because we have just shown Lhat they tq
are negligible. Therefore, for the solution undet considecution, the way,
equation reduces to Lhe Poisson equation for locations near to ov at )y,
poinl-like fource,

We deduce that we have o solution to eqn (5,16) as long ss

o) iy ¥ (2) =t (825
Tharefore, using eqn [8.2L1), we hawe

argit) = Jf (1A, (8299

This relates the function g appeanmg in our solution (f = glt —rfe]/r)
to the source term 80t} in the equation that we are trying bo solve

It i comeenient 1o abeorh the 47 factor by defining g = 4wy, then e
hove [ =gt = v/} fder. The overall conclusion is as fullows,

If the source in the inhomogeneous wive equation ia concentrated af
a poiot in space but has an arbitrary time-dependence s{t) of tokal
strength

alt) = f s{e)dv,
thcii & soliztlon of eqn (8:15) is

firg) = 2T, (8.40)

This solution locks just lie the Coulomb potentisl, except instead of
evaluating the ‘charge’ g alb the btime £, it 8 evaluabed ab the 'retarded’
i F — /e The interpretation 5 chat the potential al a given posithon
peceives wives from the source, snd they take time to get there, Thid
makes sense: Ik s the mathematical expression of the cause—effect rela-
biomship bitwesn the sooree wnd the potentil, with w finite speed oo
Aipmigls.

Another solition meists, with 'ndvarced’ time § + /e, but this corre-
aponds to waves moving m towards the souren, 50 i1 does nol. eorresponid
ko bho physical sikustion we pee breating,

We can now complete the Gresn method and deduce thal for any
source funckion {now spread out in space and time), the solution to the
wive equation (B.15), with retarded potentialy, is egn (8.24)
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Appleatin to Muazuell's smuations

uing #gn (3.24), we are now in & poaibion 1o write down the solutlons
o wanted, for giees chusge and curent distributions (n Maxwell's
gqunbionm. The complete wiory is given in the box below

wllq-lhu_
‘F-l-i. V.8 =0,
vnl--%. #al-&r%.
Thekr solution: |
R
B=VAA,
LE T
At = oy [l ey,
where e = |1 = £, and @', = dedpds,

(e can wonify that the potentials writtim here do satnfy the Lorens
gaugr condition (7.28).

I gt w10 be wrwmrranled o call ogn (B21) “the solution® of
Maxwell's equations, bermuse it still kaves some work Lo doo we have o
carry ol the mlegrals, and having done that we havo to differentiate
o get the fields Howews, in principle an integral (s nothing more no
i Lhan sdding sp kets of tiny bits, and Lhe squation ieils us precisely
what has to be added upc (e amoant of charge (far @), o carrent (for
A) at the event (r,. | = ry/c), divided by ry, and we have to sum over
all souroe posnts ¢, Differontintion 3 even more straghtforwand. This
i o cxplicst st of inwtructions, s oppased to the very differem sort of
depiand "mobve this partal differeatial eguatsmn’

T wriis down ihe int=pral, we had o pick 5 refeyrres fame in ondsr
To allow us b talk about things e distance, vohome, and damge densily
Ulbwiously the integral is desigred to el you what the potentinks sre m
Mgt reference frome, bul W dos mtl mstter what releomor Game vol
and ity solution, it 4 vector notation The box below, ogos (8 32), shows
Hup, The relation between the Gold fensor and the polentind takes cave
af the second and the thind Maxwell equations, the other two v grvm
by the (1A egeation (recall sectinn 7.4). The integral u=ed o caleninte
the dowctor potential is now written in & form designed 10 bring out its

COVRTIETOE
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Ul e wehabion, (e feet wguation  Maxwell's equations:*

oo e gL R e

F=D0OAA,
PA = —pgd  (for - A=0).
Thaeir solution:
' . &*r,
A-ELH'J# where  dor = =2, (8.3
Vi Whielh w5 = | S (ple), I the uat lightsobeie of 46 Rl
wvnt '
o For i arbitonrily moving point charge:
U .
A~ Gt (CRT) (833

whine U In Ite dovalocity b the source event, and R s the (null)
dovuctar frum the sourca svent to tho field evant,

Tha ldea behind verston (832) 1s that sinee the nemealors in the
(mtogronds giving ¢ and A can be gathered mto s d-vector 1, and
the repilt of the (ntegration s alvo 8 &vector, it must be that the
oombination d%e, /ey 0 0 Lomoots inverienl This is 8 sobtie patai
bucanusm thin would not be tree for any arblttary moglon of tegration
It In owing to the fwct that while wo allow 1,0, and 1, 1o explore all
values, for any grven feld ovent, the mtogrand in eqn (8.31) foros £, to
vy A8 will, in sich & way that the events oomributing o the integral
all e on the prn light-cone of the ficld event. The procl that the “laght-
eonn volums eloment’ dhe, fryg bs an lnesriant is given o appendiz D (s
shall not need it again in this book)

The Inst epantion (8.33) dlusteatns tle mesbedd by supplving Che sesul
of the intagral whon the source s & single point charge. This will e
dierieed in the o sacthon

8.2.3  The Lidnard - Wiechort potontials

Wo are now in & pusition to find the potential and feld of an erbitranly
moving poil charge 6, one Lhal may sccelerale, and chasge
acceleration, and o on, and not just malntiain & constant welocity, Thise
o a wonderfe’ posmbelity, beenus wil felds oot fom paial chasges
imoving somehow of other [or st lesst we can model them that way).
=0 we can encapsulate a great deal of sight imo electromagnetism into
one snall but poserful esult. We can get | beenise we have in sgn
(5.33) all the minrmation we need.

First enmalder & flxed point charge Vor this cass the Ditograls in s
(6.32) are esmy, and we almady know the snawer:
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1/c
_ 0
- dregrer | O
0

(8.34)

Ay

The new information is that this solution is still valid even if the charge
was accelerating at the source event! For, according to eqn (8.32),
the acceleration of the source at the source event does not affect the
I.esult——only the position and velocity matter. Nonetheless, the influence
of acceleration is there in the answer, because the distance ry is the
distance between source event and field event. As we explore different
field events, the source events also change. It is important to keep in mind
that st is here not the distance from any fixed point in the reference
frame under consideration, such as the origin.

For an accelerating source, the solution (8.34) as it stands is of very
limited usefulness, because it only applies at those field events where
the charge happens to be at rest at the corresponding source event.
However, we can use it to find the answer in other frames, by Lorentz
transformation. In some other frame S we shall find

A = AAg (8.35)

To calculate this transformation for an arbitrary direction of motion,
by far the best way is to express eqn (8.34) in terms of 4-vectors, and
then the transformation is obvious. This approach 1s like the method
of invariants, except that rather than combining suitable 4-vectors to
form an invariant, we are trying to combine them to form a 4-vector.
Eqn (8.34) is suggestive, because the column vector on the right has
the form of a 4-velocity U evaluated in the rest frame (up to a factor
¢?), and we already know what 4-velocity this must be: it is that of
the point charge at the source event (see Fig. 8.6). In view of all that
we discovered in the previous section, the factor r¢ in the denominator
must be something to do with the 4-vector R from the source event to
the field event. In fact, the 4-vectors U and R are the only ones that can
possibly be relevant. Let us take a look at their scalar product:

R-U= (TSf! rSf) k (F}(Ct "(V) — '.?‘("T'Sfc + Tap* V)- (836)

This is promising, because it evaluates to —rgec in the rest frame, so it
will give the correct 1/ry Coulomb potential if it is in the denominator.
Therefore, we propose the solution

By LHE
 A4meg (—R-U)

We can assert that this is what an evaluation of the right-hand side of
eqn (8.35) must give, because (1) it is a 4-vector, (2) it reproduces the
known result (8.34) in the rest frame, and (3) it does not introduce any
extraneous quantities. We shall comment a little further on this method
of derivation below. Before we do that, let us complete the derivation of

(8.37)

Fig. 8.6 Definition of 4-vectors R and
U for the calculation of the 4-potential
of an arbitrarily moving charge.
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(v,0,0) %]

x-vi

Fig. 8.7 Vectors and angle used to
express the potential due to a uniformly
moving charge.

eqn (8.33). All we need do is to claim that eqn (8.37) is the compleq,,
solution for an arbitrarily moving charge, not just a constant-velogi,
one, because we knew from eqn (8.32) that the answer in the gener
case was going to depend only on the position and velocity of the charg,,
at the source event, not its acceleration or rate of change of acceleratiqy,
ete. In other words, we have found the completely general solution

4-vector potential of a charge in arbitrary motion

q U/e
A= ————. ;
4dmeg (—R - U) (398)
The pair of potentials (scalar potential, vector potential) given by
eqn (8.38) are called the Liénard-Wiechert potentials. Writing them oy
separately, we have

q
i . Y (‘
dmep(rse — v - ver/c] (8.39)
and
- _ 9 ol
A= dmegc? [Tsf —-v- l'sf/C] ' (8.40)

The square brackets serve as a reminder that whereas we are evaluating
the potential at the field point at some time ¢, the rg and v appearing
in the formula are understood to mean rg(ts) and v(t,): i.e., their values
at the source event which occurred at time t; =t — ry/c.

We shall now gain further confidence by commenting on the method
of derivation. and illustrating it for a uniformly moving point charge.

Method of 4-vectors

It is common when beginning the study of Relativity to write down
what one knows to be the case in one frame, and then apply a Lorentz
transformation. However, where possible one should use another type
of reasoning that can save a lot of trouble. Rather than laboriously
transforming from one frame to another, we simply express the result in
terms of 4-vectors that correctly produce it in the starting frame, and
then we use physical reasoning to show that no further terms could
appear in other frames: i.e., terms that just happened to cancel or
vanish in the starting frame. This is the generalization of the ‘method
of invariants’ (section 2.6). It is now a ‘method of 4-vectors’.

We are familiar with this type of reasoning in the case of 3-vectors.
To take an example, consider the expressions (8.11) for the potentials of
a uniformly moving point charge. In the denominator we have a term

(P —vt)* +9° + 2°).

This expression clearly depends on the choice of coordinate system.
However, by inspection of Fig. 8.7 you can see that the same result can



8.2  Solution of Mazwell's equations for a given charge distribution

o written down by substituting (x — vt) = g cosf and (y? + z2)*/? =
I? sin @ where rq is the vector from the charge at time ¢ to the field point
g ¢ime ¢, and @ is the angle between this vector and the velocity v of
the charge. Thus the expression is
(V(z—vt)* +9* +2%) = 75(+* cos’d + sin’6),

with rp:-v = mroucost. (8.41)

The second equation serves to define 8 in terms of the vectors.) We know
for sure that the vector form of the expression is valid in the coordinate
gystem from which we began, and we can see that there is no reason for
things to stray from this form in other coordinate systems. Therefore,
we now have the general formula, and eqn (8.11i) can be written as

_q i
~ 4meg o (2 cos26 + sin®g)1/2’

[ constant velocity (8.42)

The use of vectors saves us the trouble of applying rotation matrices to
the original formula. If you are happy with the 3-vector example leading
to eqn (8.42), then you should be similarly convinced of eqn (8.37).

We are now in a position to understand how the wonderful ‘magic’
of the electric fleld pointing away from the uniformly moving charge
(Fig. 7.4) comes about. For a charge in an arbitrary state of motion, we
focused attention on two positions: that of the source event and that
of the field event. We can also take an interest in another position: the
‘projected position’. This is the position the particle would have ‘now’
(i.e., at the time of the field event, in our chosen reference frame) if it
were to continue on from the source event at the velocity it then had.
The ‘projected position’ is not usually on the particle’s trajectory: the
particle does not go there (unless of course its velocity happens to be
constant), but it is a well-defined place that we can take an interest in
if we like. So, define the vector rg to be the vector from the projected
position to the field event. It is the vector that appeared in our formula
(8.42) for the uniformly moving case, but now we are considering the
general case. Using r = v(r/c) + rp (Fig. 8.8) we obtain

rg=r—vr/c (8.43)
where we are dropping the subscript on rg because we hope that it is
now obvious that this is the crucially important vector in terms of which
the field is calculated.

We shall now write the general potential again, but expressing r in
terms of rp and v. We have r - v = rvcosa and using Fig. 8.8 you can
see that rsina = rgsin 8. So after using cos® o = 1 — sin @ we have
2

(r-v)? = r??(1 — sin® @) = r2? — v¥rEsin 6.

Using this result you can easily confirm that
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Fig. 8.8 Defining the projected posi-
tion P. At the moment when the field
is to be calculated at the field point
f, the particle (large blob) has moved
to some position of no interest. The
field at f is caused by what occurred
at the source point s. We can express
it in a useful way in terms of the vector
ry between the projected position and
the field point. The time t = r/c is the
time taken for the influence from s to
reach f.
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r-vy? vE s
(1'77) =1'g(1625m 9).

Next replace 1 by cos? § + sin? 8 on the right hand side and multiply by
4* to obtain

y(r —r-v/e) = ro(y% cos? 0 + sin? §)1/2. (8_44)

Substituting this into the Liénard-Wiechert potentials (8.39) and (8.40)

we have ‘
q v (e v)

dmegc? ro(y2 cos? @ + sin? 9)1/2

(¢/c, A) = (8.45)
What is this? It is the same expression we obtained for the uniformly
moving charge, of course (cf. eqn (8.42)). We have confirmed that all oy,
derivations are mutually consistent, and although the field for the case of
uniform motion has the interesting form we noticed, we have confirmeq
that it is caused to assume that pattern by means of light-speed-limiteq
communication.

With hindsight, one could now reason backwards from the potential of
a particle at constant velocity (which is very easily derived by using the
knowledge that A is a 4-vector) to the Liénard Wiechert potentials, by
introducing a change of ‘position of interest’ from the projected position
back to the source event. Since the fields can then be derived from the
potentials, even for an arbitrarily moving charge, people sometimes claim
that all of electromagnetism can be derived from Coulomb’s law and
Lorentz transformations. Such a claim is wrong, however, because much
more is needed. For example, we need to know that the potentials form a
4-vector, and how the fields relate to the potentials, and we need to know
the non-trivial fact that the potentials depend only on the position and
velocity of the charge at the source event, not on its acceleration. This is
far fromn obvious: after all, the fields do depend on the acceleration. We
also need to know that only properties at the source event are irnportant,
not some kind of integral over the history of the particle up to the source
event.

The attempt to derive electromagnetism from Coulomb’s law and
Lorentz covariance therefore fails. However, the goal of developing
fundamental theories from a minimal set of assumptions is valid and
important. In chapter 13 we shall shall exhibit, a construction of electro-
magnetic theory—i.e., Maxwell’s equations and the Lorentz equation -
based on a set of assumptions that we state explicitly, and that we try
to make as small and simple as possible. This theme will also re-emerge
when we consider [eld theory more generally in volume 2.

Integrating for a point-like source

We derived the Liénard-Wiechert potentials above by starting in the rest
frame of the source event, and using it to help construct the 4-vector
answer given in eqn (8.38). It should be possible to obtain this same
answer by direct evaluation of the integrals given in eqn (8.31).
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Consider first the zeroth element of A, i.e. ¢/c, and look at its formula
i eaqns (8.31). Faced with the integral in eqn (8.31) and the desire to
evaluate it in the case of a point charge, most of us would note that since

is then a sharply peaked function, the 1/rg can be brought outside
the integral, and then we would take the volume integral of p to be the
charge ¢, thus obtaining

1 q

I m (wrong)

It is what one might think, but it is wrong (compare with eqn (8.39)).
The reason is because this does not correctly treat the time-dependent
nature of the integrand when the charge is moving. Fig. 8.9 explains the
problem and its solution. The correct answer is

_ q pet q
47I’Eu['f‘,,-r(1 == *U,-/f!)] 4‘.'1'69[7‘,,1 - V- I‘s[/C]

(8.46)

which agrees with eqn (8.39). The tricky integration here is a lesson in
the care that is needed when dealing with 4-functions.

8.2.4 The field of an arbitrarily moving charge

The electric and magnetic fields of an arbitrarily moving charge can
be obtained directly from the Liénard-Wiechert potentials, by applying
the relations E = —V¢ — A /0t, B = V A A (eqn (7.22)). Carrying out
the differentiations with respect to time and space is a lot of work,
however. The effort is reduced (though not to nothing) by some modest
use of tensor methods, starting from egn (7.48). The steps are shown in
appendix D, which you should consult after reading chapter 12.

For a uniformly moving point charge one has that U is constant and
the calculation via egn (7.48) is consequently somewhat easier, though
not as easy as the methods we employed in section 7.3. Its main use is to
provide some practice and to provide the manifestly covariant expression
(7.50). The overall form of this result should now be reasonably intuitive.
To extract the electric field, consider the elements (m =0,n =1,2,3)
in the expression U™R™ — R™U". They yield the vector

Uor — ctU* = vyer — ctyu = ve(r — ut) (8.47)

where t is the time between source event and field event, so (r — ut) = ry,
which leads to an electric field radially outwards from the projected posi-
tion, as already noted. The denominator (R - U)® can then be expressed
using egn (8.44), and we find the same expression we found before,
eqn (7.20).

Solution of Mazwell’s equations for e quen charge distribution
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Fig. 8.9 Spacetime diagram to help
caleulate the potential at the field event
fdue to the charged particle ¢. We must
allow the particle a finite spatial extent
and take the limit as this becomes small
compared to all other distances. The
diagonal lines show the past light-cone
of [. The events contributing to the
integral are those shown bold. Suppose
we want Lo calculate ¢ in the reference
frame whose lines of simultaneity are
horizontal in the diagram. Then the
(spatial) length of the contributing line
of events is § = cAt, where Al is the
time taken for a light-pulse to travel
5 = L+ vAt while the lump of charge
travels vAt, where L is equal to the
length of the lump. Eliminating At we
find s = L/(1 —v/¢). Thus the mov-
ing charge contributes as much to the
integral as a non-moving charge of the
same density but longer length would
contribute. This leads to the ‘enhance-
ment' factor 1/(1 —v/c), where v is the
component of velocity towards the field
point.
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Field of a moving charge:
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%! wheti o =0 (8.50)

where r=pp = r,. the sourve event bs al (I, =t -=rfe,r,), v, & are
volocity anld scoeirration of Lhe chargn sl the souros svenl.

I tarme of the displacement rg = r—wr/e rom the poojoctad
P! L,

E'm,.—]wmi‘nm’ﬂiﬁ(“*%::'”"“l) [R51)

where @ in the angle betwaen ry and v.
ﬂhﬂiﬂiuhﬂiﬁnmﬁnl’

-1 F" ( mt: {Fi) + an)

(B.62)
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The allernative Frm (8.52), due to Paynmin,” brings oul some furiher
featicres. 1t fom three torme. The i js the familine Coulomb field, but
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evaluated—note—at the retarded position and time. The second term
says we need to correct the retarded Coulomb field. We multiply the
rate of change of that field by r/c, which is just the retardation time;
this is like a linear extrapolation from the retarded time to the present
time. For a slowly changing field this extrapolation turns out to be a
very good approximation, but it is clear that it cannot be exactly right.
The last term corrects it. T'his term varies as 1/r; it contains all the
radiation effects.

A simple but useful and correct insight into the connection between
radiation and acceleration is contained in the following argument (see
Fig. 8.12). Suppose a particle moves at constant velocity for a while,
then at event A it starts to accelerate and shortly after, at event B, it
assumes a constant velocity again. Then the electromagnetic field for
field points whose source event is either before A or after B is easy to
write down: it is just the one associated with constant-velocity motion
(eqn (7.20)). This provides the information about the field throughout
most of spacetime. The part between light-cones through events A
and B can be obtained exactly from eqn (8.48), or approximately by
simply joining up the field lines already obtained, since the total field
is divergenceless (in vacuum).* Figure (8.12) shows the result for an
example case in which the charge begins and ends at the same velocity,
so the accelerated motion includes both a speeding-up and a slowing-
down part.

One can immediately see from this simple (and correct) argument that
there is a ‘kink’ in the field lines, that this kink propagates outwards at
the speed of light, that the propagating part of the field is transverse
(so as to introduce the observed change in direction of the field lines),
and that it falls to zero along the line of the acceleration. This propa-
gating pulse is the part of the total field that we call electromagnetic
radiation.

Fig. 8.12 A point charge is ‘nudged’
to the right. That is, the charge moves
uniformly, undergoes a brief period
of acceleration and deceleration, then
moves uniformly again at the original
velocity. The inset shows the world-
line; the main figure shows the lines
of clectric field in a plane containing
the acceleration vector, in the initial
(and final) rest frame, at some moment
shortly aflter the acceleration ceased.
The dotted circles show the current
position of two light-spheres that prop-
agate oulwards [rom source evenls at
the beginning and end of the nudge
(radii e(t —ta) and e(t ~tp) respec-
tively), Near the charge the field is
that of a uniformly moving charge,
which points radially oulwards from
the current position of the charge (eqn
(7.20)). Beyond the second light-sphere
the field is again that of a uniformly
moving charge, but now pointing out-
wards from the projected position (the
position the charge would now have,
had it not accelerated), shown by a
cross. Between the light-splieres the
field has a bound part and a radiative
part. The radiative part al any point is
transverse to the light-sphere passing
through that point.

4 ‘Field lines' are continuons for a field
of zero divergence.
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Identifying the radiation

The claim that the term proportional to a signifies ‘radiation’, while
the term without a does not merits some attention. By ‘radiation’ or 4
‘radiative [ield’ we mean a field that, once it is produced, can be regardeq
as a separate entity independent of the source. It propagates outwards
at the speed of light, carrying a well-defined amount of energy anq
momentum with it, and it can be assigned its own energy-momentum
4-vector. The latter point is not self-evident because we are talking about
an extended entity.

According to egqn (8.48) we can always separate an electromagnetic

field at any given event into two parts:
g n-vj/c g nA((n—v/c)Aa)

EI =
4dmegr’ c?r

e — E[ —
dmegrd  y2r2 !

(8.53)
B; = n A Ey/c, By =nAEp/e (8.54)

In order to make this separation we would have to identify the source
event and thus v, a and all the other parts of these formulae. This may
not always be easy (perhaps we have a field in our lab but do not know
what produced it in the past), but in principle it could be done by an all-
knowing investigator. We should like to propose that Ej, By (hereafter
called EM;) should be identified as a ‘bound’, non-radiative field, which
may be regarded as a field owned by or in permanent interaction with the
source, while Eyy, By (hereafter called EMy;) is a radiative field having
an independent existence, possessing a well-defined energy-momentum.
Can we prove such a statement?

First note that By is perpendicular to Eyr, and since Eyy is perpendic-
ular to n, their sizes are related by B = E/c. A field with these properties
is called light-like.

The formula for Ey looks just like the formula for the field of a non-
accelerating charge. In fact, it does not just look like it; it is precisely
the formula for the field of 2 non-accelerating charge (eqn (8.51) makes
this clear). However, the ‘position vector’ r is not here the position in
space at somue given time in a reference frame; it is a position vector
on a light-cone from the source event. In some reference frame at a
given time, for fixed values of the rest of the parts of the formula, r
picks out positions on the surface of a light-sphere centred on the source
event. The bound field at other positions is given by a different source
event, where the charge may have had a different velocity. Therefore
the whole bound field at any given reference frame time is not simply
the field of a charge in uniform motion. In fact, one may show that it
is not even a solution of Maxwell’s equations! For example, for a # 0
one finds V - Eqr # 0 and therefore V - Ey # 0 in empty space (but then
we have V - E; = —V - Ey; of course, since the total field is a solution
of Maxwell’s equations). For this reason the separation of the field into
type I and type II has to be interpreted with care. It turns out to be a
useful way to consider energy movements in the field.
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As we follow Eqr, By out along the light-cone of a given source event,
e see their sizes diminishing as 1/r, whereas Ey, By diminish as 172,
These statements are not about the dependence on position at any given
jime; they describe the dependence on the radii of a succession of light-
gpheres all centred at the same source event. Clearly, except in the
direction along a (where EMp vanishes but EM| does not), the EM;; field
dominates at large v, and furthermore if the energy content of the field

oes as the square of the field amplitudes (as we shall show in chapter
13), the total amount of energy in the EMy, field is undiminished as it
propagates out, while the energy in the EM/ ficld, in a spherical shell
of fixed thickness, falls to zero. This enables one to identify the energy
content of the EMy; field purely from the behaviour of the total field on
5 huge light-sphere in the distant future. Therefore a large enough light-
sphere offers information about the division of the field into two parts
without requiring knowledge of the sources. The far field is sometimes
called the ‘radiation zone’ or ‘wave zone’.

Note that the total energy movement in the field is caused by both
contributions. For example, if the net energy flow is zero it does not
necessarily imply there is no radiative part; rather it implies that the
various contributions to the total energy flow are balanced. (This point
was widely misunderstood in the first half of the twentieth century,
and is still a possible area of confusion for students.) There are three
contributions to E A B:

EAB=EAB +EjAB+ (EtABy+EjpABy).

An example where the E; A Byy term is equal and opposite to the rest
occurs in the case of a charge in hyperbolic motion.

Another important property of the EM; field of a given charge is
that it can be zero. It is zero for all field events for which there is no
acceleration at the source event. Therefore, if we assume the particle has
not been undergoing permanent acceleration from the distant past until
now, then at any given instant in a given frame, the non-zero part of
EMy; is completely contained in a finite region of space.

Thus EMj; has the following properties:

¢ At any moment it is completely contained in a finite region of space,
not necessarily including the point where the particle is located.

* Its total energy content is constant when the particle is not accele-
rating.

We shall discuss the energy flow in more detail in section 16.4, and show
that the total energy and momentum of EMy; transform in the right way
to form a 4-vector. This allows us to conclude that it is legitimate to
call EMy the radiative field.® Tt also follows that, when observed in an
inertial reference frame, accelerated charges always radiate, and radia-
tion fields always have their source in accelerated (not constant velocity)
motion.

Solution of Mazwell’s equations for a given charge distribution
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S In the far field—i.e., far from the
source event—one may say the field
is ‘only’ the EMj; part since it domi-
nates, and this is sufficient for exam-
ining the interaction of the field with
other things such as detectors. How-
ever, even though EMj is small its
divergence is not small compared to
that of EMyy (they are equal and oppo-
site); this is because the divergence of
EM,;[ involves a cancellation of terms
of opposite sign: they almost balance
but not quite. The weaker EM; field
has a larger divergence relatjve to its
size, and can supply a matching contri-
bution.
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Fig. 8,13 Oscillating dipole.

8.2.5 Two example fields
The far field of a slowly oscillating dipole

The most important type of light-source, or source ol electromagnetic
radiation in general, is the oscillating dipole. Most of the light we
see around us is sourced by oscillating electric dipoles in atoms and
molecules. Radio waves are produced by antennae that may be treateq
as dipoles to first approximation.

We shall obtain the form of the electromagnetic field of an oscillating
dipole as simply as possible, by assuming that the speed of motion of
the charge is small compared to ¢, and that the dipole is itsell smal]
compared to the distance to the field point. This covers most cases of
practical importance, and is the first step to treating more general cases,

Consider a dipole made of two charges +4-q separated by a displacement,
X4, so the dipole moment is

d = gx,. (8.55)

We suppose the —¢g charge is fixed and the ¢ charge moves with velocity
v = X,;. We shall obtain the fields from the 4-vector potential. We could
start with the electric field, but it turns out that the calculation is easier
if we first obtain the magnetic field, which only depends on the 3-vector
potential A.

To calculate the magnetic field we only need to consider the contri-
bution to A due to the moving charge. Starting from eqn (8.38), using
U =~(¢, v) and R = (¢(t —t5), rsf) we obtain for the moving charge

q (c, v) -
T dmeg crgse — o - V) (8:58)

This is true in general.

Now we make an approximation: we treat a ‘slowly’ oscillating dipole,
meaning the speed of movement of the charge is small compared to c: i.e.,
v < c. For sinusoidal oscillation, this implies that the wavelength of the
emilted radiation is large compared to size of the dipole. For example,
for a dipole of atomic dimensions we are restricted to treating radiation
in the electromagnetic spectrum from radio waves to soft X-rays. With
this approximation we have

1 (qc, dft — rsf/c])

A
dmepc? Taf

(8.57)

where we used gv = d and we have explicitly indicated the fact that this
has to be evaluated at the source time ¢, = t — 14 /c. For example, for a
sinusoidally oscillating source,

d = gxgsinwt, (8.58)
= d[t — 1yt /€] = wgxg cos(wt — krer)

where k is the wave vector.
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B~ ! m(‘ﬂ'j—”"”]) (8.60)

'I:lre,;,_l:5

which i5 masonably atraightforward to svaluate. Assume the oeelllabion
of the dipole is along the z axis. Then A s along 2, o for Hy we only
nesel o evaluate

ot pka(2)i-td) o

waing v /iy = y/r twice (and dropping the =) The expression for 8
emn be calculsted similacly (16 is given by the same foriula with the
substitution —y — 7). Bringing together all three components (se alio
e 28], we have

1 edAr  dlt—rfelAr
(4 H)
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— - T e wilp  (B@)
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% In a calculation of the electric field
from the potentials, one finds that the
approximation r¢ =~ 7 is inadequate for
the scalar potential: higher-order terms
are needed. However, one can avoid this
difficulty by adopting the Lorenz gauge
and obtaining ¢ from 8¢/8t = -2 -
A.

Fig. 8.14 Directions in the far field
(or ‘wave zone').

To obtain the electric field one can go via the potentials again,® by
for the far field we do not need to. We have found previously that the
far field is purely a radiation field (it falls as 1/r and is proportionaj
to d, hence to the acceleration of the source). Therefore we know it ig
light-like: i.e., £ = ¢B and E, B and r form a right-handed set. Hence

1 (djt—r/dAr)Ar

E=cBAr/r= ,
/ 4Teqc? 73

(8.64)

Tle vector product implies that the sizes of B and F vary with direction
as
inf
E=cBx 22, (8.65)

where 8 is the angle between d and r. This pattern of the strength of the
radiation field is called a ‘dipole pattern’. For example, the sinusoidally
oscillating dipole (8.58) gives

widy siné
dmepc?

E=cB= sin(kr — wt) (8.66)
with E and B directed around the surface of the light-sphere, E in the
6 direction, B in the ¢ direction.

Antenna

The combination wdy = wyl can be recognized as Il where 7 is the size of
the current oscillations in a short segment of wire of length l. Therefore
we can write eqn (8.66) as

—if !—Siﬂ oei(k‘r—w")

E=gs= 2epc A T

where the complex notation is convenient in order to signal that the
fields are a quarter cycle out of phase with the current.

An antenna is a short length of wire carrying an oscillating current
and intended for use in either broadcasting or receiving electromagnetic
waves. In that application we are interested in maximizing the trans-
mitted or received power. Consider, for example, an antenna that is
fed in the middle. Then the current oscillations are maximal at the
centre of the antenna and zero at the ends. For a short antenna of
length L we can approximate the current distribution as roughly linear:
I =1Iy(1—2|z|/L). Integrating this along the antenna gives JyL/2, so
the emitted power varies as L2. This suggests that there is interest in
using longer antennae. However, to calculate the field correctly we should
allow for the phase lag: i.e., the fact that the distance from a current
element on the antenna to the field point is also a function of z. This
is very much like a diffraction calculation in optics. The essential point
is that once the antenna is longer than about A/2, further increases in
length alter the directional distribution of the radiated field significantly,
rather than the total emitted power.
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Far field of an antenna. The approximation I = Iy cos kz is quite
good for a half-wave antenna, but not exact, because the radiation
itself extracts power from the antenna. Within this approximation an
accurate expression for the far field can be obtained by integrating
along the antenna, allowing for the phase (just as in a Fraunhofer
diffraction calculation). Each element on the antenna contributes dE
to the field. First we make the approximation that the field point P
is sufficiently far away that the directions of all these contributions
agree, so

E= Stipung / - cos(kz)e*™ —“tdz 6
2egch 7’

where 1'(z) is the distance from each current element to P (we wish to

reserve the symbol r for the distance from the centre of the antenna

to P). The assumption of far field allows us to use the Fraunhofer

approximation

v =r —zcosf

so the integral in the expression above is

A4
lei[kr—wt) / cos(icz)e_““ cos ﬂdz
T —A/4

where we brought 1/’ outside the integral, since the variation of r’ is
negligible except through its effect on the phase. The integration can
now be carried out easily by writing cos kz = (e**? 4 ¢=%2) /2. One
finds

sin(5(cosf +1)) sin(F(cosf —1)) 2cos(F cosh)
k(cosf + 1) k(cosf—1)  ksin?#

where in the last step we used sin(A + B) = sin A cos B + cos Asin B
and added the two terms. Upon multiplying the various factors

together, one power of sinf cancels and we have kA = 2m, so the
field is

A2

_ —ilp cos(5cos0) oy .
" 2mege  Tsinb ¥ : (8.67)

E
I
This expression is the more accurate (but still not exact) replacement /T\
for eqn (8.68).

' z

A centre-fed antenna of length L = /2 is called a half-wave dipole Fig- 8-15 The half-wave dipole ant-
antenna. We can model the current distribution roughly as I = Iycoskz enna.
(this falls to zero at z = +A/4: i.e., the ends of the antenna). Then
[ Idz = IyA/m, and therefore (ignoring the diffraction effects) the fields
are given approximately by

E =B~ Sl S—ingei(”’“’”.

(8.68)

2mege T
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Fig. 8.16 Electric feld far from a half-
wave dipole antenna, as a function
of angle. The full curve is cos((m/2)
cosf)/sinf (egn 8.67); the dashed
curve is sin 8.

7 Following E. Eriksen and . Gren,
Annals of Physics 286, 320-42 (2000).

(For a more accurate result, see the box above.) The dependence oy
wavelength has now dropped out. The constant (2mege) ! has the valye
59.96 ohms; it is equal to Zy/2mw, where Zy = poc is the characteristic
impedance of free space.

A charge in hyperbolic motion*

The field due to a charge in hyperbolic motion is also most easily
obtained from the 4-vector potential, eqn (8.38). We shall calculate i
without approximation.”
For convenience, adopt units such that ¢ = 1, and let

=

- dﬂ'ﬁn :
Then A = QU/(~R - U). Let the position 4-vector of the charge be R, =
(ts, 25, Ys, 2z). We suppose the charge moves along the x direction, with
the origin placed so that the equation of motion is y, = 0,z = 0 and

Iy = \/ LQ ‘+ :3.

L is the distance of the charge from the origin at ¢, = 0, it is related to
the proper acceleration by I = ¢*/ag (see table 4.1). Let Ry = (2,7, v, 2)

be the field event. For a given field event the source event is identified
by solving R+ R =0 for tg, where R = Ry - Rg:
(t—1,)? - ((a; ~ VIR 42 + z’*) =0. (8.69)
This yields a quadratic equation for £, whose solution is
téd — z( zd — (¢
by = 55+ T R '
2z — 1) R Tr ) (8.70)

where we picked a sign corresponding to the retarded (not advanced)
solution, and

d=L%*+p*+ 2% - %, (= /62 —4L3(z? — t2), (8.71)
with p = (y2 + 22)'/2, The 4-velocity at the source point is
U =~(1,v) = (/Lyts/L,0,0) (8.72)

where we used x; =L and v, = ¢*t,/z, from table 4.1. It follows that

R .U = —(/2L, and one obtains
e EO=H o W=
f.ﬁ—Qm, Az —Qm.

The electric and magnetic fields are found by differentiation. Adopting
now cylindrical coordinates to express the result, one finds

E, = —4QL*(L%+ p* — 22+ t3)/¢®, E,=8QL%*x/(3, E;=0
B, = B, =0, By = Ejt/x. (8.74)

Ay=A,=0. (8.73)

In applying these results one must keep in mind that these equations
are valid only in regions of spacetime for which the charge can source the
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x=—ct

field: i.e., for field events in the future light-cone of some event on the
worldline of the charge. For the (somewhat artificial) case of a charge in
permanent hyperbolic motion, this is the region z + ¢ > 0. The lines of
electric field are plotted in Fig. 8.17. This field has a number of interest-
ing properties, explored in the exercises and in chapter 13. It contains
both bound (type EM;) and radiation (type EM;j;) contributions.

8.3 Radiated power

It is very useful to have a formula for the power in the radiation part of
the field. Such a formula can be obtained for a charge in an arbitrary
state of motion,

To calculate the power in the emitted radiation, for convenience choose
the frame that is the instantaneous rest frame of the particle at the
source event, so v = (). Then the radiation field in eqn (8.48) reduces to

Erad =

dmege?

q [n/\(:/\a)

The energy flux is given by the Poynting vector N = ¢;c?E A B (see
chapter 13). It is allowable to calculate the Poynting vector of the
radiative field alone (rather than the total field), since, in any case,
for large enough r this part of the field contains all the energy crossing
the light-sphere of radius 7. We obtain:

N = ¢gcEag A (n A Ers,d) = GGCEEBdn- (875)

A solid angle d2 on a sphere around the source event receives this flux
onto an area 72d at normal incidence, so the power radiated per unit
solid angle is®

8.8 Radiated power 197

Fig. 8.17 Electric field of a charge
undergoing  hyperbolic motion, The
field lines are shown at the moment
when the charge is at rest in the chosen
frame. Each feld line is an arc of &
circle, until it hits the plane z = —ct,
where it is directed outwards.

8 We continue to use Sl units through-
out this section. The corresponding
expressions in Gaussian units can be
obtained by replacing (g° /Amen) by g*.
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dP _ 2 g% a%sin®0

- _ =+ 8.
dQ ’ 4dmeg  4dmed ( 76)

where 6 is the angle between n and a. This exhibits the sin?6 dependencg
characteristic of dipole radiation. The radiation is emitted primarily tq
the sides: i.e., in directions orthogonal to the acceleration.
The total power emitted is obtained by integrating eqn (8.76) over a]|
solid angle, giving
2 q2 a2

Pr = 3 4dmey 3 <8'77)

This is Larmor’s formula for the power emitted by a non-relativistic
accelerating charge.

We should like to generalize this to all velocities. It is not necessary
to re-do the calculation, because we can argue that Pp is a Lorentz-
invariant quantity. The argument hinges on the idea that we can regarq
the radiated part of the field as an ‘isolated system’ whose total energy
and momentum form the components of a 4-vector. This is not obvious
(it is not true of the non-radiative part of the field, for example), bug
it is valid because alter the charge stops accelerating the radiation field
continues to propagate outwards, so that it can be completely contained
in a region of space where there are no charged particles in interaction
with it. A more thorough discussion involving a consideration of the
momentum fHow in the field is provided in chapter 13.

Let d&y be the total energy emitted into the radiation field in the
instantaneous rest frame during some small time dr (this is a proper
time), then P = d&/dr. Since the radiation is emitted equally in
opposite directions in the rest frame, the total momenturn of the radi-
ation field is zero in that frame, and since this energy and momentum
form a 4-vector, we know how they transform. Clearly, the energy will
be d€ = vd&y in some other frame, and the time interval dts = ~vd7,
therefore d€/dts = d&y/dr, so the power (i.e., energy per unit time taken
to emit it) is Lorentz-invariant. Note that to obtain an invariant quantity
we choose to define ‘power radiated’ to mean energy per unit time taken
to emit it, not receive it. dis is not a proper time; it is a reference frame
time between events at the source (called a retarded time).

‘We can now find the general formula for the power by writing down
a Lorentz scalar quantity that depends only on velocity, acceleration,
and proper time, and that reduces to eqn (8.77) in the rest frame. The
unique answer (Heaviside 1902) is

Power emitted by an accelerating charge

2 ¢ 2 ¢%dd

Pr =2 . =2
L™ 3 4meyc? 3 dmegc®

(8.78)

where the dot signifies dU/dr (we have not used A for the 4-acceleration
here in order to avoid confusion with the 4-vector potential; the mention



of proper time in U does not change the fact that Py is an energy per
unit reference frame time). In order to use the formula in practice it can
be helpful to have it expressed in terms of 3-velocity and 3-acceleration
at the source event, using eqn (2.61):

po=2 O s <a2—M>. (8.79)

3 4meqc® ¢?
This version is associated with Liénard (1898).

To prepare for discussions of momentum in chapter 13 we shall quote
also the 4-vector giving the rate at which 4-momentum is carried away
by the radiation (Abraham 1903):

(U-u)u. (8.80)

This is obtained by arguing that the energy and momentum of the
radiation field form a 4-vector (see above), and the radiation pattern is
symmetric in the rest frame of the particle at the source event, so that
it has no 3-momentum in that frame. Hence we seek a 4-vector whose
zeroth comaponent gives the power that we have already calculated, and
which is parallel to U in the cest frame. Eqn (8.80) gives the only such
4-vector.

8.3.1 Linear and circular motion
For linear acceleration—i.e., a parallel to v—we have from eqn (8.79):

2 ¢ 3._2 ¢ dp\?
P O P i
- 347I'€063<’Y 2) 3 dmegm?2c?

For fixed rest mass, the rate of change of momentum is equal to the
change of energy per unit distance (exercise), dp/dt = dE/dzx, so for lin-
ear motion the power radiated depends only on the externally provided
force (potential energy gradient), not on the actual energy or momentum
of the particle.

Consider the cases of a linear accelerator and a dipole oscillator.
Writing dE/dz = (dE/dt)(dt/dz) we find the ratio of radiated power
to supplied power is

P, _2 ¢ 148
dE/dt — 34megm2cd v dz’

(8.81)

The infinity for » — 0 here is quite interesting: it says that if a particle
accelerates through v = 0 then there is a moment at which it continues
to emit radiation even though the externally applied forces are not
providing any energy! We shall investigate this in volume 2, and argue
that the bound field provides the energy. For high-velocity particles
(v — c), the result shows that energy losses by radiation are negligible
unless an energy equal to the rest energy of the particle is provided in
a distance ¢*/(4megmc?). For an electron this distance is 2.8 x 107!% m;

8.3 Radiated power
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the acceleration would have to reach 10** MeV /m before losses becomg
significant. Radiation loss in linear particle accelerators (on Earth) is
utterly insignificant.

For an electric dipole oscillator of dipole moment d(t) = gz = dg cos
we have a = d?z/di? = —w?(dy/q) coswt, so the instantaneous emittey
power is

2/3

3 .2 2
= ——=7Tw coswt)”.
L 4176063 (‘T d{J )

Taking the non-relativistic limit v =~ 1, and taking the average over 4
cycle (the average value of the cos? function is 1/2), we find that the
average power emitted is

_ 1 Wil 2n® wd}
P = i
3 dmepcd 3 X

This provides an important general insight into power radiation by
small oscillators: the w? dependence shows that for an oscillator of
given size, energy is much more rapidly emitted via high-frequency than
low-frequency oscillation. This explains why mobile phones have to use
microwave not radio-wave technology. It also explains why the ultraviolet
transitions in atoms and molecules are typically much stronger than
the visible or infrared ones. This general insight lies behind the much-
beloved problem of explaining why the sky is blue. Molecules and dust
particles in the atmosphere scatter light from the Sun; owing mainly
to eqn (8.82) they do so more efficiently for blue than for red light; we
receive the scattered light—except during a sunrise or sunset, when we
see primarily the remaining non-scattered part.

The d3 term in eqn (8.82) is also significant. It shows why radio masts
are tall. Its cousin in gravitational-wave physics is the reason why no
gravitational waves have ever been detected by detectors of modest (a
few metres) size.

For circular motion the acceleration is perpendicular to the velocity,
and in synchrotrons it is typically much larger than in linear accelerators,
since a given force can cause a much larger transverse than longitudinal
acceleration (by a factor 4%; see eqn (4.13)). Using |v A a| = va and
a = v2/r for motion around a circle of radius r, eqn (8.79) gives

(8.82)

2 4
L= 34nee® 12 -

The radiative loss per revolution is therefore

(8.83)

7 4 3
AE= FUT“T (‘U/C) 3

For electrons the quantity e?/(3¢or) is 6 x 107% eV when r = 1 metre.
When one wants a bright source of X-rays, the synchrotron radiation is
welcome. When one wants to accelerate particles to high velocities, on
the other hand, the radiation is a problem. It represents a continuous
energy loss that must be compensated by the accelerator. This limits



the velocity that can be achieved in circular particle accelerators, and is
» major reason why these accelerators have had to be made larger and
jarger: by increasing the radius of curvature, the acceleration and thus
gynchrotron radiation is reduced for any given particle energy. A 10 GeV
electron synchrotron has v = E/(mc?) ~ 2 x 104, so AFE =~ 880 MeV if
the radius is 1 metre; such a high loss would be prohibitive. At Cornell
such a synchrotron was built with » = 100 m, producing a loss per turn
of 8.8 MeV.

8.3.2 Angular distribution

From eqns (8.48) and (8.75) the Poyuting vector of the radiative part of
the field is given by

N 1@ [nA(-v/oaa)P
 4me dmepr? (l=v-n/c)¢

(8.84)

This is the rate per unit area at which energy is detected at some time
t, having been emitted at the prior time t; =t — r/c. The total energy
per unit area radiated in direction n during some period of acceleration
is given by

ty 13,2 dt

E= N -ndt = N - n—dt;.
t1 s dts

This shows that if one is interested in the emission (as opposed to the

detection) then the more useful quantity to consider is (N - n)(d¢/dt;).
We have (exercise 8.7)

dt

— =1-v- L .85
a. v-n/c (8.85)

We choose to define the ‘power radiated’ to mean energy per unit source
time (= ‘retarded time’), so the ‘lux radiated’ is
dt

N-ndta =N-n(l-v-n/c)

and therefore the power radiated per unit solid angle is

Pl 1 ¢° nA((n—v/c)Aa)?
dQ |, 43 dmeg (1—-v-n/c)® ’

(8.86)

This formula is an example of the headlight effect; cf. eqn (3.14).
Previously we treated a pattern isotropic in the source frame; now we
are treating a dipole pattern. Where previously we had the 4th power
of (1 — (v/c) cos §) in the denominator, now we have the 5th power, and
a more complicated numerator. Going to energy per unit observer time
instead of source time introduces a further factor of (1 — (v/c)cos8),
making a 6th power, but after taking the numerator into account, the
overall result is roughly a 4th power, as before.

8.8 Radiated power
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Fig. 8.18 Angular distribution of rad-
jation from an accelerating point
charge. Each polar plot shows a curve
whose distance from the origin is pro-
portional to dP/dfl. The lower left
curve is for a charge at rest, giving
the dipole pattern. The upper and right
curves show the pattern at v =2 for a
charge moving vertically and horizon-
tally, respectively, both with vertical
acceleration——eqns (8.87) and (8.89).
The curves are nol to scale; if the
charge at rest has a maximum power
per unit solid angle equal to 1, then the
maximum values for the other two cases
are 576 and 416, respectively. The radi-
ation emitted in the backward direc-
tion in the last case is so comparatively
weak that it does not register on the
plot. See also Fig. 8.19.

Fig. 8.19 Like Fig. 8.18, but giving a

sense of the distribution in three dimen-
sions.

SO =

For linear motion eqn (8.86) can be expressed

2.2 a2
R e LD (8.87)
dQ |, 4mepdme® (1 - (v/c)cosb)®

where @ is the angle between the direction of emission and the acceler-
ation (or velocity) vector. At low speed this is the dipole pattern. As
v = ¢ the power grows and the distribution is tipped more and more
towards the forwards direction. In the limit it becomes a function of 8
alone (exercise 8.8), with a maximum at the angle .. = 1/2y. The
spread of angles can be expressed by the r.m.s. value

N (8.88)

e
Figs 8.18 and 8.19 show the angular distribution.

a.v




For a charge undergoing circular motion, one finds
P| _ ¢ a?/(4rc®) sin® @ cos? ¢
dQ|,, — dmeo (1 - (v/c)cosB) |* 72(1 — (v/c) cosh)?
where 8, ¢ are the usual polar angles if we align the z axis with v and
the = axis with a.

(8.89)

Approzimate width of the frequency distribution

A charge moving around a circle emits in the angular distribution given
above. For high speeds this is a narrow ‘searchlight’ beam in the direction
of the velocity, which sweeps around as the particle moves around the
circle. Consequently, a user situated at a fixed position receives short
pulses of electromagnetic waves, as the beam sweeps across him. The
frequency spectrum of the received radiation is a (complicated) universal
function of w/w., where the ‘critical frequency’ w,. is conventionally
defined as

for a synchrotron of radius r. This is we, = (3/2)y*wo, where wo = ¢/r is
the angular frequency of the particle orbit for a fast particle (one with
v =~ ¢). The spectrum is plotted in Fig. 8.20. The main properties of this
specirum can be estimated from Fourier analysis of the received pulse.
A pulse of duration At must have a frequency width Aw satisfying

AwAt > 1.

In the case of synchrotron radiation in the limit of high particle velocity
(short pulses) there is no reason for the spectral width to greatly exceed
the minimum possible, so we may estimate
1
Aw~ —.
L=
Now consider the forward lobe in the emitted radiation pattern.
It has an angular half-width # given by the headlight effect, hence
approximately satisfying cos® = v/e, from which

sinfl = /1 —cos?f = E
T

Therefore, for v > 1,
8~1/y

by using the small angle approximation. The beam sweeps across the user
when the particle moves around its circular orbit by this same angle 4,
hence a distance r8 which takes a time dt = rf/v = r/yv. However, the
pulse of energy received by the user is not of duration d¢. It is of shorter
duration because the leading edge of the pulse was emitted before the
trailing edge, and has further to travel. During the time 4t the leading
edge travels a distance ¢dt while the particle travels vt in the same
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Fig. 8.20 Spectrum of synchrotron
radiation, on linear (top) and loga-
rithmic (bottom) scales. The spectrum
is [ = fo'y:rflm Kgya(x)dx, where z =
wiwe; To = V3e?fdnege and K is a
modified Bessel function.

Fig. 8.21



204  Electromagnetic radiation
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pulse

Fig. 8.22

direction. Consequently, the trailing edge of the pulse lags behind the
leading edge by

Ar=EVE T )
c YU
To convert this into an expression in terms of v alone, multiply top anq
bottom by (1 + v/c) and argue that for high speed, v ~ ¢. Therefore
At ~ 2—;7—3 = Aw ~ %wc. (8.90)
This explains how the critical frequency arises.

One may expect that the spectrum extends to low frequency (includ.
ing, for example, the comparatively low frequency wy), therefore the
width Aw also indicates the typical frequency near the peak of the
spectrum. For example, a modern synchrotron might operate at wy =
3 x 108 571, v =104, yielding a typical wavelength A =6 x 10710 .
i.e., ‘hard’ X-rays.

Radiation having the characteristic spectrum and polarization of syn.
chrotron radiation is observed in many astrophysical sources, such ag
the Crab Nebula. It is believed to result from electrons spiralling in the
interstellar magnetic field. Artificial sources using synchrotron radiation
for experimental facilities on Earth normally use further techniques such
as undulators that result in much higher X-ray brightness for a given
electron energy.

Exercises

(8.1) Prove that it the 4-polarization of a plane wave in
Lorenz gauge is changed as in eqn (8.8) then the
fields are unaflected.

(8.2) Bvaluate O%g(t — r/c)/r. (Hint: you may find it
helpful to introduce a new variable u =1t — r/c,
and use 8g/dr = (dg/dw)(du/dr).)

(8.3) Find the vector potential due to a long straight
current-carrying wire, in Lorenz gauge. Hence find
the magnetic field around such a wire,

(8.4) In a frame S a point charge first moves uniformly
along the negative z-axis in the positive z direc-
tion, reaching the point (—d,0,0) at t = —At, and
then is brought to rest at the origin at £t =0.
Sketch the lines of electric field in S at ¢ = 0.

(8.5) A charged particle moves along the z axis

with constant proper acceleration (‘hyperbolic
motion’), its worldline being given by

in units where ¢ =1. Find the electric field at
t = 0 at points in the plane ¢ = ¢, as follows.

(i) Consider the field event (¢, 2,y,2) = (0,¢q,
y,0). Show that the source event is at
2
Y

.7;5:&‘}*%

(ii) Show that the velocity and acceleration at the
source event are

T2 — ol o?

Vo= —— | ng= —.

S5 i
(iii) Consider the case « = 1, and the field point
y = 2. Write down the values of zs, vs, as-
Draw on a diagram the field point, the source
point, and the location of the charge at t =
0. Mark at the field point on the diagram
the directions of the vectors n, v, a, n A



(nAa). Hence, by applying the formula
above, establish the direction of the electric
field at (t,z,y,2) = (0,1,2,0).

(iv) If two such particles travel abreast, under-
going the same motion, but fixed to a rod
perpendicular to the z axis so that their sepa-
ration is constant, comment on the forces they
exert on one another. This is an example of a
self force, also called radiation reaction.

(8.6) Obtain eqn (8.62) from (8.60) using vector meth-
ods, making use of the general result

VA @f)=(Vu)Af+uV ASf

where 4 and f are scalar and vector fields. (Hint:
first you need to substitute u = (1/7) and f = d,
and then to evaluate ¥ A d use the fact that the
dipole d has a fixed direction, so d = de where e
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is a constant unit vector along the direction of the
dipole.)
(8.7) Derive eqn (8.85).

(8.8) Show that in the limit v — ¢, eqn (8.87) takes the
form

dP q*

_ 8a® ~+%(+h)*

aQ e T dmeg me? (1 +_7202)5

and that this has a maximum at v = 1/2.

(8.9) According to a classical model, an electron orbit-
ing a proton should emit synchrotron radiation.
Consider a classical model of a hydrogen atom in
which an clectron initially follows a circular orbit
at the Bohr radius, at a speed c¢/137. Estimate
how long it would take the electron to radiate
enough energy to move to an orbit of substantially
smaller radius, according to classical physics.
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The Principle
of Equivalence

9.1 Free fall

Since the dawn of human history, children and others with a playful or
enquiring turn of mind have been dropping pairs of objects off branches
and boulders with the aim of seeing which would hit the ground first.
Aristotle thought that objects have a ‘natural motion’ that is faster
for heavier objects, thus implying that the heavier object will win the
child’s game. This is true in a viscous medium such as air, but misses
the essential point: the difference tends to vanish in the limit where the
objects are heavy and have little air resistance. It was others such as
John Philiponus (sixth century), Simon Stevin (~ 1586) and especially
Galileo Galilei (~ 1610) who observed more carefully and realized that
there is something universal about the motion of objects falling under
gravity.

Galileo said later that he had first thought about this problem during a,
hailstorm, when he noticed that large and small hailstones hit the ground
at the same time. If Aristotle had been right then these hailstones would
have had to set out at substantially different times or from substantially
different heights, which seems unlikely. Galileo studied the problem
under controlled conditions by rolling balls down inclined planes and
timing the rate at which their speed increased. In his writings he also
described a thought experiment in which objects of different mass are
dropped from a high tower such as the leaning tower of Pisa. Here is a
lovely example of his reasoning:

Imagine that two objects, one light and one heavier than the other one, are
connected to each other by a string. Drop this system of objects from the top
of a tower. If we assume heavier objects do indeed fall faster than lighter ones
{and conversely, lighter objects fall slower), the string will soon pull taut as the
lighter object retards the fall of the heavier object. But the system considered
as a whole iz heavier than the heavy object alone, and therefore should fall
faster. This contradiction leads one to conclude that the assumption is false.

Such reasoning makes the conclusion appear very convincing, but
nevertheless to actually perform a controlled experiment is crucial. Let
us examine another thought experiment—this time involving particles
of differing charge-to-mass ratio moving in a uniform electric field. For
this case we have the advantage of already knowing the answer: the
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! However, General Relativity does
lead to a close correspondence between
electromagnetism and gravitation in
the weak field limit.

particle with larger g¢/m will have the larger acceleration. What if we
apply Galileo’s argument here? We imagine a string attached betweeyp,
an object having g/m = 1 unit (say), and another having ¢/m = 2 unitg,
The string will soon pull taut, and the composite object has an inter.
mediate acceleration. There is no contradiction because the composite
object has a net charge to mass ratio not equal to 1 + 2 = 3 units, by
to a value intermediate between 1 and 2 units. This makes it clear that
Galileo’s argument for masses falling under gravity turns on the fact
that he already knew that masses add in a simple way when two objectg
come together to form a composite object.

In order to clear away all doubt on the matter, a mere thought.
experiment is insufficient. The crucial experiment is the real experiment,
and the outcome is now well known.

In Newtonian physics the fact that different objects have the same
acceleration under gravity comes about by bringing together two ideas.
The first is Newton’s Second Law of Motion, which in modern notation
reads

d
f = —(myv 9.1
where m; is inertial mass. The second is Newton's Law of Universal Grav-
itation, which reads, for the force on an object of passive gravitational
mass myg,

GMm,
= r

f 2

" (9.2)
where the direction is such that the force is attractive. By combining
these two equations, one finds that the acceleration under gravita-
tional attraction to another body of active gravitational mass M is
(mg/mi)GM /r?. Newton himself drew attention to the interesting fact
that, in his theory, m; = my, with the result that the acceleration is
independent of m;, so all bodies have the same acceleration in a given
gravitational environment. Newton did not take this for granted, but
tested it by experiment with a pendulum.

When we come to Special Relativity we encounter a problem: New-
ton’s Law of Universal Gravitation is inconsistent with the Postulates
of Relativity (it is not Lorentz-covariant), and there is no simple way to
modify it to make it consistent. or example one cannot simply construct
a gravitational version of Maxwell’s equations because there is no suit-
able source quantity that is both conserved and Lorentz-invariant.? This
means that either Newton’s Law is wrong, or the Postulates of Relativity
are wrong, or both, or the natural world is inconsistent. Following
the hunch of every good scientist, we shall put the last possibility ‘on
the shelf” (guessing or hoping that it will not be needed) and explore the
other possibilities. We shall find that Newton’s Law has to be replaced by
a much more complicated yet profoundly elegant and satisfying theory,
and that the Main Postulates of Relativity can be retained, as long as we
apply them to small regions of space and reinterpret what is yneant by an



jnertial frame of reference. The Zeroth Postulate (concerning Euclidean
geometry) will have to be abandoned, except as a limiting case. These
conclusions are the subject of this chapter.

Since we shall be abandoning Newton’s gravitational law, the ques-
gion arises concerning whether we have any knowledge of gravity, at
the outset, that we can still trust in conditions that have not been
experimentally tested. Finstein recognised that the coming together of
two ideas in Newton’s theory to produce an outcome independent of m is
o form of ‘conspiracy’ in the equations which we ought to question. If the
fundamental principles of physics are mathematically elegant, then such
conspiracies are a sign that we have been thinking about something the
wrong way. In search of a new approach, he therefore thought through
the physical implications of gravitational acceleration being the same for
different bodies. We shall next do the same.

9.1.1 Free fall or free float?

A group of passengers in a lift suddenly feel the cabin judder as a loud
sound of something snapping is heard. They feel in their stomachs a
Jurch and a change of motion, then notice that their feet are no longer
pressed firmly against the floor. One passenger even begins to float up
into the air.

‘Oh no!’ cry the passengers, ‘we are falling!’

‘Look Mummy!” excitedly cries a child, ‘I am floating!’

Who is right? Are the passengers in trouble? Actually, they suffer no
ill-effects whatsoever as long as the lift cabin falls freely. Their fear is
justified only because they know that in ordinary buildings hft cabins
are situated above hard ground, and when they hit the ground they
will then experience large and damaging forces.? Is the child floating or
falling? From the perspective of the cabin, the child’s motion is smooth
and simple, moving across the interior space of the cabin at uniform
velocity, until she gently bumps into another passenger or a wall or
ceiling or floor (the cabin all the while continuing its free descent). 1f
she lets go of her notebook or bag of treasures then it will float across
with her. In the freely-falling cabin, things move relative to other things
just as they would move if there were no gravity and the cabin were at
rest (apart from a detail we shall examine in a moment). But if all the
motions are just as if there were no gravity, then what is the physical
meaning of this thing called ’gravity’? If there are no effects of gravity,
then physically speaking we might as well say there is no gravity in the
freely-falling cabin.

For another example of the same idea, see Fig. 9.1. A house is built
on a platform extended out from a cliff. An artist holding a cannister
of spray-paint jumps across the room, spraying paint against the wall,
and thus leaving a lovely parabolic arc on the wall. Now suppose the
platform breaks just as the artist jumps. From the perspective of the cliff,
the trajectory of the artist is unchanged: she follows exactly the same
parabola as she did before. But now look at the line of paint on the
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2 Lifts in modern buildings have a large
number of safety features that make
their descent perfectly safe even under
catastrophic failure such as a cable
breaking. The story is for illustration
only.
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Fig. 9.1 Free fall or free float? An
artist males a big jump across the room
of her house, spraying paint onto the
wall from a paint cannister as she goes.
In one case (a) the house is supported
by a platform, and in the other (b)
the platform has broken and the house
falls. The artist describes exactly the
same trajectory in the two cases. The
line of paint on the wall reveals the
trajectory relative to the house: it is
a parabola in the first case, and a
straight line in the second. We typi-
cally say that the artist is ‘falling'—her
downwards acceleration results in the
parabolic curve. However, ezactly the
same maotion could equally be regarded
as ‘floating’—her trajectory is perfectly
straight. when examined from another
point of view. Einstein invites us to
regard the second point of view—Lhat
of the freely-falling reference frame—as
the best one in which to formulate the
laws of physics. (Image concept copied
from Taylor and Wheeler )

Fig. 9.2 Tidal effects of gravity. A
group of rocks falls freely in the grav-
itational field of a spherical planet.
The arrows show the acceleration due
to gravity of each rock. This can be
decomposed as shown, into the aver-
age acceleration of the group plus the
departures from the average. The for-
mer causes the rocks to accelerate
downwards without changing their rel-
ative locations, and the latter is called
the ‘tidal' contribution and causes rel-
ative acceleration within the group. In
the example shown here the tidal effect
is such as to squecze the ring of rocks
horizontally and streteh it vertically.

(a) (b)

wall: it is a straight line! Relative to the falling house, the motion of the
artist’s body is just as it would be if no forces acted on her.

These examples suggest a strange but wonderful idea: namely, that the
effects of gravity are of a special kind, that can be made to disappear
by a mere change of reference frame, as long as accelerating reference
frames are allowed. This idea is one of the foundation stones of General
Relativity. We shall find that it is true in sufficiently small regions of
spacetime.

Tidal effects

The detail omitted from the above discussion was the fact that the
acceleration due to gravity varies from one place to another, so the
child’s motion is not quite a straight line relative to the lift cabin. A
useful way to consider this variation is to write the acceleration due to
gravity in some region of space as a sum of two terms:

a(x,y,2) = ap +aa(z,y,2) (9.3)

where for simplicity we considered a static case. The first term ap is
independent of position and is the average of a over the region, and the
second term accounts for the spatial dependence. Figure 9.2 shows a
typical case: the field above a spherical object such as the Earth. 1l an



initially circular ring of nou-interacting rocks is dropped in vacuum in
such a field, then the ap term causes all the rocks to accelerate together
and therefore prescrves the circular shape, while the aan term causes the
top and bottom rocks to accelerate away from each other, and the side
rocks to accelerate in, thus ‘squashing’ the circle into an egg-shape.

When as a child I first learned that the gravitational pull of the Moon
is the cause of tides on the Farth, I struggled to understand why it
was that high tide occurs twice and not once per day. It seemed natural
to me that the pull of the Moon would make the water of the oceans
pile up into a2 lump on the side facing the Moon, but T could never see
why there would be a second lump on the side opposite from the Moon.
Figure 9.2 shows the reason: the weaker gravitational force at positions
further from the Moon is equally significant as the stronger gravitational
force at positions closer to the Moon. The net effect is to provide the
oceans with their average orbital motion and also to squeeze them into
a shape with a lump of decper water on both the nearer and the further
side of the Earth, relative to the Moon. In general, the term aa (z,v, 2)
is called the tidal term, and the eflects of the variation of gravity with
respect to position arc called tidal effects. For example, if a solid body
such as a human being, rather than a circle of non-interacting rocks,
were to fall in a gravitational field such as the one shown in Fig. 9.2,
then the differing acccleration due to pravity at different parts of the
body would tend to streteh it vertically and squeeze it horizontally. In
Barth’s field these effects are small, but near a very dense body such as
a neutron star they can be large and painful!

We can estimate tidal effects in all but the most extreme cases by
using Newtonian physics. 1f the gravitational acceleration is g(x) then
the equation of motion of a freely-falling object is

d%x
auz gx)
and that of a nearby object at x + Ax is

dz
a2 (x - Ax) = g(x + Ax).

Therefore the gap between the objects has the equation of motion

2A
o = g+ 8%) — g(x)
_ o 0g og
Az 4+ =N = A
~ + P Yyt SLY - (Ax - V)g, (9.4)
which can also be written
d?Ax; 0%
= — —A N .
dt? JE 0,0z, i (9.5)

where @ is the gravitational potential, defined such that g = ~V®. Egn
(9.5) is called the equation of geodesic deviation in Newtonian
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physics. This terminology will be clarified in the next chapter. Thg
essential idea is that the equation expresses how two initially close.
together objects draw apart (or together) if both are in free fall.

As an example, cousider a spherical body giving ® = —GM /7. They
for particles situated close to the z axis at {0,0,7} the result is ’

42 Az oM -1 Azx
— | Ay | =— =1 Ay
dt? 73

Az 2 Az

Thus there is attraction in the horizontal direction, tending to bring
a set of test particles together, and expulsion in the vertical dircction,
tending to push the particles apart, as we have already seen in Fig. 9.9

Now consider a single extended object such as a chain of massive rocks
joined by light strings (Fig. 9.3). We suppose that the chain is orienteqd
vertically and that the strings are to good approximation inextensible,
In this case all the rocks in the chain have the same acceleration a, and
if the chain is falling in the gravitational field of a large spherical object,
then the tidal gravitational forces are such as to put the strings into
tension. The equation of motion of the ith rock is

mg(z;) + Ti41 — T3 = ma.

Whriting g(2;) =~ go + #,dg/dz, where gq is the gravitational acceleration
at the centre of the chain, so a = go, we find
dg

Ti+1 = ‘111' — ML —
dz

This shows that as one moves down the chain from the top to the
middle, each string has a tension exceeding that of the one before (since
dg/dz < 0). If we now replace the chain by a single contimious rod, then
one finds

d i T
dT = —zdm>2 = —prer'(—g = d7 = —pAd—g:L‘
dx dz dr dz

where p is the density of the rod and A is its cross-sectional area. The
tension falls to zero at each end of the rod. Integrating from one end to
the centre of a rod of length L, one finds that the tension in the centre
of the rod is

1 2dg :
8pAL e (9.6)
where we have assumed that the gravitational gradient was uniform
along the rod. The tidal forces will break the rod if this tension exceeds
the tensile breaking strength of the rod.

To =

9.1.2 Weak Principle of Equivalence

So far we have seen that the fact that all bodies have the same accel-
eration in a given gravitational field lends a special character to motion
under gravity. Einstein felt that it was so remarkable that it could not be
a mere coincidence but must instead be somehow built in to the essential



gtructure of a correct understanding of gravity. It is a valid insight into
gravity that will survive the transition to a general theory. We state this
formally as

The Weak Principle of Equivalence.

version A: ‘Universality of free fall”. All bodies experience the same acceler-
ation when falling freely in the same gravitational field.

Version B: Gravitational mass and inertial mass are equal,

[ prefer version A, but the alternative statement (version B) is included
since the principle is often stated that way. The reason to prefer the
‘universality of free fall’ version is that it helps to avoid confusion
between two possible meanings of the term ‘gravitational mass'. One
meaning is the source of gravity (sometimes called active mass)—that
which gives rise to a gravitational field. This meaning makes sense in
Newtonian physics but not in General Relativity, because in the latter
the source is not a scalar quantity but a tensor quantity describing
energy, momentum, internal pressure, and stress. The second meaning
of ‘gravitational mass’ is a measure of the response to gravity (called
passive mass), and this is the meaning intended in version B of the
Weak Equivalence Principle. However, in General Relativity (and in any
theory obeying the version A statement) this concept is superfluous.
There is no need to introduce any such notion of ‘gravitational mass’ at
alll In General Relativity the response to gravitation can (and should!)
be written directly in terms of acceleration without regard to mass. This
idea is at the heart of General Relativity, and its elucidation is one of
the aims of this chapter.

9.1.3 The Eotvos—Pekar—Fekete experiment

A simple way to test the Weak Principle of Equivalence is to drop two
different objects simultaneously down an evacuated tube. Depending on
the precision of the timing and the care with which other effects such as
magnetism are excluded, a moderate degree of precision can be obtained.
A more accurate method, in the absence of modern technology, is to
measure the periods of pendula of the same length having bobs of various
different materials. In the modern era, much more precise methods have
been used. An important step forward was taken at the beginning of
the twentieth century by the Hungarian physicist Lordnd Edtvés (1848-
1919). He developed a clever experimental method that allowed him and
his assistants Dezso Pekdr (1873-1953) and Jend Fekete (1880-1943) to
attain a precision around 5 x 10~? in measurements of the ratio my/m;.
The basic idea is to investigate objects undergoing circular motion
as they are carried around by the rotation of the Earth, the Earth's
gravity providing the required centripetal force; see Fig. 9.5(a). The
experimental ingenuity lay in discovering a method to measure directly
and sensitively the difference between the gravitational acceleration of
two such objects. The difference was obtained by means of a torsion
balance, as follows.
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Fig. 9.5 The Eitvgs—Pekar—Fekete
experiment. (a) A simple pendulum
bob (shaded ball) experiences forces Fy
and T, and has acceleration a towards
the rotation axis of the Earth. 0 is the
angle of latitude, and ¢ is the angle
between the gravitational force and
the direction of the pendulum when
it is in equilibrium: ie., not moving
relative to the surface of the Earth. (b)
Shows a pair of masses supported by a
rigid cradle or bar, suspended from a
single central wire, viewed [rom above.
When at rest relative to the surface
of the Earth, the whole apparatus has
the acceleration shown in (a), and
therefore a horizontal component of
acceleration in the northerly direction,
as shown, If the acceleration due to
gravity of one bob differs from that of
the other, then to obtain an equal total
acceleration of both bobs the torsion
pendulum must supply horizontal
forces to make up the difference. It
can do this by twisting away from its
zero-torque position {shown dashed).

(b) N

a sin(6+0)
A A

First, consider a single object suspended from a wire: a simple pendu-
lum bob. The forces on it are the gravitational force of the Earth and the
tension in the wire. If the object is at rest relative to a laboratory fixed
to the surface of the Earth, then these forces must combine to provide
the required acceleration a = w?Rcos# towards the axis of rotation of
Earth, where w ~ 27 /(24 hours) is the rotational frequency of the Earth,
R is the radius of Earth (here assumed spherical), and 6 is the angle of
latitude. Let the equilibrium direction of the wire be called ‘vertical’ and
the plane orthogonal to this be called ‘horizontal’, and let ¢ be the angle
between the force F, due to Earth’s gravity and the vertical direction.
Then the angle between the acceleration vector a and the vertical is
0 + ¢. Resolving the forces in the vertical and horizontal directions we
obtain

Fycos¢gp — T = myacos(f + ¢) (9.7)

Fysing + f = m;asin(f + ¢) (9.8)

where m; is the inertial mass of the bob, and in the second equation we
introduced a further non-gravitational horizontal force f whose value is
zero for a simple pendulum. We now assume that the gravitational force
F, is given by a constant g that is the same for all types and size of
bob, multiplied by a number m, which may depend on both the type
and amount of material in the bob. We can always quantify the amount
of material by the inertial mass m;, therefore we may write

Fy=gmil’ (9.9)

where ¢ is the same for all bobs in a given gravitational environment,
and I' is a property of each bob. The equation serves to define I'. The
logic is that one sets I' = 1 for one particular bob of known m;, which
permits g to be obtained, and then one aims to measure T' for other



pobs. Better still (and this what the Eotvos experiment does), one aims
o measure the difference between I' values of different bobs. In terms
of ‘gravitational mass’ we have

=2 (9.10)
s0 we expect I' to be close to 1.
Solving eqn 9.8 for ¢ one obtains (for f = 0):
asind Rw? cos fsin 6
= tan~! o g e .
¢ = tan (l"g - acos@) Ty (9.11)

where the second version assumed g >> a which is true for laboratories on
the surface of Earth (g/Rw? ~ 290). It follows from this that one way to
measure I differences is to measure the angle (if any) between the wires
of different pendula. A better way is to place two bobs in a horizontal
cradle suspended from a single wire. In this arrangement (Figs 9.6 and
9.5(b)) the wire provides a single vertical force through its tension, and
» pair of opposed horizontal forces through torsion: that is, its response
to being twisted. In the situation where neither bob accelerates relative
to the laboratory, these forces, along with gravity, must provide both
bobs with the same acceleration. Therefore, from eqn (9.8) we have

fi J2

=gl sin¢ +

gy sin¢ +
mi m42

where f) and f, are the torsional forces, related by fo = —f, = f. The
total torque is 7 = fLy + f Ly where Ly and L are the distances of the
centres of the two bobs from the suspension wire, related by mg Ly =
mga Lo when the cradle is balanced. Therefore, after keeping only terms
of first order in (I'y —I'3), one finds that the torque is given by

T =(C1 —o)mi Lygsin é. (9.12)

A suitable wire will experience a twist through an angle in propor-
tion to this torque. In practice one measures the oscillations about
equilibrinm—ior example, by fixing a mirror to the cradle and observing
it through a telescope. The angle the cradle would adopt in the absence of
torque is not accurately known, however. A crucial ingredient is to rotate
the whole apparatus through 180° relative to the Farth’s field and then
repeat the observations. In this way the twist angle can be measured, or
an upper bound set, and hence an upper bound on 7 (the coeflicient of
torsion of the wire having been measured separately).

The concept was subsequently refined by R. H. Dicke who used a fixed
apparatus, allowing the rotation of the Earth to rotate it relative to the
Sun’s gravitational field, and with various other improvements reported
an accuracy of 10711 Modern experiments use a variety of methods,
including, for example, a test mass in free fall in a dedicated satellite.

These experiments test the Weak Equivalence Principle for ordinary
objects such as lumps of aluminium or gold. However, this allows a
variety of different types of mass-energy to be tested, since the mass
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Fig. 9.6 Torsion pendulum: a pair of
masses suspended {rom a single wire.
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of atoms is made up of contributions from the nuclear binding energies
(approx 1% of the total), electrostatic energy (~ 0.001 to 0.01), ang
more exotic forms such as virtual positrons, as well as the masses of
the constituent particles. So far all observations are consistent with the
Weak Equivalence Principle, which has become one of the most well-
attested ideas in physics. Such experiments remain important, however,
since efforts to develop a quantum theory of gravity sometimes suggest
that violations may be possible.

9.1.4 The Strong Equivalence Principle

In section 9.1.1 we considered some thought experiments involving free
fall. We found that in a sufficiently uniform gravitational field, the
local effects of gravity can be made to go away by adopting a suitably
accelerating reference frame (one that fell with an acceleration equal to g,
the local acceleration due to gravity). Next we shall consider a converse
case: what if there is no gravity (e.g., we are far from all massive bodies),
but our reference frame is accelerating?

Do not forget that a reference frame is a reference body—something
that in principle could be present and would be made out of physical
things such as rods and clocks, not abstractly defined notions of space
and time. A fine example of a reference frame for present purposes is a
rocket, coraplete with rocket motor and interior living space; see Fig. 9.7.

Since we have in mind a field-free region of space we already know
all the laws of motion and dynamics we need to describe life on board
such a rocket: they are those of Special Relativity, and associated
dynamical theories such as electromagnetism. We suppose that the
rocket motor is switched on, giving a constant acceleration, and that
there are no other forces acting, so that objects released inside the
rocket move uniformly relative to any nearby inertial frame of reference.
An astronaut standing at a fixed place in the rocket finds that his
feet are pressed firmly against the floor. This is because the floor has
to push on him to give him the same acceleration as the rest of the
rocket. An astronaut who releases an apple inside the rocket will find
that the apple accelerates towards the bottom of the rocket {an inertial
observer would say the bottom of the rocket accelerates towards the
apple). We can imagine that the astronaut will become so accustomed
to this state of affairs that he simply says ‘everything behaves just as if
there were a gravitational field pulling everything towards the bottom
of the rocket.” Now we have another equivalence. If everything is just
as though there were a gravitational field, then physically speaking does
not this amount to saying there is a gravitational field? Or, arguing in
the opposite direction, if the effects we normally ascribe to gravity are
indistinguishable from effects of acceleration in the absence of gravity,
then is not ‘gravity’ an unnecessary concept?

This second way of putting it is counter-intuitive but useful, Ulti-
mately we shall not abandon the concept of gravity, because some of its
properties, such as tidal effects and spacetime curvature, are absolute.
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However, as I sit in my chair writing this, feeling as if gravity is pulling
me down towards the centre of the Earth, I could instead adopt the
perspective that the pull T feel is really the result of my choice not to sit in
an inertial frame of reference (i.e., a freely-falling one). I am accelerating
upwards at 9.8 ms™! relative to any local freely-falling frame. No wonder
1 feel the chair pushing on me: it is providing this acceleration. The
squashing sensation I feel is not (or need not be called) the result of
gravity pulling me down, it is (or may be considered) the result of my
inertial mass resisting such upwards acceleration. The advantage of this
perspective is that it makes it obvious and unavoidable that my passive
‘gravitational mass’ must equal my inertial mass.

In fact, there are differences in detail between the effects of real
gravitational fields and the effects of acceleration: namely, the tidal
effects. Suppose that our astronaut woke one morning to the sound of
an alarm telling him that all outside sensors had failed and the shutters
on the windows had closed. What can he tell about his situation? In
particular, can he perform an experiment to tell between case A: the
rocket is accelerating relative to the distant stars, and case B: the rocket
is at a fixed distance from a massive object that is not accelerating
relative to the distant stars? He feels his sense of weight, but this
will happen in either case. He can check that the rocket motor is still
functioning, but this also implies either case (either A: acceleration,
or B: hovering above a planet). Then he notices that pendulum bobs
suspended at opposite walls are not parallel but aligned towards a poing
several kilometres below the rocket. After first checking that the walls
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Fig. 9.7 (a) A rocket in outer space,
far from other bodies. (b) A rocket
hovering above the surface of a large
planet. The rocket motor is on in both
cases, In (a) the rocket is accelerating
relative to the distant stars. An astro-
naut inside the rocket sees apples fall
to the floor, and feels the floor push-
ing against his feet to support him.
In (b) the rocket is not accelerating
relative to the planet or the distant
stars, but apples still fall and the floor
pushes on the astronaut's feet, Most
experiments inside the rocket cannot
distinguish between case (b) and case
(a). If the planet, initially absent, were
suddenly to appear beneath the rocket,
the astronaut simply would not and
could not notice unless he looked out of
a window or periormed a careful survey
of the variation of gravitational accel-
eration from place to place inside the
rocket, or of the geometry of the space
(e.g., by measuring the angles of tri-
angles or the circumference of circles).
Since the presence or absence of the
planet is largely irrelevant to the expe-
rience of the astronaut, one may begin
to wonder whether the planet exerts
any gravitational influence at alll Of
course it does, because it prevents the
rocket from making progress towards
its destination. Nonetheless it is very
interesting to see from this example
that much of what we ordinarily call
‘the effects of gravity' are merely results
of our refusal to adopt an inertial frame
of reference.
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3 See later for the case of a uniform
gravitational field, which he can also
detect by releasing test masses.

Fig. 9.8 A freely falling cabin.

are not accelerating away from one another (he can do this, for example,
by extending a piece of string across the cabin) he concludes that he is
above a planet (or other massive object).®

The tidal effects thus allow a distinction to be made between grav-
itational effects and effects arising purely from a choice of reference
frame. Another type of observation that the astronaut could perform
is to measure the local curvature ol spacetime (we shall learn how to do
Lhis in the next chapter). This property is a measurable quantity that is
independent of the state of motion of the observer measuring it. It allows
an observer to tell unambiguously whether or not he is in a gravitational
field. Therefore it is not true to say that all effects of gravitational flelds
are completely equivalent, to the inertial effects of accelerating reference
frames in field-free space. However, the differences tend to vanish in the
limit of small regions of spacetime, and this agreement between what
otherwise might seem to be unrelated physical phenomena is of huge
significance. It is the guiding principle in Einstein’s formulation of the
general theory of spacetime and gravity:

Strong Principle of Equivalence: In the limit of small extensions in space
and small intervals of time, all physical phenomena have the same form in
all freely-falling non-rotating cabins. In particular, the laws ol physics are the
same as those observed in a uniformly moving cabin in a field-free region of
space.

The word ‘cabin’ here refers to a notional physical chamber or loose
collection of bricks surrounding the region of interest; it can act as a
reference body but is light enough to offer no significant gravitation of
its own. The term ‘local inertial frame’ or LII' is often used instead of
‘cabin’. A LIF is the idealized limit of a small low-density reference body
in free fall (a LIF can even fall through a solid object). The idea of the
Strong Equivalence Principle (or EP for short) is to extend (or boldly
extrapolate) the theme of the Weak Principle to all types of behaviour,
not just acceleration of otherwise isolated bodies. For example, we are
now making claims about the internal dynamics of atomic nuclei, and
about chemical reaction rates, and about hydrodynamics inside stars,
and so on. The EP says, in effect, we already know to first approximation
what physics is like in the presence of gravity: in a LIF it is the familiar
physics of Special Relativity and Minkowski spacetime.

For obvious reasons, the local inertial frames play the role in General
Relativity which was played by the inertial frames of Special Relativity.
In view of the relativity of time and distance with which we are already
well acquainted, we shall have to be alert to the facl that these measures
will need careful definition when gravity is present.

9.1.5 Falling light and gravitational time dilation
The curvature of a light-ray in a gravitational field

A simple application of the Strong Equivalence Principle (EP) is to
answer the question, whether or not the Weak Principle applies to



electromagnetic waves. Does light experience gravitation? The answer
offered by the Strong Principle is an unequivocal yes. For, imagine we
shine a beam of light into a freely-falling horizontal tube. The Strong
Principle says the light passes through the tube, travelling in a straight
line in a reference frame [reely-falling with the tube. It follows that,
relative to a reference frame made of rods fixed to the massive object
that creates the field (e.g., planet Earth), the light-ray is bent (see
Fig. 9.9). Furthermore, the Equivalence Principle allows us to calculate
the curvature of the light-ray ezactly. This will be our first example of
an exact result in General Relativity.

Definition of a static field. We treat a static field. This means that the
gravitating object, called Earth for convenience, has no time dependence
(including no rotation—so this is only approximately true for Earth).
Since time is itsell affected by gravity we need to define ‘static’ more
fully; this may be done as [ollows. Imagine constructing a lallice of rods
attached to Earth. We would like to consider a rigid lattice, but we
need to define carefully what is meant by that. Imagine any well-defined
sequence of physical operations that could be used to survey the lattice.
For example, mount clocks throughout the lattice (they need not all
have the same rate, but each cloeck should behave regularly) and carry
out round-trip-time measurements for light-signals sent from one point
to any nearby point and reflected back. Record the set of such measured
round trip times at each lattice point. Then repeat the measurement
after the clocks have ticked for a while. If the new set of values is the
same as the old set (and this remains true whenever the measurements
are repeated), then the conditions are said to be stationary. If the round-
trip time for a signal sent around a closed loop (such as a polygon) is
not only constant but also the same for both directions of travel around
the loop, then the conditions are said to be static. (It is possible to
have a stationary but not static situation when there is rotation.) If the
procedure results in static conditions, then the lattice is said to be rigid,
and it furnishes a natural choice of (non-inertial) reference frame-—that
in which the lattice is not moving.

We can now assign spatial coordinates to points on the lattice. We
shall do that by comparison with the coordinates in a freely-falling cabin.

Let system F be a cabin in free fall, with coordinates zy,yr set up
within the cabin, in the horizontal and vertical directions respectively,
and time measured by a standard clock at the origin of F. We know
from EP that such a clock functions normally. Imagine the cabin is
launched upwards, and its internal clock is set to zero just as it reaches
its maximum height, when the origin of the cabin is momentarily at rest
relative to the rigid lattice fixed to Earth. Suppose that at that moment
(tr =0) a light-flash sets off from the origin of F in the horizontal
direction. Using the EP, we know its trajectory is given by

e =cte +O(t), wr=0+0(t}). (9.13)

The Oft}) terms are needed because the EP concerns a limiting case
where tidal effects are negligible. What we can claim to know from
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Fig. 9.9 Light passes along the axis of
a non-moving tube in the absence of
gravity (top picture); therefore (Equiv-
alence Principle) light also passes along
the axis of a falling tube in the presence
ol gravity (bottom picture). The curva-
ture of the light-ray at each point can
be calculated exactly from @ and the
local acceleration due to gravity.

Fig. 9.10 A rigid lattice attached to
a gravitating body. The lattice may be
of rectangular ot spherical or any other
construction.
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Fig. 9.11 Mapping from one coordi-
nate systern to another. The figure
illustrates an assertion made in connec-
tion with egn (9.14): namely, that the
terms omitted from (9.14) are of third
order not second order in xp,yr. The
reason is that the approximation being
made is of the same kind as is made
when mapping distances on a curved
surface onto a flat plane. In the illustra-
tion, the bold line shows a displacement
on the surface of a sphere of radius R.
The exact length of this displacement
is the arc length R#. We would like to
track movements on the curved surface
by projecting them onto a flat plane.
This can only be done for small regions,
but it is convenient because on a flat
plane Euclidean geometry applies. We
always have the option of making the
plane tangent to the curved surface
near any given point of interest, as
shown. The projected distance asso-
ciated with the arc is then HRsind =
R(0 —63/6 4 -- ). The error term is of
third order in . More generally, dis-
tances in a rigid lattice can be defined
by making them agree locally with dis-
tances in a LIF, and the use of tangents
to the exact curves always allows errors
associated with non-Euclidean geome-
try to be reduced to third order.

EP is that at the origin the ray is straight, and therefore d?x/dt? =
Pye/di2 =0 at zy =y =0,

Now consider what is observed relative to Earth. Let system S be the
rigid lattice fixed to Earth, with coordinates x,y to be specified in the
vicinity of the event P where the light-flash was emitted. If the lattice
could be described by Euclidean geometry, then the transformation
between coordinate systems (zf, yr, t¢) and (z,y) (we shall not need ¢)
would be

1 2
=z, Y=Y igtf (9.14)
where g is a number characteristic of the local field strength, called ‘the
acceleration due to gravity at P’. We shall now argue that the errors
introduced by using this transformation are of third or higher order in
x, yr and tr. For, by construction, the origin of the cabin was at rest
relative to S at t; = 0, so there are no terms linear in tg; if there were a t?
term in the = equation then we could make it go away by redefining what
direction is called vertical; any adjustment to the quadratic term in the
y equation is absorbed into the definition of g; finally, no matter what
is the exact dependence of z,y on xy, yr at given tr, the error introducecd
by using straight-line tangent approximations to the exact curves is of
third order (see Fig. 9.11). The last step amounts to recognizing that eqn
(9.14) can be used to define local distance (i.e., distance in the vicinity
of P) in the lattice at rest in Earth’s field.
Eliminating {r, we find that the path of the light-ray in S is

-9 a 3

Therefore the curvature of the ray (see box below) is exactly

o d?y/dz? __9
(1+ (dy/dz)?*® ¢

(9.15)

For example, for g = 9.8 ms~? the radius of curvature is about 1 light-
year. If a spherical body were sufficiently massive to produce this
amount of gravitational acceleration everywhere along a circular orbit
of circumference approximately 27 light-years, then light emitted in the
correct initial direction would orbit the body. Here the statement about
K is exact, but the statement about the circumference is rough because
spacetime is non-Euclidean at a large scale, as we shall see. (In this
example the body in question has to be very heavy, having the mass of
a large galaxy, as a Newtonian estimate will tell you.)

The same calculation gives the curvature for an object travelling at
any other velocity in the cabin (just replace ¢ by the relevant velocity).
It is also straightforward to generalize the calculation to an arbitrary
initial direction of motion relative to the direction of g. One obtains

£ = —gsinf/v?. (9.16)



Since by EP cther ohjects travel in the cabin st bess than e, we find
that light-ray paths in a gravitational Geld are curved, buk they have
thi- smallest cnivature of any path of a falling ohject in & given Keld for
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Uonsldar ithe same staiic Aebd s in the previous calculatlon, and the
e cabm falling from ret at t) = 0 Now suppose a light-wave ol
Irwepuency vy @t off from an origin loeated on the ceiling of the cabmn,
and travels verically downwards. By the EF the wave arrives at the
foor with unchanged frequency iy, and if the cabin height w4 then
the wowefront srroves ot Lhe reception event at the Boor st cabin timo
b= Afe+ O(k?)

Now eomsider the observalions made by obearvers fived Lo the rigid
letthen comairectsd on Farth There are twn obsarvers to comabder: the
‘upper Inttice cheerver’ localed near the emission event. and the “lower
lattigw obwserver” locatod rwar Uhe reception event. At the emission evenl
the oeiling of the cahin is ot rest relative to the lnttics Thevelors
the upper laiticr obsercer obsrws the mme frgquency sg 43 the one
riegistered inside the cahin. To be precizs, that & whal we expect for
mmiall Limes. The lower lattice observer, on the other hand, finds that al
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Fig. 9.12 Light emitted in a freely-
falling cabin and measured by observers
in the fixed lattice.
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the reception event the cabin is moving relative to him in the downwards
direction at a speed given, to first approximation, by v = gty = gh/e.
Therefore there is a Doppler shift between the frequency observed inside
the cabin and the frequency observed by the lower lattice observer. The
latter measures a frequency shift given to first order by

U — = :l—;vo = %—Ug. (917)

Thus the lower observer finds that the frequency is higher than the one
reported by the upper observer, for the same [reely-falling light-wave,
A similar argument applies to a light-wave propagating upwards: in the
cabin LIF it agrees in frequency everywhere with the light-wave that
we have just considered, so the lower lattice observer again finds its
frequency to be higher than that at the upper lattice observer.

This effect is called the grawitational redshift. The word ‘red' empha-
sizes the observation made by the upper observer, who observes the
lower of the two frequencies. The emphasis is placed this way because
gravitational fields {rom finite bodies reduce in strength as one moves
‘upwards’: i.e., away from the body. A lattice observer at infinity finds the
local g —+ 0, so he may legitimately regard his instruments as unaffected
by gravity. A given type of source in [ree fall, such as a specific electronic
transition in the hydrogen atom, always emits a fixed frequency in its
LIF. When the emitted light arrives at the observer at infinity, he finds
its frequency to be lower and lower as the ernission point is situated
closer and closer to a given gravitating object. In this sense the result
can be regarded as a position-dependent redshitt.

Near the surface of Earth g/¢ has the value 10~'6 per metre, so the
effect is exquisitely small. It was first observed (to about 10% accuracy)
in 1959 by R. Pound and G. A. Rebka, in an experiment involving
gamma-rays propagating up and down a 22-m height difference. The
method was to use a marrow resonance in a nuclear transition, and
determine what relative velocity of the source and detector was needed
to compensate the gravitational shift. The experiment took advantage of
the Mdssbauer effect to reduce the thermal broadening which otherwise
would have swamped the shift. Gravitational redshift is now routinely
observed in astronomy, and has been verified to very high accuracy by



radar surveys of the solar system. The global positioning system has to
take it into account at a level around one part in 10'°.
Eqn (9.17) can be written
dv g
= v Wy 9.18
dh  ¢? ($:38)
which is exact, because corrections to the calculation will be of higher
order in A. If we now define a potential function ® such that

g=-Vo (9.19)

(such a definition will be useful when g has zero curl), then eqn (9.18)
is

dv = —%c]@ = u_: = ¢~ (#-®o)/c* (9.20)
This result should be read as a statement about the frequencies observed
by observers at rest relative to the field at two different locations, in each
case using a local standard clock to define time, when they both observe
the same light-wave propagating freely (i.e., subject only to gravity)
between them.

You will sometimes see this gravitational redshift described as if
the light-wave itself changes frequency as it propagates in the field.
However, this point of view is misleading since it misses the important
fact that in each LIF traversed by the light, the frequency is completely
unaffected. We shall now show that a valid interpretation is that the
light is unchanged but the local clocks go at different rates. That is, the
gravitational redshift should be regarded as a consequence of a change
of reference frame from a LIF momentarily at rest at the emitter to a
LIF momentarily at rest at the receiver, Since the emitter and receiver
are at rest relative to one another, so are these LIFs—and yet there is a
frequency shift. 1ts cause is a gravitational contribution to time dilation.

To see this, suppose that a given type of clock—say an atomic clock
based on a caesium atom held in vacuum—is gently lowered from a
high place A to a lower place B in a static gravitational field, all the
while emitting a signal such as a microwave that oscillates in step with
the atom. The clock is then held at B for a very long time, and finally
gently raised to A again. An observer fixed at A receives the redshifted
microwaves and counts the number of oscillations or ‘ticks’, as observed
by herself, throughout the whole journey of the clock. She finds this
number to be considerably smaller than the number of ticks of the
same type of clock kept permanently by her at A. She must conclude
that the lowered clock does not merely appear to run slower at B, but
actually does run slower at B, because the sojourn at B could be made
s0 long as to completely overwhelm the effect of the lowering and raising
operations, and the number of ticks of the clock during its whole journey
is absolute (compare this with the ‘twin paradox’). It absolutely did tick
fewer times than the clock at A, and all but a negligible part of the
difference is due to its sojourn at B.
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gravitational time dilation,
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4 To be precise, in the absence of space-
time curvature: we shall settle later
whether or not purely inertial effects
can be called ‘gravitational'.

By this argument, eqn (9.20) is not only a statement about redshift;
it is also a statement about gravitation time dilation. It shows the ratig
between the rates of standard clocks located at rest in a static field at
positions of differing gravitational potential. The ratio is measurable by
a. procedure such as the one outlined in the previous paragraph, and, for
the removal of all doubt, that absolute measurement outcome is what ig
meant by statements such as eqn (9.20) concerning a comparison of the
rates.

CGravitational time dilation is easy to state, but is nonetheless a subtle
concept. Getting a good grasp of it is half the battle in understanding
General Relativity. It can be linked to energy conservation, but this link
can easily be misstated, so we shall investigate it only after first exam-
ining a very useful test case that can be treated using Special Relativity.

9.2 The uniformly accelerating
reference frame

So far we have guessed (by postulating the Strong Equivalence Principle)
that there is an intimate link between effects of gravity and effects of
acceleration, and we have derived two consequences of that. Our next
step will be to acquaint ourselves better with eflects of acceleration in
the absence of gravitational fields.” We can do this by using Special
Relativity. There is a myth that seems to survive in the student physics
community, to the effect that Special Relativity cannot handle acceler-
ated reference frames, and you need General Relativity for that. This is
quite wrong: Special Relativity can treat any sort of motion. It is limited
(compared to General Relativity) merely by the Euclidean geometry
postulate. The grain of truth in the myth is that the natural discourse
of Special Relativity is inertial reference frames. The method to treat
accelerated [rames withoul adopting the mathematical tools of general
covariance will be shown implicitly in the following.

9.2.1 Accelerated rigid motion

We saw in section 6.5 that the concept of rigidity has to be questioned
in Special Relativity, for two reasons. First, the speed of sound is not
infinite, so the eflects of a force applied to one part of a body are not
felt immediately thronghout the body. Secondly, rigidity in the sense of
fixed physical dimensions is not a Lorentz-invariant property, because
for an accelerating body the size and shape may be constant in some
inertial frames and nevertheless vary in others.

Having noted these facts we can nevertheless introduce a notion of
rigid accelerated motion in the following way. We consider a composite
object to be made of the particles composing it, and therefore to consist
of a collection of worldlines. The particles may be undergoing accelerated
motion, and we may define rigid motion to be motion such that:
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(1) At each instant there is an inertial frame in which all particles in
the body are momentarily aft rest.

(2) The distances between the particles, evaluated in the sequence of
such instantaneous rest frames, are constant.

One can show that these conditions require the motion to be recti-
Jinear.” Therefore we restrict attention to the case of rectilinear motion
along the @ direction, in which no particle overtakes or is overtaken by
another (so the worldlines do nof cross). Choose the particle at one end
of the object, and suppose it has some arbitrary motion. Our task is to
find, if possible, motions of all the other particles such that the above
conditions are satisfied.

Let the end particle be called P, and let its position relative to
some inertial reference frame S be given by z = f(t) for some arbitrary
function f. This defines the worldline of P, Its 4-velocity is U = (e, yv)
where v = df/dt, and we suppressed the y and z components for con-
venience. Now pick some other particle Q, whose position relative to S
is given by some function h(t) to be discovered. Consider the pair of
events A=(t4, f(ta)) and B=(tp. h(tg))—see figure 9.14. We choose B
so that it is simultaneous with A in the instantaneous rest frame of P.
The criterion for this is that the 4-displacement

AX = (c(tp — ta), h(tg) — f(ta))
is orthogonal to U:
U-X=0 = cg(tg—t,q)zv(l'g—-‘»“a} (9.21)

where we introduced z4 = f(ta) and zg = h(tg). Next we impose
condition 2: that the distance between A and B, as measured in the
instantaneous rest frame, does not depend on which event A was chosen.
Since AX is along a line of simultanpeity for the instantaneous rest frame,
this distance is given by the Lorentz scalar length of AX. Therefore the
condition is

(.‘.CB - f{.‘A)2 - 2{33 - tA)2 = Lg (9.22)

where Ly is the constant distance. Using eqn (9.21) to eliminate tg — t4
we find

zp —ma="7Llp (9.23)
and therefore
v
lg —ta = c—z"yLn. (9.24)

These results allow us to find both zg and tg for given x4, t4, v and
Ly, so they determine the worldline of Q if the worldline of P is given.

Next we need to check whether the worldline of @ is consistent with
condition 1. This requires that the velocity of Q relative to S at event B
is equal to the velocity of P relative to S at event A:
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5 A ‘rigidly rotating’ disc does not. sat-
isfy the definition because there is no
inertial frame in which all parts of such
a disc are at rest al any instant,
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Fig. 9.15 A body undergoing an
example of rigid pon-uniform rmotion.
At every event the body has a rest
frame agreed among all is constituent
parts, and in the sequence ol rest
frames proper distances hetween parts
of the body stay constant.

L )
dig - dt 4

It requires some care Lo gel this equation right. The idea is that the
next event on the worldline of @ is at a time dip away and a distance
dzp away. From eqn (9.23) we have dzg/dt4 = 9Lg + v, and from eqn
(9.24) we have dtp/dta = (07 + vy)Lo/c® + 1, where the dot signifies
d/di4 which is the same as d/dt for the worldline of P. Therefore

‘d_IE B YLy +v
dtg (vy + vy)Lofc? + 1

Setting this equal to v, one finds that two v terms cancel and Ly factors
out, so that the condition is

viry = y(c? — v?).

But from eqn (2.56) this is always true, so we conclude that condition 1
always holds for the motion imposed by condition 2.

This argument can be applied for a sequence of values of Ly, so that
a complete rigid body can be specified with its particles at fixed proper
separations as defined by the two conditions. Hence there is a sensible
definition of rigid accelerated motion in Special Relativity. Fig. 9.15
shows an example.

There is one important limitation of this argument. For the argument
to make sense we require dtp/dt 4 > 0, so that when time advances at
one end of the body it also advances at the other end. This condition is

(oy + v¥) g’ +120
which simplifies to
v} oLy > —c2. (9.25)

Now recall that ¥*v is the proper acceleration in the case of straight-line
motion (eqn (2.61)), so we have

agLy > —¢%. (9.26)

For positive ag this means that particle Q must not be too far to the left
of particle P; for negative ag it means that particle Q must not be too
far to the right of particle P, The physical origin of this limit is that Q
must not be so far away that in order for the body to Loventz-contract
enough to maintain a fixed proper size, the particle QQ has to move faster
than light. The limiting value of Lg is an example of an ‘horizon’. This
will be studied more fully in the next section.

9.2.2 Rigid constantly accelerating frame

It is now easy to construct an example of an interesting type of accel-
erating rigid body: one undergoing a constant proper acceleration. In
this case the particle P undergoes the hyperbolic motion described in
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section 4.2.4, and the trajectory of any other particle Q in the body can
be obtained from eqns (9.23) and (9.24).

To reduce clutter we shall adopt units such that ¢ = 1 throughout this
section.

Without loss of generality, we place the origin so that the worldline
of P can be written z? — ¢2 = h3. Then we have the basic equations

7o = ho (9.27)
ap = 1/hg (9.28)
X = (sinh 8, cosh 8)ho (9.29)
U = (cosh 8, sinh ) (9.30)

where 19 is the proper time along the worldline, ag is the proper
acceleration, # (rapidity) is a useful parameter, X is the displacement
4-vector with y and z components suppressed, and U is the 4-velocity.
To find the trajectory of any other particle QQ, we could use eqns (9.23)
and (9.24), but it is easier to argue directly from the two conditions for
rigid motion, and use two notable properties of hyperbolic motion:

X - X = h3 = const (9.31)
X-U=0 (9.32)

The first property says that the spacetime interval from the origin is
constant. The second property says that X is orthogonal to the worldline,
and therefore at each moment, the 4-vector from the origin to the particle
is a line of simultaneity for the instantaneous rest frame. As P moves
along its trajectory, the lines of simultaneity form a set of straight lines
through (0, 0); see Fig. 9.16. It follows that the 4-vector from the origin to
the particle (i.e., X) is purely spatial in the instantaneous rest frame, so
its length is the distance to the origin as observed by an inertial observer
momentarily riding on the particle. But this length is constant! (1t is
equal to hg.) So a sequence of such ohservers will find that for a particle
undergoing hyperbolic motion, the origin is always a fixed distance away
from the particle. The Lorentz contraction does just enough to bring this
about.

Now suppose @ also undergoes hyperbolic motion, but at a different
proper acceleration. The worldline of Q is then

X = (sinh 8, cosh 8)h (9.33)

for some constant h # hg. This worldline satisfies the two conditions for
rigid motion. A straight line through the origin is a line of simultaneity
for both P and Q, so there is an agreed instantaneous rest frame
(condition 1). Also, the distance in this frame from the origin to P is hg
and from the origin to Q is A, so the distance from P to Q is i — hyg,
which is constant (condition 2).

By choosing a sequence of values of /» we can now construct a complete
constantly accclerating rigid reference frame. It is called ‘uniformly
accelerating’ to emphasize that cach particle in the frame moves with
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Fig. 9.16 The constantly accelerat-
ing reference frame. The figure shows
a spacetime diagram. The hyperbo-
lae are worldlines of particles sepa-
rated by hxed proper distance, each
having a constant proper acceleration,
The straight lines are lines of constant
0, which are lines of simultaneity in
the instantaneous rest frame. The tick
marks are placed at equal increments
of proper time along each worldline.
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constant proper acceleration. However, the acceleration is not uniform
with respect to distance: particles at different h have different proper
acceleration.

This rigid frame is perfect to describe a uniformly accelerating rocket
of the kind illustrated in Fig. 9.7a. The rocket is accelerating in the
positive @ direction. At early times its velocity is directed towards the
origin, at late times its velocity is directed away from the origin, but its
acceleration is always in the direction of positive . Owing to singular
behaviour at the origin, it is best to imagine that the rocket does not
reach all the way to the lines t = £a, but its floor is situated at particle
P with some finite value of hy which we may as well take as hg = 1.
Observers in the rocket sit at h > hg, but they have the right to reason
about the region h < hg, and to measure it by sending probes. The whole
of the life of observers in the rocket is confined to the region I of the
spacetime diagram shown in Fig. 9.16. Signals they emit can only reach
regions [ and II; signals originating from regions II and III never reach
them. As far as they are concerned, region II1 might as well not exist!
They can neither influence nor be influenced by it.

We shall now discuss the observations (i.e., the reasoning about space,
time, and motion) made by observers fixed relative to the rocket, When
in doubt we can settle disputes by appealing to the ‘referee’, who is an
inertial observer in the sense of Special Relativity—one whose motion
is not accelerated. The referee surveys spacetime by any suitable means
(for example by using a set of standard clocks and rods, or by radar
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methods). He thus constructs a coordinate system (t,z) that can be
used to assign coordinates to all events. This is the coordinate system
we have been using already.

Each accelerated observer s fixed relative to the structure of the
rocket, so naturally considers that he has a fixed position in the rocket
frame. To quantify the notion of pesition in such a rigid accelerated
frame, the most natural choice is to use the value of h (i.e., the distance
from the origin in the instantaneous rest frame). That is, the ‘height’ of
any given event in the rocket is defined as the value of h for the observer
whose worldline passes through the event. This is a suitable definition,
hecause its value is a constant, for each observer fixed in the frame, and
small changes in h agree with the ‘standard rod’ definition of distance. A
‘standard rod’ or ‘ruler’ is one that the referee would consider standard:
that is, it has just the right Lorentz contraction to agree with a standard
rod moving inertially at the same velocity. In this way we can make a
sensible definition of length for rigidly accelerating rulers. Similarly, an
accelerating clock is said to be ‘standard’ if during any small interval
its ticking agrees with that of a standard clock moving inertially at the
same velocity.

Similar arguments suffice to define what is meant by a ‘standard rod’
or ‘standard clock’ at rest in a gravitational field.

There are many ways in which the timing of events could be tracked in
the accelerated frame. The two most natural ways are the ‘local proper
time’ 7 and the ‘master time’ #. To set up the 7 system, furnish every
observer with a standard clock called that observer’s ‘proper clock’, and
pick one of the lines of simultaneity in Fig. 9.16. The most convenient
such line is the z axis. Let all proper clocks be set to zero on this axis.
Thereafter and before, each proper clock registers the amount of proper
time along the observer’s worldline. We can relate the inertial referee
coordinates (t,z) of any event to the coordinates (7, h) by using

t = hsinh(r/h) 7= (22 - £3)2 tanh ' (1/x) 9.34
% = hcnsh(‘r/h.)} {h = (22 - )2 (9:34)
This is an acceptable definition of position and time in the accelerating
frame, but it is not the only possible one, nor the best. Another good
method is to keep h for position, but instead of using 7 let the ‘time
coordinate’ be the parameter 8 that we used to describe the worldlines.
This has the advantage that it agrees with the notion of simultaneity
that was used to define rigidity, and it agrees with r for one of the
clocks: the ‘master’ proper clock at h = 1. The transformation between
(t,2) and the coordinates (8, k) is

t = hsinh(f 9 = tanh™ (1 ,
z= hségsh(gj} { hm (a2 - Lz){?:? (9.35)

We can imagine that each observer owns not only a proper clock but
also a ‘master clock’ that has been so built as to indicate 8. In fact, it
is easy to construct these master clocks, because
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Fig. 9.17 A tall narrow tower on a
eylindrical planet.

f=r1/h (9.35}

Therefore a master clock is a standard clock with an extra ‘multiplie,
cog’ thal multiplies the reading by the constant factor 1/h.

Now let us compare the rocket to a gravitational field. If an observe,
in the rocket releases a test object such as an apple, he will observe j;
to accelerate downwards (i.e., towards smaller values of h). We already
know the upwards proper acceleration, relative to the referee, of the
part of the rocket at height h: it is @ = 1/h (eqn (9.28)). We expect thay
this is also the downwards acceleration of the referee, and therefore of
anything moving inertially, such as a dropped apple, as observed by ay
observer fixed in the rocket. To be sure, however, we need to check that
the system of measurement employed by the accelerating observers wij]
not. introduce some small correction. Consider, therefore, the situation
near t = 0 when the whole rocket is momentarily at rest relative to the
referee. At ¢ = 0 the rods and clocks in the rocket have no contraction
or dilation; at ¢t = dt the rocket speed at height h is v = adt = dt/h and
therefore the Lorentz factor is v =~ 1 + (dt)?/2h?. Suppose an apple is
released at ¢ = 0. If there were no Lorentz contraction or time dilation,
the downwards acceleration of the apple measured by a local rocket
observer using his own rods and clocks would be a. The Lorentz factor
introduces corrections which vanish in the limit dt — 0, therefore its
effects do not change the conclusion: the rocket observer finds the
downwards acceleration of the apple relative to him, as indicated by
his own instruments, to be a = 1/h. The same result would hold for an
object released at any other time, since the rocket has constant proper
acceleration and we can always Lorentz-transform to a frame in which
it is momentarily at rest.

We have thus found that life in the rocket can be compared to life in
a static gravitational field whose strength varies with height as

=1/h (9.37)

and which is independent of y and z. A gravitational field whose strength
falls as 1/h would be produced by a long cylindrical planet (in the weak
field, i.e. Newtonian, limit), so life on board the accelerating rocket is
much like life in a tall tower resting on such a planet, as long as one only
examines experiments in the zz plane. Using eqn (9.37) in eqn (9.19) we
find that the gravitational potential function is

® = logh. (9.38)

Now let us examine light-signals sent vertically from the bottom towards
the top of the rocket. Expressed in (t,x) coordinates, the worldline of a
photon emitted by P at the event Xy = (sinh 6, cosh ) and travelling
in the vertical direction is X = Xg + (¢, ¢). This intersects the worldline of
the rocket observer at height A at the event with master time @ given by
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sinhfy + ¢ = hsinh @,
cosh Oy + t = hcosh 6.
After subtracting in order to elliminate {, we find
h(sinh @ — cosh ) = sinh 8y — cosh 6. (9.39)

We are interested in the frequency of the light, so consider two wavefronts
emitted from P at times 8,8y + dfy. They arrive at h at master times
separated by df, obtained by differentiating eqn (9.39):

dé cosh 8y — sinh 8,

d6y ~ h(cosh @ — sinh 6) -

Thus in ‘master units’ the received period agrees with the emitted
period. Therefore in proper time units the periods are related by
1

1
—dr = —d
h('r hn( To

and therefore the frequencies are related by

v ) h,o
h
where in the last step we used eqn (9.38). This is the gravitational
redshift; see eqn (9.20). If two clocks of the same type (e.g., two hydrogen
masers) are at different heights in the rocket, then waves emitted with
the frequency of the lower clock will be observed, when they arrive at
the upper clock, to have a frequency lower than that of the upper clock.

Fig. 9.18 shows the spacetime region I where life in the rocket takes
place, plotted using each of our three coordinate systems. The worldlines
of particles fixed in the rocket appear as hyperbolas in the (z,t) diagram
but as vertical straight lines in the (h,7) and (h,8) diagrams; lines of
constant @ which are sloping in the (z,t) diagram appear horizontal
in the (h,6) diagram. In the following we shall refer to thesc three
diagrams as ‘map 1') ‘map 2’, ‘map 3’. They refer to the same region
of spacetime, containing the same events, but mapped onto the page
differently. The three maps present the (z,t), (h,7), and (h, 8) ‘point of
view’, respectively.

Fig. 9.19 reproduces the three maps, with some further worldlines
added. With the aid of this figure we shall consider three experiments.
For the moment we ignore the zigzag lines on the maps, and concentrate
on the other worldlines.

First consider the redshift that we have just discussed. This is illus-
trated by the two photon worldlines setting ofl from (z,t) = (2,0) and
(2,0.2). On map 1 these maintain a fixed separation in the ¢ direction, so
if they represent two successive wavefronts then the period is constant.
In map 2 they separate as they go, their vertical separation doubling
each time they double their height; this is the redshift. In map 3 we see
again a fixed vertical separation (constant dé), but the small ticks remind
us that the local proper clocks are ticking faster at higher heights, so

g~ (?=%0) (9.40)

Vo
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Fig. 9.18 Kinematics in the constantly accelerating frame. The diagram shows region I of spacetime as in Fig. 9.16, plotteq
using each of the three coordinate systems (z,t), (h, 7) and (h, #). The vertical lines in the second and third maps are worldlineg
of particles at rest in the rocket; they appear as hyperbolas in the first map. The small tick-marks indicate equal incrementg
of proper time along these worldlines. Lines of constant # are also shown in all three maps; they converge at the origin in the
first two maps, and are horizontal in the third,
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Fig. 9.19 The same three maps as shown in Fig. 9.18, but with further worldlines added. These show the evolution for various
experiments discussed in the text.
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the redshift is again indicated, along with its interpretation in terms of

ravitational time dilation. This fact could also be ‘read off” from map
1 by counting the number of small ticks between the events where the
two photon lines reach any given hyperbola.

Next, suppose that a rocket observer throws a ball upwards. The ball
rises up the rocket, and falls back down. This is inertial motion, given by
the vertical straight worldline in map 1. In the other maps this worldline
appears curved. The dots on the worldline indicate the passage of proper
time for the thrown ball. The situation here may be compared to the
twin paradox. In map 1 it is clear what is going on: the ball is the ‘stay
at home’ twin, and the hyperbola at h =6 is the ‘travelling’ twin. By
counting ticks you can see that the travelling twin ages by 6 x 0.2 x 8 =
9.6 units, and by measuring in the vertical direction, or by counting dots,

ou can see that the ‘stay at home’ twin (i.e., the thrown ball) ages by
about 10.6 units (4+/7 to be precise). The same conclusions about ageing
can be obtained from the other maps. We shall discuss this further in a
moment, after we have given a reason for preferring map 3 to map 2.

The third experiment illustrated on the maps consists of a ‘photon
clock’ oriented in the vertical direction. By looking at map 1 you should
be able to see that the zigzag line represents a photon moving to and
fro between heights h =4 and h = 5. On map 3 this line again appears
7igzag in a sensible way, but on map 2 it looks a bit crazy. The zigzag
is not regular, except at the turning points, and the photon starts off
by travelling backwards in ‘time’ 7! Nothing unphysical is happening
(as map 1 assures us), but unfortunately the (h,7) coordinate system
does not always do a good job (in the sense of an easily interpreted
job) in describing situations involving movement from one height to
another. The most convenient way to see why is to examine the invariant
spacetime interval ds? = —dt? + dz? + dy? + d2* between any paiv of
neighbouring events (we reintroduced y and z to make it clear that this
is the familiar interval of Special Relativity). From eqn (9.35) we have

dt = hcosh(8)dé + sinh(8)dh (9.41)
dz = hsinh(8)déd + cosh(6)dh (9.42)

and using d7 = hdéd + 6dh to replace the hdd terms we obtain
dt = cosh(r/h)dr + (sinh(7/h) - %cosh(dh)) dh (9.43)

dz = sinh(r/h)dr + (cosh(’r/h) - %sinh('r/h)) dh (9.44)

Hence in the (8, h,y, z) coordinate system the interval has the simple
form:

ds? = —h2d8% + dh? + dy® + d2* (9.45)
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whereas in the (7, h,y,z) coordinate system the invariant interval hag
the more complicated form:

2 _ .2 T 4 _ 7_2 ) 5. 2
ds* = —dr +2hd‘l‘dh+ \1 Iﬂ)dh +dy° +dz“. (9.45)

The expression for ds® is called the line clement or the metyi,
equation. The idea is that ds® is the ‘way to measure’ spacetime
The expression always has a form that allows it to be written ds? -
dXTgdX, where g is a 4 x 4 matrix (called the metric tensor) and dX <
(dz?, dat, dx?, dz®) is the displacement 4-vector in the given coordinate
system. The expressions (9.45) and (9.46) give, respectively,

—h? -1 7/h

I 7/h 1 —72/R2

Gab = , and  gab = 1 - (947

| 1

(The subscripts a, b here are indices running over the range 0, 1, 2, 3; they
act as a reminder that g, is a matrix.) A photon worldline is null: i.e., it
connects events separated by ds? = 0. For a photon travelling vertically
upwards we obtain from eqn (9.45) the ‘speed of light’

dh ;

a "

and from eqn (9.46) the ‘speed of light’

dh |

dr ~ 1+7/h

The latter is negative even for an upward-travelling photon when
7 < —h. The ‘speed of light’ indicated by these two results is not a speed
in the sense intended in the Light Speed Postulate of Special Relativity
(which is not broken here). Rather, it is a ‘coordinate speed’: that is, a
ratio of small changes in quantities that are useful for mapping space-
time, but which are only indirectly related to the standard procedure for
measuring distance and time interval. The standard procedure is to use
a standard rod and standard clocks all at rest relative to one another in
an inertial frame: the speed of light in vacuum (and more generally the
maximum speed for signals) is a universal constant when measured in
this standard way, and this remains true in General Relativiiy. In the
present context it is easy to see what is ‘wrong’ with the (h,8) system:
the time is being measured by a master clock, not a proper clock. It is
also easy to see how to correct the result: the master clock is running
slow by a factor A so has given a speed measuremeni too high by a
factor h. The problem with the (h,7) system is more subtle. The clock
is a proper clock, so indicates time correctly for events at given A—you
can see this from the fact that ds? = —dr? when dh = dy =dz =0 in
eqn (9.46). However, in the (h, 7) system, the lines of constant T are not
orthogonal (in the spacetime sense) to the lines of constant 4. Indeed, at
dr =0 we have ds? = (1 — (r2/h?))dR? (for dy = dz = 0) so the line of



Af  The wiformly weelerating reference frame 297

o simmitanety’ 8 nol evon spacelike wien [r) = A Thersdoro db (dr has
w0 Sitnple connectine to sny physal speed messured m the sandarnd

Wiy

The ksson heie B that it i3 podsible 10 make poor chokoos ol cooi-
sate system. Ultimately the phrsical peedictions (ageing of teins, and
o on) do a0t depend on what coordinate system B chosen, bul the
physical interpeetation of the alpebwnic or graphical salements i more
geraizhtiorsand in sotne systems than o wthers A crucial idew b

The metric provades the ‘bey” that shows how Lo mbierpret the ‘map’
provided by the coondinate spatem.

The coordinate system (b, #) that grves our “map 3° is 8 good choboe o
phae constantly socelevating frame, thisse coomdinetes o called Blndler
poordinabes.

Aeturming now o the twin parsdos, s eas ghe & beautill] bbetpiels-
thon of the situation in mup 3. The worldline of the mertially moving ball
s vraight in map L This worldline has the special pruperty (hat, of all
wurldiines between the given endpoints (Uhe ‘throw' snd ‘eatch’ eventa),
it hiaa the most propes timg (e section 6.0 ) Hoe dos this property
the Principle of Most Proper Time—apponr in map 3% The ball sets out
with instructions 1o reach the gives cabch event having aged as much a
possibbe. Sinee the high-up clocks are Ucking lustes, the Lall trie to get
up high in order to age more rapadly. Howover, it can only get thom by
miwiiig relntive to the mekot, sod this motion (ntrodices Geme ilalion
of the standard mationerolatod kind, quantified by the Lorests facior
7. Therefore the ball has to male & compramise botwesn the motlonal
affect which maken it sgo more aliwly amd Lhe gravitational mie whick
gives it an opportunity to age mom rapidly, Thst comprosasise i the
curved trajectory shown (o map 3 that trajeetory b U worldline of
trost propae time, In the present cpse wo glesady koow thin fram map 1,
bt i view of the Eguivalenos Princliple we can now moke & beautiful
[and correct) guess: the Frinciple of Moad Proper Time still applics when
gty o predent. Thad s, the motion of o fresly-falling tast object, 6
any gravitational Beld, o thi one whieh masimbeos tha propor tme aloug
the worlidline. Thia 1a the apuation of motion of test particles i Genoml
Kelativity,

In the next section wa shall fil out this idos by showing explicitly
henw {0 lemcls tos the Newtonian physics jo the limie of wonk flelds, Fim,
however, we shall examine one more sxpetiment involving the rooket

Alter living in the rocket for & whils, the oleeivers there bigin o
notice that something specinl i going on holow them weae b = 0, 1f i
tlecidad to send out n prabe to nvestigate, The probis (& mbeasod from the
base of the rocket (A = 1) st time L= 0 (5o also & = 0). The probe i o
free-Lill; itn worldiine [ the straight e shown in Frig. 08206 It samls out
i continnous stream of microwaves paporting on (b cxpetionces Tl
signale are the 46-dogree photon worldlines shown in Fig. 0,200 The



238  The Principle of Equivalence

Fig. 9.20 A probe is released at t =0
from the base of the rocket and falls
towards i =0, emitting a signal after
every time interval At = 0.1, (a) In the
(z,t) map this looks perfectly ordinary,
but one can notice that owing to the
motion of the rocket the signals do not
all catch up with the rocket observers.
(b) The (h,f#) map summarizes what
is observed by the inhabitants of the
rocket. They find that the signals arrive
more and more infrequently, and they
infer that the probe never reaches h =
0. That is, the observers would have
to reach infinite age before the probe
reached k. = 0. Both maps agree on how
many signals are emitted between the
release and any given probe height,
so the rocket observers agree that the
probe can reach h = 0 in its lifetime—
they would attribute this to the fact
that the internal circuitry (clocks etc.)
carried by the probe acquires a grav-
itational time dilation that tends to
infinity.
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probe passes smoothly from {z,t} = {1,0} through {1, 1} to {1,2}, with
nothing special happening to it. Notice that {z,t} = {1,1} is at h =D,
80 this is the event where the probe reaches the place which observers
on the rocket consider to be special.

Now look at the arrival of the signals at the rocket. The rocket observer
who first receives the information is the one at h = 1. However, he finds
that the signals arrive more and more infrequently. He can in principle
deduce the location of each emission event, but he finds that as the probe
approaches h = 0 the information arrives so slowly that he would have
to wait forever to receive the signal emitied by the still happy and fully
functioning probe as it passes through h = 0.

The line h =0 in this scenario is an example of an event horizon,
or horizon for short. In the context of gravity the above description
describes a case where light takes longer and longer to emerge from a
given region of space, and the gravitational time dilation tends to infinity.
This is what happens when the gravitational field is strong enough, and
the resulting region of space, from which light cannot escape, is called a
black hole.

Our discussion of the uniformly accelerating reference frame has
illustrated the following characteristic features of gravitation in General
Relativity:

* Cravitational redshift and time dilation

* The use of more than one coordinate system

* The use of the spacetime metric ds?

* Varying coordinate speed of light; fixed local relative speed of light
* Most Proper Time as the law of motion in free-fall

* Horizons
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The discussion has been exact. The only major item missing, which the
uniformly accelerating frame does not exhibit, is spacetime curvature.

9.3 Newtonian gravity from the
Principle of Most Proper Time

By combining eqns (9.38) and (9.45) we can write the metric in (h,6)
coordinates as

ds? = —€?®/<" 2462 + dh? + dy? + d2? (9.48)

where we have reinserted ¢ (which was set equal to 1 in the previous
section). For small ®/¢? this is

ds? ~ —(1+ 280/c?)c*d6? + dh? + dy? + dz% (9.49)

We now assert the Equivalence Principle and claim that this same metric
describes, to first approximation, the effect of any gravitational field
whose potential function is ®. This is an approximate statement not
only because we made a linear approximation to exp(2®/c?), but also
because most fields do not have the same spatial dependence as the
one we found in the constantly accelerating rigid frame. The idea is to
explore what would be the consequences if the claim were true.

In order to apply the metric to the case of a weak gravitational field
in some region of space, we need to check the physical meaning of the
quantities df, dh, dy and dz. To this end, notice that for events at the
same 6 (i.e. dd = 0), ds? is always positive, hence a space-like interval,
whereas for events separated only in the 8 direction (i.e., dh =dy =
dz = 0), ds? is always negative (since we are assuming ®/c? < 1), hence
a time-like interval. It follows that we may interpret df as a measure of
local time and (dh, dy, dz) as a measure of local displacement in space.
Also, the scale factor for the space part is 1, and that for the time part
is almost 1, so does not need adjusting by any further constant factor
(the factor h which was needed in eqn (9.36) has been incorporated into
®). With this in mind we shall now relabel the temporal coordinate as
t and the height as z, so that the metric is

ds? o —(1 4 20 /c?)c2dt? + dz? + dy? + dz2. (9.50)

This is merely a change of notation from that adopted in the previous
section. In this section we shall only need one set of coordinates, and
it is convenient to use the standard letters for symbols whose physical
meaning is small increments of time and position.

Next we shall assert the Principle of Most Proper Time. That is, we
claim that the motion of any test particle in the field is such that if
the boundary conditions are specified by giving fixed start and finish
events, then the worldline is the one having the most proper time, of all
those worldlines that connect the events. The proper time increment is
given by cdr = (—ds?)}/2, so we want the worldline with the maximal
value of
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(2) (2) 26\ . . 1/2
/ cdr =f ((1 + ?) Adt? — da? — dy® - dz2)
(1) (1)
t2 20 92 M2
= C~/zl (1 + 6_2 = C_z) dt

where v = dx/dt. Applying the binomial approximation, we find

(2) n P g2
o 14+ = — ——5dt
Joy cdr c/£I t 7" 5 (9.51)
i M1 4
=c(fs— ) — — _/h Emv — m® di. (9.52)

The condition that the proper time is maximal for given £y, ¢; is therefore
the condition that the last integral is minimal. But this is precisely the
condition of least action of classical Lagrangian mechanics. Therefore
our claim is justified: all the Newtonian gravitational effects are pre
dicted correctly by using eqn (9.50), interpreting ® as the Newtoniap
gravitational potential function, and making the assumption that parti-
cles move so as to maximize their proper time!

The two terms which in Newtonian mechanics are called kinetic energy
and potential energy are now seen to come [from two contributiong
to time dilation: —v?/2¢? comes from the Lorentz factor describing
motional time dilation, and ®/c* comes from gravity. All we are doing
is adding up the ticking of a clock which is affected by both these
contributions. These time dilation effects might appear to be small, but
they lead to all the familiar phenomena of our everyday experience with
gravily: a game of tennis exhibits gravitational time dilation just as
surely as the most accurate test using atomic clocks in satellites.

To take another example, consider the orbit of the Earth around the
Sun. In spacetime this looks like a helix. The radius of the helix is about
500 light-seconds (93 million miles), and the pitch (measured in the
time direction) is one light-year, or 6 x 10'? miles. Therefore it is a very
loosely wound helix. In six months the Farth moves between events
situated at six months time separation and on opposite sides of the
helix. 1f instead of following the helical worldline the Farth were to
try some other nearby worldline—for example, by taking a more direct
route and moving more slowly, or by zooming off towards Mars and then
coming back—then the proper time would be smaller: in the first case
the gravitational slow-down would win out, in the second the motional
slow-down. The actual path makes the best compromise between these
effects.

We have now made a profound shift in our physical understanding
The Newtonian view was that gravity acts by providing a force. The
General Relativistic view is that gravity acts by slowing down the clocks:
Since, in any given spacetime region, all clocks, of whatever construction:
are slowed down by the same factor, we may say that time itself is slowed.
Thus gravity acts by introducing changes into spacetime. Since space and
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time are interrelated, we must expect that space is also affected. The full
theory has to handle the idea of a ‘warped’ spacetime.® We shall turn
to that after first clarifying an easily misunderstood energy issue.

9.4 Gravitational redshift and energy
conservation

If we allow the use of E = mc? then it is not hard to show that even in
Newtonian physics one must expect electromagnetic waves to lose energy
as they move upwards in a gravitational field. If they did not, then one
could create an infinite energy source, as follows (Fig. 9.21): (i) have an
atom emit some waves of energy E in the upwards direction, (ii) absorb
those waves using a siinilar atom at height h, (iii) swap the positions
of the two atoms, (iv) repeat. If the waves did not lose energy then in
step (iii) the top atom has a rest mass larger than that of the bottom
atom by E/¢?, so in swapping their positions (e.g., using a rope running
over a pulley to lower one while raising the other) we can obtain some
work, an amount equal to (E/c?)gh, at no cost. This is impossible, so
the electromagnetic waves must have lost approximately this amount of
energy in rising through a height h. If we now also employ the quantum
mechanical relation E = hw then we shall find a gravitational redshift
even in a Newtonian model of gravity. This is all very well, but it does
not help very much in understanding the General Relativistic result,
because of the great difference in physical interpretation.

In General Relativity we have from the EP that the light-waves do
not change as they propagate in free fall. The frequency mismatch called
redshift is cansed by a mismatch in the natural frequency of the clocks
at different heights. The interpretation is now:

(1) An atom of given type undergoing a given transition can serve as a
standard of time, oscillating at a resonant frequency v.

(2) Choose an observer at some arbitrarily chosen ‘zero’ height. Owing
to gravitational time dilation, this observer finds that the resonant
frequency of a similar atom situated at height z above him is

v=ely ~ (14 gz/c*)vp.

The sign is correct, since here g stands for the size of g, and in
contrast to eqn (9.20) we are referring to local clock rate, not
observed frequency of received waves.

(3) Taking the Planck relation E = hv to be unaffected by gravity
(Strong Equivalence Principle), we have that the gap between the
atomic energy levels is also affected by the multiplicative factor
exp(A®/c?). Extending the argument to all transitions and to
particle creation/annihilation, we find that an atom of given type
in a given internal state has a rest energy increase by the factor
exp(A®/c?) when it is moved from height zero to height z:
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B Eqn (9.50) omits space curvature,
and is only usoful to treat short time
intervals for slowly moving particles in
a weak field.

1] (i) (i)

¥yl

Fig. 9.21 An  impossible ‘energy
pump’ uvsing atoms and light-waves.
(i) A light-pulse passes from lower
to upper atom. (ii) The upper atom
absorbs the pulse and becomes heavier.
(iii} Use the rope and pulley to swap
the atoms, obtaining some work—then
repeat ad infinitum.
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J (& &7

Fig. 9.22 A possible ‘energy pump'
using atoms and light-waves. The light
emilted by the lower atams is only suf-
ficient Lo excite a smaller number of
upper atoms. The gravitational work
obtained is just sufficient to re-excite
the remaining lower atom alter stage
(iii}, so there is no net gain.

E=e2%<Ey o (14 gz/c®)Ey. (9.53)

Note that the rest energy increases by the ‘gravitational potentig)
energy’ mgz. This is an O(®/c?) effect that can not be predicted by
Newtonian physics, and it is completely different from the electy,.
magnetic case. Electromagnetic forces are ‘pure’: they preserve thy
rest mass of the charged particles on which they act.

Although the above argument appealed to quantnm mechanics ayg
the Strong Equivalence Principle, this was merely for the sake of clarity
and convenience. There is no need to use the quantum hypothesis i,
order to arrive at eqn (9.53). It is sufficient to argue that the energy
of a pulse of light transfors, between one LIF and another at a givey
place, in the same way as its frequency. For, suppose an atom at res
at A emits a light-pulse of energy 4 in its rest LIF (this energy may
or may not be the whole rest energy of the atom). The pulse arrives g,
some other height B with unchanged energy and frequency relative g
the chosen LIF. 1If the pulse is then absorbed by (or reconstitutes) ay
atom of the same type at rest at the new height, the transformation of
its energy from the LIF to a rest frame at the new height matches thag
of its frequency, so the acquired rest energy £p of the atom at the new
height is E'y = exp(A®/c?)E 4, which is eqn (9.53). (In chapter 14, eqn
(14.30), we shall show this in more detail, but the present argument is
already rigourous.)

The analysis of an ‘energy pump’ using atoms al two heights now
goes as follows. We start with a collection of atoms on the ‘floor’ at
height zero, all in an internal excited state, and a collection of similar
atoms at height z, all in their internal ground state. Let the energy gap
between two states of an atom on the fHoor be Ey. A photon of energy Ey
emitted by such an atomn does not have enough energy to excite one of the
upper atoms. Instead, therefore, let us suppose Ny lower atoms emit Ny
photons. When these photons arrive at height 2 their combined energy
NoEy is sufficient to excite N = Nyexp(—A®/c*) upper atoms. Now
lower all these excited atoms down to height zero, while raising the same
mumber N of de-excited atoms from the floor. We expect to get some
work from this operation, since the atoms being lowered are objectively
heavier than the ones being raised (there are the same number of them,
but they are in a different internal state). Let the work obtained be Wy
as reckoned by an observer on the floor who receives the energy. We
now have a situation almost the same as at the start, except that we
received work Wy and ouly IV of the atoms on the Hoor are excited. To
return to the starting situation, now excite (Ny — N) of the atoms on
the floor, using up Wy to provide the energy. To avoid an impossible
infinite energy source, we must have

Wo=is~MEy = 0o (BQ‘W = 1) Bi5 i Voh
N c?
where the formula in terms of ® is exact, and the approximate version
helps to interpret it. We thus account for the phenomena exactly by
finding that the rest energy of a given system (such as an atom) in 2
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iven state is a function of position in a gravitational field. In the limit

A®/c® < 1 the amount of work obtained is the same as if the extra
energy carried by each excited atom corresponded to a ‘gravitational
mass’ of Eg/c?. That can be a helpful way to remember the weak-
feld result, but one does not have to interpret it that way. In General
Relativity there is never any need to introduce the concept of passive
gl-avitational mass.

It is best to think of ® as first and foremost a function to do with
time dilation, which must then also be intimately related to gravitational
acceleration, and from which it also follows that ®© can be regarded as a
gravitational potential energy function per unit mass, as explored above.
The interesting result is eqn (9.53). It says that an object of rest energy
E4 at A will, after being slowly raised to B, be found to have rest energy

Eg = e(¢n-‘1>A)/<:2EA' (954)

The idea of a position-dependent rest energy is subtle, and can be
confusing. When we say that an object has a mass of 1 kilogramme, what
do we mean? We mean that its inertial mass would agree with that of a
standard 1-kilogramme object kept in a vault in Sevres, France, il both
objects were brought to the same location without disturbing their inner
constitution. Or perhaps we have in mind another definition which takes
advantage of energy-frequency conversion via Planck’s constant. In any
case, eqn (9.54) Ep says that that same object will have a rest mass
of half a kilogramme alter it has been lowered down a sufficiently deep
gravitational potential well, if we compare it with a standard object that
was not lowered. However, if the standard object is lowered also, then
their masses will agree again. So how shall we detect the reduction in
rest mass? One way is through the contribution to gravity made by the
lowered object, which we will explore in section 11.5.

The role of & in statements about energy is loosely comparable to
the role of temperature in statements about heat in thermodynamics,
in the following sense. A given amount of heat is more useful—can be
used to accomplish more work—if it is delivered at high temperature.
A given amount of material (say, a given number of hydrogen atoms)
is more useful—can be used to accomplish more work if it is delivered
at high gravitational potential. To avoid ambiguity about rest energy,
one can always invoke an invariant such as number of atoms—one may
say ‘this brick has the same rest energy as 10?2 nearby hydrogen atoms’.
Now everyone knows how much brick you have, without your needing to
| explain where it is relative to other things.

If we want to raise an object from A to B by standing at B and pulling
on a rope, we shall have to provide the energy

6’55/62 . 6®“‘/(:2 )

Conversely, this is also the energy we would extract at B by lowering
the object. A gravitational field thus offers an efficient means to convert
rest energy to energy in another form.
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In the LIF that is momentarily at rest at B relative to the rigid [5 bice
there, we can apply the Special Relativistic relation f.dr = dW . Thy
the force fy that has to be exerted at B to move the string throunh s
rest length dr when the object is at A is

e Vfﬂ (PA—P5)/? (®4—®5)/c?
C

= mpgae =maga- (9.5

Another way to raise a body in a gravitational field is to provide the
energy locally using a sequence of energy sources close to the body, The
required force at each position mg = —mV®, so the total energy tha
has to be supplied is [ V& - dr = (¢ — &4 )m assuming the body does
not change, so m is constant. This is different from eqn (9.55) (and equq)
to the classical result). However, a sum of energies located at differep
places should be interpreted with caution.

9.4.1 Equation of motion

The equation of free-fall motion in General Relativity is the equation of
Most Proper Time. This can be freated in general using the Lagrangian
methods described in chapter 14. However, for cases where the shape of
the spatial trajectory of a freely-falling particle is known from symmetry
considerations (e.g., straight down for a particle falling vertically in g
uniform field), in order to get the worldline we only require to know the
speed along the spatial trajectory, and this can be obtained from the
energy, as follows.

We treat a static gravitational field, in which a free-fall trajectory
can be written as a function of a single coordinate 7(7) (e.g., a radial
coordinate in a spherically symmetric problem with the initial velocity
in the radial direction). Let Ey be the rest energy of the particle when it
is far from other bodies. As it falls freely, its energy (relative to a distant
observer) is constant. By contrast, the energy it would have il it were
at rest relative to a rigid lattice fixed in the static gravitational field is
given by eqn (9.53). Hence, at any event A on the worldline the falling
particle has energy Ey, and a similar particle at rest in the rigid lattice
would have energy

Ex = Eueq)”' ~%o

(in units where ¢ = 1), where ®, is the gravitational potential at A, and
®q is the gravitational potential at the top of the particle’s trajectory.
Now consider a LIF momentarily at rest relative to the lattice at A
Frequency and energy observations in this LIF match those of the lattice
observer at A, and since we can apply Special Relativity in a LIF (strong
equivalence principle), we must find

d
Eo = ‘]rE,\ == —;—AE;\
T



Exercises for Chapter 9 245

yhere 7 is the Lorentz factor, which is given by dry /dr, where dry is

yhe proper time between successive events at the same lattice position

.., and d7 is the proper time between successive events on the particle’s

worldline. Hence we find

dTA ‘I‘o ‘I‘A

—— =¥, 9.57
dr g ( )

Let t be the time registered by a clock at rest in the lattice: i.e., one which

gndergoes gravitational time dilation compared to a clock at ® = 0.

Then, from eqn (9.20) or (9.48),

(l‘J'A _ Ly
e
Using this in eqn (9.57) we find

P4 ? =P (9.58)
T

This equation is essentially a statement about conservation of energy.
On the right-hand side is a constant, and on the left-hand side are
quantities related to energy. This result is exact, and we will use it in
chapter 11 to study free-fall motion near a black hole, for example (and
see exercise 9.12). For illustration we now apply it to the approximate
metric given in eqn (9.48), which we previously argued can be used to
describe the Newtonian limit. Then we have (still using ¢ = 1)

dr? = 2%dt? — dr? j—f_ =¢e® (1 —1—?'*2]1’;2
where 7 = dr/dr. Substituting this in eqn (9.58) and squaring gives
e?®(1 4 72) = ¢2%0 (9.59)
= (1420)(1+7%) ~ 1+ 28, (9.60)
= m® + tmr? ~ m®g (9.61)

where we used ®/c? < 1 and then multiplied by the particle mass m in
the last line, in order to make the terms easy to recognize. On the left
is the sum of potential energy and kinetic energy, and on the right is
the total energy. By differentiating with respect to r one can also obtain
d%r/dt? = —d®/dr = g, as expected.

| i)

Exercises
(9.1) Show that the tidal force on Earth due to Moon and Sun are (7.3 x 10** ke, 1.31s) and
the Moon is approximately twice that due (2 x 10°® kg, 5001s) respectively, where Is =light-

to the Sun. (The mass of and distance to second.)
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(9.2) At what distance from a 1 solar-mass neutron star
will a freely-falling steel cable of length 100 m be
pulled apart by tidal forces, if the cable has den-
sity 8000 kg/m® and tensile strength 400 MPa?
[Ans. 1.9 x 10° m.]

(9.3) The Earth was formed approximately 4.5 billion
years ago. How much less has the core of the Earth
aged since then, compared to rocks at the surface?

(9.4) The radius of the Sun is 7 x 108 m. Find the
gravitational redshift of light of wavelength 500
nm emitted from the surface of the Sun. [Ans.
AN = 1.06 pm|

{9.5) The equation of motion (9.31) (i.e., —t* +z? =
hi) is Lorentz-invariant. It follows that if one
plots the worldlines of the particles in a con-
stantly accelerating frame relative to some other
inertial frame (moving in the = direction relative
to the first), one will again obtain hyperbolas,
and Fig. 9.16 will look the same. Show that the
observer at h, finds the worldline at ks to be at a
radar distance hy log(ha/ha) above him.

(9.6) A light-ray travelling in the y direction in
Minkowski space has the worldline # = const, 3y =
ct, z =0. Using a change of coordinates, show
that in the space of the uniformly accelerating
rocket, light-rays follow circular arcs. Show that
eqn (9.16) gives an exactly correct prediction at
any point on the arc,

(9.7) In what direction should a space-ranger in the
uniformly accelerating rocket fire his laser gun in
order to kill the enemy soldier standing across
from him at the same height? Should he aim in
the direction in which he sees the soldier?

(9.8) Consider the metric ds® = —(2x — 1)dt* + (2z —
1) *dz® + dy* + dz?, where (z,y,z) are rectan-
gular coordinates. Find the acceleration due to
gravity and the coordinate speed of light. Iden-
tify the horizon. Introduce a change of coordinate
to X = 2z — 1. Do you recognize the resulting
metric?

(9.9) Sketch the electric field lines due to a charged
particle at rest in a uniform gravitational field.

(9.10) An object whose rest energy is £p; when it is
at location B is lowered slowly on a rope until
it reaches location A, where its rest energy is
Ea =exp(—A®)Eg,. The energy Ep2 = Eg —
E a1 left at B by this process is then packed into a
light bag and lowered to A, where its rest energy
is Eaz =exp(—AP)Egpz and again some energy
(EBa) is left at B. This process is repeated until

no energy is left at B. Confirm that all the energy
arrives at A, le., Ea1 + Eao + Eqaz + ... = Ep,

(9.11) §Climbing a ladder. A man climbs a ladder j, i
gravitational field, and then jumps back dowp to
the Hoor. Describe the energy changes. Do the
energy level separations of Lthe atoms of the man'’
body change? 1s this a reference—l‘-rmnc-delmudent
guestion? Assuming the man emits no heat, doeg
his rest mass change? Separate in your answe,
the the three stages of journey up, free fall, anq
landing on the floor.

(9.12) Use eqn (9.58) with the Rindler metric (9.45) (4
obtain the equation of motion

2
h? (l + (g—i) ) = const

for an object in free fall in the constantly accel.
erating rocket. Hence, using h? =z® —¢* (eqq
(9.35)), deduce that in (z,t) coordinates the
motion satisfies (z — vt)? = const.

(9.13) To obtain insight into least action (most proper
time) methods, consider the conceptually simpler
principle of least optical path length in optics (Fer-
mat’s principle). Optical path length is measured
by the number of wavelengths along the path;
material such as glass reduces the wavelength so
increases the optical path length; light follows
paths of stationary optical path length. By con-
sidering arrangements of prisms and mirrors, show
that there can exist cases where there is more than
one locally shortest optical path between given
points.

(9.14) The previous question made an observation about
optical paths in space. The corresponding fact
about proper time along worldlines is that there
can exist cases where there is more than one
possible free-fall motion between given events. As
Rindler has pointed out, the result is a ‘twin
paradox’ where neither twin experiences proper
acceleration. For example, consider twins born in
a space station orbiting the Sun at 1 Astronom-
ical Unit (not near the Earth). Let one twin be
launched from the space station in a direction
directly away from the Sun, with an initial veloc-
ity chosen such that it takes a year of free-fall
motion for him to return to his initial position.
Roughly estimate the gravitational and kinetic
contributions to the time dilation for both twins,
and hence establish which is younger when they
meet again.



(9_]_5) A neutron js dropped from rest at a large dis-

tance from a compact star. It falls freely onto
the star and collides with a neutron resting on
the surface there. In the resulting collision, a
neutral pion is produced by the process n +n —
n+n+n° If we suppose that both neutrons
may be treated as free particles during the col-
lision, what is the threshold value of the gravita-
tional potential at the surface of the star for this
process?

(9-18) A train of proper length Lo = 1 light-second is ini-

tially at rest by a platform. The front of the train
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undergoes constant acceleration to v = (24/25)c
in 1 second. Its mean speed during this time, in the
rest frame of the platform, is therefore (12/25)c,
and the distance it travels is 12/25 = 0.48 light-
seconds. The Lorentz contraction of the train at
its final speed is by & factor v = 25/7 ~ 3.57.
Therefore the back of the train has to cover
a further distance of Lo(1 — 1/7) = 18/25 light-
seconds. Hence its total distance travelled is (12 +
18)/25 = 1.2 light-seconds, so its mean speed is
1.2c: i.e., faster than the speed of light. Or is it?
Explain.
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Warped spacetime

We now come to the final big idea which is needed to complete thg
theory of gravitation provided by General Relativity. This is the idea of
spacetvme curvature.

Curved or warped?

The basic idea is that if we liken spacetime in one spatial and one
temporal dimension to a surface, then that surface is not flat. The
notion of ‘flatness’ or otherwise can be extended to larger numbers of
dimensions, and ultimately we will find that four-dimensional spacetime
is warped or ‘curved’.

The word ‘curved’ is used here in a technical sense. In everyday
language when we say a surface is curved we usually have in mind an
example such as the surface of a sphere. The surface is two-dimensional
in the sense that two parameters (such as latitude and longitude) are
enough to specify any point, buf if is curved because it bends around
into a third dimension. More generally, it could be curved into more
complicated shapes. From a mathematical point of view, the question
arises: is this idea of curvature essentially to do with the bending
into the third dimension, or can it be understood purely in terms of
measurements along the surface? The remarkable answer is that we do
not need to appeal to the third dimension: it is sufficient to study only
measurements along the surface. Such measurements are said to reveal
antrinsic properties of the surface, and we will show in the following
that they can reveal the curvature through the effects it has on intrinsic
geometric quantities such as the sum of the angles of a triangle drawn on
the surface, or the ratio of the circumference to the diameter of a circle
on the surface. In these studies it is useful to say that the surface (even
a curved surface) is two-dimensional, because two coordinates suffice to
map it. That, in any case, is the standard terminology, and we shall
adopt it. If the properties of geometric objects such as triangles and
circles on the given surface do not match those of Euclidean geometry,
we say the surface is ‘curved’, where the word now has a meaning closer
to that conveyed in everyday language by ‘warped’. That is, we can
imagine the surface curving away into a third dimension if we like, but
we do not have to use that image: we could instead just say that the
‘fabric’ of the surface is warped, with precise algebraic consequences,
and not appeal to a third dimension.
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In a similar way, we shall say that spacetime is four-dimensional and
is curved or warped. You can, if you like, infer that there is a fifth
dimension into which this four-dimensional object can curve, but such
g fifth dimension would only serve as an aid to the imagination: it
js not a dimension into which any worldline can ever depart out of
four-dimensional spacetime. Also, not all types of warping that make
good algebraic sense can be modelled accurately by an appeal to a fifth
dimension. The same is true at lower numbers of dimensions: we shall
meet, for example, a two-dimensional surface which can be mapped by
a pair of periodic coordinates such as latitude and longitude, and which
has everywhere the same positive curvature. Such a surface is called
a spherical surface, and can be regarded as the surface of a sphere in
an ordinary (unwarped) three-dimensional space. However, we can also
define algebraically a surface which is mapped by the same pair of coor-
dinates but which has everywhere the opposite sign of curvature. There
is no way to picture this as the surface of any imaginable shape (complete
and without singularities) in unwarped three-dimensional space. We say
the former surface can be ‘embedded’ in flat three-dimensional space,
but the latter cannot. Having macde this cautionary note with respect
to ‘embedding’, we shall nonetheless use our knowledge of surfaces that
can be embedded to learn about the general problem.

Our aim is to understand what it means to say we live in a warped
four-dimensional spacetime, and especially to discover what the mea-
surable physical consequences would be. To this end, we shall first
examine the spatial part of the problem. That is, we do not for the
moment care about the time taken for any process we shall consider;
we concentrate purely on distance and angle measurements. We begin
with two-dimensional surfaces, since these are easier to imagine, then
generalize to three spatial dimensions, and then incorporate time at the
end.

10.1 Two-dimensional spatial surfaces

Suppose there is a species of intelligent bugs who live on a surface.
The surface might be flat as in Fig. 10.1 or curved as in Fig. 10.2. We
can see immediately the shape of these surfaces, but we suppose the
bugs have no direct experience of the third dimension: they cannot see,
but have to find their way around by feeling. They can, however, make
accurate surveys of their world by making careful distance and angle
measurements within the surface where they live.

We shall also consider a surface that looks flat to us, Fig. 10.3, but
which has a special property which makes it feel to the bugs just like the
spherical surface of Fig. 10.2. This is a device to show that curvature of a
space can be modelled in more than one way. The special property is that
this surface carries at every point an ‘expansion field' f which causes any
object placed there to immediately expand to f times its normal length.
The factor f is a function of position on the plate, but since this field

Fig. 10.1 A bug living on a fat sur-
face.

Fig. 10.2 A bug living on a spherical
surface,

&>

Fig. 10.3 A bug living on a ‘hot-
plate’: a fat surface possessing an
expansion field that causes all objects
placed on it to expand by a locally
determined factor (e.g., thermal expan-
sion caused by the temperature of
the plate, which is here coldest at its
centre).
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Fig. 10:5 Geodaes an the hel-piate

atfeots wverything equally, including thiy bodies of the bugs themeelve,
wverything Chay ponssin, and their constitient particles, the buge e,
nid chivectly awate of it 11 & bug carrlen o otandard rod called o rale
pind Andla that hin owii body haa s longeh ol 3 standand rode slhies jy,
m itanding sumewhere on Lhe plate, then e will find his body rompig,
of Jength 3 standard pods wherover o goss, sincs be and the rod by,
expand or conteact together, The bugs define distunce in thelr world by
waleg standavil pods of glven conatruction. The plals with the sxpansiag,
fold s sometimes calind » 'hot-plste’ modael, sinoe we can imegine tha
the expansion feld i iy & tempreatiore which causes Lhings Lo expan
by thermal expansion. Let (p, @) be plene polar coordinates an the platy,
i meammred by an onlooker such s curslves whoss messiring stioks ppy
not sibjoct to the expansion. W shall trest & plute whers he axpansijoy,
Incior wirkss with posibion ns

F=t+41p (1001}

where k& 8 constant. This means that the [nfinite plate s orthnary i
the middle and al incressiig "temperature’ ps one moves out from the
mikdiile

Mow suppose the bugs begin 1o do some geometry. We suppose that
e e of bugn move (o very regular wisy, taking small steps of the same
wme_ s thal by counting seps the bugs have o good way of messuring
ditance aloog any given path. A bog Euclid proposes that a strabght line
cani be defined s one conpecting two points with the smallest length. By
tunsng too and fro betwern two ven palita the bug on the flat plane
sron bewrns which & the straight ling between them The bug will algo
Hisd that T be carefully eimured that ol #very step he moves & left ond
nght leg simultarecmsly, so that both sides of his body move through
ihie same delance, then he follws ihe very paih that e previooaly
ivund b0 be strnighs by the criterion of least length. This i no surprise,
becnise the bug's legs are here probing aoe pair of nearby palhs: these
paths =t bave the same length o they ciosely bracket n path of least
length It ako shows that the definition of a straight line in torms of
least distance sgross with an alfernative definition in terms of "parallal
transport " the seoomd definition &= “if you walk strafcht abhoad without
tuming then woar path will be straipht’. The second definition in similar
10 ihe way by which trecked wehicies soch s tanks and bulldozss monn
they sty by maving ome track travel furihes than the athes. If both
tracks move Uhe same amount and there & oo shpping, then & hulldoer
moves in & sraiphl ns

How do things go for the bug on the sphete” He slso finds & path of
lemst length it is an are of 3 grest circle (Fig 10 4). He also Snds Lhat i
he walks straight ahesd (like & bulldoser) then his path agrees with the
least-length one between any given pal of poists an it

The bug on the ‘hot-piste’ can sl find ‘straight lines by sither of
the criteria (beast distance or no-turning), and the laes he Lhas ieutifo
appear curved to we Fig 105 The @ becauss (o minimine L gumbe
of steps talen between s given poir of pointa, e bag slonld wander
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How to draw a geodosic.

Heto is how 1o draw o geodoic on ke arbitrary surfusce. First triangu-
late the wurlace That i, spprasimate it by a collecthon of atnall flat
wrinsgular faces. Now start drawing the geodeslc using » stralght lne
on the starting face. When you apptonch an edge, faaten a small strip
of tape over the edge and let the stralght line paw onto this tape up
0 the eige. Next, remove the tape and fatien (b Now you can wee
bow the grodeic line should continue: make [t & straight luo when
the tape is fsatenod. Finally, fold the tape back over the edge you
arm trasting, lining it up with the goodesbe traced m far, sad auntinge
the line onda the next face. Keop going with this procedure until the
grodesic s ae long a8 you reqpitre. For an exact Lreatiment, do the
st bl with the surisce initially iriangulated into infinitely many
infutesimal Lriangies.

somewhal outwards from Lho cenlre of Lhe bod-plaie, W regom where
e expatpdon netod o larges, 1o Uhal bvwer slops (o fower nietre stiche )
are needed b0 make progress owards the goal Also, when trowiling
‘straight shead” (e outermont leg of the hug movs furiler (sl os
wo ko conoerned) Lhan the innermost one, sgaln causing & biajpectoey
whose shape agroes with Lo lesst distance’ definition.

These lines, which are most generally dofined s paths of no terning,
and which arv slso patis of et mgh, s called geodesics.

MNeat the bugs define & crcle s the Jooms of poinis al given distance
fron Eogme oofire poinl. T buage can then messure L ratio of circim-
feretce Lo rncdies of thes ciuclen The cltcumierrnoe s ol & geodesic.
biuil tha bug can essily oessgee € by walking aroond it On the flak
plane the bag finds the ratio & clow to 6 IS5 momber we shall
agree o onll 2e. On the aphere, the big lnds & different anrwes. For
& grven clresmiorenoe C he meeseres the radios to be somewhat ferger
than ©/(2n ), hocausn on his journey oot from the clecle’s centie be s
to follow the surface of the sphere that defines his world.

Toi make 5 guastitative stady of this s inlreduce the metric. This
i o mathematical summary of what the bugs find by thelr datance
migasirements over mel] dslanors sl sy poink. The bus on the fiak
plans, for wxample, might proposs to map the plans using plane polag
coordinstes (r, @), At any pomt labelled by (v, 8], by walking to oearby
polnts (r+dr, @) nnd |r, 9+ d@) the bug can discover how far sway
they mre. For eeample, s short walk slong the r direction st constant o
has length da = dr, and & short walle along the ¢ ditection st constam
r hos length da = vdd Binoe these line segments mest 8é npht angles
the square of the twtal distance from (v @) to (r 4+ dt $ + déd) can be
obtained from Pythagoris' theorem:

de? = dr? +2dot. (102
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Fig: L8 jrid) comdinntes on ihe
gurface ol & sphere

This equetron sealled the “ling element’, oo “metcic equation’ oF "Mk
for short 11 is precisely the eama concept we have already met |y
eqna (B46) and {947}, The metne depends on the coardinabe system
employed, and on the intringle properties of the surfice in question.

MNow consider the bog on the sphero. We might naturally map g
apherbienl gurface by wing the angles (7, 4] of spherical polar conrdinates,
and the bug could do the same, but let us chooee & coordinabe systens
more natural to & bug walking about on the surface. Let the bug pick
i arbitvary poink on the surface Lo be the origin, and introduce polar
ooordinates (v, 2}, where r s the distance wlong e serfiece (e, the ane
length) from the origin to the point in question (following &8 ‘stralglg
line®, Le, an nro of o great circle), and & & the azimuthal angle. By
definition, then, a short walk along the directlon of incroasing v ap
comstant ¢ has lenpth ds = dr. A short walk along the lirectlon of
incresing ¢ at constant v has length dz = KRanfdd, whore | i3 the
raalivg af the sphese (lmown to us, but enknown, in the st instance
to the bug] and # = v/ K is the sphericel polar angle. {We introduced
& merely for copvenience of compubation & has now served 08 purposs
and will not be needed ogain.} The coordinete lines are sgain cverywhera
arthogonnl; so we may uss Pythagoras’ theotem o deduce

ds® = dr? + B ain? (v RdE. (10.5)

Thus 15 the metric of the sphevical suface. 1t 5 8 summary of precesely
utiat Ehe by wonld find by his messurements of distances in the surfacs.

Mew congider the bugs’ measirements of the radiug and circumferencs
of i vircle, For comvemience of ealoulation wm place the aogin of coordi-
nates ab the centreof the ciecle, To find the distanoe of an arbitrary point
|7, @) from the origm, calenlate | de along & suitablo geodesic, which in
this case & a line of constant ¢. One finds waing either metrie (10.2) ar
(10,3} that & ==f of poinks 82 & given distance from the origin s a set &l
fixeed v, and the distanee from the odgin (e, the radies of the cirele, as

observed by the bug) s
[da:frdr:!‘ i 10.4}
1]

in bolh cases. Hawing used radial geodlesics to find the edge of the circle,
perhaps murking it by dropping sgeds theee, the bugs can now walk
arount the circumfercnce. This cireumfesence 8 not a geodesic (this =
obvioos for the ease of the st plane], but the length slong it s =till
given by the metric. The clecumference of the circle is given by [ds
calcilated for the path around the cirele, This s & path st fed 7, 50
one finds

g
= [d.& = [ rdg = Znr uging (10r.2)
L]

S frj.s =[ Rzinlr/R)dg = 2xRain|r/R) using { 10.3)-
i
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The second result js approximately
2

1r
Ce2rr(1->—= ). 10.5
(1-:%) (105)
Therefore, for the bug on the sphere, the circumference tends to 27r for
small circles, but is ‘too small’ for larger circles. The bug could quantify
this by defining a ‘radius excess’:

C

Texcess =T — % (]06)

This is the amount, by which the measured radius exceeds the one which
would have been expected on the basis of Buclidean geometry and the
measured circumference. In this example one finds Teceess = 7°/(6R?);
the main point is that distance measnrements purcly within the surface
can reveal and quantify the departure of the surface from Buclidean
georetry. A commonly used measure is called Gaussian curvature, and
for a sphere of radius R is defined K = 1/R?. The bug can obtain K for
his world by evaluating

K = lim 6—r°3<3cess. (10.7)
r—0 T

The bug on the hot-plate also finds the ratio of circuroference to radius
of a circle to be smaller than 2. It is easy to see this by choosing a circle
centred at the centre of the plate, then the bug-steps used to measure the
radius are on average shorter (to us) than the bug-steps used to measure
the circumference, so the radius found by the bug using the ‘number of
steps’ measure is larger than (/27 For a quantitative statement, let
ns map the plate using plane polar coordinates (p, ¢), where p is the
distance from the origin according to onr privileged measurements that
are not subject to the expansion field. The bug's measuring rulers expand
by the factor f, so if two points are observed by us to be separated by
a distance dsg, then the bug finds the ‘ruler distance’ between them to
be ds = dso/f. The metric observed by the hot-plate bug is therefore
the one for plane polar coerdinates (10.2) divided by the square of the
expansion factor:

; 1
ds? = ————— (dp® + p*de¢?). 10.8
(1 +}.72p2)2 ( ) ( )
The ruler distance around the circumference of a circle of given p is
obviously C' = 2wp/f, and the radius is

r—/ dp—ztan Ykp).

Therefore p = (1/k) tan kr and
2mp 1 tan kr 1
= = 27— = 27— sin 2kr.
1+ k2p? % sec? kr 7T2k, S 2T

This is precisely the same as the result for a spherical surface with R =
1/(2k). Therefore, by this measure, the bug cannot tell whether he is on

253
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Warped spacetime

Fig. 10.7 Relationship between vari-
ous coordinates that can be used to
map the surface of a sphere. r = R,
7= Rsind. Let ¢ =tan(8/2), then
sinf - 2¢/(1 +¢?) and p = 2R(.

Fig. 10.8 Curvature
cylindrical, spherical, and saddle-
shaped surface. When we try to
‘squash’ a section of these surfaces
flat, we find in the non-flat cases that
there is either not enough or too much
circumference. Geodesic lines diverge
linearly in the fAat case, or sub-linearly,
super-linearly, respectively, in the
other cases. The curvature K is hence
said to be zero, positive, negative,
respectively.

examples: a

the spherical surface or the hot-plate. More generally, one can prove that
the two cases are exactly equivalent, for all geometrical measurementg
by the bugs, because by a change of coordinates one can bring the metyic
for the hot-plate to the same form as the metric for the sphere (Fig. 10.7.
exercise 10.2). The expansion factor was here chosen in such a way a5
to make this happen; in this example the ‘hot-plate’ is a stereographic
projection of a sphere. You can see that other choices of expansiop
factor could represent other types of surface, not all of them easily
pictured.

The idea of radius excess can be refined in a useful way by considering
instead of a full circle a small arc of a circle. That is, suppose the bug
marks off two geodesics issuing from the same point with a small angle
between them, travels the same distance r along each, and then measureg
the arc distance 1 between the end points. This quantity measures the
geodesic deviation: i.e., the amount by which two geodesics spread out,
On a flat surface one would expect them to spread linearly with distance
r (Fig. 10.8). For a given choice of a pair of geodesics issuing from a
point, n is some fixed small fraction e of the circumference of a circle.
Therefore, for the case of a bug on a sphere, we may use eqn (10.5) to
find

1, 2
N = e2mr (I—EKT ) (10.9)
Differentiate this twice with respect to r and one finds, to leading order
inr,
d'.!
E_-;f — _Kn.
If we now apply this equation to any shape of surface, then it amounts
to a way of defining curvature K. That is, the bug’s job now is to find
the second rate of change of n for a pair of neighbouring geodesics (and
it turns out they do not need to intersect at the point of inferest), and

&) (V) ar
x® B

(10.10)

Just right not en()ugh too much
K=10 K=>0 K<0
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prdtiprarn & wikh o, W bave arrenged by deliniblon that thld measre of
curvalure agrees with the previous definition in Lorma of radiie axcess

Anathet wimple gromettionl sxportmant e lor the hugs to creato
grinngies and meossuie the sum of thedr Inteclor angles. A trinngle can
bo diefined e n shape composed of threo geodenio ne segnents jomning
thieo ghven points. To define sngle thy bugs can wse the tatho of e
Jength to radius for ciecular ares, inoche Timilc whers e rocive of the
lronlig mee tende bo s, In thst limlt they will all agree that thers sre
drr radians in w complete ehrole. Thin o becauss o small epough oegion of
any cutved surfece i o good appratbmation st the bujgs always find
phint Lhe rodies exdcass of o circle bendie W werd as e 07 — 0,

The big nn the flat plane finds that the interior angles of auy triangle
gt b ow podions, of B0, Tl bug o the sphers Bads that the angles
sim to morm than 180" For exampls, one own find trinngls composed
o thivee right wngles: ibiarl 58 the 'eoguiitde” and walk in 8 "stralghii lns®
(L., gendesic] to the ‘north pole’, tumn through o nght angle and walk
hack to bhe eoustor, then turm thuough & Fight angle agaln and sells bnck
to the starting point (ese Fig 0.17], The resulting trisngle hme o tobal
of 3707 inkartor dngls. For amaller ermngles ihe sum i smallor. 1 S
puk Ehat the excess sngle {Le;, the extri 00 for the special case) &
proportionnd to the arén of the triengle (aoe box helow], Angle exgms
thus provides another measure of the departure of the enderlying space
fromm At geimetry,

Angle excess. Draw two semicireular arcs {lines of ‘longitude’) on &
sphere of radius & as in Fig. 10.9, The lovenge-shapod rogion on the
aphere's surface is called a lune. The wrea of sich & lune incresses
in proportion to @, since the arc bmgth around every latitude i

proportionsl to @, Therefore, the sra s 2% Now consides the
apbere shimn in Fig. 10.10. The angles o, 8,5 are associsted with

three lunes, of amas
os =JaR {lune ABA'CA)
lg=i:.ﬂﬂt (lune BAR'C'H)
oy = it {lune CAC"BC)
These s to
Tatoptoy=Aa+f+9)R

By mspecting the disgram you can see that the sum of these lunes
ooy bhe wreas

(ABC + BCA"} + (ABC + ACH') + (CH'A + AH'C’)
= (ABC + BCA  + ACB' + CE'A') +{ABC + A'B'C")

which is the whole front hemisphers, plus e triangles ABC snd

Fig. 100 A hase Dbw surfste sies i
Af%e

Fig. 10.168 A& inange on & sphese
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Ta+ Gp -I-i:l*a|.-"".=""a'n’.il + eanc
Heoee
a+fdig=n+ T;Enm
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W proportianal to U wees of the trinngle, and can be used 10 extrac
the curvature of Lhe surface. This result s exnct on & sphere. and
also applies for & small exough triangle on any surface, since & smal)
mgion eab be approsimated by o spherieal surface.

Y can show Chal s samilar excess angle spoesr= m the case of the
brgg cn b hot-plate (Lhe sasiest case Lo consider s o trisngle with one
vertex at Lhe centre of the piate)

Fuar Lhe wpliereal suilsce and the hot-plate meds] == have 5 Tadims s
angular eccess compared with Enclidean geometry. When the sorfars
exhibita soch an exoms il b sbd (o bave posifive curvaferr. | 5 esy
Lo b Uhinl ane can ales have & radivs snd angular deficit this wold
b bl v for & saddlesbaped sorface (Fig. 108} and for a hot-plate
micndel with Lhe opposite sgn in the expansion [sctor (eg, replace ¥ by
« &%) Buch susrfuces sre said to have nogatme carvafure In gemerel, the
siee wndd Uhe sign of Use Gaussian curvature can vary from plare to plare
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Altbough we will not prove this general msult here, you sre ovited to.
obstain the result for some simpler cases. (without assuming eqn (10.12))
in the exercises. Note that the curvalure esn be obtained directly from
the metric, amd B abher information 8 needed.

The corvature revealed by these geamnetrio measurements is called
indrinne cursalure. Some surlues which appear ‘curved' In the ordi-
nary senoe of the word ean nevertheless hove 2ero intringic curvalure
Ezamples are the maface of a cylinder or a cone. Because it can be
‘wrolbed’ b0 & flab surisce without distortion, the intrinsic geometric
mvensremnents in o oylindrical gofece rovoal etrictly zero radiss exonss
and eero angular eeces The linil of curviture (L possesses conld still be
revomfod by global mensuremonts, and is colled extringic curpature The



10.1  Two-dimensional spatial surfaces

spacetime curvature associated with gravity is not merely of the latter
kind, it is intrinsic.

So far we have described intrinsic curvature; we have not yet described
ghe connection to gravity. The basic idea is that the worldlines of
particles that experience no force other than gravity are geodesics in
spacetime. Since the shape of a geodesic is a property of the underlying
space, not the particle, this immediately explains why all small enough
systems at a given place have the same acceleration due to gravity,
irrespective of their mass and internal constitution. Geodesics can have
interesting shapes when the underlying space is curved; gravity is the
name we give to this phenomenon—it is essentially a consequence of, or
a name for, the curvature of spacetime.

10.1.1 Conformal flatness

The metric tensor g is defined such that the line element can be written
ds? = dXT gX. For example, eqns (10.2) and (10.8) give, respectively,

Aat 1 0 (hotplate _ (]_ —+ ]gzpz)'-Z 0
9eb =\ o y2 ) Yab 0 p*(1+Kk%p%)~2 )

We have retained the coordinate labels (r,¢) and (p, ¢) in displaying
these; but of course, if we take the view of a bug on just one of these
surfaces, he does not care about the names of coordinate labels on the
other. In particular, the bug on the hot-plate could pick the letter r for
the coordinate we called p, without changing any deductions. In other
words, the second metric could equally be written

L 0
hotplate TTkZr2)2 1 fla
A= (T ) TR 019

When one metric tensor can be obtained from another simply by multi-
plying by a function, as here, then the metrics are said to be conformally
equivalent (or we say they are related by a conformal transformation).
More generally, the relationship between conformally equivalent metrics
has the form g[(j)) = ngj,), where 2 may be a function of all the coor-
dinates. A metric that is conformally equivalent to the metric of flat
space is said to be conformally flat. Thus eqn (10.13) is a demonstration
that the 2-sphere (the two-dimensional spherical surface) is conformally
flat. Note that this does not mean it is flat. It does mean there exists a
mapping from the curved surface to a fat surface that preserves angles.
You should be able to see that the two statements

(1) ‘surface ¥ can be described using a Aat space with a scalar expansion
factor (i.e., one which does not depend on orientation of the ruler)’,

(2) ‘surface ¥ is conformally flat’,

are strictly equivalent, since both translate mathematically to the same
statement about the metric.
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curvpiure, not two

A remarkable property of two-dimensionnd sucfeces b5 bhnk all b,
aimenasanal surfaces are conformiadly finl To poove this n general syl
take uy forther than we want {or need) to go in the present bool,
Howevaer, we shall present the proof For sucfeces of revolution, whick
suffices to convey the idea

A surface of revilubion & formed when one Eakes w line ina Boclidegg
plane, y = ylx), and rotates it about the v axis to form a surface. We
will dazsume thet thy line meets tho © axis of exactly bwn poinks, apd
at right angles, so that we have a single smooth surface. Such o surfae
hns cylindricel symmetry, so there always exists a coordmate chobes,
sinch mg eylindrical polar cododinntes &, o, In which the metric bas ng
dependence on the ammuthal coardinate & and no cmoss termes {no dodg
Lerms). Henea the line elament is

da®* = atda? + 00dg®

wheve afx) and bz} e amonth functiona of o alone. Now oonsider

g function r(z). Since the 56 function of & sngle vwnable, wa bave
dv = v'de [where ' = dr fdz), 80

3
da? = :'Tzdr'3 g (10.14)
Clearly this metsic s conformmally Rat iF
dr
ajz] = o)

This fs & Aest-order differentiol equation for vix] which o principle has
g solotion. Henee by changing coordinabes from = bo v we can bring the
metric to o conformelly fad form. ! Another pessible choice |8 ra = b,
which gives ds® = (bfr]2[dr? 3 rdg?),

The conformal Hatness property enables one o dedoce a furthes
property; as Iur as intrinsic geometry s conoerned, all surfeces are
isobropic at each point. This means that pear sy given poink, toangles
of the sdme area wll heve the samoe angle wocess, no metter how they
gre oriented in the surface, and pesdesic deviation i Independent of
the direction of the pair nf gendesics used to meesure i€, This shows
that the infrinsic ourvature of these surfoces can be quantifiod by a
stngle parameter K. Consider, for example, an ollipsaid of revalution, in
thie form of & long thin pesdbe, Prom our three-dimensional porspective
we may think 1 i= ‘more curved]' o one: direction than aoother. How-
ever & bug on the surface has no wey of felling thed! {eeept possibly
by global messurements). I8 iz true that the line curvabure of fines
slong the surface of the needls, when messnred using its embedding in
threa-dimensional space, ig large in ane direction and amall in anothet
Hiwrver, this does ool lead bo smisctropy of the minnsic geometnic
properties: near any given point the surface is to frst approximation
flat, and to next approximation ‘spherical” (e, curved but looadly
isotrofic]. (ne can prove this most essily by writing the metric in the
conformally flag form, lesdiog Lo the sealar ‘expansion feld" pictuee



To see it intuitively, take a small section of whatever surface is under
investigation, and ‘squash it flat’ as in the middle three diagrams of Fig.
10.8. Depending on the surface, one will then find either a sequence of
gaps where the surface has to be cut in order to flatten it (because of too
little circumference), or a sequence of folds (too much circumference).
One can always arrange that these gaps or folds lie equally spaced
around the circumference. It follows that in two dimensions the geodesic
deviation is isotropic.

10.2 Three spatial dimensions

Curvature of a three-dimensional space is less easy to imagine in direct
pictorial terms, because there is no easy way to draw a four-dimensional
picture. ITowever, it can be treated algebraically, and the ‘expansion
field’ model can also be helpful. There could be an ‘expansion field’
at every point in three-dimensional space which affected all length
measurements. The consequence would be departures from Euclidean
geomelry, a consequence which we may choose to say is owing to ‘space
curvature’—but if you do not like the word you do not have to use it. In
three dimensions a scalar expansion factor is not sufficient to capture all
the possibilities: the factor may now depend on the orientation in space
of the ruler, because three-dimensional surfaces are not guaranteed to
be conformally [lat.

One can detect and quantify curvature of a three-dimensional space
just as we did in two dimensions: construct circles and triangles and
measure their sizes and angles, or use geodesic deviation. The sense and
size of any disagreement with Euclidean geometry gives a measure of the
curvature of the three-dimensional space. However, since a plane can be
oriented in more than one way in three dimensions, there is now the
possibility that the value of the Gaussian curvature K obtained from
radius or angular excess will have a range of values, depending on the
orientation in space of the plane used to measure it. In three dimensions
there are three independent directions for planes, suggesting that we
should seek three Gaussian curvatures. However, this does not, exhaust
the possibilities: we can now enquire into parallel transport of a vector,
around a trajectory in a given plane, for a vector not necessarily in
that plane. It turns out that the complete information about K can
be specified in terms of n?(n? —1)/12 ‘curvature components’, where
n is the number of dimensions of the space. This evaluates to (1,6, 20)
components for a space of (2,3,4) dimensions respectively. The fourth
power of n arises because the most general question one can ask about
curvature involves four vectors, cach having n components: ‘what is the
net change dw in a vector w when it is parallel-transported around a
small parallelogram with sides given by vectors u, v?' (per unit size of
the vector and the parallelogram).

The idea of parallel transport was introduced informally above and
in section 6.7.2. Now we shall present a precise definition. In principle,

10.2  Three spatial dimensions

Fig. 10.12 Transporting
around a small closed loop.

a
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Fig. 10.13 Parallel transport of a vec-
tor w along a pair of geodesics.

any path can be considered, but we begin with the case of a geodes;,
path.

Definition 10.1 A wector w carried along a geodesic G undergoes
parallel transport if and only if the angle 6 between w and G does nyy
change as the vector is carried along.

Next consider a path made of two geodesic segments mecting at a point
P (Fig. 10.13). w undergoes parallel transport in this case if and only
if 6 is constant along cach segment, and changes by ¢ at the join (s
that w does not rotale as the path changes direction abruptly al P),
An arbitrary path can be trcated by dividing it into many geodesice
segments and finding the total ‘steer’ ¢(s) =), ¢; of the path, bug
for our purposes it is sufficient to treat paths with a finite number
of geodesic segments. You can now connect parallel transport to angle
excess (exercise 10.10).

A useful measure of average curvature at a point (i.e., averaged over
orientation in space) can be obtained by comparing the surface area of
a sphere to the Euclidean expected value 4772, One can then define a
radius excess by

Texcess = T — / A/AT. (10‘15)

The value of this excess radius gives a measure of the orientation-
averaged curvature of the three-dimensional space al the chosen point.

For an example of a curved (hree-dimensional space, consider ordinary
three-dimensional space in which rulers are subject to an expansion field
as given by eqn (10.1), where p is now the radial coordinate in spherical
polar coordinates. The metric is

3 _ 1 I P S 2
ds AT KA/ (dp® + p*(d6? + sin®6 d¢%)). (10.16)
In such a space one would find that any plane through the origin
has exactly the same properties as the two-dimensional ‘hot-plate’ of
Fig. 10.3, so is a surface of constant curvature. The whole space is
called a ‘hypersphere’ or ‘3-sphere’. Warning: this is hard to imagine,
as we arc not talking about an ordinary threc-dimensional sphere, but a
three-dimensional universe which is everywhere warped. In this case the
radius excess obtained from eqn (10.15) is the same as the one obtained
from measurements of a circle, eqn (10.6), and therefore the curvature
is given by eqn (10.7). Imagine taking a long walk in a straight line in
such a universe. You would find, just like a bug on a spherical surface,
that after a while you arrive back at where you started! The universe
would have no boundary, and yet it would have a finite volume (just
as a spherical surface has a finite area), equal 10 Viniverse = 272K -3/2
(exercise 10.6). Such a universe is finite but unbounded. It is possible that
our own universe may be like this at a large scale: i.e., a hypersphere,
albeit an expanding one.



10.3 Time and space together

Spacetime is a four-dimensional type of ‘space’ that can also be curved.
Tt differs from 4-space (i.e. a purely spatial region in four dimensions)
pbecause time is not the same as space. The measure of ‘distance in
spacetime’ is the invariant interval, given by by ds? = —c2dt* + da? +
dy? + dz? for neighbouring events in some small region. The minus sign
in the signature makes the difference between time and space. Geodesics
can be defined as lines of either maximum or minimum ‘length’, and
now there are three kinds: time-like, space-like, and null. These labels
make sense because it can be shown that the sign of ds? is everywhere the
same along a geodesic. A time-like geodesic is a line of most proper time.
A space-like geodesic is a line of stationary interval that is everywliere
space-like. The interval along a space-like geodesic may be minimal with
respect to some variations, such as purely spatial ones, and maximal with
respect to others. A null geodesic is a line of no turning (in a spacetime
sense, i.e. constant velocity) along which the interval is everywhere zero.

To measure curvature in spacetime one can perform either purely spa-
tial measurements—sizes and angles of geometric figures, for example—
or one can combine spatial and temporal measurements. For example, to
construct a triangle in spacetime one could use two time-like geodesics
and one space-like geodesic, or two null geodesics and one time-like
geodesic. For the first type of triangle one might use a pair of freely falling
clocks released at the same event with different initial velocities, and
make a ruler measurement of the distance between them as a function
of proper time. This reveals the geodesic deviation. For the second type
one could use a radar echo, recording the time between emission of
the outgoing pulse and reception of the reflected pulse using a clock
in free fall. In fact, precisely this sort of test has been carried out by
radar reflection experiments between Earth and other planets of the
solar system, and General Relativity confirmed experimentally to high
accuracy. (There is no need in practice to use a clock in free fall; one
may use a clock at rest on Farth and calculate the expected result for
such a clock, whose worldline is not geodesic.)

Geodesic plane and coordinate ‘plane’

There is a pitfall in reasoning about curvature that we do well to avoid,
and that arises only in more than two dimensions. It has two aspects.
First, suppose we start with a flat 3-space, such as Euclidean space
in three dimensions. It does not follow that two-dimensional subspaces
inside this space are necessarily flat. Of course not! Take a tub of ice
cream, and scoop out of it a ball using an ice cream scoop: the tub
contained a flat 3-space filled with ice cream, but the surface scooped
out is curved. Perhaps nobody would make this particular mistake, but
a related mistake in General Relativity is to assume that the curvature
of space is given by the metric alone. It is not—it also depends on how
spacetime is ‘sliced up’ or ‘foliated’ into ‘time’ and ‘space’, which can be

10.8  Time and space together
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people the right to point out that since the result is indistinguishable
from a curved spacetime, we may equally say that there is no expansion
field but spacetime is curved.

The essential idea is that matter influences the metric of space-
time, and this influence is called gravity. We have learned how to use
the metric to measure distance and its generalization: spacetime interval.
However, we should notice that the very possibility of achieving this is a
remarkable thing. Suppose we pick a point and then locate a set of points
at constant distance from the first (as indicated by the metric). We can
then further use the metric to measure the radius and the circumference
of the circle so defined. In a flat space we should get the answer 27
for the ratio between those numbers. But wait: in view of the fact that
the coordinate system, and therefore the metric, is almost completely
arbitrary, how does it come about that the ratio is always the same? It
must be that the value of the metric at the points on the circumference is
not completely independent of its value along the radius. There must be
a differential equation that brings about this consistency. This differential
equation (a second-order differential equation for the metric tensor g,p)
is the Einstein field equation!

We can now present the essential elements of the complete theory
of gravitation offered by General Relativity. There is a single grand
idea, which may be summarized in J. A. Wheeler’s phrase, ‘matter
tells space how to curve, space tells matter how to move’.? The most
important and central equation is the Einstein field equation. This
relates a measure of average spacetime curvature called the Einstein
tensor to a measure of the local energy density, momentum density,
pressure, and stress of matter and non-gravitational fields, called the
stress-energy tensor. These tensors have sixteen components, of which
ten are independent. Even in free space (i.e., away from matter) the
equation is rather complicated. The difference (gap — Mab), Where 74p is
the Minkowski metric, serves as a sixteen-component ‘potential’; and the
Eiunstein field equation is a non-linear second-order differential equation
relating this ‘potential’ to energy-density; it is a (very specific and non-
trivial) generalization of Poisson’s equation.

For the sake of completeness the equation is presented in the box
below, using a notation developed in chapter 12, but we shall not need
its full details here. We shall provide what may be called the essence of
the field equation, by quoting a quantitative statement of the predicted
connection between mass-energy and spacetime curvature. We treat a
region of space where conditions are static and isotropic. In this case
the Einstein field equation predicts that the local Gaussian curvature of
space is isotropic, and is given by

8rG
K = %po (10.17)

where pp ts the proper mass density (i.e., the mass density observed in
a local inertial rest, frame, in which energy flux and momeuntum flux are
2€10).
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2 One could describe electromagnetism
in a similar way: charge tells field how
to diwerge; field tells charge how to
accelerate.
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Einstein field equation

AT , 8rG ,
abl ia - ()/\Fa\b + F;}ul—\ﬁ,\ - I‘pAA).sz == C4’ (Tab - %gab’-z )f‘)

where

1
be = 59“(3690\ + 8cgxs — Oxgbe),
Jay 15 the metric, Tpp is the stress-encrgy tensor. The equation myy
also usefully be written in the form

A A G
Raxe = 3R 3,00 = —— ¢

Tov-

where Ry, is thc Riemann curvature tensor, whosc components
describe Gaussian curvature and related parallel-tvansport results,
and which is related to the netric by

Bieq = 0aTh, — O.Thy + DT — TET),.

Note that the reader is not expected nor required to appreciate the
mathematical details displayed in this box in order to handle the next
chapter. They are provided mevely for general interest and to back
up the staternents made in the text.

Using egn (10.17) in eqn (10.7) we find that for a spherical region
small enough that pp is uniform throughout the region,

r—/A/dr = %, (10.18)

where 7 ig the radius of the spherical region (as measured by standard
rulers), A is its surface area, and M is the total mass enclosed. The left-
hand side of this equation is the radius excess defined in eqn (10.15).
The equation states that the excess radius of a sphere of uniform density
is proportional to the mass of the sphere, the proportionality constant
being G/3c?, where G is a universal constant called the gravitational
constant (the same one that appears in Newton’s Law of Gravitation).
The value of G has been measured as G ~ 6.674 x 107 m3 kg™ ' s72, so
G/3c® ~ 2.475 x 10728 m per kg.

The derivation of the beautifully simple result (10.17) from Einstein’s
full equation is presented in volume 2.

In the vacuum outside a spherically symmetric body of mass M, the
field equation predicts that the orientation-averaged curvature is zero,
but the curvature of any given geodesic plane is not. In this case the
Gaussian curvature of any vertical plane is given by eqn (11.20).

Egn (10.18) permits an example quantitative calculation, as follows.
Let us treat a sphere having the same mass and radius as the Earth,
but having a uniform density (so that the equation can be applied).
The formula says that the excess radius is about 1.5 mm. That is, the
Earth has approximately 1.5 mm of extra radius in addition to what one
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would expect from its surface area. Or, putting it the other way around,
s sphere of uniform density having the same mass and radius r as the
parth would be found to be ‘missing’ some surface aren. On the basis of
Buclidean geometry one would expect the surface area to be dmr*, but
owing Lo spacetime warping it would be found to be smaller by about
0.24 km?. This is approximately equal to the area of thirty-three football
fields (soccer pitches)—a non-negligible amount of missing area!

The second half of Wheeler’s statement, ‘space tells matter how to
move’, is the remaining central idea. In the case of electromagnetism
one has a differential equation for the tensor field (Maxwell's equations),
put this does not in itself state how test-particles move. The equation
of motion of test particles—the Lorentz force equation—has to be
introduced as an additional axiom, or else obtained by assuming energy-
momentum conservation.® In the case of General Relativity the motion
of test-particles is not an additional axiom, but follows from the field
equation. This is a rather subtle and technical point (it is related to
energy conservation) but the result is simply stated: freely falling test-
particles (i.e., particles subject to no force other than gravity) follow
worldlines satisfying the Principle of Most Proper Time. [n geometric
Janguage the worldline of a massive spinless test-particle, in the absence
of effects other than gravity, is a time-like geodesic, and the worldline
of a massless spinless test particle is a null geodesic. You can adopt
whichever language you prefer: the idea of proper time, or the notion of
a geodesic.

When the equation of motion (most proper time) is applied to a
simple case—a small region with isotropic pressure and density—the
result again has a simple expression. If a set of test-particles are initially
at rest relative to one another and are situated on a small spherical shell
in such a region, then it may be shown that they move initially in such
a way that the volume V of the shell varies as

d*v , 2
a2 = —4nG(M + 3pV/c®) (10.19)

where M is the mass inside the shell (the test-particles themselves being
of negligible mass) and p is the pressure. This exact result should be
compared with the Newtonian geodesic deviation formula (9.5). We have
to imagine that the test-particles can move relative to the other material:
e.g., it is a dilute gas or electromagnetic radiation. Several consequences
of this formula are easy Lo see. First, gravity is attractive: the shell
shrinks for M > 0. Secondly: in vacuum (M = p = 0) the tidal forces are
such that the initial motion may change the shape but not the volume
of the shell (the volume may change over longer time-scales). Thirdly,
the presence of pressure increases the effective active gravitational mass.
This may seem surprising at first (because pressure pushes things apart),
but the formula refers only to the gravitational effects (and in any
case, a particle suspended in a uniform Auid experiences no net force
from the pressure around it). Pressure in a fluid similarly enhances the

Gravity and curved spacetime

3 See section 16.5.
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Table 10.1 The main experimental tests of General Relativity. ‘Early data’ refers to the date of
an carly experimental investigation where suggestive or better evidence for the effect was obtained.
‘arc-s/cent’ means arc-seconds per Julian century. The final column gives the precision of the most
accurate measurements to date. Modern methods, such as radar surveys or very-long-baseline
interferometry, typically test several effects simultaneously. The precision of tests of the universality
of free fall (weak equivalence principle) depends on the nature of the material and the distance
scale investigated. Torsion balance experiments employing ordinary matter have attained precision
of order 10713,

Effect eqn Gravitating size of early current
object effect data  precision

Universality of free fall (9.12) Numerous 0 1890

Mercury perihelion (11.41) Sun 42.98 arc-s/cent 1859 9x107*

Deflection of light by Sun  (11.51) Sun 1.75 arc-s 1919  3x10™"

Gravitational red shift (9.18)  Earth 2.4 % 10718 1959

Shapiro radar echo delay ~ (11.46) Solar system 220 us 1968 2x10°%

de Sitter precession (11.29) Sun 1.9 arc-s/cent 1987  1x10°?

Spin-up of PSR 1913416 binary pulsar 72 us/year 1974 5x1073

Periapsis shift of |, (11.41)y ., 4.2° /year

Gravitational lensing (11.51)  numerous

Cosmological models

inertia of the fluid—a special relativistic effect that will be explained in
chapter 16.

Pressure typically has a value similar to the volume density of kinetic
energy, so for most systems pV <« Mc?. The exception is thermal radi-
ation, where p = u/3 for energy density u, hence M + 3pV/c? = 2M.
Therefore a ball of thermal radiation gravitates twice as strongly as
would the same amount of energy in the form of rest mass of non-moving
particles.

Either of eqns (10.18) or (10.19) allow, in principle, the whole of
the Einstein field equations to be deduced by insisting that they be
generally covariant: i.c., one can write them in a tensor notation which
allows that coordinates may refer to position and duration relative to any
reference body, no matter how moving, including an arbitrary non-rigid
accelerating body such as a jellyfish. The ficld equations predict that
the direction-averaged curvature in free space (i.e., away from material
bodies, electromagnetic fields, etc.) is zero. This does not necessarily
mean that the twenty curvature components are all zero, but it means
that if the curvature is positive in some directions then it must be
negative in others. The curvature components (or at least some of them)
are non-zero near material bodies, and fall to zero as one moves away
from material bodies (and other forms of localized encrgy or pressure).

Binstein’s theory has passed the tests both of mathematical elegance
and experimental verification. Table 10.1 lists the main types of exper-
iment which have been able to explore the departures from Newtonian
predictions, and which also serve to compare General Relativity with
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other candidate theories. General Relativity is believed to be correct
over a very wide range of distance and encrgy scales: from elementary
Da.rticles to the cosmos as a whole. At very small distance scales it is
Jikely that its range of validity runs out, and some sort of quantum field
theory, or a merger of quantum field theory and spacetime geometry, is

needed. This is a famous open problem in physics.

L

Exercises

(10.1) A tank (i.c., a tracked vehicle) has gearbox trou-
ble: the two tracks are locked in synchrony, such
that both advance together by the same amount.
It is approaching a circular hill (not in a radial
direction). Will the tank’s path steer it towards
or away from the top of the hill? Does it depend
on the shape of the hill? What about a circular
depression?

(10.2) Prove (by making a suitable change of coordi-
nates) that the metrics (10.3) and (10.8) describe
the same surface.

(10.3) Use the metric (10.3) to show that the area of
a circle of radius r on the surface of a sphere of
radius R is

27 R%(1 — cos(r/R)).

If we call r = 0 the ‘north pole’, then at what value
of r» does one reach the ‘south pole’? How is this
indicated by the metric? (Hint: seek a value for
r such that points at different ¢ are very close
together.) Hence use the above result to confirm
the well-known formula 4w R? for the surface area
of a sphere.

(10.4) Repeat the previous exercise, but using the metric
(10.8).

(10.5) Explain why, for a diagonal metric (in any
number N of dimensions) the volume element
is the product of coordinate differentials with
the square root of the metric determinant:
V] det gas|dzadzy ... dzy. (In fact this result is
also valid for non-diagonal ges;, but you are not
asked to prove that.) Verify that in 3D flat space
this reduces to the familiar expressions dzdydz
and r2sin0drddd¢ in Cartesian and spherical
coordinates.

(10.6) A ‘3-sphere’ is a three-dimensional space hav-

ing everywhere the same positive curvature K.
If we map such a space using spherical polar
coordinates, then the metric can be obtained by
replacing d¢? in either eqn (10.3) or (10.8) by
dQ? = d0? + sin? 0d¢? (where © is solid angle).
Use this to find the volume of a general spherical
region in such a space, and hence to show that
the volume of the whole space is 2n2R® where
R=K'2

(10.7) Show that the metric of the 2-sphere can also be

written ds? = (1 — K72) 1d7? + 72d¢®.

(10.8) §(i) Show that for a space with metric ds® = d»? +

f2(r)d¢? the Gaussian curvature is K = —f"/f.
(Hint: first explain why a line at constant ¢ must
be geodesic, and then use geodesic deviation.)
(i) Show that if ds? = h%(z)dz? + f?(z)dy? then
=W —hf")/(K*f). (Hint: change coordi-
nates; see eqn (10.14).)

(iii) Find the Gaussian curvature of the surface
of revolution formed by rotating the line y = y(z)
about the z axis. (Hint: arc length along the line
is ds® = dz? 4 dy? = (1 + y'?)dz?)

(10.9) Find the Caussian curvature of the ellipsoid of

revolution formed by rotating the curve z? +
ky? = R® about the z axis, where k and R are
constants. Hence show that K =1/R? at z =0
and K = k?/R? at z = + 1.

(10.10) An N-sided polygon on a curved spatial 2-surface

is formed by connecting N points with geodesics.
A vector is parallel-transported around such a
polygon. Show, using simple geometric arguments
at the corners of the polygon, that the net rotation
of the vector, after a circuit around the polygon,
is by an amount equal to the angle excess of the
polygon. Indicate the sense of rotation.

(10.11) Estimate the radius excess of the Sun.
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Physics from the metric

11.1 Example exact solutions

We shall finish this introduction to General Relativity by examining
some exact solutions to the Einstein field equation and extracting some
of the associated physics. The solutions take the form of metrics, anq
most of the chapter is devoted to the last one:

(1) Flat spacetime.
Using rectangular coordinates:

ds? = —cdt? + da? + dy? + d22 (11.1)
Using spherical polar coordinates:
ds? = —c?dt® + dr? + r? (d6? + sin® 0dg?) (11.2)
(2) Rotating reference frame in flat spacetime, in cylindrical coordinates:
ds? = ~c2dt? + dr? + d2? + r?(d¢ + wdt)?. (11.3)
(3) Static field in one spatial dimensional, using rectangular coordinates:
ds? = —a?c2dt? + da? + dy? + d2? (11.4)
where a(z) is some function of z.
(4) Schwarzschild solution: spacetime outside a spherically symmetric
body.
Using Schwarzschild coordinates:

e + 1% (d6? +sin® 6d¢?) (11.5)

1 —re/r

ds?=— (1 = %) Adt? +

where 7, is a constant related to the mass of the body, called the
Schwarzschild radius.

Using an alternative radial coordinate r defined through
AT
] 4o ) 11.6
( 4ar " ( )
gives the isotropic form (exercise 11.1)
ey
ds? = — 1-r,/47 r,,/d?: c2dt?
14 7./4r
r

4 . o
+(1+22) (dr®+ 7 [d6® + sin? 6dg?]). (11.7)



The first example (flat spacetime) is included for completencss: it is
the simplest possible solution to the Einstein field equation, and plays
5 special role because spacetime is always locally flat. That is, any
small enough region of a curved spacetime must have a metric that is
Jocally indistinguishable from eqn (11.1). This means there always exists
a choice of coordinates which can be used to map the small region such
that the exact metric has the Minkowski form (11.1) to lowest order in
the displacements dt, dz, dy, dz in the region. Such a choice is a local
inertial frame (LIF). The polar form is also shown so that the reader
will learn to recognize it, and to emphasize that it is possible for two
metric equations to have a substantially different functional form and
nonetheless describe exactly the same spacetime.

The next example (rotating reference [rame in flat spacetime) is
included chiefly in order to warn the reader of its subtleties. Particles
on a rigidly rotating disc have helical worldlines relative to an ordinary
jnertial coordinate system. The rotating reference frame introduces a
coordinate system which attempts to ‘announce’ that these worldlines
are ‘purely temporal’, by assigning fixed {r, ¢, z} to each such particle.
However, this results in a situation where intervals in the ¢ direction
are not orthogonal to intervals in the t direction. This requires careful
interpretation; it means that t does not straightforwardly represent
‘time’ (recall the similar situation in the (h,7) coordinate system on
Fig. 9.19); events at the same t but different ¢ are not simultaneous to
an observer fixed on the disc. A lattice constructed on the disc is said to
be stationary but not static, owing to the fact that the time for a light-
signal to traverse a closed ‘spatial’ loop can depend on the direction of
travel around the loop. This is related to the presence of a cross term
dtd¢ in the metric.

The next example (static field in one dimension) can be used to
treat the constantly accelerating reference [rame, and also, depending
on the functional form of ¢, other one-dimensional cases. An example is
discussed below. The final case (Schwarzschild solution) is an important
basic example in gravitation physics, comparable to the case of the
Coulomb field in electrostatics.

11.1.1 The acceleration due to gravity

The acceleration due to gravity, g, is of course not an absolute quantity
(except that it is zero in any LIF}, but in the case of a static spacetime
mapped by a static metric there is a natural choice of non-inertial
reference {rame relative to which it is useful to know g. This is any
frame defined by a rigid lattice (recall the definition of a rigid lattice
in section 9.1.5: it does not change with time when surveyed by light-
signals). When a metric has the general form

ds? = —a?c2dt? + do?

where a(z,y, z) and the spatial part of the metric do? (not necessarily
fat) are independent of t, then it is clear that if one takes the slice
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throngh spacetime defined by d¢ = 0, then the space thus defined hag
properties that do not depend on when the slice is taken. The coordinageg
z,y, # can therefore be understood to be labelling positions on a rigig
spatial structure, which we call a lattice. It is also clear that t labels ,
time coordinate, because when dz = dy = dz = 0 one finds that ds? < .
i.e., achange in ¢ on its own makes a time-like interval. For such changeg
we find

Vv —ds? = acdt = dr = adt.

It follows that v is the gravitational time dilation factorz. In other words
« is the function we previously (eqn (9.20)) called e®/¢". Therefore, the
metric can be written

ds? = —e2®/7" (2442 + do? (118)

where ®(z,y,2) is by definition the time dilation factor appearing in
eqns (9.20) and (9.19).

Using eqns (9.20) and {9.19) we can now extract from any given q
both the gravitational redshift and the local acceleration due to gravity:

v(z) = v(zg)a(xo)/a(z), (11.9)
2
g = a'ch, (11.10)

where in the second equation the gradient is with respect to ruler
distance (because we originally derived the equation by arguing from
the equivalence principle using a LIF). Ruler distance is related to the
coordinates by the spatial part of the metric. If the spatial part is
Euclidean as in eqn (11.4), then this is straightforward: for example,

c2 do

9= m

if @ depends only on x.

Notice what happens to these equations if the spacetime is unchanged
but it is mapped in a different way by introducing a change of coordi-
nates. A general linear change of the time coordinate, such ast’ = at + b
for some constants a, b, results in d¢ = (1/a)d#’ so changes the a function
merely by an overall factor 1/a. This has no effect on the redshift
predicted by eqn (11.9), nor on the gravitational acceleration predicted
by egqn (11.10). For metrics of type (11.4) an arbitrary change in the z
coordinate—i.e., = f(h), where h is the new coordinate and f is some
function of h alone—makes the metric take the form

ds? = —a(z)*Adt? + (f/(k))*dh? + dy? + d2?

where in the first term a(z) = «(f(h)) and in the second termn the prime
indicates the first derivative of the function. The redshift prediction is
again unaffected and so is the g prediction! For, writing dl for ruler
distance, given by ds at d¢ = 0, we have
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i.e., 915 equal to the same function as before the coordinate change.
More general coordinate changes can result in a change of v and g. One
then finds that either eqns (11.9) and (11.10) are still valid, or else time-
dependence or a cross-term (e.g., dzdt) is introduced into the metric
equation. The metric is then said to be non-static, and the definition
of concepts such as ‘at a given place’ has to be reconsidered before
gravitational time dilation can be meaningfully defined.

In summary: in the static case the gravitational time dilation and
acceleration are unaffected by mere rescaling of the temporal or spatial
coordinates, because they are defined in terms of proper time and ruler
distance. However, they can be affected by some changes that preserve
staticity, such as a change of reference frame to one which is uniformly
accelerating relative to the first (e.g., the constantly accelerating frame
in Minkowski spacetime).

As an example simple case, take @ = z (i.e. ® = c?Inz), then we find
y o< 1/x and g = —c?/z. This describes the constantly accelerating rigid
reference frame in flat spacetime that was discussed in section 9.2.2.
For a = z the metric (11.4) is equivalent to the metric (9.45). The only
difference is one of labelling: the parameters we called & and h before
are now being called ¢t and z. We have already shown that there exists
another choice of coordinates which makes the metric revert exactly and
everywhere to the Minkowski form (11.1), so in this case there is no
spacetime curvature. Two observations follow: first, this is certainly a
possible solution to the Einstein field equation in free space; and second,
we can, if we prefer, attribute all the effects of ®(z) to Special Relativistic
time dilation and space contraction, plus the effects of inertial forces that
are present because the (¢, z,y, z) reference frame is accelerating relative
to an inertial frame. It is here a matter of taste as to whether or not the
effects of V& are called gravitational.

Other choices of o do give spacetime curvature. An example is where
® is a linear function of position: ® = kz for some constant k: i.e.,

o= et/ (11.11)

Using egn (11.10) we then find that the acceleration due to gravity is
everywhere the same:

g=-Vob=—-kx

Hence this describes what may reasonably be called a uniform grav-
itational field. In this case there is spacetime curvature for the itz
‘plane’ (exercise 11.12). Since curvature cannot be transformed away
by a change of coordinates, there is now no special choice of reference
frame in which gravitational effects vanish everywhere. Indeed, since
the curvature is essentially that of a plane not a higher-dimensional
entity, it cannot here attain an average of zero even when averaged over
orientations. It follows that the metric does not describe a free-space
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Fig. 11.1 &/c? versest /1y (full curve).
The dashed curve shows —r;/2r for
comparison.

solution to the field equation. It is an artificial case that serves merely ko
illustrate what would be observed in a uniform gravitational field if
could be produced, for example, inside a suitably arranged solid objec,
Positive k corresponds to the case where the gravitational acneleraum;
is towards negative x, so z is a measure of ‘height’. Let ¢ = |g| be the
magnitude of g, then ® = ga. We can immediately extract predictiOns
such as the gravitational redshift of light-waves propagating in such ,
uniform field: eqn (11.9) gives

v(iz) = v{ﬂ)e“yif"?.

Note that there is no singular behaviour here: all finite values of z giye
finite . This shows that there is no horizon for this spacetime, in contrast
to the horizon at h = 0 that we discussed in section 9.2.2. Consult the
exercises for further properties.

11.2 Schwarzschild metric: basic
properties

The Schwarzschild metric is important because it is an exact solution
of the free-space field equation for a physically important case: namely,
spacetime outside a spherically symmetric body. "I'his will be proved in
volume 2. It should be compared to the case of the Coulomb field in
electrostatics, and indeed has some similarities. The main difference is
that we do not have a superposition principle in the case of General
Relativity because the field equation is non-linear. The field due to two
nearby stars is not equal to the sum of the fields due to each star on
its own.

Schwarzschild radius

The spatial region r = ry is a spherical surface. Outside this surface (the
only region we shall consider for the moment) the metric is static. There-
fore the gravitational time-dilation factor (gravitational potential) is

.2
&= % In(1 — r4/7) (11.12)

in Schwarzschild coordinates: i.e., using the metric (11.5). The acceler-
ation due to gravity is
d® d®dr Ay

— e R g R e -13
9=IV8 = =G &l ~ 220 _r. )P (11.43)

where dl refers to the proper distance. This is obtained from the
metric by considering a displacement dr with dt=0: dl=ds=(1—
re/r)~/2dr so

dl 1

a == W. (1114)



Note that g tends to infinity at the so-called ‘Schwarzschild radius’ r =
r, and that this is because d®/dr tends to infinity faster than does
dt/dr. This is an example of an horizon, to be compared with the one
we explored in section 9.2.2. We shall postpone discussion of it until
gection 11.5.

The value of the Schwarzschild radius for a given gravitating body can
pe obtained by looking at the weak-field limit at large 7. Here we know
that the field must become Newtonian, so, using (11.13) at r > r,,

Schwarzschild radius
c’r, GM 2GM
= —

T e — T,
22 72 2 2

(11.15)

where M is the mass of the body. To remember this formula, the
following mnemonic may be useful: consider the escape velocity for a
particle in a Newtonian gravitational field. This is obtained by setting
the kinetic energy equal to the binding energy: (1/2)mv? = GMm/r.
Apply this formula with v = ¢ and one finds that r, is the radius at
which the escape velocity equals ¢ in a purely Newtonian model: this is
purely coincidence but easy to remember.
The values of r; for some example objects are given in the table:

Earth 887 mm
Sun 2.95 km
Galaxy 0.03 light-year

where the last case is approximate (it treats a spherically symmetric
body of mass 10! Mg). Note that all these objects are of a size much
exceeding their Schwarzschild radius, so for them r; is simply a length
scale associated with gravity. The Schwarzschild metric only applies out-
side the body, where there 1s no matter. Inside a material body some other
metric applies—one which is smooth and without extreme behaviour.

Birkhoff’s theorem

The Schwarzschild spacetime is unique. That is, it is the only solution to
the field equation having both spherical symmetry and complete time-
independence. In 1923 Birkhoff discovered an important extension to its
validity: it turns out that even without the assumption of staticily, the
Schwarzschild solution is the unique solution with spherical symmetry.
The proof uses the idea that even if one introduces time-dependence into
the functions in front of d¢? and dr? in the metric, it can be transformed
away by a change of coordinates. It follows that even if the central
spherical body (a star or planet) were collapsing, exploding, or pulsating
in some spherically-symmetric way, the external field would show no
change whatsoever. The same is true in electromagnetism for a pulsating
charged sphere (this is easily proved by applying Gauss’s theorem and
symmetry arguments to the electric and magnetic contributions).

It follows that the spacetime inside a spherically symmetric cavity
must be fat (it must be Schwarzschild’s solution with r, = 0, because
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Fig. 11.2 'Expansion field" picture of
the Schwarzschild geometry. The fig-
ure shows a geodesic plane through
the origin with w set of rods lying in
the plane, all having the same proper
length. The ‘isotropic’ coordinate sys-
tem (7,8, 3} has been adopted so that
the length of the rods is independent of
their orientation.

the absence of any matter at r =0 means that nothing specig| ca
be happening there). The surrounding material can even be moviy,
radially. Also, if one has radially moving spherically symnetric Matey;
outside some spherical surface £, with a spherical star at the Centy,
and vacuum in between, then between the star’s surface and the sy,

£ the spacetime musl be Schwarzschildian. In particular, if the yeg; P
spacetime is isotropic and radially expanding, then the planetary Ovbit
about the star know nothing of that global expansion. Solar systems, ang
even galaxics, do not in general become larger as the universe expangy

11.3 Geometry of Schwarzschild solution

Two models can help to get a feeling for the geometry of spacetime
implied by the Schwarzschild metric. Tor r > rg the ¢ coordinate jg
clearly temporal (its coefficient in the metric is negative-definite) apq
the other coordinates are spatial (their coeflicients are positi ve-deﬁnite)
50 a time-slice can be taken as dt = 0. This reveals a three-dimensiong|
space whose metric is

ds? = (1 = rg/r) " dr? + 2 (d6? + sin® #dg?).

In view of the spherical symmetry, the geometry of the whole space
1s summarized by the geometry of any plane through the origin, We
then have a two-dimensional space to think about. Taking the plane at
6 = /2 for convenience, the metric is

ds? = (1 — r¢/7)~1dr? 4 r2d¢? (11.16)

Adopting the ‘expansion field" viewpoint, we can now pretend that the
space is really flat butl that rulers in it behave strangely, shrinking by the
factor (1 — r5/7)"/2 in the radial direction (but not in the ¢ direction).
Alternatively, adopt the 7 coordinate defined in eqn (11.6) and then the
rulers shrink by a factor (1 + rs/47)~? independent of the direction in
which they are laid down (consult the metric (11.7)). This is shown in
Fig. 11.2. We say ‘shrink’ rather than ‘expand’ because it makes sense
to compare the rulers to their behaviour at large © where the geometry
tends to Euclidean.

The other useful model is that in which the surface is ‘embedded’ in
a three-dimensional Euclidean space. In other words, we let r, ¢ serve
as coordinates in a plane, and we introduce a height z in such a way
that distances on the surface z(r, @) exactly match ruler distances along
the corresponding tracks in the Schwarzschild space. To obtain z, first
recall that the distance along a line y = y(z) in two dimensions is dl =
(dz? + dy?)"/? = (1 + dy/dzx)*/?dz. Therefore, on a surface of revolution
around the z axis, distances are given by the metric

d :
ds* = (1 + d_i) dr? + r2dg?. (11.17)
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Fig. 11.3 Flamm's paraboloid, eqn
(11.18).

Comparing this to eqn (11.16) we obtain a differential equation for z(r)
whose solution is (exercise 11.2)

2% = 4ry(r —7s). (11.18)

This surface, called Flamm’s paraboloid, is shown in Fig. 11.3. From
the fact that any small part of it is saddle-shaped, we deduce that the
Gaussian curvature is negative, in agreement with egn (11.20) below.

Flamm's paraboloid (also called an embedding diagram) is an exact
(and useful) representation of the spatial geometry, Sometimes people
use the idea of a ball rolling on this surface to illustrate the way curvature
leads to bending of orbits; but this is a mistake, because worldlines are
governed by curvature of time and space together. Indeed, even if this
surface were exactly flat then particles would still orbit the central body,
as eqn (9.50) and following shows.

To find the Gaussian curvature ol our two-dimensional space, let
us adopt the method of geodesic deviation, egn (10.10). To apply the
method we need to identify a pair of neighbouring geodesics in the space.
Finding a general geodesic is a non-trivial task, but fortunately we have a
situation where one set is easy to spot: the radial lines. It is clear by either
definition (stationary length or non-turning (= parallel transport)) that
these are geodesic. Pick the line at ¢ = 0, then a neighbouring geodesic
line is at ¢ = const for some small ¢, and in the limit ¢ — 0 the ruler
distance between neighbouring points on this pair of geodesics is given
by 77 = r¢. In eqn (10.10) r refers to ruler distance along a geodesic, not
the Schwarzschild coordinate r; therefore, we need a different symbol for
the former. We shall call the ruler distance [, so that eqn (10.10) reads

1d%p

Using n = r¢ we have

dn_ ,d (dr)  (ddrydr
@ fal\a)"%\&a)d

and the metric gives dr/dl = (1 —r,/r)Y/?. After carrying out the dif-
ferentiation and substituting in eqn (11.19), one finds
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Fig. 11.4 Radial distance from the
horizon, eqn (11.21) (with the line
x — 1 shown dashed, for comparison).

Ts

K== 5 (11.29)

Radial distance and ‘Tardis effect’

Using the metric (11.5) it is easy to see that the distance aroyy

a circumference at ¢ = /2 is € =2mr. This means that the ragi,)
coordinate r in the Schwarzschild metric can be conveniently interpret,ed
as 7 = ('/2m, where C is the circumference, as measured by standarq
rulers, of the circle defined by the locus of points at given r. Howeve,
r is not the ruler distance from the origin, nor are changes in r directly’
equal to radial distances, The radial distance from the origin is not a wej.
defined concept (see later on black holes), but the radial distance frop,
the horizon (r = ry) is. It is given by the integral of di/dr if we chooge
to measure it using standard rulers at rest relative to the rigid lattice
(the radar distance is different). Introducing = = r/r; for convenience,
this is

i 1
/1 ﬁdx= Ve(z—1) +log (Ve + vz —1).  (11.21)

This function is plotted in Fig. 11.4. For example, the surface r = 2p,
is at a distance ~ 2.2956 7, from the horizon. Take a look at Flamm’s
paraboloid to obtain a visual impression of this.

In the popular science-fiction television series Dr Who, the hero owns
a time-travel machine called the ‘Tardis’. This Tardis has a wonderful
property that always captures the imagination of viewers: it is larger
on the inside than on the outside. From the outside its dimensions are
those of an old-fashioned police box (or telephone box): a square prism
with a diameter of approximately 1 metre, and a height of approximately
2 metres. Upon opening the door one steps into a large, roughly spherical
room of radius 6 metres.

General Relativity says that something approximating to this is possi-
ble. Suppose we have a spherical box containing within it a massive body
whose surface lies near but just outside its own Schwarzschild radius,
which is 1 metre. For example, suppose the surface lies at r = 1.0217 m in
Schwarzschild coordinates. Let the wall of the box be a spherical surface
at 7 = 2m in Schwarzschild coordinates. A visitor approaches the box
and finds its surface area to be 47r? ~ 50m?. She guesses, therefore,
that it has a radius of 2m. Upon opening the door she steps inside and
notices first that the wall has the same area on its interior as on its
exterior surface: no surprises yet. Then she walks towards the centre of
the spherical room that she finds herself in, until she has traversed a
distance of 2m. From her previous observation of the exterior surface
she might expect that this would bring her to the centre of the room,
but she finds instead that she has only arrived at the surface of a
sphere contained within the room (perhaps it is the control panel of this
Tardis). The central sphere is quite substantial, having a surface area
of =~ 13m?—plenty of room for all the control systems. The distance to
the centre of the sphere is a further 1.19m (calculated by taking into
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account its radius excess which, from eqn (10.18), is r5/6 ~ 17 cm). We
have ignored the tremendous forces our visitor meanwhile experiences
(exercise 11.4). The visitor concludes that the volume inside the Tardis
is larger than it appeared (on Euclidean expectations) from the outside.

11.3.1 Radial motion

A test particle (i.e., one whose own gravitational effect is negligible)
moving in the Schwarzschild spacetime has a variety of possible orbits,
roughly comparable to the scattered, orbiting, or absorbed orbits of the
special relativistic problem (section 4.2.6). They are derived by solving
the appropriate equation of motion (which is equivalent to finding the
shape of geodesics in the spacetime). The general problem requires some
further mathematical apparatus that will be presented in chapter 14, but
we already have the tools needed to treat straight-line radial motion and
to find the circular orbits. That there exist such solutions is obvious by
symmetry.

A particle initially moving in the radial direction will continue to move
in a straight line at constant 8, ¢. The radial position as a function of
proper time can be obtained from the metric and eqn (9.58). From the
metric at df = d¢p = 0 we have

=W _ 2
CQde — 624’/5 CthQ —e 2¢/c dT2

2 2
soje (AEN" _ ey 1 (dr
= e (dr) (4 + 2la)

Using eqn (9.58) we find that in free fall the left-hand side of this
equation is constant; therefore, so is the right-hand side. Hence the
motion satisfies

2
(1_ E) -{—l (dr) = const = F. (11.22)

T c2 \dr
Substituting rec? = 2GM (eqn (11.15)) and multiplying by the mass m
of the particle, we find

GMm E-1
_Tm + imr? = me> (11.23)

which is reminiscent of the Newtonian result, except that the dot signifies
d/d7 and r is the Schwarzschild coordinate. This equation makes it
easy to find the velocity of the falling particle at any given 7, for given
initial conditions, and it can be integrated to find 7(7) (exercise 11.6(i)).
Differentiating the equation w.r.t., v gives
d?r S M
P
which is also easy to remember, To find the trajectory relative to the
Schwarzschild lattice, we can either find t(7) by solving eqn (9.58) after
substituting the known 7(7) into the expression for ®, or use dr/dt = 7/¢

(11.24)
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Fig. 11.5 Schwarzschild spacetime in
the rt geodesic plane (in units with
rs = ¢ = 1). The lines are null geodesics
(photon worldlines); the dashed line
shows an example ingoing worldline to
enable the reader to follow it across the
horizon at r = 1. Note the light-cone
behaviour. At the horizon the cones
become narrow, and the time-like direc-
tion changes abruptly. The boxes in
the » > 1 region are shown at equal
increases of ruler distance [rom the
horizon, and all have the same ruler
width and proper duration.

LIt helps Lo picture the local lattice as
having a rectangular construction here.

to get, a first-order differential equation for the trajectory »(t). The resyly
is given in exercise 11.6(ii).

For photons we cannot use proper time along the path, but these are
easily treated by setting ds* = 0 in the metric equation. This picks oy
a null cone. On its own this constraint is not enough to determine (he
null geodesics, but by symmetry we know there exist geodesics having
df = d¢ = 0, and these further constraints suffice to find them. Hence 5
radial photon worldline is described by

dr

cdt = im

which integrates to

+ct = r +rglog|r — rg| + const. (11.25)

[Examples are plotted on Fig. 11.5.

11.3.2 Circular orbits

To treat a circular orbit, we combine eqns (11.13) and (9.15) for gravity
and particle track curvature x, taking care to interpret the latter cor-
rectly. x here refers not to the Gaussian curvature of the spacetime, but
to the rate of bending, relative to a local rigid lattice,* of the path in
space traversed by a particle in free fall. For a particle moving at speed
v relative to the local lattice, we have, at any point where its motion is
perpendicular to g (i.e., anywhere on the orbit under consideration),

ee9 &5y
v 2r2(1 — 1y /r) /202

(11.26)

The relation between x and r is now to be found by geometric
arguments from the metric. What we need to do is to find the flat
space that matches the spatial part of the Schwarzschild metric locally
at some point in the orbit (a so-called tangent surface), and find how a
line at constant r looks in this Euclidean space. A neat trick suffices to
accomplish this, Drop a cone onto Flamm’s paraboloid (Fig. 11.6a) so
that the cone touches the surface at » and is tangent to it there. Then
any small part of this cone, near the coordinate position r, is the fat
space we seek. However, the cone has the nice feature that it is a flat
surface in its entirety (excluding the vertex): it can be ‘unrolled’ to a
flat plane without distortion (Fig. 11.6b). When thus unrolled the path
on the cone is clearly part of a circle of radius

_ T
cos 3

where the angle 8 (not necessarily small} is given by

_dz _ -1/2
tan = T (r/rs —1) L
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Using the trigonometric identity tan® 8+ 1 =1/cos® 8 we find
a=r(l—ry/r) 2,

The line curvature measure & is, by definition, the inverse of this radius

(since we are now examining a flat surface), so we have ag = v*. This is

an equation for r which is easily solved, giving

C2
=T, (]4—2?)‘

Note that Fig. 11.6b makes it obvious that although the worldline is
a geodesic of the spacetime, the path in space is not a geodesic of the
gpace. It is not true to say that ‘the Earth travels in a straight (ie.,
geodesic) line’ as is sometimes asserted in popular treatments of General
Relativity; rather, its worldline is straight (i.e., geodesic).

Eqn (11.27) shows that for circular orbits, as v increases the radius
decreases (as one would expect from familiarity with the Newtonian
problem). At small v the result matches the Newtonian prediction, and
at v = ¢ we have r = (3/2)r; (the method of calculation has been valid
for zero rest-mass as well as for massive particles). Thus we find at
(3/2)rs a spherical surface in which photons can orbit the central body:
a so-called ‘light-sphere’. Sufficiently dense neutron stars can possess
such a light-sphere, and so do all black holes. For radii smaller than
(3/2)rs there are no circular orbits.

It is useful to connect the particle speed v in eqn (11.27) to a
description of the orbit using Schwarzschild coordinates. Care is needed.
At any morment the speed v in egn (11.27) is the speed of the particle
relative to a certain LIF: namely, the LIF which is momentarily at rest
relative to the lattice as the particle passes by. Let the time coordinate
in this (Minkowskian) LIF be ¢/, then

V= T@
di!
since rd¢ is the distance along the orbit, in the LIF under consideration.
Let v = (1 — v%/¢?)/? be the Lorentz factor, then

dt’

ek

(11.27)

where 7 is proper time along the worldline. To be certain that this famil-
iar result applies here, just consider adjacent events on the worldline:
they will be separated by dt’, dz’, 0, 0 in the LIFF whose z'-axis has
been aligned along v so that v = dz’/dt’; the resuit follows. Thus we
find

m}=rg—?. (11.28)

de Sitter precession

Suppose a particle following a circular orbit possesses intrinsic angular
momentum: for example, consider a gyroscope orbiting the Sun. Ignoring

(@) AZ

(b)

Fig. 11.6 Geometric construction
used to find the radius of a circular
orbit. The axis 'z’ refers to the
embedding coordinate introduced in
Flamm's paraboloid (see Fig. 11.3).
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so we call it energy. The second constant of the motion looks like angular
momentum per unit mass, so that is what we call it. The equation
g = 7/2 states that the whole motion stays in the ‘equatorial’ plane in
Schwarzschild coordinates. This is obvious by syminetry: we can always
orient axes so that the initial velocity is in the plane § = 7/2, and then
the gravifational acceleration never steers the velocity out of that plane.
The last equation is obtained immediately from the Schwarzschild line
element (= metric equation). [t is a statement of (ds/dr)? = —c?, as you
should verify. The equation looks much like an equation for energy. By
analogy with the classical problem one may roughly interpret the terms
on the LHS as radial kinetic energy, rotational energy, and potential
energy. Writing the RHS as $(E/c® +1)(E — ¢?) one sees that in the
Newtonian limit it is the difference between total energy and rest energy.

Eqn (11.33) may be treated just as we treated the special relativistic
motion in a Coulomb field; see section 4.2.6. We have 7 = —dV.g/dr,
where the effective potential is

oTe\ L2 Py
Vo = (.l_ S P ey
r/2r2  2r

See Fig. 11.9. First we consider the general form of the motion. There

is a ‘centrifugal barrier’ associated with angular momentum, and an

attractive 1/7 potential. The —1/73 term dominates at small 7, so Vog —

—o00 at the origin; therefore, at any given angular momentum there exists

a threshold energy above which an incident particle is not scattered but

surmounts the centrifugal barrier and is ‘sucked in’ (i.e., spirals in) to
the origin. In units where r; = ¢ = 1 the effective potential is

R |
Va={l=2] 0= — o
ofF (1 1‘) 2r2 9’

so it is clear that it is essentially a function of two parameters: L and r.

(11.34)

(11.35)

Circular orbits and accretion disc

The stationary points dVeg/dr =0 give the possible radii of circular
orbits. They are located at

g _ Tra’

_ L%+ /LA - 3c2riL2
T 9y — 37y B '

= r- (11.36)

c*rg
From the definition (11.31) and (11.28) we can deduce
L =vyrv.

Using this you can check that equs (11.36) and (11,27) agree with one
another.

When L < v/3r,c there is no barrier so no orbital motion: all incident
particles either fall into the black hole or hit the central body if there is
one. When there are stationary points (i.c., for L > V3rsc) they give the
radii of possible circular orbits. The inner stationary point is a maximum
giving an unstable circular orbit, and the outer is a minimum giving

0.02

0.01

-0.01
-0.02 }
-0.03

-0.04

-0.05

Fig. 11.9 Effective  potential for
Schwarzschild orbits, for two values
of L (equn (11.35)). The ends of the
horizontal line indicate the turning
points of an example quasi-elliptical
orbit.



282  Physics from the metric

Fig. 11.10 Accretion disc.

a stable circular orbit. From the fact that L = +/3r,c gives r = 3r,,
and higher L is required to produce a minimum, one can deduce thag
stable circular orbits must have r > 3r,. The circular orbits at r < dr,
including the light-sphere at 7 = (3/2)r,, are unstable.

For stable orbits r increases monotonically with L; for unstable ones i
decreases monotonically with L. Therefore, the tightest orbit is obtained
at L — oo, giving 7 — (3/2)rs: i.e., the light-sphere.

The tightest stable orbit, at » = 37y, has Veg = —¢2/18, and therefore
E =2v/2/3c? ~ 0.943c?. This means that tremendous energies can be
released when particles orbit black holes. An infalling particle typically
has orbital augular momentum, and therefore approaches on some quasi-
hyperbolic or elliptical trajectory. It may fall straight into the black hole,
in which case the black hole acquires the energy and none is released to
the rest of the world. However, it may encounter other material already
in orbit—a so-called accretion disc. Collisions will tend to bring its
trajectory into agreement with that of the other material. If it eventually
arrives ab the tightest circular orbit it must have given up almost 6% of
its rest energy. This should be compared to fusion reactions inside a star
like the Sun, which liberate only ~ 1% of the rest energy. The energy is
released to thermal kinetic energy in the accretion disc, and thence to
emitted thermal radiation. In consequence, a black hole can be sitting
inside a very brightly emitting disc.

It can also be shown that for circular orbits one has

2
iad (%) = GM. (11.37)

This is Kepler's Third Law!

Advance of the perihelion

Around the minimum in the effective potential (when there is one) is
the region where quasi-elliptical orbits exist, with the bound particle
moving between two turning points at Vog = £/m — ¢? (so 7 = 0). The
orbit looks similar to the rosette shown in Fig. 4.6.

To determine this rosette shape we adopt the same approach as in
section 4.2.6. We change variable from 7 to w = 1/r. Because we have
in L the same type of constant of motion as in the Special Relativistic
calculation, we can employ eqn (4.62) (with m = 1) to obtain

d‘Z 2
B % - §rsu2+£ -

v - - (11.38)

In the classical case we would have simple harmonic motion of u as a
function of ¢. In the present case we still have oscillatory motion, but
now in yet another effective potential well, given by

1 o eir, "
Viu) = ¥ — Eug - prt (11.39)
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The exact solution can be expressed in terms of elliptic integrals. We will
use an approximation to treat orbits of small eccentricity. In this case
the motion is almost circular, so it remains close to the minimum of the
potential V(u). But since any potential well is approximately quadratic
close to its minimum, the motion u(¢) will be simple harmonic. All we
need do is find the minimum of V' {u)—it is at

i (1 ~ /1= 3(cr_;/L)2) (11.40)

3rs

—and then evaluate d2V/du? at this minimum. The result is

2V R S—
i? =1-3r,u=/1-3(crs/L)2.
The simple harmonic motion therefore has angular frequency
- . 3cir?
@ =(1-3(crs/L)*)/* ~1 - 5 L;'

This is smaller than 1, so when the azimuthal angle advances by 2n the
radial oscillation is not quite complete. After setting out from a minimum
value of r, for example (called perihelion in the case of an orbit around
the Sun), the radius next reaches a minimum when &¢ = 27; therefore
¢ = 2m + 6, where
2r?
6:37r2L; = 3r—, (11.41)
where in the last step 7 is the mean radius of the orbit, obtained from
eqn (11.40); in terms of the standard orbit parameters it is 7 = (1 — €?)s,
where e is the eccentricity and s is the semi-major axis.?

This § is the famous advance of the perihelion first obtained by
Einstein. It is six times larger than the Special Relativistic result (4.66).
This was the first great success of General Relativity (beyond the purely
abstract success of its innate beauty), because despite its small magni-
tude this precession had already been noticed, in the case of Mercury’s
orbit around the Sun, by means of centuries of careful astronomical

Table 11.1 Data for Mercury’s orbit.

Aphelion Tap 69,816,900 km
Perihelion Ther 46,001,200 km
Semi-major axis s 2 (rep + Tper) 57,909,100 km
Eccentricity e o 0.205 630
Specific angular momentum L V(1 - €e)GMs 2.713 x 10*° m?/s
Orbital period 87.9691 days
Solar mass M 1.9891 x 10%° kg
Advance of perihelion 570.87 arc-s/century
Newtonian 527.9 arc-s/century

22

GR 3t 42.98 arc-s/century

2 See exercise 11.16 for a treatment of
orbits of any ellipticity.
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1 2 3
iV,

Fig. 11.11 Effective potential
photon orbits, eqn (11.44).

for

observation. It was known to be unaccounted [or in Newtoniay thegy
Mercury's perihelion is observed to advance by 570.9 arc-s/century, MO:.
of this is expected from Newtonian theory: each other planet sy,
Venus presents a mass distribution which, averaged over long times, .
be regarded as a ring of material at the orbital radius of the planet. Th
gravitational pull of this ring modifies the field near the Sun. The Gf'fec:
of Venus accounts for 277" of Mercury's perihelion advance, Jupite,
153", ete. The total Newtonian prediction is 528 arc-s/century, leaving a
discrepancy with the observed motion of 42".98 + 0.04, which is Precisely
the GR prediction; see table 11.1.

11.3.4 Photon orbits*

For massless particles we use a parameter A to measure arc length along
the worldline (since proper time is zero), and one finds

dt 5
(1 - r,/r){a = const = E (11.42)

de -

POl =
r Y const = L (11.43)
and
; L2

2 =E? - Ver(r); Ver = (1 - Ts/'r'}lr_g- (11.44)

The equations for the conserved quantities look the same, but now the
dot. signifies differentiation with respect to A, so the physical meaning
is different; to keep this in mind we use a tilde. The equation of motion
then follows directly from the line element, with (ds/dA)? = 0. Clearly
L has no effect other than to change the height of the effective potential,
but by rescaling the A parameter we can change it back again, so we may
as well set L = 1. This is except for the radial paths (L=0), which are
trivially straight lines. V.g is shown in Fig. 11.11. It is zero at r = 7, and
has a single maximum at v = 3r;/2. A ray with sufficient E to get past
this maximum is never turned around. This means that any incoming
ray that hits the light-sphere at (3/2)r, is subsequently swallowed by
the black hole (or hits the surface of the central body if there is one).
Similarly, an outgoing ray that makes it as far as the light-sphere has
guaranteed its own freedom. For E values close to Ve(f;"“) = 4/27r? there
is spiraling motion; at other values there is scattering or absorption.
There are no stable orbits. Solution of the equation of motion permits
an exact treatment of aberration and lensing, and in some cases this is
algebraically simpler than the effective refractive index method to be
discussed below.

11.3.5 Shapiro time delay

Consider a pulse of light travelling past a star such as the Sun, at a
distance large compared to ry. The pulse will travel in an almost straight
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Jiné, and will experience on its journey the effects of gravitational time
Jilation and space contraction. The slight bending of the path is treated
in gection 11.4; here we shall examine the time of travel.
1t is convenient to use the form of the metric given in eqn (11.7). By
comparing this with the flat space metric (11.2) we see that the spatial
art corresponds Lo a flat metric multiplied by a function of 7 alone. It
follows that the spatial behaviour is isotropic in this coordinate system.
when written in rectangular coordinates, the spatial part is

di? = (1 4 r,/47)* (dz® + dy® + dz?) (11.45)

with 7= (22 + % + 22)V/2.

In first approximation the path of the light-signal can be taken as the
straight line y = b, z = 0 (see Fig. 11.12), with & running from —X, to
X, bis the distance of closest approach; 7 = (22 + b?)"/2. For a light-ray
we set ds — 0in eqn (11.7), so with also dy = dz = 0 we have

A _ (b4 o Te g e
dz (1 —rg/47) r (z2 + b2)1/2

Integrating this between 0 and X gives the coordinate time elapsed
between the point of closest approach and the point z = X:

X+ VXTI B
b

cAt =X +rgln ~ X +ryIn(2X/b),

where the second step used X > b. If the signal travels from X, on one
side to Xy on the other then the total coordinate time elapsed is
44X, X,
b2
The logarithmic term is the Shapiro time delay. To measure it one may
use a radar reflection experiment between Earth and a planet such as
Mercury or Venus. The method is to compare the echo time under
ordinary conditions when the path does not approach to the Sun, with
the time at close conjunction where it shows a pronounced increase.
Shapiro first proposed and carried oul such experiments in the 1960s.
For example, in the case of Mercury an effect of approximately 220 us is
expected. In principle this is easily detectable, but the experiments are
complicated by the fact that planets are not smooth mirrors, and the
Sun has an outer ‘atmosphere’ of free electrons that extends into the
region where the effect is largest, which presents a refractive index that
has to be taken into account. More recent surveys use a space probe Lo
reflect the signal, and a computer program to adjust for the masses of the
planets, oblateness of the Sun, etc. Excellent agreement (to ~ 1072) with
General Relativity is found. Note that this tests both the temporal and

cAtya = (X1 + X2) +7s1n (11.46)

Fig. 11.12 A particle or light-pulse
passing the Sun on an almost unde-
fected trajectory. The small angle o is
the subject af section 11.4.
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cdt

Fig. 11.13 Huygens’ construction
used to find the deflection of a plane
wavefront in a region of non-uniform
refractive index, The x direction is
taken perpendicular to the ray, and dn
refers to (On/0x)dz. The gradient of n
i¢ not necessarily in the » direction.

spatial parts of the metric, since one can gather data under a variety of
conditions and perform a best fit. (These measurements even furnig},
an improved estimate of the mass of the asteroid Ceres. The old Valye
proved to be in error by 15%.)

11.4 Gravitational lensing

Next we consider the propagation of light in the vicinity of a spheriualiy
symmetric massive body.

Using the isotropic metric (11.7), the coordinate speed of light (d/d;
of coordinate location at ds = 0) is given by

1 —ry /47

U0 /A

independent of the direction of travel of the light. Therefore we cap
define an effective refractive index:

(147 47)
1—rg/dr

€
ne - (11.47)
This allows a very nice method of treating the propagation of light
around spherically symmetric bodies, Introduce a flat spacetime. We wil]
call it the ‘shadow’ spacetime and use it as a mathematical device. When
particles move around the real spacetime their mathematical shadows
move around the shadow spacetime, such that an event at (t,7,0,¢) in
the coordinate system adopted for eqn (11.7) has its shadow event at
(t,7,8,¢) in the shadow spacetime. We have learned that light moves
in the real spacetime with coordinate speed v = ¢/n, as given above.
It follows that the shadow light moves around the shadow spacetime
with exactly this same speed. Therefore we can caleulate the shadow
light-ray paths by using Euclidean geometry and a refractive index that
varies with position. This is an exact method (see proof in section 14.4)
which will predict ray paths that can immediately be mapped back into
the real curved spacetime. The net result is that the curved spacetime
behaves, as far as light-propagation is concerned, exactly as if it were flat
but the vacuum possessed a refractive index. When we look up into the
sky, therefore, it is as though we are looking through a sheet of bobbly
glass. We can expect refraction and focusing.

Light propagating in a region of non-uniform refractive index is called
‘gradient index’ or ‘graded index’ optics. You can buy graded index
lenses, for example, which are flat but have an index which is a function
of distance from the axis. Another well-known example is that of a
mirage in the desert or near a hot road. Fig. 11.13 shows how a flat
wavefront is expected to behave in a region of linear index gradient.
Using Huygens’ construction, we find that the bottom of the wavefront
propagates further than the top in any small time interval dt, with the
result that the wavefront turns through an angle



d¢ = c_d_td_”i,
n n dr

where z is the direction perpendicular to the ray, and no assumption
has been made about the direction of Vn. The ray turns towards the
direction of increased refractive index (e.g., the light above a hot road
turns towards the colder, denser air). dn in the calculation is given by
dn = (On/dx)dx; the variation of n along the ray affects the component
of velocity in that direction, but contributes to the deflection only at
higher order.
Let dvy be the change in the perpendicular component of the velocity,
then clearly we have
dv dv c
Tl =d¢ = d—tl = 5V.n (11.48)
More generally, Fermat’s Principle of Least Time can be used (exercise
14.1 of chapter 14) to show that the ray path r(s), where s is distance
along the ray, satisfies the differential equation

d ( dr) = Vn. (11.49)

ds nds
However, the result (11.48) is all we shall need in the following.

We shall calculate the deflection of a light-ray passing near to a star,
but in the weak field region, such that 7> r,. To this end, first we
present the classical prediction for a fast-moving particle in a Newtonian
inverse-square-law field. When the speed is high the trajectory is almost
straight, so can be modelled to first approximation as a straight line, as
in Fig. 11.12. As it passes along this line, the particle of mass m, speed
v receives an impulse given by

M "2 GM b M
Ap = / Gf2m cos(f)dt = / GMm cosf—df = 26 Uy

nj2 b7 v vb

This impulse is in the direction perpendicular to p; the net impulse in
the parallel direction is zero by symmetry. The effect of the impulse is
to steer the momentum (and therefore the velocity) through an angle
Ap 2GM
a=—-= .
P v2b

(classical)

Now we carry out the relativistic calculation.
For ¥ > ry we have

(14 75 /4F)? ~ %
so the metric takes the form
ds? o —e2%/¢° 2qe% e*w/cz(dac2 + dy® +dz?) (11.50)
and therefore
noee 2%/ o] @

c2

11.4 Gravitational lensing 287
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Fig. 11.14 Gravitational lensing

Substituting this in eqn (11.48) gives

dvy

dt
The right-hand side is exactly twice the result for the classical cagq
Therefore, the calculation of the deflection goes precisely as before
except that the result is multiplied by 2. The deflection angle for lighé
passing near a star is therefore

_4GM 2, "
T3 b (11.51)

= —%VL(IJ ~ -2V o.
L)

In this formula, b > r; is the impact parameter or the distance of closegt
approach (they are the same in the approximation which has beey
assumed). For example, for the Sun at grazing incidence the predictioy
is @ = 1.75 arc seconds. The factor of 2, compared with the classicy)
calculation, can be regarded as owing to the curvature of space—the
factor exp(—2®/c?) in front the spatial term in the metric. We showed in
section 9.3 that Newtonian gravitational theory is obtained by neglecting
precisely that term. Slow-moving particles in a weak field do not care
about the spatial curvature, because their worldlines stay very close to
the time axis of their initial rest frame. Not so for light, which cannot
help but explore the spatial and temporal curvature together.

In 1919 Arthur Eddington famously led an expedition to measure the
deflection angle during a solar eclipse. He understood the need to show
not merely a deflection, but that the deflection angle was a factor of 2
larger than might be expected from classical physics. His team published
reasonable evidence that the angle was as predicted by Einstein’s theory.
The case was widely accepted at the time, though his complete dataset
was not sufficiently unambiguous to give a clear test. However, since then
much more accurate observations have been possible. In the 1990s the
Hipparcos satellite measured the positions of ~ 10° stars at various times
of the year, with milliarcsecond precision. The effects of light-deflection
by the Sun were apparent all over the sky, and amply supported General
Relativity.

The situation of ‘gravitational lensing’ is broadly as shown in
Fig. 11.14. From the fact that the deflection angle (11.51) decreases as
a function of impact parameter b, one may deduce that a bundle of rays
issuing from a point source and all passing the same side of the lensing

source lens
observer




centre i caused to diverge more. [n this sense we have & diverging lons.
ponetheless, rays arrbving in & collimated beam and passing at a given
Jistance either side of the star are beought together or “focused’, The
focal length of an ordinary lens is definod a= the distance from the lens
gt whichi s collimsted incident beam is browght. to 4 foeus. We can apply
this idea to a gravitational leng as shown in Fig. 11.15. One f(nds the
focal length:
= 1 et
/3 o 4GM

Thiz is & strong function of b rays incidend at smll rmdive o hrought o
@ focus closer bo the star Lthan rays incident at large rdiug. In oplics one
woilld eay there is a large amount of ‘spherical abereation’. In Inct thore
i s0 mch aberration that no self-respecting optics manfactueer woukd
gffer such a lene on the market. In the ssironomical situation, howover,
thare & & convenienl consequence, Chne does pot have the ability to
choose the distanee from Earth of either the source or the lensing object,
bt owing to the dependence of f on b there is always a value of & f
whtich the raye from the source are foowed st Barth. Using the “thiu
feng formuln” 1fdy + 1 fdy =1/ F, wheen dy, by are the souroe by sl
lens-image distances respectivaly, and soiving lor b, one Ands the
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rives risa typically to a pair of images smeared into arcs, as Fig. 1116
eiplaing, Fig, 1117 shows w spectaculsr display of this phenomenon in
i famous image obbained by the Hubble Spaca Tolescopa.

Since astronomicnd distances vastly exeosd Gypleal Schwarsschild eacda,
the Einstein radius is in practice much greater than the Schwareschild
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Fig. 11.17 Results of gravitational
lensing in an image from the Hubble
Space Telescope. (W. Couch, R. Ellis,
NASA STScl-1995-14.)

radius. Its significance is that it indicates roughly the ‘radius of the Jopg,
i.e., the size of the region around the lensing body within which it cl(e{kg%;
rays sufficiently to cause significant modification of the appearance of %
source.

When the lensing mass is not spherically symmetric—for exampq
because it is a galaxy —more images can appear. Lensing has become a];
important tool in astronomy. It can be used, for example, to constrajy,
the mass of the lensing object, and even to detect the presence of lensing
objects that are too faint to be seen directly.

11.5 Black holes

The Schwarzschild metric has yielded great riches. It has a further
treasure still to offer, When the gravitating body does not extend beyong
its own Schwarzschild radius, a new type of object is born: a black hole
The physical phenomena outside the Schwarzschild radius are just ag
they were before, so an isolated black hole at a distance is just like any
other simple body (be it of small mass and called a particle, or of stellar
mass, or a ‘supermassive’ black hole). However, if it approaches closely,
a black hole wreaks havoc wherever it goes.

That there can exist material bodies whose mass is compacted into
a region smaller than their Schwarzschild radius is suggested by an
order-of-magnitude estimate, as follows. lgnoring curvature effects, the
Schwarzschild radius of a body of uniform density p and radius r is

WGM 817G,
Ty = o
' c? 3e?

S0
e 3¢
re  SnGpr?’
Therefore, at any given density we can attain = < r; just by making
r big enough. For example, the densily of a neutron star is of order
4 x 10" kgm ™ (similar to the density of an atomic nucleus). At this
density r =~ r, if r = 20k, implying a mass of about 7 solar masses.
Therefore, if such an object can form (and there is plenty of evidence
that it can) then r <7y is possible. Once the matter radius shrinks
below 7, a new process sets in thatl rapidly collapses the material down
to r =0, as we shall see.

Another interesting hypothetical case discussed by Rindler is that
of a roughly spherical galaxy: i.e., a cloud of about 10'' stars, each
assumed to have mass and density similar to that of the Sun. Then
s = 0.03 light-year ~ 4 x 10°r¢,. Therefore, for a galaxy which collapsed
to the point where its radius equals 7y, the volume of the galaxy is
64 x 101° /10" ~ 10° times larger than the combined volume of the stars
it contains. In other words the stars are still far apart when the whole
system shrinks within its Schwarzschild radius. Most galaxies are saved
from this fate by their angular momentum and non-spherical shape, but



the argriment serves to siyggest that the possthility of ¢ {alling below r,
3 pot mnphysical

History of black holes In |75 the John Michell argusi
from Newtonian gravity thoory thal & y maasive ohjoct
would hawe an ewcape welocity larger than ¢ sod thermfors would
prevent emited lght from escaping. Corsequently, it would appear
black lo otwervers suliciently far away. Laplace later promoted this
jdden of & "dark star’ [n 1005 Karl Schwarsschild and, independentty,
Johanmes Dioats obtained the sibition w Einstein™s wctium feld
oquations that solwerquenily became known ma the Schwarsschild
wlation. Howewer, the nature of the surface ak v = r, was not under-
stoad nntll comnmidembly later In 19924 A. Eddington showed Lhad the
alngular bahaviour al r = r, disappears after a change of coordinates.
In the 1630 5. Chandrasekhar and others calrulsted the moss sbove
which hnown typas of matter must suffer gravitational collapse. The
objocts that resultes] were called ‘fromen’ stams, owing w the infinite

tiroe dilatlon &8 ¢ = vy, It wes pot wotll o 1960 papesr
of J. L. Synge that the scienlific community began to understand the
anbure of spaceting af ¢ = r, more fully. 1t wes subsequently Turther
clarified by D. Finkelstein and M. Knsshal, In 1963 it Kerr found the
imart melric for & rotaling bleck hole, snd Us dscovery of pulsars in
1907, mulwoguerilly shown o be rapidly rotating neutron stars, beiped
to convinon poople thst extreme types of sstropliysical object were not
only poasille but existed. The term “black bole’ s woally sttriteted
o J. Wheeler, in that b used it in & public lectore in 1967, but it wes
i etrculation from st least 1964, In 1971 sstronomicsl olservetions
of the X-ray wource Cygnun X.1 showad (L. Braes, G, Midey, . M.
Hjellming, C Wade) that it was socisted with & large star thet
by itsell would bo mcapable of smitting the obeerved quantities of
X-rayn, and also (L. Webster, P. Mundin, C. T. Bolton) that it had
W non-visible companion whose mass wad 100 high to be o nectron
star. This companion berame the first sirong candidute hiack hole,
with an aceretlon disk pocounting for the X-ray emishon, Since then,
many others have been identified.
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In o [non-inortiel) reference frame ar rest relative w the rigd lutes
diitalede vy, I 18 readily seen [eoan Lhe Schemreschild meoric thatl the
fallvwing quantities (among others) tend to infinity a8 one approaches
Lhet Selmwarsachill radias:

tima dilubion, gravitntpel odabibft, 4F fde, acosbmation dus to gravity.

Also, the coordinate speed of light fulls to pero, so lisht propagsting
in the radind diroction does ot emerge (nor does it &l in, 0 o fmite
ameiml of edordiniie tme), The frst Lhing Lo setthe is whother or wot
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Fig. 11.18 Radial null geodesics
(photon warldlines) in Schwarzschild
spacetime in  Eddington-Finkelstein
coordinates. Here there is no dig-
continuity in the light-cone structure
at the horizon.

3 A minor point: the coordinate
transformation from Schwarzschild to
Eddington-Finkelstein coordinates is
itself singular at r = ry, but this does
not matter. The important point is
that the resulting metric describes the
same spacetime, so is still a solution
of the Einstein field equation for
free space. How we arrived at it is
immaterial.

—_
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Fig. 11.19 The fish do not notice z;.

ar

these properties imply that spacetime is irregular at rs, or whether thg
is an example of a horizon whose extreme properties can be made to
go away by a change of reference frame, like the horizon illustrated i,
Fig. 9.20. That it is an example of a horizon can be proved by adOpting
the Eddington—Finkelstein coordinates, in which ct is replaced by

ct =ct+rglog|r/rs —1]. (11.53)

The idea behind this coordinate change is that it makes the incoming
radial null lines straight: see eqn (11.25). The coordinate change giveg
cdt = edt — (1 — 1y /r) " 'dr, yielding the metric

ds? = - (l - ?) cAdt? + ?%dt_dr ks (1 + —:—3) dr?

+ 72(df? + sin® Bdp?). (11.54)

This is regular for all » > 0, which shows that at r = rg there is ordinary
smooth spacetime. The singularity at ry in the Schwarzschild metric is
known as a coordinate singularity. it can be transformed away. Having
satisfied ourselves of this, we can now continue to use Schwarzschild
metric both at r > 75 and r < ry, but not at » = r,. Worldlines passing
the horizon are best treated in another system such as Eddington-
Finkelstein coordinates or a local inertial frame.?

At r — 0 there remains a singularity which is a genuine singularity
involving infinite curvature, which cannot be transformed away. The
result is that we can apply our reasoning down to arbitrarily small r,
but we may suspect that the theory breaks down eventually at the centre
of a black hole, and that the spacetime there does something we have
not yet determined.

The horizon is a point of no return, but nothing special happens
to a body such as an astronaut as it passes through the horizon (in
free fall). The tidal effects merely grow continuously, just as they do
as one approaches other massive bodies. This can be illustrated by an
analogy with Howing water. If there is laminar flow through a large pipe
of decreasing diameter, then the flow velocity increases as a function
of distance along the pipe, and one can imagine that at some point
z, the flow velocity exceeds the speed of sound in water. Then sound
waves emitted from z > z, will never propagate to z < z,. However, fish
swimming in the water will notice nothing remarkable al z = z,.

Within the horizon something important happens to the Schwarzschild
metric: the coeflicient in front of dt? becomes positive, and that in front
of dr? becomes negative. Therefore, intervals in the ¢ direction are space-
like and intervals in the r direction are time-like (the horizon itself is
null). In short, despite the letter, £ now represents a spatial quantity
and r represents time. Particle worldlines remain time-like (after all
nothing special is happening al the horizon, as Eddington-Finkelstein
coordinates have taught us), but the central singularity is still at r = 0.
The conclusion is that motion forward in time is motion towards smaller
7. An object entering the horizon is carried down to r = 0 just as surely
as you and I are carried into next week. This is clarified by a spacetime



diagram such as Fig. 11.5 or Fig. 11.18. Inside the horizon (or perhaps we
should say after the horizon) the light-cones, and therefore all time-like
intervals, and therefore all particle worldlines, tip over towards » = 0. It
follows that once a star or other body manages to get completely inside
its own Schwarzschild radius, it must collapse all the way to r = 0. No
opposing force can be strong enough to prevent it.

Now let us consider an astronaut explorer who goes to visit a black
hole and falls in. According to her own proper time, the explorer can
soon arrive in the vicinity of the horizon. Any light emitted at 7 in the
outward radial direction as she falls in stays at the horizon, according to
outer observers, but travels at ¢ relative to the astronaut. Therefore, in
the astronaut’s rest frame the horizon moves outwards at ¢. Her proper
time increments in a regular way as she crosses the horizon. For example,
if she falls straight down then eqn (11.61) for r(r) applies, and there is
no special behaviour at » = rg; the equation applies all the way to r = 0.
It does not take long for her to reach r = 0. To discover this we do
not even need the equation of motion, because remarkably the total
length of any worldline inside the horizon is at most nrs/2¢ (whereas
in ordinary spacetime, worldlines can extend forever). For, integrating
along an arbitrary worldline we have the total proper time

d 2 172

cdr = / [; — (re/r — 1)c2dt? — r2(d6® +sin® 6dp?)|  (11.55)
rs/r—1

Any variation in t,8, or ¢ only decreases this integral (‘proof by twin

paradox’), so it is maximal at t,8,¢ = const, and at that maximum is

readily integrated (e.g., use the substitution r = r; sin? u):
1 [ T
dr = - ro/r — 1)V 2dr = —2.
=t [y 4

This time is just 0.3 ms for a 10-solar-mass black hole.

Nevertheless, the time taken for the astronaut to reach the horizon in
the first place is infinite according to outside observers. To be precise,
according to any reasonable definition of simultaneity (such as the radar
definition), the attempt to say which tick of some other clock, located
outside the horizon, is simultaneous with each event on the astronaut’s
worldline is doomed to become meaningless as the succession of astro-
naut events passes 7 = 5. In a static metric such as Schwarzschild’s, the
outer clock has to tick forever until it reaches the event at its location
that is considered simultaneous with the astronaut’s arrival at r = r.
However, it is not necessary (nor useful) to agonize about the precise
meaning of the Schwarzschild time coordinate near r = r,; much better
is to consider the observable information. Fig. (9.20) tells you essentially
all you need to know: what outside observers see is that signals sent out
by the explorer become less and less frequent, and redder and dimmer (all
the Special Relativistic effects are there). Also, since the falling object
only emits a finite number of wavefronts (or other signals) before it
passes the horizon, there is only a finite number that outside observers

11.
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can receive, and it takes a finite, and usually not very long, time t,
receive them (the chance of one being emitted exactly on the horizgp
being vanishingly small).

The spacetime inside the horizon is very non-Euclidean, noy.
Newtonian, and counter-intuitive, because it is non-static: the factorg
of 1 —ry/r in the Schwarzschild metric now represent time-dependence,
and furthermore it cannot be transformed away by a change of coordi.
nates. One can see this by the fact that all time-like worldlines go tq
r = 0, and there they finish. There is no further spacetime at r < 0, and
they cannot return to larger values of 7 because that would mean to go
backwards in time. Because free-fall motion has the longest proper time,
the set of freely-falling frames is the best replacement for the concept
of a static rigid lattice; and they exhibit odd features, such as diverging
ruler distance from each such frame to the next as they all zoom down
to the singularity.

So far we have implied that a voyage inside an horizon is quite
comfortable, if rather limited in duration. In fact this is far from the
case, owing to the tidal forces. Near the horizon, tidal forces may already
be very large; as one approaches the singularity they become enormous,
stretching any object vertically and compressing it horizontally—a sit-
uation informally referred to as ‘spaghettification’.

11.5.2 Energy near an horizon

‘We discussed in section 9.4 what happens when objects are lowered into
gravitational potential wells by using a rope. Applying those ideas to
the field outside a black hole gives an interesting result.

Although the acceleration due to gravity tends to infinity at the
horizon, another useful measure of the gravitational force does not. This
is the surface gravity, defined as the force required at large r to dangle
a particle of unit rest mass near the horizon using a massless string. Let
f be the force applied to the top of such a string, when suspending a
unit mass parcticle at 7. Eqn (9.56) gives this as

) B¢ c*rg
f=9") Sye = 52 (11.56)
using eqns (11.12) and (11.13). Therefore, the surface gravity is
2 ct
¢ = = — = 11.57
R= 10 = 50 T dom (1157)

using eqn (11.15).

Now consider the work required to raise an object from r to infinity.
Let mg be the rest mass of the object when it is far from the black hole.
Using eqn (9.55) the work required is



W = (1 - m) moc?. (11.58)

This is finite even when raising from the horizon, for which case W =
moc?®. The work is not infinite, because this amounts to the whole rest
energy, therefore lowering the particle back to the horizon must reduce
its rest mass to zero. By slowly lowering the particle in this way, we
extract at a location far from the horizon all its rest energy—a ‘perfect
power station’. The particle can then be released into the black hole,
whose mass does not then increase.

To see the latter point, use the following argument from Rindler, based
on Birkhoff’s theorem. For convenience, consider a spherical shell of
matter rather than a point particle. As the shell (mass mg — Am) is
lowered from B to A we accumulate energy at B equal to the mass
reduction Am (conservation of energy). Therefore the total mass within
any radius larger than rp is unchanged, and therefore the spacetime
outside 7z must be unchanged. Spacetime within 74 is also unchanged.
Between 7 4 and g there is the complicating effect of the tension forces in
the (now extending in spherically symmetric fashion) strings. When 7 4
reaches the horizon, the shell is released and the forces vanish. Spacetime
outside rp is still unchanged. Spacetime inside 7p must be unchanged
also. If it were not, there would be a difference at 75 which could be made
arbitrarily large by repeating the process (we use the acquired energy to
reconstitute the shell, and repeat ad lib.) Therefore, the energy received
at B has been extracted from the lowered body, not from the field.

It also follows that such a process of slow lowering of a particle into a
black hole does not change the mass of the black hole. Particles entering
by free fall, on the other hand, do add to the mass of the black hole
(Birkhoff’s theorem again). One implication is that whereas the mass of
a black hole is a well-defined concept, the ‘number of particles inside’
cannot be quantified and may have no physical meaning.

More generally, the lesson is that tremendous energies are made
available by the gravitational effects near neutron stars and black holes,
as we have already mentioned in section 11.3.3. The material orbiting a
black hole can be extremely energetic, and can emit copious amounts of
X-rays.

11.6 What next?

We are almost ready to finish the introduction to General Relativity
that has been our theme for three chapters. The treatment has been
restricted to static metrics, but within that restriction it has been exact.
The intention has been to provide the general physicist with an accurate
grounding in the subject, and to smooth the way for those who would
like to take it further. The next step for the latter group would be
to Jearn some ideas and techniques of tensor analysis and differential
geometry. These are needed to appreciate how the Einstein field equation
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evenl horizons
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Fig. 11.20 A Kerr black hole.

is constructed, and they greatly simplify tasks such as obtaining the
Schwarzschild solution.

We will conclude by sketching the chief further phenomena that, ayig,
in non-static problems.

Moving bodies (and momentum density in general) generate a furthe,
contribution to spacetime curvature that is sometimes loosely referreq to
as a ‘dragging’ of spacetime. In the weak field limit a better, and quay.
titatively accurate, picture is to speak of a ‘gravimagnetic’ contributioy,
to the acceleration due to gravity relative to a suitably chosen lattice,
One may write

a~=-Vb+vAB

where B = V AW is the ‘gravimagnetic field’ and W is a ‘gravitationg]
vector potential’ given by

w sfsz—;”“dv (11.59)

cir

where p and u are the mass density and velocity of the source. This
results in phenomena such as precession of a gyroscope fixed near a
rotating sphere (the Lens-Thirring effect).

The Einstein field equation allows wave-like solutions in vacuum,
which propagate at the speed of light; these are called gravitational
waves. If a cloud of dust is floating above a steel plate, then a passing
gravitational wave will make the dust particles oscillate relative to the
plate, by exerting oscillating tidal forces. With a suitable choice of coor-
dinates, in the weak field limit the Einstein field equation itself takes the
form of a wave equation, again closely analagous to electromagnetism.

The Schwarzschild black hole is the exception rather than the rule
for black holes generally. Matter collapsing to form a black hole almost
always possesses angular momentum. The resulting black hole is spin-
ning, and the metric of the surrounding spacetime reflects this: it is not
a static metric anywhere. There is still a spherical event horizon, but
also a region where escape is possible but standing still is not. That is,
near the event horizon but outside it is a second surface in the shape
of an oblate spheroid, where the df term in the metric changes sign.
Inside this surface is a region called the ergosphere where, if it is to be
time-like, a worldline must have d¢/dt > 0: i.e., particles and light must
move around the black hole in the same sense as its rotation. Visitors
wishing to traverse the ergosphere can do so, but not in a purely radial
direction. This solution of the Einstein field equations is called the Kerr
metric, and the associated black hole is called a Kerr black hole.

11.6.1 Black-hole thermodynamics

The Kerr black hole is associated with a striking physical phenomenon
called the Penrose process.



Ezercises for Chapter 11 297

The outermost event horizon of a Kerr black hole is at a radius given by
Thorizon = %(Ts + T? = 40,2)

in a suitable coordinate system, where ¢ = 2GM/c? is the Schwarzschild
radius and a = J/Mc is a distance scale associated with the angular
momentuirt J of the black hole. Thus the rotation of the hole makes the
horizon smaller than would be the case if it did not rotate. The Penrose
process is a process whereby energy can be eztracted from the black hole!
The essential idea is that a system of two parts, say two rocks, falls into
the ergosphere and there splits, such that one piece is thrown against
the sense of rotation of the hole, and subsequently falls past the event
horizon, while the other piece escapes. Penrose showed that the escaping
piece can emerge with a mass energy greater than the sum of the initial
mass energies of both. Meanwhile, the hole has its angular momentum
J reduced, and also its mass M. This is possible because the rotational
energy of the hole is located outside the horizon.

It is found that in the Penrose process the mass of the hole falls but
the area of the horizon does not: the reduction in o always compensates
the reduction in r;. This is an example of a more general idea, proved
by Hawking and Penrose: namely, that under the action of classical (i.e.,
not quantum) physical processes, whereas the mass of a black hole may
or may not decrease, the area can never decrease. This area theorem
is reminiscent of the Second Law of Thermodynamics, and led to the
idea that it might be appropriate to associate an entropy with the area
of a black-hole horizon. This entropy is an important and not yet fully
understood idea. There are strong reasons to assert that it is given by

1 3
S=-AS Ky

where A is the horizon area, equal to 4772 for a Schwarzschild black hole.

In a further remarkable development, Hawking showed that quantum

processes near a horizon led to the emission of radiation with a thermal

spectrum, travelling up from the horizon. This Hawking radiation has a
temperature given by

T kk/c

27rk:B

where £ is the surface gravity; eqn (11.57). This gives 61 nK for a solar-
mass black hole. The Hawking radiation is accompanied by a reduction
in the mass and horizon area of the black hole, but not of the total
entropy of the universe.

(11.60)

—

Exercises

(11.1) Prove that the change of coordinate from 7 to metric (11.5) to take the isotropic form shown in
7 given by eqn (11.6) causes the Schwarzschild eqn (11.7).
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Prove that the acceleration due to gravity
obtained from this isotropic metric is the same
as given by eqn (11.13).
(11.2) From eqn (11.17) obtain the differential equation
dz — (_14+1/(1 —rs/7))"/? and show that the

dr

solution is eqn (11.18).

(11.3) Use eqn (11.20) to find the radius excess of the
London Eye (a vertical circle of radius 60 m rest-
ing on Earth's surface). Hence show that the area
of the London Bye is smaller than C?/4r, by 230
nm?, where C is its citcumference,

(11.4) Obtain the acceleration due Lo gravity experi-
enced by the visitor to the spherical Tardis. If
her locally measuted rest mass is 50 kg, (i.e., it is
fifty times larger than a group of 5 x 10%° nearby
carbon-12 atoms), what are the sizes of the forces
she experiences? (The Schwarzschild radius given
in the example is unrealistic, as no known material
could withstand the gravitational forces; however,
similar reasoning would apply near a neutron star
at the distance scale of tens of kilometres rather
than metres and r ~ 2r;.)

(11.5) A 1-kg brick is dropped from far away onto a 1-
solar-mass neutron star of radius 6 km. How much
energy is released when the brick hits the surface
of the star and comes to rest? If this energy is all
radiated away, how much is received by distant
detectors?

(11.6) Radial trajectory. (i} Show that £ :=1 in eqn
(11.22) represents the case of a particle falling
from rest at r — oco. In units where ¢ =rg =1,
show that for such a particle the proper time as a
function of r is

r= i% ('rgf2 -TB/’Z) (11.61)

where 7y is the position at 7 = 0 and the plus sign
gives the infalling case. (ii) Show that in terms of
Schwarzschild time, the trajectory satishies

dr 1l-—r
dt ~ sz
and hence
2 VTN
i = —gﬁ(3+r)+log(ﬁ_]>]m (11.62)

(The substitution w = 1/r helps to do the inte-
gral).

(11.7) A circular orbit in Schwarzschild spacetime doeg
not follow a geodesic of Flamm'’s paraboloig
(Fig. 11.3). Explain.

(11.8) Check that eqns (11.48) and (11.49) agree.

(11.9) Show that the relationship between the accele;.
ation due to gravity at a light-sphere and the
circumference of the sphere is C = 27rcz/\/§_q_

(11.10) (i) Show that the surface at ruler distance b oy
side the horizon of a Schwarzschild black hole is
at radial coordinate r = rs + b*/dr, for b < .
(i) An object of rest mass mp is slowly lowereq
on a rope from infinity towards a Schwarzschilq
black hole, until it reaches a ruler distance b from
the horizon, at which point it is released and theq
the rope is retrieved. Show that if b < 74 then the
mass of the black hole grows by AM = mgb/2r,,

(11.11) Find the focal length of the Sun for rays at grazing
incidence.

(11.12) Show that for a metric of the form (11.4), the
Gaussian curvature in the tz ‘plane’ is K = o' /.,

(11.13) Obtain the effective refractive index in the uni-
form gravitational field. Using eqn (11.48), show
that the downwards acceleration of a light-ray is
equal to g at the moment, when the ray is horizon-
tal, in agreement with the Equivalence Principle.

(11.14) Suppose an astronaut in the Rindler frame (con-
stantly accelerating frame in flat spacetime) only
has access to the line y = z = 0. Explain precisely
what observations he might use in order to dis-
cover that his spacetime is flat.

(11.15) In a science fiction story by Ursala le Guin it is
proposed that astronauts could travel into the far
future in comfort by ‘parking’ their spaceship in &
fast orbit around a dense star, thus taking advan-
tage of time dilation. Could the method work?

(11.16) Advance of the perihelion. If we change vari-
able to w = (2L /c*r<)u, show that eqn (11.38)
becomes

W+ w=1+ew’
where the dot signifies d/d¢ and e = 3r2¢?/4L%.
For € <« 1 this equation can be solved by pertur-

bation theory. Try the form w = wo + ew,, where
wp = 1 + ecos ¢. Show that, to first order in ¢,

Wy +wy =1 +e’/2+ 2ecos ¢ + (e7/2) cos 2¢

We already have enough degrees of freedom in wo
to satisfy boundary conditions, so we only need



a particular solution (not the general solution)
for w;. Show that wi = A+ B¢sing + C cos2¢
is a solution with B =e. The ¢sin ¢ term dom-
inates, since it grows with ¢, so we have w >~
1+ e(cos ¢ + epsing). Show that this is

w=1+ecos(¢p(l —¢)) + O(*)

and hence obtain eqn (11.41), where now the cal-
culation is valid for any ellipticity.

(11.17) Given that neutron stars have a radius of order

twice their Schwarzschild radius, could the star
considered in exercise 9.15 of chapter 9 be a neu-
tron star?

(11.18) Using a change of coordinates to wu,7,6,¢

with w = ct 4 r —rylog(r/rs — 1), show that the
Schwarzschild line element becomes

ds® = —(1 — r, /r)du® + 2dudr

+72(d8® + sin® 6d¢?).
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Confirm that in these Eddington—Finkelstein
coordinates a radial null line has either du/dr =0
or du/dr = 2r/(r — r,), and indicate which is the
future direction on these lines.

(11.19) A rigid circular scaffold is constructed around a

large black hole, some distance outside the hori-
zon, so that it is prevented by its compressive
reaction forces from falling towards the hole. An
astronaut attaches one end of a rope to the scaf-
fold, then jumps into hole. She allows the rope to
play out behind her on a spool so that it does not
restrict her free fall. What happens to the rope?

(11.20) Confirm that in the absence of pressure, both

eqns (9.16) and (10.19) agree with the predic-
tions of Newtonian gravity. In view of the fact
that these exact General Relativistic equations
agree with Newtonian physics, how does it come
about that the General Relativistic predictions for
trajectories in gravitational fields do not match
Newtonian predictions?
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Tensors and index notation

In this chapter we shall introduce some methods of tensor algebra, which
are needed to take the subject further. The study of tensors and their
manipulation is a rich field of mathematics in its own right, and this
can be daunting for a physics student meeting the ideas for the first
time. For Special Relativity, however, we do not need to invoke all the
methods. We will take a ‘gentle’ approach that is intended to bridge the
gap between the 4-vectors we have met so far, and the complicated multi-
dimensional objects whose treatment requires a whole new notation. We
shall concentrate our attention mostly on scalars, 4-vectors, and the
type of tensor quantity that was introduced in section 7.5—the second
rank tensor. Occasionally, higher-rank quantities appear in equations,
but only as a stepping stone to a simpler result.

Tensor analysis is used extensively in General Relativity. Most of the
results of this chapter can be used in General Relativity. We will point
out the main occasions where Special Relativity is assumed.

An important theme is the introduction of a new notation, called
index notation. This notation is needed for some of the more advanced
results. However, we will not completely abandon matrix notation, but
use whichever notation is more convenient for any given calculation. We
shall also display many results in both notations. This will help to clarify
the meaning of some of the tensor equations that are hard to read when
one first sees them written down.

12.1 Index notation in a nutshell

The essential elements of index notation are as follows (the list is
followed by explanatory cornments):

(1) Displaying an element. We display a 4-vector or tensor by writing
down a representative element. For example,

Aﬂ

signifies the element a of the 4-vector A. Since a could take any of the
values 0, 1,2, 3, by writing down a representative element, we implicitly
show the whole 4-vector. Similarly, a second rank tensor is displayed
thus:

'lrub

12.1

12.2
12.3
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where the indices a, b both take on values 0,1, 2,3, so there are sixteer,
elements in full. A scalar quantity needs no indices.

(2) Lorentz transformation. The Lorentz transformation matrix is wyjg.
ten A%

(3) Summation rule. It often happens that a sum is involved, for example,
when one takes an inner product, or when a matrix multiplies a vectoy-

3
AL =3 ARAN
A=0

We introduce the summation rule: when an indez is repeated in any given
term or product of terms, the sum over all values of thal index is taken
That is, instead of writing the summation ), explicitly, it is assurneq
to be there. For example, the above expression is written as
3 “AX
)A\(7 = AGI\A .

(4) Metric tensor. The metric tensor g,p is written with lowered indices
and is defined to be such a tensor that, for any pair of 4-vectors A%, B?,
the combination

AYg,,B" (12.1)
is Lorentz-invariant. (Note that there are two repeated indices here, so
two sums, giving a scalar result.)

(5) Indez lowering. Il A® is a 4-vector, then we define a new quantity
A, by

A, = guaAt. (12.2)
Thus the placement up or down of the index is significant, and this
operation is called index lowering.

(6) Index raising. Let 6 be the Kronecker delta, whose value is 1 for
a = b and 0 otherwise. (When written out as a matrix, §f is the 4 x 4
identity matrix.) Then the matrix g°° is defined by

g“’\g,\b = 6f. (12.3)

Interpreted as a matrix equation, this says that the matrix g is the
inverse of gap. By using the definition, one can easily show (see below)
that

A% = g%rA,. (12.4)
This operation is called index raising.

(7) Differential operator. The differential operator is defined

0
¢ dzo (125)
where (29 2%, 12, 2%) is the coordinate system of the reference frame

under consideration. For example, for rectangular coordinates we would
have



12.1

5, (19 0 0 90
o \cot’ 0z’ Oy’ 0z )

By raising the index one can also define
80 = g‘“@A.

In rectangular coordinates, and assuming the Minkowski metric, this is
go— (L0 0 9 9N
c Ot’ 9z’ dy’ Oz

(1) Since the number of indices can always be used to specify what type
of quantity one is dealing with, it is no longer necessary to adopt a
different font. However, we will mostly retain the use of special fonts,
as in A and T, so that we can move between index and matrix notation
when it suits us.

Comments

(2) The Lorentz boost matrix is symmetric, so we do not need to separate
the indices horizontally in order to know which refers to the column
and which the row: it does not matter. More generally, however (e.g.,
rotations, and General Relativity), the transformation matrix is not
always symmetric.

(3) The summation rule takes care of matrix multiplication, but it is
more general. In a matrix multiplication such as MN there is, built in to
the definition, the rule that we must sum over the last index of the left
matrix (M) and the first index of the right matrix (N). In index notation
this rule does not have to be obeyed: one can sum over any index. For
example, the equation

A — M+ g,,, N

can be easily ‘translated’ to the matrix equation
A = MgN

but, be careful, the equation

A% = Mpeg, NV
corresponds to

A =MTgNT. (12.6)
Why? Because M#¢ = (M7)%, so we have
AL — (MT)ap.gIW(NT)ub'

Now the repeated indices are adjacent in both products (last index of
left-hand term, first index of right-hand term), which means they are in
the places assumed for matrix multiplication, and we can translate to
the matrix equation (12.6) as claimed.

Index notation in a nutshell

305



306

Tensors and index notetion

The result can also be expressed as
AT =Ng™™. (127

We could obtain this form by rearranging the terms appearing in the
double sum:

M“ag,“,Nbu - Nbug”VNJpIL‘

This is correct, since multiplication of scalars is commutative, so iy
any sum each term can be rearranged; for example, su 4 vw = us + 1y
Then, using g,, = gfu we have

Aab — NbugUT“M/m‘

The right-hand side has the repeated indices adjacent, so is easy tq
translate into matrix notation; but now we have to take care to notice
that the indices @ and b are in reverse order on the right-hand side
compared to the left (a refers to a row of A%®, but to a column of Mee
etc.), leading to eqn (12.7).

(4) This definition of the metric tensor is valid in General Relativity.
By using the definition of index lowering, the invariant quantity can be
written

A*B, (12.8)

and you can see that this is precisely the inner product that we have
written A - B up until now. The metric tensor is always symmetric.

(5) Symbols with all upper indices are called contravariant, those with
all lower indices are called covariant, and those with some indices up
and some down are called mized.

(6) To prove eqn (12.4), let A = gA. Then, by pre-multiplying by the
inverse of g,

A=g A
QED. Alternatively, for a little practice with index notation, use
Ay = gpuA*
=5 g A, = ¢g®gpA* = S AY = A®

where we used eqn (12.3) (the defining equation for g°®), and in the last
step, notice that a sum involving &7 has the effect of changing the name
of the index that remains (you should convince yourself that this is so

by thinking about all values of the indices and doing the sum).

(7) The 4-gradient operator that we have used until now should be
displayed with an upper index, so that [0 becomes 0% = 0% In a
rectangular coordinate system in Special Relativity, 8, and 8% differ
only by a sign in the first term; more generally, however, the relationship
between them is more complicated, and one should start from definition
(12.5).



A final remark on index letters. In principle one can use any symbol as
an index, including, for example, all the letters of the Roman and Greek
alphabets. However, it is useful to adopt the convention that the Roman
Jetters 7, 7,k range only over values 1,23, so that these are used for
3-vector analysis, while other letters are used to indicate the full range
0,1,2,3. Also, it is helpful to make repeated indices easy to notice. This
can be done by reserving early letters such as o, B for repeated indices,
or by using Roman letters for non-repeated indices and Greek letters for
repeated ones. I shall mostly adopt the latter practice. Note that when
an index is repeated, and so being summed over, it is a ‘dummy’ variable
whose name can be changed with impunity. For example:

A*B, = A*B, = A°B,

etc. (The last example did not adopt the convention of using
Greek letters for repeated indices, to show that this is perfectly
allowable.)

12.2 Tensor analysis

Tensors in general are mathematical objects expressed by a set of com-
ponents that change in a given way under a change of coordinate system.
In particular, the 4-vector or ‘Arst-rank tensor’ transforms as A — AA,
and higher-rank objects transform in the same way as outer products
of 4-vectors. (Not all tensors can be written as an outer product—those
that can are called ‘pure’-—but they can always be written as a sum
of outer products, so the outer product is sufficient to tell us how they
behave.)

Prime notation. It is useful to indicate two different coordinate sys-
tems (associated with two different reference frames) by the use of a
prime, as in {t,z,y,z} and {t,2/,y’,2'}. So far, when referring to a
4-vector quantity in either frame we have used A and A’. In index
notation we have two choices: the prime can be attached to the main
Jetter (‘*kernel’) as in A" or to the index as in A% . The latter choice
is arguably more logical, since when transforming from one coordinate
system to another the 4-vector does not itself change, but its components
change because the basis vectors change. Therefore we will use A% in
the following.

We already know how a 4-vector changes from one frame to another:

, .
A = A% AN

By considering the outer product, we also found how second-rank tensors
transform, egn (7.38), which in index notation is

M]ab — A(JNMVJ,L/<AT)UI> — AapAbuMy,u

where the first version is a direct translation from our earlier matrix
result, and the second version is the way it is usuvally written. One could

12.2 Tensor analysis
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! assuming we evaluate the sum in

either frame at the same set events.

also obtain the latter directly in index notation by considering the oute,
product:

z! e a’ L ¥ pry ! il v
A¢BY = (A% A#)(A%BY) = A% AL A#BY.

12.2.1 Rules for tensor algebra

We can now extend the ideas to tensors in general. We define a tensor of
any rank to be an entity which transforms in the right way: namely, iy
the same way as an outer product, which means that for a contravariant
(upper index) tensor of any rank, one factor of Aab' should be used tq
convert each index. We allow operations that take tensors to tensorg
(not necessarily of the same rank). The legal operations are: sum, outer
product, contraction, and index permutation. By using the metric we
obtain two further operations: index lowering and raising.

The valence of a tensor refers to the number of upper and lower indices,
The rank is equal to the total number of indices.

The sum of two tensors of the same valence is defined as

ab __ pab- ab--
Ccd--v - Acd—v +Bcd--'1

i.e., just add corresponding elements. It is easy to prove that this is
a tensor if A and B are being evaluated at the same event. Note,
however, that when summing tensors at different points in the coordinate
space (i.e., different events in spacetime) the sum is a tensor when the
transformation is linear,! as, for example, the Lorentz transformation,
but not always if it is non-linear, as in General Relativity.

The outer product of two tensors is obtained by forming the product
of their representative components, as in

anpb ab . anpc ac
A*B*=C ol h=de — “hde:

Contraction consists in replacing one upper and one lower index by a
dummy index, and summing over it. For example, the scalar product of
a pair of 4-vectors is obtained by first forming their outer product, then
lowering an index, and then contracting, so as to obtain:

A By, of. ATgB=A-B.
More generally one could have combinations such as
C*® = A**B,>  cf. C=AgB
and
B = A3

Contraction reduces each valence by 1, and therefore the rank of the
tensor by 2. Conlracting all the way down to a scalar results in an
invariant, so this is an important opcration. Examples include



F}  and  FM™QG,,. (12.9)

To calculate the first, starting from F’, multiply by the metric and then
take the trace. To calculate the second, use the metric if necessary to
calculate G, and then multiply corresponding elements and sum.

Index permutation consists in reordering either the upper or the lower
indices (of all terms in a2 sum). This is a generalized form of the transpose
operation (for a second-rank tensor, it is equivalent to a transpose of its
matrix representation).

Index lowering/raising can be used to show the result of multiplying
an equation by the metric or its inverse.

12.2.2 Contravariant and covariant

The rules we have supplied for index notation are all that one requires to
carry out legal manipulations. However, it is helpful to have some idea
of what the upper/lower index signifies. A good way to explore this is
to examine the question, whether the metric is itself a tensor. We have
been calling it a tensor, so you will not be surprised to learn that it is
one—but can we prove it?

The proof is easy in matrix notation. The metric is defined to be that
quantity such that the combination

ATgB
is invariant. This means that
ATgB = A'T¢'B’

where A’ = AA, B’ = AB, and ¢’ is to be discovered. We have

ATgB = (AA)T¢'(AB) = AT (AT¢'A)B
and the result is valid for all 4-vectors A, B. It follows that

g=ATgA = ¢ =(A1HTgA™L (12.10)
Compare this with the rule for a contravariant tensor:

T' = ATA”. (12.11)

We have found that g does not transform in the same way as a con-
travariant tensor, but it does transform in a way that is easily obtained
from the Lorentz transformation: to transform g, treat it like a tensor,
but instead of A use (A~1)7T.

In the case of the Lorentz transformation, the definition (6.64) results
in (A™H)TgA™! = g, s0 ¢’ = g—which we have in fact assumed until now
in this book. For more general transformations (General Relativity) one
would find ¢’ # g.

A tensor which transforms in the standard way is called contravariant,
An entity which transforms in the other way, like g, is also called a tensor
and is said to be covariant.

12.2  Tensor analysis
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an

b2

bl

Fig. 12.1 Contravariant and covari-
ant. components. A given vector v can
be expressed in more than one way:
either using the set of basis vectors
{ai}, or the set of basis vectors {b*}.
Thus v =v'a; +v%as = v1b! + v9b?
where {v'} and {v,} are the respec-
tive sets of components. Neither set of
basis vectors need itself be orthonor-
mal. However, the ith basis vector
in the second set (b') is chosen to
be orthogonal to all of the first set
except the ith member (a;), and it
is given a length such that its inner
product with a; is 1. Thus a;-b? =
8,,j- This permits the inner product
between any pair of vectors u, v
to be written Z/\u*v,\ as you can
confirm by expanding (v’a; + u2as) -
{v1b' 4 v2b?). If a, are along the coor-
dinate axes then the components v*
are said to be contravariant. The other
set of components, v;, are said to be
covariant.

Contravariant vector or contravariant components?

Soine types of argument require care to distinguish between a vector
and the set of components which may be used to describe it. Bg
warned: this can be confusing. My advice is: do not worry about
it but just learn the rules of index notation. However, for Genera|
Relativity, greater clarity is required. Here is a briel discussion.

A vector is not described by a set of components alone, but by a set
of components and another set of vectors: namely, the basis vectors,
The notation A% refers to cach of the components when the basis ig
the standard one: i.e., unit vectors along the directions of the axcs of
some chosen reference frame. The notation A, refers to a different set
of components for the same vector; this is possible because a given
vector can be expressed in terms of more than one basis. When using
index notation, one does not need to know what this second basig
is; it suffices to know that A*Ay is a Lorentz scalar. However, if you
want to take an interest in the basis vectors, consult Fig. 12.1.

When we change reference frame, any given 4-vector such as a
4-momentum does not change, but the basis vectors do change, and
usually we would prefer to know the components in terms of the
new basis vectors. A matrix equation such as A’ = AA should be
regarded as shorthand for the index notation version, A% = A‘)‘"A)‘.
This makes it clear that we are here talking about each component of
the vector, not the vector itself. The idea of ‘a contravariant 4-vector’
or ‘a covariant 4-vector’ is meaningless, according to this stricter usc
of terminology. Rather, the set of components A® is contravariant,
and the set A, is covariant.

Once we have discovered one covariant tensor, it is easy to form others.
Consider, for example, (gA), where A is contravariant. Under a change
of reference frame,

gA = g/ = (AT gAT AA = (A7) (gA)

so (gA) is a covariant 4-vector. This fact is indicated in index notation
by index lowering: {g,nA") = A,. The upper/lower index signifies the
contravariant /covariant nature of the entity.

All the 4-vectors and second-rank tensors we have been using in matrix
notation have been contravariant, with the single exception of the metric.
The terminology seems strange at first: why are the ‘ordinary’ ones called
contravariant, and the ‘contrary’ ones called covariant? The reason is
partly historical accident, but is connected to behaviour of the metric:
the word ‘covariant’ has the connotation ‘transforming in the same way
as the metric tensor’.

There is a simple geometric interpretation of the contravariant and
covariant sets of components of a vector, illustrated in Fig. 12.1. This
makes it clear that one must regard the contravariant and covariant
forms as two versions of the same object, not two different objects.



The metric tensor can now be understood to play two roles. Its
primary role is to show how to calculate an invariant ‘distance’ in
spacetime, and its secondary role is to allow easy conversion between
contravariant and covariant forms of tensors.

12.2.3 Useful methods and ideas

The combination A-F-B (i.e. A,F#'B,) is a scalar and therefore is
unaffected by a transpose, hence

A-F-B=B -FT.-A (12.12)

If the tensor is antisymmetric, then this gives A-F-B = —-B-F- A, and
therefore

A-F-A=0 for antisymmetric F. (12.13)

We have already used this in egn (7.44) in order to argue that the
Faraday tensor should be antisymmetric in order to produce a pure
force, and we shall use it again in chapter 15. More generally, you can
prove that if [F is antisymmetric and S is symmetric, then

S F* =0 for sym, antisym. (12.14)

Some tips for tensor manipulations are shown in the box below. By using
g gxp = 82 one can prove the useful ‘see-saw’ rule, as follows. We have
Ag.. = garxA* and B*" = g*#B,," for any A, B, where the dots signify
other indices (which may more generally be up or down and in any
order). Therefore

Ao BY" = AL B, grag™ = ALB, 6) = ALBY

where the first step used that g is symmetric.

The order of the indices of a given tensor in index notation does
matter and must be respected. For example, A% is not necessarily
equal to A% and A% is not necessarily equal to A,% This point is
sometimes treated rather loosely in the literature. The only exception is
when a tensor is symmetric. The Kronecker delta can safely be written
dp without bothering to indicate which index is first, which second,
because? §% = §,%.

In order to ‘read’ a tensor M as a matrix, it is helpful to think of the
indices a, b as a two-digit number, and to ‘read’ the matrix in the way
one reads text in most western languages: i.e., across the top row from
left to right, then down to the next row, etc. As the ‘two-digit number’
a, b increments, the second digit b changes fastest, and this corresponds
to moving along a row in the matrix.

Lowering a first index of a tensor corresponds to pre-multiplying the
matrix by g, thus changing the sign of the first row. Lowering a second
index corresponds to post-multiplying by g, thus changing the sign of the
first column. Lowering both indices changes the sign only of the time-
space part (i.e., the 0, 0 element and the lower right block are unaffected).

12.2  Tensor analysis 311

2 Note that here we are not comparing
&g with 8%, which one would obtain
from the former by lowering one index
and raising another, a quite different
operation, involving the metric twice.
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Tips for manipulating tensor equations

(1) Name your indices scnsibly; make repeated indices easy to spog.
(2) Look for scalars: e.g., Fy, A¢F is sA¢ where s = Fy, F .

(3) You can always change thc names of dummy (summed over)
indices; if there arc two or more, you can swap names.

(4) The ‘sce-saw rule’
AsB* = A*By  (works for any rank)
(5) 9. behaves like 0/0x

(6) In the absence of d,, everything commutes.
(7) Da® = 82;  Oab = Gab-
(8) 8.k x) = k, for constant k,.

Non-tensors. The transformation matrix A“b’ is not itself a tensor: it
cannot be written down in any one reference frame, but rather acts ag
the ‘bridge’ between reference frames. There can be other matrix-like
quantities that are not tensors (because they do not transform in the
right way) but are nonetheless useful.

Consider now the equation used to define g%, eqn (12.3). The com-
bination on the left-hand side could also be written g, since it can be
read as g% with the first index lowered, so we have

gab = 5,’;.

and therefore g} = 63 = 4.

In Special Relativity using rectangular coordinates, one finds that g,
and g°® are represented by the same matrix. More generally, this need
not be the case, but eqn (12.3) is always true. We met some examples in
chapter 9. The first metric in eqn (9.47) reads g,» = diag(—h?,1,1,1).
Taking the inverse, we find ¢g*® = diag(—1/h%1,1,1).

It is interesting to ask whether the Kronecker delta d; is a tensor. If
it ig, then the placement of the indices implies that it is of mixed rank,
so it ought to transform as A for one index, (A~ )T for the other. Using
matrix notation, this means the fransformed version, 6{‘},’ is the matrix
given by

AIAT!

where [ is the identity matrix. This matrix product evaluates to I: i.e.,
we get back the Kronecker delta once again. This shows that 67 respects
the rules: it is a tensor of the type indicated by the placement of its
indices. This can also be proved from the quotient rule.

Quotient rule. The gquotient rule states that if an expression of the
form

B®AC,, (12.15)



ields a d-vector whenever C is a 4-vector, then B must be a tensor
(of ghe type indicated by the placement of its indices), and similar
gtatements apply at all ranks. This idea can be expressed ‘if when
something multiplies a vector it always yields a vector, then the thing is
a tensor’. This is familiar in 3-vector analysis, where, for example, one
has expressions such as

j=CE

where j is the current density produced by an electric field E in a
crystalline material whose conductivity is given by the 3 x 3 tensor C.
The 4, j element of C' tells how much current density in the 7th direction
is produced by an electric field in the jth direction. Further examples are
polarizability, magnetic susceptibility, and moment of inertia—whenever
the conditions are not isotropic these are tensor rather than scalar
quantities.
‘We shall now prove the quotient rule. In matrix notation, we have

A = BgC

where A and C are 4-vectors, and we want to prove that B transforms as
a tensor. Under a change of frame, A = AA, B = B’, g = (A~1)TgA~!
and C = AC, so

A(BgC) = B'(A~1)TgATAC

i BgC=A"'B'(A~4H)TgC
and this is true for all C. It follows that B = A~ B/(A~!)7, and therefore
B = ABAT.

This is the defining property of a tensor, therefore B is a (contravari-
ant) second-rank tensor. The proof for tensors of higher rank proceeds
similarly.

At first sight the index notation is not very appealing: it appears to
offer rather cluttered expressions, and one needs to look hard to keep
track of the indices. However, it comes into its own when differentiation
is needed, and it makes it easy to construct the all-important invariants,
by contracting tensors of even ranlk. It also makes some basic calculations
easier.

Example Find the transformation of electric and magnetic fields
under a change of inertial reference frame.

Solution
We use the Faraday tensor (7.46), and calculate

FeY = A% A% F. (12.16)

From the antisymmetry of F** and the symmetry of A we know that
2%’ is antisymmetric, so the diagonal elements are zero. Next consider
the element F9'': i.e., o/ = 0, ¥ = 1. In the double sum over p and v
there are sixteen terms, but for frames in standard configuration only

12.2  Tensor analysis
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two are non-zero, because AU;{ is only non-zero for p = 0,1, AL ig on]
non-zero for v = 0, 1, and [F** is only non-zero for p # v. Hence only the
combinations (w,v) = (0,1) and (1,0) survive, and we have

IFU'I' = AU(;AI;[FDI & AO;AISIFIO - {?2 — 72)62)11?01 = FO1
Therefore Ej = E;. Proceeding similarly, one finds

B = AQATF2 + ANASF? = Ejfe=~(By/c- AB,)
and  FOY = AQATTFR + AYASFS = Bl/e=q(B./c+p8B,)

therefore B/, =~(E + v AB). It is also easy to see that F2% ~ F23.
therefore Bj = By, and the equation for B follows from F''? and f1's’
(exercise for the reader).

The above method of calculation is simpler than evaluating the matriy
product AFAT,

A summary of some of the merits or otherwise of the two notations ig
given in the following table. Note that both notations allow you to write

nonsense such as A% = B®AC* or A = BC (in both cases the symbol on
the left seems to be a 4-vector, but the combination on the right is not).
To avoid nonsense it is up to you to obey the rules!

index notation vectors and matrices

number of indices tells you the font or underline tells you the rank
rank

lots of fiddly indices less cluiter

use further labels with caution labels are ok, e.g. Pyoe = 3. Py

upper, lower index to take care use - or remember g
of g

all ranks only rank 0 to 2

handles everything restricted

identify invariants easily invariants less obvious

longer derivations easier good for the simplest derivations

12.2.4 Parity inversion and the vector product

We still have not exhibited a 4-vector quantity similar to the well-known
vector product a A b for 3-vectors. The reason is connected with the fact
that a A b is not quite a ‘perfectly proper’ vector. It is (quite rightly)
called a vector because it behaves the right way under rotations, but
it gets up to no good when you try reflections or inversions through
the origin (parity transformation). Consider a rotating object and its
angular momentum L = Y r A p for example. The angular momentum
vector is defined by convention to point along the axis of rotation, with
a direction such that the rotation is right-handed. Now imagine placing



an ordinary arrow-shaped rod next to a rotating wheel, with the arrow
pointing in the direction of the angnlar momentum L of the wheel. Place
o mirror next to them. First suppose that the axis of rotation of the
wheel is vertical and so is the mirror surface (Fig. 12.2). Now look in
the mirror: the arrow, seen in reflection, is still pointing in the same
direction, but what has happened to the wheel? Its reflection is rotating
in the opposite sense, so its L vector has reversed direction! The angular
momentum vector and the arrow have done opposite things: one reversed
direction, the other did not.

Now lay the mirror flat, in a horizontal plane (Fig. 12.3). This time
the arrow changes direction but the rotation does not.

We have in r A p a quantity that behaves like a vector under rotations,
but has exactly the ‘wrong’ behaviour under reflections. Such a quantity
is called a pseudovector. Alternatively, the ordinary vectors are called
polar vectors, and ones like angular momentum are called azial vectors,
A polar vector is one that changes sign under spatial inversion (also
called parity transformation); an axial vector is one that does not.
Spatial inversion is a reversal of all three coordinate axes. Under such an
inversion an ordinary vector changes sign—what you would expect—but
an axial vector does not (Fig. 12.4).

Axial vectors might seem to be an invention that should have been
avoided, but once you are aware of them you will find them throughout
physics. We already mentioned one important example, the angular
momenturmn, and another is the magnetic field vector B. The electric
field, on the other hand, is a ‘straightforward’ polar vector. The vector
product of two polar vectors (e.g. r A p) gives an axial vector. The scalar
product of a polar vector with an axial vector produces a scalar that
changes sign under parity inversions; it is called a pseudoscalar.,

We mentioned this business of polar and axial vectors in order to
introduce the fact that the vector product has to be reconsidered before
we can generalize it to more than three dimensions.

If we examine the vector product

rAP = (ryp; —TuPy)i+ (TePz — T2P:)j + (raby — Typ2)k, (12.17)

we find all combinations of elements of r with elements of p, except for
those along the same direction. This suggests that we should consider the
outer product rp”. After trying that, and also trying pr”, one discovers
that the interesting combination is

. TaPy — TyPx .
L=rp? —prf = : : TyPe—TeDy | (12:18)
TePx — TPz .

where we have written out three of the elements, and the dots signify the
other elements, which can be obtained by using the fact that the whole
matrix is antisymmetric. L. is, by construction, a (three-dimensional)
second-rank tensor. Notice that the z component of the vector L appears
in the ‘y, 2’ slot (second row, third column) of the tensor L, and L,
appears in the ‘z, 2’ slot, and L, appears in the ‘z,y’ slot:
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Fig. 12.2

Fig. 12.4 Inversion through the ori-
gin: spatial displacements and linear
velocities reverse direction, but angular
momentum does not.
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L= ¢ . Ly
L

Y

The 4-vector generalization of the vector product is, then, a second-ray )
tensor defined by

AAB=AB” — BAT. (12.1g)

For example, an important antisymmetric tensor is the angular momep,
tum tensor defined by

[Jo,b = Xapb - Xbpa (1220)

for a particle whose position and momentum are given by X and P,
The tensor L. behaves the same way under parity changes as othey
second-rank tensors: it does not change sign. Picking out some elementg
of this second-rank tensor and calling them a vector is a ‘trick’ thag
only works in three dimensions. It works because those elements do
transform as a vector under rotations, and this is partly because an
antisymmetric second-rank tensor in three dimensions has just three
non-zero independent elements. In four dimensions we can construct the
tensor; it i antisymmetric and so now has six independent non-zerg
elements, but that is two too many to have any hope of making a 4-
vector out of them! Instead we can find two 3-vectors, one polar and
one axial: recall eqn (7.42). For example, for angular momentum the
definition (12.20) gives the top row L% = cip — (E/c)x which is clearly
polar, and the space-space part is equal to the 3-angular momentum
tensor, which we already showed is related to an axial vector. It follows
that a polar and an azial vector can be similarly extracted from any
antisyminetric tensor, since they all transform in the same way.

12.2.5 Differentiation

We have already defined the 4-gradient O¢, the 4-divergence O - F, and
the d’Alembertian (02 = O 0. The quantity

O\ANY or O-A

is a ‘divergence of a tensor’; it yields a 4-vector.
Two more derivatives naturally suggest themselves:

OAT and OAA =0AT —(OAT)T,
(0°AP and AL — BPA%) (12.21)

where we displayed them in both notations (the index notation is clearer
for these outer products). The first of these was exhibited in eqn (7.47).
It should be read as a sort of ‘gradient’ of a vector field, but now
the gradient has to say how every component of the vector changes
in every direction. For example, you should confirm that 9,X* = 62 and
O Xp = Gab-
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The second quantity in eqn (12.21), a sort of ‘4-curl’, gives an antisym-
metric tensor, therefore a set of 6 independent non-zero elements. You
can read the result as DA A = ‘(thing) — (transpose of thing)’ which
makes it clear that the outcome is antisymmetric.

The ‘gradient of a vector’ idea is quite useful in 3-vector analysis too.
Compare, for example, the horrible

Viun-v)=(u- V)v+(v-VIu+uA(VAV)+VvA(VAU)(12.22)
with the much more elegant
V(u v)=(Vu)v 4+ (VvHu. (12.23)

(You can prove the latter without much difficulty by converting to
components in a rectangular coordinate systera.)
Further information on derivatives is contained in appendix C.

12.3 Antisymmetric tensors and the dual

Most tensors one encounters in physics are either symmetric or anti-
symmetric. A symmetric tensor has ten independent elements (six for
the upper triangle, which also gives the lower triangle, plus four more
on the diagonal). An antisymmetric tensor in four dimensions has six
independent elements (if these form the upper triangle then the lower
triangle is the negative of this and the diagounal is zero).

Since tensors of given rank all transform the same way, we can
obtain the transformation of 3-angular momentumn (for example) by
substituting E — cw, B — L into the equations for the transformation
of the electromagnetic field, where w = ctp — (F/c)x = ymc(vt — x).

Some relationships between tensors can be found by using the Levi-
Civita symbol or ‘permutation symbol’ €,p.4. This is defined as

+1 i abed is an even permutation of 0123
€abed = —1 if abed is an odd permutation of 0123 (12.24)
0  otherwise

This is a four-dimensional object (there are versions for any number of
dimensions), but only 4! = 24 of its elements are non-zero—half of them
+1 and half —1; see table 12.1. Tt is defined to be invariant (it is what
it is: it, does not matter what reference frame you are working in), but
it is easy to prove that it always converts tensors to pseudotensors, so it
is itself a pseudotensor, by the quotient rule. Note that e,pcq = — €227,
which is a source of ambiguity in the literature: some authors chose 0123
to be 1.

Consider the combination ezp, F**. Choose, for example, a = 2, b = 3.
You can see that the (2,3) element of the result is made from F° and
F'% the latter subtracted from the former. If F is symmetric then this
is zero, if it is antisymmetric then this is 2F°L,
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Table 12.1 Evaluating the Levi-Civita symbol.

€0led = 0 1 €02¢d = 0 5 etc.

Eqn (12.18) can be written

]L,J — C.,"jk_Lk (1226)

where L =r A p is the 3-angular momentum (axial), and €% is the
permutation symbol in three dimensions.
For antisymmetric I, the tensor (actually a pseudotensor)
1

]ch = EEC(MU/F”U

is called the dual of F. It does not take long to check the six terms to
find that the matrix for F,.; looks like the one for F¢® but with a and
b swapped, where a, b are the polar and axial vectors forming F by the
recipe of eqn (7.42). It follows that F°¢ can be obtained from F¢ by
the substitutions a - —b, b = a. For an example, see egqns (7.46) and

(12.26)

(13.10).

Exercises

(121) If A*® and B®*° arc tensors, then which
of the following expressions yield a tensorial
result: Aa/\ B/\bc; Aa[\Bh)\c; ,4“h+Abﬂ; Aab+/lc(i;
A 4 A.g; A A4 B, ? Give the valence of any
that are tensorial.

(12.2) Describe the relationship between the tensor A%
and Aﬂm Aba: Aab) Aba-

(12.3) Prove eqn (12.14) (by using that F*¥ =
if F is antisymmetric, and S*” =S8"* if S is
symmetric).

7IFUP

(12.4) Consider the effect of parity transformation (spa-
tial inversion) on Maxwell’'s equations and the
Lorentz force equation. Show that all phenomena
of classical electromagnetism are invariant under
spatial inversion. (It follows that if a given elec-
tromagnetic phenomenon is possible, then so is its
mirror image.)

(12.5) Evaluate O(K - X) and 8*(K*X,) where K is a
constant 4-vector —and decicle which notation you
prefer!

(12.6) In a given inertial frame, whose 4-velocity is U, a
tensor T*° has just onc non-vanishing component:
T = ¢%. Find a way of writing such a tensor
in terms of a pair of 4-vectors. Hence find the
components of this tensor in an arbitrary [rame
moving at velocity v relative to the first.

(12.7) Useeqn (12.25) to prove that ;% is a pseudo-tensor.

(12.8) Confirm the staternents made after egn (12.26).

(12.9) Prove that any second-rank tensor can be written
as a sum of a symmetric and an antisymmetric
tensor: M®* = §°® 4+ A*® and gjve expressions for
5% and A*® in terms of M*?. State how the result
extends to higher ranks.

(12.10) Show that ¢****¢yy ., = —605.



Rediscovering
electromagnetism

We are now ready to ‘reinvent’ electromagnetism. The approach taken
in chapter 7 was to introduce the electric and magnetic fields in terms
of the forces exerted on charged particles, and to reason from Lorentz
transtormations, from easily analysed basic phenomena, and from the
Maxwell equations. We mentioned that the electric and magnetic fields
should be regarded as two parts of a single entity, and at the end of the
chapter we briefly introduced that entity: the antisymmetric second-rank
tensor called the Faraday tensor F.

In chapters 7 and 8 (section 8.2.3) we also examined the claim that
the whole theory of electromagnetism can be derived from Coulomb's
Law and Lorentz covariance. This claim seemed attractive at first, but
on further consideration it turned out to be far too sweeping. It is
based on several tacit assumptions, some of which are quite subtle. Tt
is an important skill in physics to be able to identify what non-trivial
assumptions have in fact been invoked in any given argument.

In this chapter we shall obtain the Lorentz force equation and the
Maxwell equations from an explicit set. of assumptions, restricting our-
selves as far as possible to the simplest possible assumptions that are
consistent with Lorentz covariance, and that give rise to some sort of
field theory (i.e., a theory of point-like entities called particles interact-
ing via extended entities called fields). In this way we will show that
electromagnetic theory can be considered to be one of the most simple
possible field theories. The mathematical language of tensors guides us
very quickly to the right formulation.

13.1 Fundamental equations

Suppose we want to construct a field theory with two basic physical
elements. These will be fields (whose nature is to be discovered) and
material particles. By a field we mean simply something that exerts a
force on a particle, and we shall assume that the particles in turn give rise
to the field through a property we shall call their charge. For simplicity,
we take it that the charge is a scalar invariant. Do not forget that we
are in the process of inventing a theory, so we can hypothesize anything

13.1 Fundamental equations 319

13.2 Invariants of the
electromagnetic field
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we like; we are constrained only by the language of tensors (to maintajy,
covariance) and the policy of simplicity.

We shall therefore further assume that the force is pure: i.e., rest-mage
preserving: that is a great simplification if we can achieve it.

Now let us consider whether the 4-force exerted by the field at a givey,
event might depend on anything else in addition to the charge of the
particle. Suppose, for example, that it is independent of the particle’s 4.
velocity U and 4-acceleration dU/d7, etc. A field theory can be built frop,
such an assumption, but it is not the one we are looking for because it
cannot give rise to a pure force. For a pure force we require F - U = 0, byt
if the force is independent of U, then F - U can only vanish for all U if F jg
itsell zero. We counclude that we shall need some dependence of F on .

The next simplest assumption would seem to be that the 4-force ig
proportional to the charge and to the 4-velocity of the particle, but ig
independent of its 4-acceleration:

F<qpU (13.1)

for some scalar field ¢. This is no good, however: still not pure: F-U =
qpU - U 4 0. Next we try

electromagnetic force equation
F® = gF*U, [F=gF-U (13.2)

where IF is an object that describes the field. It is a second-rank tensor.
This is the simplest thing (other than a scalar) that can take a 4-vector
as ‘input’ and give back a 4-vector force. So is the force pure now? We
have already given the answer in the discussion following eqn (7.44): the
force is pure for all U if IF is antisymmetric (and you can easily prove
this condition is necessary as well as sufficient, by finding a U for which
F-U#0if F is not antisymmetric). The conclusion is requiring F to be
antisymmetric s both necessary and sufficient to guarantee a pure force.

We now know our tensor is antisymmetric. That is good, because this
is the least complicated type of second-rank tensor. 1t can be regarded as
being composed of two 3-vectors, so our tensor field can be interpreted
as a linked pair 3-vector fields. We have already shown in eqn (7.45)
that the spatial part of eqn (13.2) gives the Lorentz force equation, and
hence IF is as given in eqn (7.46). We immediately know how the fields
transform under a change of reference frame; see eqn (12.16), which gives
our old friend eqn (7.13). Note that, as before, we have obtained the field
transformation by using the force equation without needing to evoke the
field equations.

So far we have established how our field F affects particles, and we
have learned that we can, if we so chose, interpret it as a linked pair of
3-vector fields. It remains to propose how the particles might generate
the field. We shall assume that some sort of differential equation is
needed, so we take an interest in 9\F*?, which is a sort of divergence of



ghe tensor feld. This reduces tho raok of the object from 2 86 1 0L s
arguably the simplest differential apervator we could use It I8 certainly
ome of the shmplest aoyway, so lot ws try 1t

We have alrendy proposed that the effect of the feld on the particles
4 proportional to their charges and their selocities. Somie sort of general
nition of & "third Dow” (action and veaction), which we loow will e
peoded to respect momentum conservation, leade ue to goess thet tho
parbbeles should in retiicn affect the feld also r.||||:a|_|gL|_ Bheor chacpges and
their velocitios, s we guess

Flest field equation
8P — gl [O-F==pugopll [13.3)

where jy & & proporbionolity constapt, and gy i Lhe propec charge per
unit volume: o, for eny given event it 2 the charge donsity in ihe
rieferenis frnme In wihibch the Jocal charge b5 ab rest.

So lar we only sssumed the charge wae Lorentz invariant. Cur Geld
eegiiisbion o 13,3] ghves us somethig moee B omn bewalid doly i the chagge
is conservad, This iz the well-known connection between the completion
of Maxvall's equations and the cotssevation of charge. To prove iE, wo
investigato the 4-divergenca of the 4-vector on the right-hand sde of sgn
(Laa)

Oalpo) = B daF
e Ja 0, B awap &, ji
= —ih, gl antisvmrortrie F
= -3 48 commute partis! differentiation
= Hh(mU*) =0.

In the first atep we simply swapped the indices: this ta valid bhecaose they
wre dumitny indices (hetng summed over ;o we chicall hem whab we Tika
You can imagine that A was first changed to o, then g to A, thon o to
fi- In the speond step wie invoked the antisymmetry ol F. In the third we
imvaked the symmetry of second partial derivatives: @@, F = 8,8, f for
any well-behaved eciler f, and thus for all the elements of F. The whole
arpument iz essentlally the same as the one leading tooegn [T.458), Dot
now wir bave Ol - {Cl- F} instoad of U F . L},

Defining the d-vector | = ppld, wecnm write the conelusiog & 4 = 0.
This 1= tho continuity equation {previously we wrote it - 1 = 0}, 50 we
have deduced that the quantity whose flow ls described by J—ie., the
chnrge—is conserved|

This conservation law greatly cheers us, In fack, one mighl argue
thet for a simple theory one ghould ingist on such a conservation, and
this k4 further eviklence that egn (13.3) is a unigue choce: @ W the
only ooe thal iz remodely cimple and that = conslstent with cherge
cOnserElinn
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! See section 16.5 for a discussion of
whether or not the Lorentz force equa-
tion Is axiomatic.

We have already seen in eqn (7.49) that eqn (13.3) is the Maxwey|
equations M1 and M4 in tensor notation.

Eqn (13.3) is our first field equation. It does not yet fully descripy,
the field, because it is only a 4-vector equation: i.e., it contains fo,
equations, while we need six altogether. The problem is that the divey.
gence of a field does not in itself fully characterize the field. The natyyq)
next step is to consider the ‘curl’ of the field—some sort of derivatiye
that would generate a third-rank tensor. There are many possibilitieg
However, we can keep the problem under control by noticing that we
have not yet taken advantage of another feature that can arise in fielq
theories: the concept of a potential. Therefore we shall assume next that
F can be derived from a potential. We can soon convince ourselves that
a scalar potential will not suffice, so we try a vector potential A, ang
propose

F* = oAb — 9PA°, (13.4)
1t follows that

Second field equation
O°F + 8°F* + 8°F*® = 0, (13.5)

as you can verify. Now, it can be shown that eqn (13.5) is not only a
necessary but also a sufficient condition that F can be obtained from a
4-potential as in eqn (13.4). Therefore we can describe either of eqn
(13.4) or eqn (13.5) as our second field equation. The form of eqn
(13.5) represents sixty-four eguations, and yet only four of them are
independent, so the index notation is introducing a lot of unwanted
redundancy. However, there is something attractive about having a set
of equations only in terms of F and the charges, and the tensor technique
is still playing its crucial role of guaranteeing Lorentz covariance.

With the benefit of the assumption that [ is completely determined
by a 4-vector potential (so there are only four unknowns), now our first
field eqn (13.3) becomes sufficient to determine the field. Substituting
from eqn (13.4) it becomes

NOMAY — BP0 AD = — ). (13.6)

This is [J2A — O() - A) = —pugJ, which we previously wrote in compo-
nent form in eqns (7.26) and (7.27).

We now have a complete theory, consistent unto itself. It remains to
extract predictions and compare with experiment, and of course we know
well that we shall be richly rewarded with experimental confirmation.
The foundational equations are summarized in the box below. We added
the equation of motion F = dP/dr in order to provide a complete story:
the field equations say how the fields move, the equation of motion says
how the particles move.! All of classical physics except gravitation is
included in this box!



Electromagnetic field theory

Force oquation
F* o g™,
[ pury foree @ F s snbisymnetrial.
Fleld equaticons
BFYW =~y (13.7}
FF™ 4+ P4 PP =0 (13.8)

The first = 830" = 0, charge s conserved.
The smcond 46 P8 = #AY « A%, the field can be devived from

potential.
Equntion of motion of & test particle
Mo — ey (13.9)
e % :
Variaiions

Warationg which give rse b obher gensible and ressonably simple the-
ories mre mainly of two tvpes. We can give up the requirement of a
pure foree and bry p stmpler potential, such as @ seslar pobenbial (e,
a Logentz scalar, nol part of a d-vector). An example of this iz Lhe
Yukoms scalar meson theory, which waos & fororunner of somo aspectz
of the Standard Model of particle phyaice. Or we can introduce further
gources bo gein more symmetty between the electne and magnetic perés,
at the expense however of loging the 4 poteptial,
Consider the 'doal’ Geld tensor defined by

{1 i, a, £y

. _I T —_E= n -E:.l'lr S E'|.'¢l 'llr
El”. = 5;...“!“ = _B} =7 ..”I.ll 0l E,-."C . |:'|.3.'f|:|'_:l
—B; +E e =Eije 0
The second feld sgquation (13.5) can be wiltban
8, F* =, (13.11)

i.g,, the dual field is ‘source free.” This suggests that one patural modifi-
eation of the Maxwell theory & b Inboduce & magnetio curvenl, density

J:nnu' which would represent a density and Hux of megnetic monopales.

One veplaces the second feld equation by S F = 451y The magnatic
‘charge’ of & mosopole woiuld be mvariant and conserved [like electrie
charge}, Thizs might seem fike & modest modification, and one which
Nature might bave adoplad. Howsver, jt has profound consequences,
because i results inm & losg ol symmetry under space [pversion (pat-
ity transformation) and wnder time reversal. Extensive searches fior
magnetic monopoles have go far vielded null results, which sugpests that
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they do not exist and Maxwell’s theory is the correct one. Nevertheless,
such searches will continue, in part because of an ingenious quantum,
mechanical argument due to Dirac, which suggests that the existence of
magnetic monopoles would allow one to infer that electric charge myg;
be quantized. The argument examines the motion of a particle Moving
in the field of a magnetic monopole, and the quantization conditiop
emerges as a consistency requirement.

The wonderful succinctness of egs. (13.7) and (13.8) does not meay
that the equations are simple: they remain precisely the full Maxwe||
equations, with all their complexity and richness. However, we have
shown that we cannot expect to find anything much simpler than this.
Furthermore, the introduction of IF gives us a sense that we are getting to
grips with what the electromagnetic field really is. It is a ‘tensor thing’
that exists throughout spacetime. At each event in spacetime there ig
this four-dimensional ‘thing’ that looks like two 3-vectors when you pick
any given reference frame. (It is four-dimensional in the same sense that
a moment of inertia 3-tensor is three-dimensional.) It exerts forces and,
as we shall explore in chapter 16, it carries energy and momentum. It
may be right to say that it is part and parcel of the structure of spacetime
itself, or else that spacetime is ‘made of’ things like this: this is the type
of question that attempts to unify quantum field theory and General
Relativity are trying to resolve.

13.2 Invariants of the electromagnetic
field

Tensor analysis yields up some fruit straight away. We know we can
obtain at least one scalar invariant from any tensor, and from an
antisymmetric second-rank tensor we can get two. The first is easy:

1
D = SF,.F = B%* - E?/c* (13.12)

(obtain this by summing the squares of the elements, with a minus sign
for the time-space part coming from the presence of glFg). The second
is found by using the ‘dual’ field tensor given in eqn (13.10). Using this
we can form the invariant

o= %fmﬂwv =B E/c. (13.13)

Our two invariants D (for ‘difference’) and a (for ‘angle’ or ‘alignment’)
allow some general observations about the fields. For example, if the
fields are orthogonal at some event in one reference frame, then they
are orthogonal at that event in all reference frames (o =0). If the
magnitudes are ‘equal’ (i.e., ¢B = E) in one frame, then they are in
all frames (D = 0). If the magnetic field vanishes in one frame then the
field cannot be purely electric in another (since D < 0), and wice versa
(when D > 0). If the angle between E and B is acute in one frame
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(a > 0) it cannot be obtuse in another. There can be a frame in which
one of the fields vanishes only if & = 0: i.e., the fields are orthogonal in
other frames.

Supposing a = 0, then are we guaranteed to be able to find a frame
in which the magnetic field vanishes? Clearly only if D < 0, but suppose
that it is. Then we can use the field transformation equations (7.13) to
find a frame in which B’ = 0, as follows.

Let the fields in some frame S be E, B. To get B‘]’1 =0 we need B) =
0 so we are clearly going to have to pick a frame S’ with velocity v
perpendicular to B. Then we have B; = B, so

B' = (B - vAE/).

For this to be zero, we need B and E to be perpendicular—but they are
(if a = 0), so there exists a solution: the component of v perpendicular
to E must be ¢>B/E, and the component vg along E does not matter.
It remains to check that this solution can have v < ¢ we require

vi + B /E? < & = viE? < (B - B2

but D < 0 by hypothesis, so the right-hand side is positive and there
exists a solution for a range of values of vg. Note that all the frames
determined by this analysis have velocity in the plane perpendicular to
B and with the same component of velocity perpendicular to E. This
means they have a common direction of motion relative to one another;
see Fig. 13.1. The simplest case is where v is perpendicular to E (as well
as to B), then

EADB
E?
A similar argument allows one to find a set of frames in which E’

vanishes if & = 0 and D > 0. The simplest case is

_EAB
ST

It can also be shown that when o # 0 there is a continuum of frames
in which E is parallel to B, One such frame moves in the direction E A B
with speed fc given by the smaller root of the quadratic 8% — 68 +1=10
where b = (E? 4 ¢*B*)/|E A Be|.

\i"=L‘2

E =E/y, B'=0. (13.14)

B =B/y, E =0. (13.15)

13.2.1 Motion of particles in an electromagnetic field

The equation of motion of a particle moving in an electromagnetic field
can be written either

m%('}'v) =qg(E+vAB) (13.16)

or

du®

m— = gF% U (13.17)

Fig. 13.1 [f E and B are perpendic-
ular in one frame, with ¢B < E, then
there is a set of frames in which B = 0.
Their velocities v relative Lo the first
frame are in the plane perpendicular
to B, and have the same component in
the direction perpendicular to E, there-
fore they have a common direction of
motion relative to one another. Similar
statements apply to frames in which E
vanishes when E-B =0 and E < cB.
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The first equation offers a way to find the motion as a functiop of
reference frame time, the second as a function of proper time alOng
the worldline.

Static, uniform field

In chapter 4 we treated the motion of a charged particle in a stagj.
uniform purely electric field and in a static uniform purely magnetjq
field, using the three-vector approach. The discussion in the preceding
section shows one way to treat the case of a general static uniform fielq.
If the electric and magnetic fields are orthogonal, then first identify
a frame in which one or the other is zero, solve the motion in that
frame, then transform back. One may as well pick a frame that is moving
orthogonally to both the fields, then its speed has to be E/B to null the
E field, or ¢?B/E to null the B field.

For E-B =0, ¢B > E, the motion is helical in the special frame, and
therefore a combination of the drift velocity E A B/B2 and the (Lorentz
transformed) helix in the original frame. Since the drift is perpendicular
to B, it is in the plane of the circular motion.

For E-B =0, cB < E, the motion is hyperbolic (with increasing
momentum along the direction E’) in the special frame, and there-
fore a combination of the drift velocity ¢?E A B/E? and the (Lorentz-
transformed) hyperbolic motion the original frame.

If the fields are not orthogonal, then a simplification is obtained hy
adopting a frame in which they are parallel. However, this does not save
much labour compared with the ‘brute force’ approach of setting out
and solving the equations of motion in the original frame in rectangular
coordinates.

The motion as a function of proper time is best obtained by solving
eqn (13.17). To this end, it is convenient to write the equation using
matrix notation:

U
m— = q(Fg)U. 13.1
7 = 1(Fg) (13.18)

This can be solved by noticing that for a uniform constant field, F, is
independent of space and time, and therefore the equation is precisely
the same as the one obtained in a classical normal modes problem, and
can be solved by the same methods. One proposes a solution of the form
U = Ugexp(T'r), where Uq is a constant 4-vector, and then the equation
becomes an eigenvalue equation, with eigenvalues A = mT'/q.

We are looking for eigenvalues and eigenvectors of the matrix (Fg).
This matrix is is not symmetric so the right-eigenvectors are not the
same as the left-eigenvectors. We only need the right-eigenvectors here.
Without loss of generality we can take the z-axis along B and E in the
zz plane. One finds that the eigenvalues are

D
N = -5+ VD%/4 + o? (13.19)



where D and « are the invariants defined in eqns (13.12) and (13.13).
Using these values one can find the four corresponding eigenvectors Ug(;),
and the general solution is

4
U = Y el el

=1

(13.20)

where a; are constant coefficients that are given by the initial conditions.
Note that it is allowable to include cigenvectors Upg;y that would be
unphysical on their own (for example, having v > ¢), as long as the
solution 4-velocity U(7) is physical at all times.

When o =0 (orthogonal fields) there is a zero eigenvalue. For E <
¢B this is the well-known case U =constant when f = 0; for £ > ¢B it
corresponds to a solution with v > ¢, which is unphysical on its own, but
may be needed as part of an allowed solution.

Arbitrary field

To treat more general problems, one may use Lagrangian methods to
find constants of the motion (chapter 14), or simply write down and try
to integrate equs (13.16) or (13.17). It is often useful to treat the former
using eqn (4.13), which give
2 2

ol — By, moy ot = a® (v AB)), (182)
dt
not forgetting that the parallel and perpendicular directions change
when v rotates. If the moving body radiates significantly, these equations
are still valid but the electromagnetic field will not be known at the
outset, and it is necessary to reconsider whether or not a point-like
model for the body is appropriate. For a non-point-like body the charge
on one part of the body experiences a field which is in part produced by
the charge on another part of the body, and when the body accelerates
the sum of such interactions over the body does not in general cancel
(see exercise 8.5 of chapter 8). This self-force or radiation reaction will
be discussed in volume 2.

me7y
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Exercises

(13.1) Change of metric. The form of some of the

change sign, A and 8, do not. However, thought

basic equations of electromagnetism depends on
which Minkowski metric ((+ — ——) or {(— + ++))
is assumed. The effect of a change of metric
on equations using index notation is surmmarized
by the rule ‘introduce one sign change for each
index in the “sensitive” place’, where a ‘sensi-
tive’ place is down for an ordinary vector, and
up for the gradient operator. Thus A, and 9

is required because the presence of a gradient
operator may be hidden, as may the presence
of UxU* (which becomes either —c* or ¢?). Also
some equations serve as definitions which are
independent of the metric. For example, we take
the force equation (13.2) to be the definition
of the field tensor F no matter which metric is
adopted.
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Confirm that the main changes required if (+ —
) is adopted instead of (— 4 ++) are as fol-

lows:

(1) the relation of F to the electric and magnetic
fields changes sign;

(i) OuF* = puot®. Thus, for given (E and B)
fields, F and g, change sign.

(13.2) Derive eqn (13.11): e.g., by using Maxwell’s equa-
tions.

(13.3) Show that det(F) = (E- B)?/c®. (Hint: save your-
self a lot of trouble by choosing a coordinate
axis direction in a helpful way.) Hence show that
det(F) is Lorentz-invariant.

(13.4) SIntroduce the complex 3-vector K = E + icB.
Show from the known transformation properties
of E and B that this transforms as

1 0 0
K'=| 0 coshp isinhp |K.  (13.22)
0 —isinhp coshp

for frames in standard configuration. This is a
rotation through a complex angle. Deduce that
E* —c*B? and E - B are invariants, and that no
other invariants can be made from E and B.

(13.5) If (E, B) and (E, B") are two different electro-
magnetic fields, prove that E-E' — ¢*B . B’ and
E B’ + B.E are invariants.

(13.G) §In a certain [rame there is a uniform electrie fiel
£ in the y direction and a uniform magnetic 913
B = 5E/3¢ in the z direction. A particle of charg,
to mass ratio g/m is released from rest gy 1;[-“;
« axis. Show that the particle returns to g, -
axis after a time 37wme/16¢E. (Hint: consider y, “
gituation in a frame where one field vanishes, )

(13.7) Prove the statement about frames with Parallg)
fields made after eqn (13.15).

(13.8) Derive eqn (13.19) for a particle moving i, ,
constant uniform electromagnetic field. Conside;
the case @ = 0. What does this tells us about the
fields? Interpret the solution corresponding tg
zero eigenvalue. Find U(r) for a particle initially
at rest in a uniform purely electric field, and fo,
a particle moving in a plane perpendicular to 5
uniform purely magnetic field. (Hint: first shoy
that the right eigenvectors of the matrix

0 1 " 1 1
( 1 0 ) may be written (i)' (1))

(13.9) Physically interpret the tensor M®* = XoJb _
XbJ® where J is the electric 4-current density in
some region of space. Hence deduce that polar-
ization and magnetization (density of electric and
magnetic dipole moment) form the components of
an antisymmetric second rank tensor, and trans-
form in the same way as electromagnetic fields
with the replacement E - P, B — M.,



Lagrangian mechanics

It is assumed that the reader has met the Principle of Least Action in
classical mechanics, and the related concepts of the Lagrangian, the
Hamiltonian, and the Euler-Lagrange equations. In this chapter we
shall examine their Special Relativisitic generalisation. We begin with a
summary of the classical results, both as a reminder, and to introduce
notation.

14.1 Classical Lagrangian mechanics

Students usually first meet classical mechanics in the setting of Newton's
laws, and the formula

_dp
Todt’
which we shall write in the form
dx

The basic idea of Lagrangian mechanics is to replace this vector treat-
ment by a treatment based on a scalar quantity called the Lagrangian,
which allows vector equations to be extracted by taking derivatives (just
as V'V is a vector extracted from the potential energy V'). This approach
proves to be more flexible and it simplifies many problems in mechanics.

At any given instant of time, the state of a physical system is described
by a set of n variables g; called coordinates, and their time-derivatives ¢
called velocities. For example, these could be the positions and velocities
of a set of particles making up the system, though later we shall allow
a more general notion of a coordinate,

Define a function £ called the Lagrangian, given by

L=l (14.1)

where T and V are the kinetic energy and potential energies of the
system. The Lagrangian is therefore a function of the positions and
velocities, and it can be a function of time. This is indicated by the
notation £ = £({g}, {¢i}, 1), which we shall abbreviate to £ = £(q,q,t).

For particle motion with no external time-dependent fields, the
Lagrangian has no explicit dependance on time. The phrase ‘no explicit
dependence on time’ means it has no dependence on time over and above
that which is already implied by the fact that ¢ and ¢ may depend on
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Relativistic motion
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The Hamiltonian of a system is defined as

H(g,p1) = (Zﬁiéﬁ) = £L(9,4,t) (14.5)

where the ¢; are to be written as functions of the ¢; and p,, so that the
result is a function of coordinates and canonical momenta (the natural
variables of the Hamiltonian). For conservative forces one finds that
the sum in eqn (14.5) evaluates to twice the kinetic energy, and then
H =T+ V, which is clearly the total energy of the system.
The Euler-Lagrange equations imply
Hamilton’s canonical equations
dg;  OH dp; OH

HZ:-BE, dt :_d—q, (146)

Thus the Hamiltonian with the canonical equations offer an alternative
to the Lagrangian with the Euler—Lagrange equations. In practice, both
are useful.

14.2 Relativistic motion

In generalizing Lagrangian mechanics to Special Relativity, we shall
proceed in two steps. First we ask the question: are the Euler-Lagrange
equations (and their counterparts, the canonical equations) still valid?
The answer is yes, as long we use the right Lagrangian. However, such
a formulation is only partially useful. It can correctly generate 3-vector
equations such as —VV = ymv, but it does nol immediately give the
4-force. Therefore the second step will be to reconsider the action and
Lagrangian from a more thoroughly ‘four-dimensional’ (spacetime) point
of view.

14.2.1 From classical Euler-Lagrange

First we consider the argument based on the classical formula for the
action, eqn (14.2). We restrict attention to a single particle, and write
the Lagrangian

L= Liree + Ling (14.7)

where Lo is the Lagrangian for a free particle, and Ly is the part
describing interaction with sornething else such as an electromagnetic
field.

For a single particle the complete path of the system (i.e., the spec-
ification of g;(t) for all the coordinates) is simply the worldline of the
particle. In this case it is straightforward to write the action integral as
an integral with respect to proper time 7 along the worldline:

92.t2 (2)

Sla(t)) = ] " Loty = / Lrvdr (14.8)

(1)
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where we have used the by now familiar di/dr = . We already knoy, an
important property of free motion: it maximizes the proper time. This
suggests that the Lagrangian for free motion should be such that Vot
is a constant. With this hint, we propose

Liee = —mc? [y = —mc*(1 - v? /)2, (14.9)

You can check that this gives the canonical momenta L. /dv; = Y,
i.e., the three components of the relativistic 3-momentum.

Next let us treat the case of electromagnetic interactions. We propoge
(or guess) the interaction term Ly, and then prove that it gives the right
equation of motion of the particle. Consider, then,

Line =qU-A/y=q(-¢+v-A). (14.10)
After adding this to Lie. one obtains the three canonical momenta
aL
Ty~ Tt g4, (14.11)

which can be expressed as
p = ymv + gA. (14.12)

This equation commonly causes confusion. It does not mean that the
momentum of the particle has changed. The momentum (i.e., that which
is conserved in collisions and influenced by forces) is still ymv. The
canonical momentum (i.e., that which has a rate of change given by the
gradient of £) is ymv + gA.

Now write the Enler-Lagrange equations:

< (rmv + gA) =q(~V4 + V(v- A)) (14.13)

The dA/dt term on the left has two parts, because a change in A along
the worldline is made of the time change of the field, plus a part owing
to the fact that the moving particle visits a different place:
dA 0A
dat - ot

(see eqn (14.25)). Substituting this in egn (14.13) gives

+(v-V)A (14.14)

(%(vmv) =—q (w + %—?) +q(V(v-A) — (v V)A)

=qg(E+vAB) (14.15)
where we have used the vector identity
VA(VAA)=V(v-A)—(v-V)A.

Eqn (14.15) is the correct equation for relativistic motion in an electro-
magnetic field, so we have confirmed that our choice of Lagrangian was
correct and also that the Euler-Lagrange equations are valid as they
are: they do not need to be modified, and they take the same form in
all inertial frames of reference. They are covariant, but not manifestly



covariant. The only drawback of the present approach is that one must
pick a frame of reference before starting the calculation of the motion in
any given case. In practice the mathematics is often easier if one does
ghat anyway, so it is not much of a drawback. Nevertheless, we should
like to see, if we can, a frame-independent formulation: i.e., a manifestly
covariant formulation. That is the subject of the next section.

The Hamiltonian is obtained from eqn (14.5). We have

2
me
H=(ymv+qA) v+ — +q(p—v A)=vymc* + qp.
Y
This is what one might expect: a sum of motional energy and potential
energy. However, we should express the result in terms of the canonical
momenta. To this end, use yme? = (m2¢c? + p?c?)1/2) where p = ymv =
p —gA. We find

1/2
H= \((f) —qA) 4+ m%”) +q¢. (14.16)

14.2.2 Manifestly covariant

The ‘problem’ with the Lagrangian presented in eqns (14.9) and (14.10)
is that it is not a Lorentz scalar. Ifowever, it gives a bint to what Lorentz
scalar Lagrangian we could try:

L(X,U) = —me(=U-U)/2 4 qU - A, (14.17)
We use this in the action integral
*(X2)
SIX(r)] = / £(X, U, 7)dr (14.18)
(X1)

which is also a Lorentz scalar.

The inclusion of eqn U-U in eqn (14.17) raises a subtle point that
merits a comment. We know that the velocity is a ‘unit vector' with
U-U = —c?, so why not write £ — —mc? + gU - A? The problem with
this version is that when substituted into the relativistic Euler-Lagrange
equations it does not result in the correct equation of motion. We have
lost the information about the kinetic energy of the particle. One can get
around this problem in more than one way, but the most convenient is to
insist on the form me(—U - U)'/2 and keep in mind that the Lagrangian
is not to be regarded as a property of the particle, but as a function
whose ‘job’ is to tell us how the action changes if there are changes in
the path. We shall comment further on this at the end.

One way to handle the minimisation of the action (14.18) is to change
variables back to ¢ in the integral, and then look for a minimum with
respect to variations in the path. It is immediately clear that we shall
regain the same Euler-Lagrange equations as before, and the same equa-
tions of motion. Nonetheless, we shall pursue the manifestly covariant
formulation a little further, to see if we can learn anything new.
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The minimization procedure can now go through, and we have the
Euler-Lagrange equalions
d 88 8f
i g%e D! (14.30)

where the dot signifies d/dd. Owing to the prosenne of dr/dd the
new Lagrasgian looks rather cumnbersome, but fortunately, by & good
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[cospans with vogn (14.12))

Evaluation of dA/dr
For wy function thal depends on posiibon and time, we may writs

df - (% e (E)W“J' (%)m_-d'
+(¥ L
~ #-@eGEEG)w-G)E
- N

Since this result apples W all [, we @ay write

d
= ?ﬂa (14.24)

and this muy be applied th all the composents of any tensor. For
example,

%:%";a,,g..u*m (14.25)
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Notice that our manifestly covariant Lagrangian (14.17) differs by 4
factor 4 from the one we used in the previous section, yet we obtaiy
the same canonical momentum: p in eqn (14.12) is the spatial part of
P. The reason is that the relation between Lagrangian and action jg
different: in the first case we had an integral with respect to reference
frame time t, now we have an integral with respect to proper time 7. Thig
resulted in a different set of Euler-Lagrange equations: (14.21) insteaq
of (14.3). To confirm the agreement between the two approaches, one
can manipulate eqn (14.21), replacing d/dr on the left-hand side by
(dt/dT)d/dt = yd/dt, and writing U* = ydX“/dt, then one regains eqn
(14.3) as long as one makes the replacement £ — L/,

The right-hand side of the Euler-Lagrange equation (14.21) ig
g0, (UPA,) = qU*@,A,, so the equation reads

i (mUa 7 qAa) = qUABGAA-

dr
This is like eqn (14.13). Now use
Ra _ r0)A,
dr
(see eqns (14.25) and (14.14)), giving
du,
m—= =4 ((aAr) = (9rAa)) U* (14.26)
dpP
— =g(0O . ;
or e g(dAnA)-U (14.27)

We have found that the 4-force associated with the potential A is g(L1 A
A) - U. You can verify that this gives once again the correct equation for
motion in an electromagnetic field, or else just recognize from eqn (13.4)
that we have the equation of motion under the Lorentz force, eqn (13.9).

Further comment on U - U

Since the combination U-U = —c? one may wish to adopt the

Lagrangian —mc* for free motion. This can be done, but then the
information that U-U = —c? has to be incorporated into the action
minimisation procedure. One has a constrained minimization.

Keeping U-U in the Lagrangian leads to an easier solution, but
one may be uneasy about the meaning of terms such as 8L£/8U¢,
because this quantity refers to a change in the Lagrangian when
one component of U is changed while keeping other components of U
fized. One might argue that il is not possible to change one com-
ponent of a 4-velocity while keeping all the other components fixed.
If one component changes on its own, the size of the 4-velocity will
change. To maintain the size fixed, another component must change to
compensate.

This objection muddles two different things: namely, path variations
considered in the calculus of variations, and the evolution actually
followed by the system. Consider a more familiar and simpler example:
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classical motion in a circle. When a particle moves in a fixed uniform
magnetic field, the speed remains constant. Therefore, throughout the
motion, changes in v, are accompanied by changes in v,, with the
result that (v%—i—vg) is independent of time (for a B field in the z
direction). However, this does not mean that it is illegal to consider
AL /Bv, or OL/Bv,. By considering the effect of such ‘excursions’ while
minimizing the action, one arrives at the very equation (Euler—Lagrange)
which ensures that the v, and v, changes are coupled in the right
way. Similarly, in the relativistic case, one may postpone applying the
constraint on the size of U, because after the whole procedure yields a
prediction for the worldline, one finds that the worldline satisfies the
constraint anyway!

14.3 Conservation

Lagrangian mechanics reveals an important connection between sym-
metry and conservation. The Euler-Lagrange equations show that if
L is independent of a coordinate, then the corresponding canonical
momentum is constant in time: i.e., conserved. It is very reasonable
to postulate that the Lagrangian describing an isolated body ought to
be independent of the position of that body relative to other bodies.
For, if the body is isolated- -i.e., not intevacting with anything else—
then who cares where it is? For a Lagrangian having this symmetry
(independence of translation in space), the corresponding canonical
momentum is the total linear momentum. It follows that we can replace
the conservation-of-momentum postulate introduced in section 1.2.1
by a (very reasonable) symmetry postulate, namely that £ must be
translation-invariant for isolated systems. Conservation of energy then
follows, as we showed in chapter 5, or it can be obtained from time-
independence of the Lagrangian.

14.4 Equation of motion in General
Relativity*

Since the equation of motion of a test particle in GR is given by the
Principle of Most Proper Time (equivalently, a time-like geodesic), it
can be conveniently treated using Euler—Lagrange equations. We wish
to find a path having a maximum value of

(2) A2
T:/ dT=/ d—Td/\
(1) n o dA

where X is a parameter increasing monotonically along the worldline,
and dr/dX is given by eqn (14.19) in which g, is now the GR. metric
tensor. The Lagrangian is clearly
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L = (1/¢) (~gua*s")'/?

where z® is the position 4-vector of the particle. Adopting the “Erigle
explained in the box, after completing the variational calculation y,
choose A equal to the value of 7 along the solution worldline. Then t},,
Lagrangian can also be written £ = (1/¢)(=U - U)"/2; see eqn (14.17)
For this choice we must find £ =1 at points on the path, since the pagy
length is [ d7r = [ LdX. The property “L = 1” is a statement about ¢,
value of the function L£(z®,2%) at a certain locus of events, it says nothing
about derivatives with respect to the coordinates and velocities, whijcy,
need not, be zero. However, it does imply that, along the solution path
dL/dr = 0.

With this in mind let us consider a different variational problem,:
namely, one in which the Lagrangian is

)

£ = ~guiti¥ =L (14.28)

We then have the Euler-Lagrange equations

g foc) _ o (142
dr \ 9za | ~ dze -29)
d oL oL

= (2‘3@)‘”&?

d (4913) _oc

dr \8z¢ ) = 9zo’
where the last step used dL/dr =0. We thus find that the new
Lagrangiau £ yields Euler-Lagrange equations that are satisfied if and
only if the Euler-Lagrange equations for £ are satisfied. Since g, z*2"
(which can also be written U - U) is considerably simpler to work with
than its square root, we much prefer L to L, so we adopt it to treat
geodesics in GR. (see exercises 14.3 and 14.4).

For example, if the metric is of the static form

ds? = —e2%/" 2442 +do?

where the spatial part do? is time-independent but not necessarily flat,
then we have

~ B Pyt o
£ = 624>/" C2/,2 _0,2

Since this is time-independent, we have that L/84 is a constant of the
motion: i.e.,

€2%/* | = const. (14.30)

This is eqn (9.57). We have thus provided the further details that were
promised in section 9.4, with regard to the arguments about time dilation
and energy.
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The Schwarzschild line element, eqn (11.5), yields the Lagrangian

- . 1 & 9 .
T—°) o (——-aﬂ +r2¢? + 12 sin2992> =¢* (14.31)
T 1—rg/r

£= (1 -
gince there is no dependence on r or ¢, the Euler-Lagrange equations for
those variables yield the constants of the motion shown in egns (11.30)
and (11.31). Since the orbit stays in one plane (see section 11.3.3) we
may set @ = 7/2 and § = 0. Finally, £ — ¢? gives eqn (11.30).

The Euler-Lagrange equations remain valid also for non-static met-
rics, and can be used to find space-like as well as time-like geodesics.
They also apply to null geodesics if one uses a parameter (not proper
time) to measure arc-length along the line. In this case £ is still constant
(equal to zero) along the solution worldline.

Refractwe index method for photons
Consider a spacetime which can be described by a static isotropic metric:
ds? = —a?c?dt? + o®n? (dz® + dy* + dz?) (14.32)

where a(z,y,2) and n(z,y,z) are functions of position. Then the
Lagrangian is (dropping the tilde):

L=a? (2 - n?(3® + % + %)) (14.33)
From the time-independence we have
oL

— =2a% = const 14.34
= ( )
and the canonical momentuin associated with z is

oL

E = *20527123:2. (1435)

Its rate of change is governed by

oL da L 2n_ ON on .
= = 20— = —a?2n——v? = —2a’n—1?
Oz Yora2 ~* "o’ oz -
where we introduced v? = £ + 92 4 2% and in the second step we used
L =0, so we are treating null worldlines. Therefore the Euler-Lagrange

equation for £ reads

(14.36)

% (n®a?z) = na%z?. (14.37)
x
After using our constant of the motion, eqn (14.34), to replace o2, and

using t = nv (which follows from £ = 0), this reads
y 3

d <n£> _or (14.38)
v

Now let the parameter A be equal to the coordinate distance along the
path. Then » =1 and (after similar reasoning for y,z) we have eqn
(11.49). This shows that, for a static isotropic metric, the refractive
index method reproduces the null geodesics exactly.
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e

Exercises

(14.1) Graded index optics. In optics, Fermat’s Prin-
ciple of Least Time says that light-rays follow
paths for which the travel time t = [nds/c is
stationary with respect to small changes in the
path, where n(z,y, z) is the refractive index and
5 is distance along the path. By introducing a
suitable parameter 8, show that this corresponds
to a least action calculation with Lagrangian

L =nlz,y,2) @& + 35 + 2H)Y?

where the dot signifies d/df. Hence derive eqn
(11.49).

(14.2) (i) Show that the manifestly covariant

Lagrangian (14.17) leads to the Hamiltonian

H=(P—qA)?/m+ r:\f—(P— gA)2.

(ii) Show that the associated Hamilton's equa-

tions are
dX® P —gA® dP* g - .
dr m | dr m(P'\ 9AN)D"AT,

and that these are equivalent to the Euler—
Lagrange equation (14.26). Note, however,
that because this Hamiltonian always evalu-

ates to zero (prove it!), problems can avise
when using it, because some commonly ygeq
methods assume non-zero partial derivatiyeg

(14.3) Show that in an arbitrary variational problem, ita
Lagrangian L is constant along the solution pagy,.
i.e,, dL/ds =0 where s is & parameter along th,
path, then replacing £ by £ = f(L) in the Buler_
Lagrange equations, for an arbitrary function f,
leads to the same predicted path.

(14.4) Show that the following Lorentz-invarignt
Lagrangian leads to the same equations of motjoy
as were obtained from eqn (14.17):

Ez%mUvU—i—qU‘A.

Show that the Hamiltonian is now H = }(P —
gA)*/m.

(14.5) Use the Euler-Lagrange method to find the
equation of motion in three dimensions in the
Rindler spacetime (constantly accelerating refer-
ence frame),

(14.6) Is it possible to write down a manifestly covariant
Lagrangian that is invariant under displacements
in space but not time? What does this tell us
about conservation laws?



Angular momentum*

For a particle whose position and momentum are given by X and P, the
angular momentum tensor is defined by

L% = Xopb — Xbpe — (WL/C';;;L) (15.1)

where w = xE — pc®t The two 3-vectors associated with this are w
(polar) and the 3-angular momentum L = x A p (axial).

15.1 Conservation of angular momentum

The conservation of angular momentum can be investigated by defining
the total angular momentum of a system of particles by

Lg.= Y. LY (15.2)

particles(i)

where the sum is over the angular momenta of the different particles.
Just as was the case in the discussion of conservation of momentum, we
need to check whether this sum over tensors evaluated at different events
is itself a tensor. First we check that any single freely moving particle
has constant L®. Using that P is constant for a free particle,

dret _ dxe., dx°
dr dr dr

so L™ is constant along the worldline.

Next we examine the effect of a collision involving several particles.
In this case the angular momenta are all being evaluated at the same
event so the X’s factor out of the sum (for those particles participating
in the collision):

P% = U%meU® — UPmoU% = 0, (15.3)

Liiae = X° Z pb - xb Z pe.

But the 4-momenta are conserved, so the sums are not changed by the
collision, so neither is L&,. Tt follows that the total angular momentum
we have defined for a composite system is indeed conserved under inter-
nal interactions, and hence that L2% is a valid tensor (see section 5.2).

We deduce from the spatial part that the 3-angular momentum is
conserved in any given reference frame. Also, from the time-space part

we have that

15.1 Conservation of
angular momentum

15.2 Spin
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2
Ptot€ t— ZX,E‘ {154}
is constant in time. The sum
_ LixE
WO "B (15.5)

can be interpreted as the position of the ‘centre of energy’ or Centroyg
(loosely speaking, this is the ‘centre of mass’). So, upon differenti;

3 n
eqn (15.4) with respect to reference frame time ¢, we have §

dxc _ Pune® _ ¥

dt - El.m. -
Therefore, the centroid moves uniformly, at a speed equal to that of the
centre of momentum frame. This is an interesting and non-trivial resy)y
When a composite body moves freely with a tumbling motion, meg
or all of its particles undergo non-inertial motion. 1t is not SUrprising
that there is a uniformly moving point which remains always somewhere
near the middle of the body, but it is surprising, or at least interesting
that such a point can be found, at all times, by means of the simple
sum presented in eqn (15.5). This guarantees that, in the absence of
external forces, the particles of the body will not all veer to one side
simultaneously, or all get ahead or lag behind, even though the body may
change shape in complicated ways. This also shows that our policy of
treating composite objects as single entities with well-defined properties
(velocity, momentum, energy etc.) continues to malke good sense.

15.2 Spin

Next we investigate a form of angular momentum called intrinsic angular
momentum or spin. For a composite system (i.e., a set of interacting par-
ticles, such as a ‘rigid' body) the intrinsic angular momentum is defined
to be the angular momentum of the systemn in the centre of momentum
frame. We shall show that this definition makes sense. This connects
naturally to the familiar idea in classical mechanics of a body rotating
about its centre of mass, while the latter may also undergo translational
motion. We shall be interested to know whether this angular momentum
can be related to a 4-vector.

The issue also arises of whether point-like particles can possess
intrinsic angular momentum. When experimental evidence of angular
momentum of particles began to emerge in the early twentieth century,
this caused some controversy, because for a very small extended object
to possess significant angular momentum associated with rotation about
its centre of mass, it must rotate very fast. Consider, for example,
the electron, which possesses an intrinsic angular momentum of order
h = 107*" Js. An attempt to model the electron as a particle of finite
size might propose a radius of order 107** m, but then to produce the
observed angular momentum the outer part of this notional electron



would have to be moving at about 400 times the speed of light. More
E;“3nerally, consider a ring of radius r and rest mass my rotating with
gngular frequency w, giving it angular momentum L = yr?mow. The
Speed of a point on the ring is v = wr. If this speed cannot exceed ¢ then
it appears the angular momentum cannot exceed L.« = rmc where
m = Ymo 18 the mass that the ring presents to ‘the rest of the world’,
e it is Eiot/c? of the particles in the ring, evaluated in the centre of
momentum frame. This is finite as long as v < ¢. The conclusjon is that
if 7 = 0 with finite m, then Lyax — 0. Therefore infinitesimally small
particles have infinitesimally small angular momentum associated with
any rotation they may undergo about their centre of mass-energy.

However, the Poincaré group (i.e., the group of translations and
Lorentz transformations (including rotations)) allows one to investigate
in general what sort of quantities can be rotated, translated and Lorentz-
boosted, and it turns out that an angular-momentum-like property that
can be associated with point particles naturally arises in the mathe-
matical description of the Poincaré group. This does not necessarily
imply that particles in Nature will be found to possess such a property,
but it shows that if they did then a sensible mathematical treatment is
available. This treatment introduces the notion of a spinor that we shall
present in volume 2.

It is found that most elementary particles do possess such a property,
called spin. The property is not associated with a rotation of the particle,
it is an intrinsic property like mass or charge, but instead of a scalar it
has an axial vector-like character.

Historically, spin was discovered at the same time as quantum mechan-
ics, and this has led to some confusion over whether spin is an essentially
quantum mechanical (or ‘non classical’) property. Ultimately, all physical
properties such as momentum, position, mass, etc. are quantum mechan-
ical, but their behaviour in the classical limit matches the behaviour of
the corresponding quantities in classical physics. The same can be said
of spin. That is to say, there is a classical theory of spin as well as a
quantum-mechanical one. Given that the concept of spin arises naturally
in mathematical analysis of the Poincaré group, one may say (but one
does not have to say) that it is a relativistic concept. The connection with
quantum mechanics is the following. Whereas one can have a classical
relativistic mechanics either with spin or without spin, it appears to be
impossible to construct a quantum-relativistic mechanics without spin.
So in quantum mechanics, spin is not an optional extra: it is an essential
property of elementary particles.

15.2.1 Introducing spin

Recall the definition (15.2) of the angular momentum teusor for a
collection of particles. In the sum each term is given by eqn (15.1) where
X = (ct,r) is the 4-displacement of the particle from the origin 0, so
we have defined the total angular momentum about the origin. Here
the origin (of the chosen inertial frame) is sexrving as the ‘pivot’ for the

Fig. 15.1
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definition of angular momentum. The angular momentum abeyy at
other pivot R is given by

LG (R) = Z<><“ = RYpP -~ (=R
L3 (0) — (R*P = R°PLt)- (15_5)
In the centre of momentum frame the 3-momentum part of P, is zero,
so we find the space-space part of L#, (R) equals that of L, (0). In oy ™
words, the 3-angular momentum in the CM frame is independent of the
pivot. This means that we can regard the angular momentum in the Cy
frame as the ‘intrinsic’ or ‘spin’ angular momentum of the system,

So far we have discussed only the angular momentum associated wit),
motion of point particles, but we have shown that a composite systeyy
possesses a d-angular momentum in its centre of momentum frame thyy
is independent of the pivot.

Now let us drop the subseript ‘tot’ on our labels, and take it for granted
that the angular momentum under discussion describes a system of one
or more particles. Also, we define J** to be the total angular momentum
about the origin. Then in the absence of intrinsic spin of the particles,
Je¥ = L**(0) and we can rewrite eqn (15.6) as

Jo = L%(R) + (R°P® — R'P®).

In the case of a point particle at R we would recognize the second term on
the right-hand side as the angular momentum 4-tensor about the origin.
More generally, we can choose the case R = X¢, the displacement from
the origin to the centroid of the system, and define

5% = L%(Xa), (15.7)

L2 = X&Pb — xX&Pe, (15.8)
so that we have

Jo = 5% . 180, (15.9)

This makes perfect sense: the total angnlar momentum about the origin
is the sum of a part associated with rotation about the centroid and
a part associated with movement of the centroid. The former is called
‘spin angular momentum’, the latter ‘orbital angular momentum’.

The tensor $%° is antisymmetric, and therefore in principle it has two
3-vectors associated with it. However, the definition ensures that

8% = L%(Xc) =0 (15.10)

(obtain this by using (15.6) to caleulate L**(X¢), with X¢ = (et, x¢))-
Therefore the polar vector is zero and we are left with just the axial
vector. The definition of S% makes the axial vector S equal to the
3-angular momentum about the centroid (and see box below).



Further remark. Eqn (15,10) states that the first mow and column
ol the spin tensor i zoro, bul how can this property survive a
change of teference fraine? Upon applying & Lorents trensform we
shall find 579 b 0, tnless some further physics intervenes. 1t doex:
the centroid must also be transformed. The property [15.10) should
et Teard L9 X ) o O it halds for the angulsr mementiom abost the
centroid, in any frame, Equation egu (15.00) is ot in sl weasorial,
linits it lends ter the Fokler-Symge equation

Pul* (Xpa) =10 (15.11)

where PC ig the proper ceireid (the esntroid in the CM frame)

This equation is tensorial and comrect in the CM frame, theralfon

It all Frames, When introducing intrinsic spin sagular momentum of
particles, we nssume it too satisfies egn (15,11,

We piid incorporate ntrinsic spin of porbeled oo this pnotation by
clniming that it & 0 property that makes a furiher contribution to 5
without portributing to L5, We meraly renmrk that there is nothing
mathematically wrong with such & concept®. We shall sssume that J=
|w consnived in collisions, For those collisions that comserve L2 it follows
that S ln alss comserved; in genernl, however, thege can be a transfes
of angulay mormemiam betwien orbiial and spin forme

152.2 Paull-Lubanski vector

We have alrendy commentod that d-nngnlng momentum =, in is cssenllal
chiarscter, & sseoml-rank lewos Bol & dvecior, However, this dos not
atap un from enguiring ino 4-wectomns ihat con be relnted W0 angular
ot Conelder, for scampds, the fotal sngodes momemtom in the
OM friume, sy, for some system that fise & CM freme (Le, any sysiem
huving nosesom posd mnes). Lot us difine & four-vecior 5* W be that
ovortar whiome components iy Uhe CM frame s

5 o (0, m) (1614

whirn tho sibscriplisd svi enphasises iial s i U sgular mdimemiam
Im the pomst S, This “$ospin’ providies o oedul way to discos spin. The
Lormiz-invarmm winlsr quantily seecisted with S

5-5w o {15.13)

by, the Lorents mearsend sed of the om0 equad 1o bhe stsd of the
N-apin in the rest frame We albse (lned

SU =0 (18.14)

{uitoe this b ibe resuli b U 8 Frame and the oguation & coverinuet ).
That ks, the §-rpm ta orthogonal (o the §-selocity of the CM frame. This
semimn the d-opin of a particls bs parallel 1o the plane of simulanoity of
the paribcle. One cun study the evolution of the S-apen by proposing an
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leitir 5 e U mnireesic epin. comeriioe
tom sl ttwn wm (15 5) wenkd G
Wit i .!"*=f.-"'"+l.? with [ =
L) e B



346  Angular momentum

equation of motion, and interpret the results by examining the Sitllatign
in the CM frame. However, this definition does not offer any immediate
physical interpretation of the components of S in other frames,

We can get some more information by exploring further ways of Con.
structing 4-vectors. Let us try combining the angular momentum tensgy
with other quantities such as position and momentum. For example
J®AXy is a dvector and so is J*'Py. The first of these depends g
position and time, so it is not associated with any property (such 4
intrinsic spin) that is independent of position and time for an isolateq
system. The second looks more promising, but it does not reduce to 5y
angular-momentum-like property in the low-velocity limit. In that lim;,
we have P — (E/c,0) so

JPy — (0,xE2/c?).

This product of energy-squared and position vector has no particulay
physical significance.

A more thorough search yields up a result. A usetul 4-vector associated
with angular momentum can be obtained by combining the dual of
J% with the 4-momentum of the particle (or total 4-momentum for
a composite system):

Wo = —JaxP? = —eanuwd P = LexguPAIM, (15.15)
You can confirm that
Can B PY =1
and therefore only the spin part of .J contributes to W: i.e.,
Wa = Lekaun P (15.16)

This is called the Pauli-Lubanski spin 4-vector. We have already deduced
one important property: it has nothing to do with orbital angular
momentum. You can also verify that it is independent of the pivot, and
in any frame the spatial part is equal to (E/c)s, where s is the axial
vector associated with the spin tensor S (i.e., the angular momentum
about the centroid). To obtain this, recall that the time-space part of
5% is zero, so in the calculation of Wy, for example, only two terms
contribute:

Wz = £ (e012357°P° + €01325%2P")
- %(st/c: P N T (15.17)

and similarly for the other components. These are the spatial compo-
nents of the covariant form W,,. It follows that the contravariant form
is W* = (W" (E/c)s). You can verify that the zeroth component is
WY = 5. p, so the summary is

W= (s-p, (E/c)s) (15.18)



where s is the 3-spin: Le., the angular momentum about the centroid.
In the CM frame this reduces to W = (0, mecsg). Therefore W = mcS for
systems or particles possessing rest mass. The Pauli-Lubanski spin 4-
vector is somewhat more general than S, since it remains well-defined
for particles having no rest mass and no rest frame, such as photons.
We can use eqn (15.18) to interpret the components of S in an arbitrary
frame:

S=W/me=(ys-v/c, vs). (15.19)

We shall now revert to the language of particles and speak of ‘rest
frame’, ‘position’, ‘velocity’, ‘energy’ and ‘momentum’; for a composite
system it is understood that these refer to CM frame, centroid, velocity
of the CM frame, total energy, and total momentum respectively.

Under the action of a Lorentz boost, the Pauli-Lubanski vector
transforms like any other d-vector. To investigate this we shall perform
a Lorentz boost starting from the rest frame (where W is (0, mesg))
to a frame moving at relative velocity —v. Unprimed symbols refer to
the situation in the new frame, where the velocity of the particle is v.
Recalling eqn (15.18) and using the Lorentz boost eqns (6.35) we find

Wl=s.p=9v.-som = s p,

Y¥mv - sg

W' = (E/c)s = mesp + WV

P So
= o 15.20
mcsn+mc+E/cp ( )
where to obtain the second form we used ymv = p and yme? = E.
The components of the 3-spin vector parallel and perpendicular to the
velocity are

1
S| = S| §1 = ;SDJ,. (15.21)

These results can be obtained from eqn (15.20), but it is easier to get
them directly by applying a Lorentz transform to (0, sp) and interpreting
the outcome using eqn {15.19). Both results are interesting. The first says
that the component of the spin along the particle’s velocity direction
is given by the amount of spin in the rest frame along that direction.
Therefore, when one considers a given particle from the point of view
of any one of a set of frames all moving in the same direction relative
to the rest frame, this spin projection is invariant. The two together
imply that at low velocities the spin direction is almost unaffected by
Lorentz boosts (a change in angle only appears at order v2/c?, whereas
orbital angular momentum is strongly affected by a change of reference
frame). Also, in the limit v — ¢, s, — 0 so the spin is directed along the
velocity: either aligned or anti-aligned.
In the limit v — ¢, eqns (15.20) become

W s p (1, pe/E) = % P, (15.22)
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For convenience let us treat the case of constant rest mass, then U=
p/m and the spatial part of eqn (15.24) reads

d vs-vE Y v
5““‘( : c“‘“"p)m
. . WYY
= (=8 vitas- (v +v))
. . 3 RV
= Ys+ys=7"(s Vv)=. (15.25)

c2

Now use 4 = y3(v - V)/c? and one finds

ds 72

— = < VA(VAsS). 15.26

d’r C‘2 ( ) ( )
Since the quantities are all as observed in some given inertial frame, it
malkes sense to express the result in terms of reference frame time using
d/dr = ~4d/dt and therefore v = ya where a = dv/dt, giving

2
g; = C—Qa/\(v/\s). (15.27)

This equation shows that the 3-spin of a particle which accelerates
without torque has a constant component along the acceleration, but an
evolving perpendicular component. For example, for rectilinear motion
the sign of ds/dt is such as to align the spin more and more onto the
direction of motion as the velocity increases.

This is of some interest, but an even more interesting observation
emerges if we consider the proper spin, that is, the 3-spin in the rest
frame. We should like to discuss the evolution of sy for a particle which
is accelerating. It is useful to do the analysis in an inertial frame. We
shall then have a ‘mixed-frame’ type of quantity: dsp/dt gives the rate
of change, with respect to laboratory frame time t, of the proper spin
so. In case it seems odd to discuss this type of ‘mixed’ quantity, let us
consider some other examples in order to show that it is in fact a sensible
thing to do.

Consider the Doppler effect in the case of an accelerating source such
as a flying singing bird. We observe waves of changing frequency in some
given direction in our inertial frame fixed to the ground. We might well
want to know, is the changing frequency wholly owing to the Doppler
effect (the bird whistling at fixed frequency, but darting too and fro),
or is the bird chirping? In this case an interesting quantity is fo(t): i.e.,
the frequency fp in the instantaneous rest frame of the hird, evaluated
at the bird event whose time is £ in our inertial frame.

For a more apt example, suppose there is a magnetic compass fixed
in a rally car which is racing down a bumpy twisting track. We might
take an interest in the question: is the compass needle maintaining a
true indication of north, or is its violent motion throwing it off7? The
answer to this question depends on the nature of the force between
the needle and its pivot (which may not be accurately at the needle’s
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cenlre) as well as the flow of the suwrrounding fluid, and the interactiq,
with Earth’s magnetic field. We have no way to carry out the c:a.lcu[atiﬁn
in the accelerating frame of the car (unless we ‘borrow’ techniques from,
General Relativity), so we much prefer to do the calculation in an inertia
frame such as that of the Earth. Nonetheless, the direction we way to
know is the one observed by the driver.

I hope I have persuaded you that calculating dsy/dt is a worthwhjl,
thing to do, where t is time in some inertial frame, and sq is the Propey
spin of a particle which may be accelerating.

By ‘proper spin’ we mean, of course, the spin as observed in the
instantaneous rest frame. But wait—'the’ rest frame? Which rest frame?
For any given particle at any given event there are an infinite number of
rest frames, all related to one another by rotations. For scalar propertieg
such as mass this issue is irrelevant, but for a vector property such as spip
we must specify which rest frame we mean. In the following argument we
first pick one inertial frame, called the lab frame, which remains fixeq
throughout, and we study the particle as it moves relative to the lah
frame. At any event on the particle’s worldline, by ‘the instantaneous
rest frame’ we miean that instantaneous rest frame which is related to the
lab frame purely by a boost.

Our starting point is eqn (15.24). By dotting eqn (15.24) with S we
obtain

ds

1d
ST =53-(5:9=0 (15.28)

(using eqn (15.14)), therefore S is of fixed size, and therefore, by eqn
(15.13), the proper 3-spin is of fixed size sg during the motion. Only its
direction changes.

Let 8y he the angle in the instantaneous rest frame between sy and
the particle’s velocity vector v. It will be important to be clear about
the definition of this angle. Keep in mind that v is the relative velocity
of the particle and the lab frame, so it is well-defined in both frames and
they agree on its angle relative to their respective coordinate axes (since
the boost relating them is along v). With this definition the parallel and
perpendicular components appearing in eqn (15.21) are

Sal| = So cos 90, Sp1L = 8o sin 90.
Using eqns (15.19) and (15.21) we therefore have
S = (ysa(v/¢) cos by, ysg cos gV + sgsinfgn) (15.29)

where v is a unit vector along v, and n is a unit vector perpendicular
to v in the plane formed by v and s.

To find the evolution of #y, the method of calculation involves a trick:
we express S in terms of two convenient 4-vectors M and N:

S = sy9(Mcos by + Nsinbg) (15.30)
where in our chosen frame (the lab frame),

N=(0,n) and ‘M= (yu/e, vVv). (15.31)



By noticing that M is the Lorentz-boosted version of (0, V) in the rest
frame, it is easy to prove that

M-M=N-N=1
and hence
M-M=N-N=0.
You can also confirm (by evaluating in a convenient frame) that
M-U=N.U=M:-N=0.
With these preliminaries over, let us calculate S:

S =3 (M cos Oy + Nsin 6y + 50(—M sinfy + N cos 90))

where we used that sy is constant. Substituting into eqn (15.24) and
dotting both sides with N gives

N - Mcos 8 + 6o cosby = 0 (15.32)
Hence
dé, dMm d
2 R = —me —ify
dr dr n dr (yv/v)
=-n- ("/\? +'yX - 'y%v\ = —fyu. (15.33)
2 v v
Therefore
dd, a-n
—_— = —y—. 15.34
dt it v i)

This equation says that the proper spin 3-vector rotates relative to
the velocity whenever the acceleration has a component along n: i.e.,
perpendicular to the velocity. This is not in itself surprising: classically
we would expect the net result to be that the velocity changes direction
while the spin does not. However the Lorentz factor v says that the angle
between sy and v is opening up ‘too quickly’. Consider, for example, the
case of circular motion: then the velocity changes direction at the rate
w, = a/v in the lab frame. This is the rotation of the axis relative to
which 6y was defined, so the proper spin must be rotating relative to a
fixed direction, such as one of the lab frame coordinate axes, at the rate

dg  dég

dt — dt
(in the simplest case, where a, v and sy are coplanar). This is precisely
the Thomas precession that we derived previously in eqn (6.50).

Wy = -(7—1)% (15.35)

15.2.4 Precession of the spin of a charged particle

We now discuss the motion of a magnetic dipole in a magnetic field.
Classically, a dipole p in a field B experiences a torque

T=pAB.

15.2
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Therefore, if s is the angular momentum of a particle possessing both
angular momentum and dipole moment, the equation of motion of the
angular momentum is

5 = #AB. (15.36)

When the dipole moment is proportional to the angular momentum, z¢
is the case for the intrinsic spin and dipole of a charged particle, fq,
example, the equation of motion becomes

ds  gq

dt 2ms
where g/m is the charge/mass ratio of the particle, and g is the gyro.
magnetic ratio (equal to 1 in the case of orbital angular momentum),
We now generalize to the relativistic case by arguing that eqn (],5,3?)
is the low-velocity limit of a covariant equation. Introduce the 4-spin-
vector S whose components are (0,sp) in the rest frame (eqn (15.12)),
and investigate its product with the field tensor. In the rest frame one
obtains

A B, (15.37)

0 E;/¢c E,le E.jc 0 sy Efe
F.s— |~ ) 6 0 B, =By Sox | _
=Eyfe =B, 0 B, Sny sp AB
—E./c B, —-B: 0 802
(15.38)
This leads us to suggest that the generalization of eqn (15.37) is
dS » gq
— = 2"F-5, 151
o ZmF S (15.39)

There is a problem, however: this equation does not guarantee to pre-
serve the orthogonality between the spin 4-vector and the 4-velocity, eqn
(15.14). Dotting with 4-velocity U gives

dS  gg
.E_Zmu e

For a constant U the left-hand side can be written (d/d7)(U-S) =0,
while the right-hand side is not necessarily zero. However, we can see
how to fix the problem: add a term to the right-hand side, so that

U

dS » ggq 1

= o (IF-S-I— ?[U'F'S]U).

Now, dotting the right-hand side with U always gives zero, which you
can easily see by noticing that the term in square brackets is a scalar.
We still have not finished, however, because if the particle is accelerating
then we ought not to get zero: we have already discussed this in section
15.2.3, see eqn (15.24), where we saw thal an extra term associated with
Thomas precession is present. The equation we need is



ds 9q [ 1 . S-uU
E%<m-s+ S [U-F-s| U) + U, (15.40)
We now have a satisfactory covariant equation for the evolution of the
spin of a charged particle in an electromagnetic field. It gives the classical
result in the rest frame and ensures that S remains perpendicular to U.

If the particle’s acceleration is due to the electromagnetic force, then
after substituting from egn {13.9) we have?

&S _ ¢ (9-2)
Em(g]ﬂs“ 2 [S-F-UJU (15.41)
where we have used that F is antisymmetric, so S-F-U= —U-F-S,

This equation can serve as the starting-point of the treatment of spin-
orbit interaction in an atom, and of the precession of the spin of high-
velocity particles in high-energy physics experiments. In the case g — 2 (a
good approximation for electrons) the extra torque term exactly cancels
with the Thomas precession term, and we are left with our original
conjecture (15.39) after all.

By dotting eqn (15.41) with S you can confirm that (d/dr)(5-5) =0
(on the right use S-U=0and S-F-S =0, sce eqn (12.13)). Thercfore
the electromagnetic interaction does not change the size of the spin!

The evolution of the spin direction can be obtained by using the
method introduced in section 15.2.3 (see exercise 15.5). The result is

gv?

% = % (g—2)(B/\n)-\7—% (J —EC—Z)E-n]. (15.42)
This is the Bargmann, Michel, Telegdi equation. For example, if E =0
and B is perpendicular to the velocity then we have circular motion in
which the proper spin rotates relative to the velocity at the rate

dfy g

dt — 2m
Each time the particle has completed a circle its velocity comes back
along the initial direction, whereas its spin has precessed by an amount
proportional to g — 2. Observation of such a precession offers a precise
measure of the difference of g from 2, which constitutes a precise test of
quantum ficld theory.

The case B = 0 applies to an electron in an atom with no externally

applied magnetic field. This can be used to calculate the spin-orbit
coupling effect, with the 'Thomas precession fully taken into account.

(g — 2)B.
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2 We here neglect the force on the
dipole moment; this is exact in a uni-
form static B field, but more generally
involves approximadtion.

I

Exercises

(15.1) (i) Prove that the time rate of change of the angu- an origin O is equal to the couple r A f of the
Jar momentum L = r A p of a particle about applied force about 0.
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(ii) If L% is the particle’s 4-angular momen-
tum, and we define the d-couple G** = X*F" —
X'F?, prove that (d/dr)L*" = G**, and that
the space-space part of this equation corre-
sponds to the previous 3-vector result.

(15.2) A gyroscope consists of a flat disc rotating about

an axis which is lixed in one frame (the CM frame
or ‘rest frame’ of the gyroscope). In that frame
the rotation is rigid and the disc is uniform. Show
that the intrinsic angular momentum s of such
a gyroscope is aligned with the axis in the rest
frame, but not in most frames.

(15.3) A system is formed of two particles of rest mass

m, one lying at {z,y, 2z} = {0, —a,0} in frame 3,
the other moving on the trajectory {z, y, z} =
{vt,a,0} with constant speed v. Find the cen-
troid at t =0. Find all components of the ten-
S0r's L”"’(O) (total angular momentum about the
origin) and §** (total angular momentum about
the centroid). Show that the centroid in S never
coincides with the centroid in the rest frame of the
second particle.

(in standard configuration with 8'), if the fyr
scope’s axis is parallel to the y direction they it
centroid is not in the zy plane. (A qualitagjy,,
argument suffices.) Show that a force applieg L(;
the axis in the y direction will create g torqua
ahout the centroid, with a direction in the corpge,
sense to cause Thomas precession.

(15.5) Precession of spin in EM field. Let the 4-5pip

be written S = sp(Mcosfy + Nsinfp), where M
and N are the 4-vectors introduced in eqn (15.31)
From eqn (15.41) deduce '

bo=9N-F-M—N-M.
2m

Examine the second term in order to relate it g
N - U; hence obtain

o= N.F-M--LN-F-u.
2m mu

Thus obtain egn (15.42).

(15.6) Confirm that if the metric (+ — ——) is adopted
instead of (— + ++) then ¢ & —c* in eqn (15.41)
and equations leading up to it.

(15.4) Let §" be the rest frame of a gyroscope as
described in exercise 15.2. Show that in frame S



Energy density

In chapter 6 we introduced the idea of flow, and the 4-current J.
Its components, in any reference frame, are density and flux of some
Lorentz-invariant quantity such as electric charge or rest mass. Another
quantity that can flow, and that we might naturally take an interest
in, is energy. In this chapter we take as our starting point the idea of
energy per unit volume—energy density. Starting from a frame where
everything is static, upon changing reference frame, we find we have
to consider the flow of energy, and also momentum, since energy and
momentum are partners in Special Relativity. This leads to the idea
of both energy transport and momentum transport. The [ormer idea is
reasonably intuitive, the second is more challenging. We shall see that it
can be connected to, or interpreted as, another way ol describing internal
forces in a fluid or solid body, such as pressure and stress,

With these concepts in hand, we can then apply the requirement of
energy-momentum conservation. We thus obtain equations of motion
for internal movements in any continuous body (whether a fluid or a
solid—even a solid can vibrate). They describe the relationships between
movements in the body and the internal pressures and stresses and
applied forces. These are the fundamental equations for relativistic fluid
mechanics (called hydrodynamics), and they also give some important
insight into conservation of energy-momentum in general. This in turn
reveals one of the basic ingredients in General Relativity.

16.1 Introducing the stress-energy tensor

Consider a set of inert particles all at rest in some reference frame Sg.
Let ng be the number of particles per unit volume in that frame, and
let m be the rest mass of each particle. The energy density (energy per
unit volume) in frame Sy is then

p{162 = 'ngmcz_

In chapter 6 we associated a 4-vector with a charge density, so let us try
associating a 4-vector with this energy density, by writing

NZ pocl

where U is the 4-velocity of the set of particles (they all have the same
d-velocity in the simple scenario we are considering) and the question-
mark here signifies that we are tentatively exploring an idea, Now

16
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consider the very same particles, but as observed in a reference frap,, 3
moving in the negative z-direction relative to Sg. In the new frame the

components of N are

N = poc(ve, ¥v) = (vpoc®, Ypocv).

There is nothing mathematically wrong with these statements, but g,
find that this 4-vector is of limited usefulness. In the new frame the
energy of every particle is increased by a factor vy, and the size of any
region containing a fixed number of particles has contracted by a factqy
v, so the energy density is now y2pgc?, but this is not equal to the zevotp,
component of N, This issue did not arise with the 4-current of electric
charge because that described a flow of a Lorentz invariant quantity
(charge), whereas now we have a quantity that is not invariant (energy)_
N is a 4-vector, but not a useful one.
To obtain a more useful quantity, we try defining a tensor instead:

T° = poU°Ub. (16.1)

In the rest frame, this tensor is very simple: it has only one non-zero
element, T%° = pyc?, which is the energy density. By evaluating ATAT,
or simply by writing the general form U = (vy¢, yv), we can find out how
this tensor appears in a general frame. For simplicity, let us first consider
the frame S, in which the particles all move in the positive z direction
with speed v. In this frame we find

¥2poc? ¥ipocv 0 0 1 w/c 00
2 2 2 2/,.2
as _ | Ypocv ¥Ppov® 0 0 | _ o o | v/c v/ 0 0
™= 0 0 0 o |=7mec 0 0 0 0| (162
0 000 0 00O

Now the T% element is readily interpreted: it has two factors of v, so
it is the energy density in the new frame. We can also recognise 2 pgcu:
this is ¢ times the momentum per unit volume in the new frame, since
the momentum of any given particle is ymmv and the number of particles
per unit volume is n = yng, which upon multiplying by ¢ gives

c(ymv)n = c(ymw)(yne) = v pocv.

This same quantity can also be interpreted as the energy flux divided by
¢, recall eqn (5.58). Thus both 7% and T1° are readily interpreted (there
is just an ambiguity over whether we should think of them as energy flux
or momentum density, or one of each). It remains to interpret 711 =
Y2 pov?. With the hint that flux might be relevant, we interpret this as
a momentum flux. This is a more subtle idea: it concerns the idea that
momentum itself can be ‘transported’ from one place to another, like a
sack of potatoes. Before going further, we must first stop to appreciate
this more thoroughly.



16.1 Introducing the stress-energy tensor

16.1.1 Transport of energy and momentum

Suppose that, in frame S, a particle having energy £ and momentum
p moves from {x,y,z} = {—1, -1, 0} to {2,1,0}. Then it is clear that
the energy [, which used to be located at {—1,—1,0}, has moved to
{2,1,0}. This is energy transport. Equally, the momentum p, which used
to be located at {—1,—1,0}, is now at {2,1,0}. What this means is that
if an observer were to sit at {z,y,2} = {2,1,0} and collect everything
that arrives, then he will find himself, after the arrival of the particle,
to be in possession of extra energy F and extra momentum p. Unless
he somehow delivers an impulse to counter that momentum, he must
now be moving. Equally, an observer sitting at {—1,—1,0} and claiming
ownership of everything there, will find that, when the particle departs
from him, he loses energy IV and momentum p.

We can also talk about energy flux and momentum flux. Consider now
many particles, uniformly spread with n per unit volume, all with the
same energy [ and momentum p. We can ask: at what rate does energy
cross the plane at & = 0 (i.e. the yz plane)? In any given time ¢, a volume
Aw,t of the particle beam moves across an area A of the yz plane, so the
amount of energy crossing, per unit area, per unit time—which is what
we call the energy flur—is

Sy = nuy I (16.3)

Similarly, the amount of energy crossing the plane y = ), per unit area
per unit time, is S, = nv, [, and crossing the plane z = 0is S, = nv, F.
In total we find the energy flux is a vector, which for a particle beam
is given by 8 = nkv (the product of energy density and velocity of the
beam).

Next let us ask the same questions about momentum. There are now
nine quantities to consider. A particle crossing any given plane, say the
plane © = 0, carries all three components of its momentum across. The
amount of z-momentum crossing the plane, per unit area per unit time,
is calculated just as before, except that where previously we had energy
E, now we have z-momentum p,. The flux of z-momentum in the z-
direction is therefore

U

The flux of y-momentum across this same plane is
NPy

and the flux of z-momentum is
NV Py,

Next consider the rate at which particles cross the plane y = 0. This tells
us about the flow of p, and p, and p, across the plane y = 0. We again
obtain three quantities: nv,p,, nv,p,, nv,p.. Upon considering also the

k
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wall

Aa05¢ Ac05¢
—_—|

Fig. 16.3 A special wall evected in the
z = 0 plane in a fluid such as to leave
the momentum flow in the fluid undis-
turbed. For ¢%° > 0 in a time 8¢ the
left face of the wall absorbs momentum
Ac®8t and recoils to the right; the
right face of the wall emits momentum
Ao96t and recoils to the left. Hence
the wall is squeezed. In the absence
of the wall, the forces are experienced
by each layer of the fluid itself. Other
components of o9 contribute further
forces.

plane z = 0 we find that in total nine quantities are required to descn];,
momentum flux in a simple particle beam:
- o YePx  VzPy VUaPz
o7 =nvpl =n | vyps UyPy Py (16.4)
VePxr VyDy V2P

The (i,7)th component of ¢/ tells us how much j-momentum is being
carried along in the +-direction by movement of material (heve, paxtlgm)

Next, observe that the notion of energy and momentum transpo
must also occur in a situation where particles are not flying freely |yt
pushing on one another, such as in a solid. If every atom on a soliq
pushes on its neighbours, then energy and momentum will be moveq
around just as surely as if the atoms each moved freely. Therefore e
can still define an energy flux vector 8 and a momentum flux tengp,
o', although their expressions in terms of motions of the atorus may
be more complicated. In a solid there are, indeed, more possibilities,
because the diagonal elements of o*/ do not need to be positive. HoW
shall we interpret that? The idea is to connect momentum flux to force
per unit area. Imagine erecting a wall at x = 0 in the solid or fluid undey
consideration, and suppose the wall absorbs or supplies all energy and
momentum incident on it or carried away from it. Absorbing energy
is easy: just suppose the wall heats up. Absorbing momentum is less
easy, but we can imagine that the wall is very massive so it acquires or
supplies all the momentum without acquiring any significant velocity.
Such a wall finds momentum &% brought up to it per unit area per
unit time on one side, and carried away on the other. Therefore, on the
x < 0 side it experiences a force % per unit area, and on the > 0 side
it experiences an equal and opposite force per unit area (Fig. 16.3). In
short, momentum fluz is force per unit area—and this is a statement not
merely about shared physical dimensions, but about identical physical
effects. We have already looked at this idea briefly in section 5.6, and
now we are considering it again. The implication is that in the case of
a solid or fluid at rest, we can consider the diagonal elements of o/
to represent pressure. A negative value for one of these elements says
there is negative pressure, which is tension. The off-diagonal elements
represent sheer stress.

Having used a wall to think about this, now remove the wall and then
the forces under consideration are exerted by the material on one side
of any given plane on the material on the other side.

For a fluid possessing both internal forces and motion, the total
momentum flux tensor is

ot = 17 4 giyd (16.5)

where t% is the 3-tensor describing the pressure and stress, u is the local
fow velocity, and g is the momentum density associated with the flow
of material and a subtle contribution connected with the rate of doing
work, which we shall examine in section 16.2.1.
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In classical mechanics, the tensor ¢/ is called the stress tensor. In
relativistic mechincs, the tensor 7% that we have begun to investigate
is called the stress-energy tensor, or the 4-stress.

16.1.2 Ideal fluid

Now let us return to the tensor that we constructed from energy density
for particles at rest; eqn (16.1). If we change frame again, but now such
that the particles move in the negative z direction, then the tensor will
become

1 —v/e 0 0

G — 2/ 00
T = 42poc? v/; % /LO 5 (16.6)

0 0 0 0

This is to be contrasted with eqn (16.2). Notice that the momentum and
energy are now flowing in the other direction, as we should expect, but
the T'* term has the same sign. This is because negative momentum
now passes from right to left (from positive = to negative ), which is
the same as positive momentum passing from left to right.

Now suppose that in some reference frame there are two particle
beams moving in the z-direction with equal and opposite velocities. By
summing eqns (16.2) and (16.6) we find the total stress-energy tensor
must be
0
2.2
T8 = pc v /CO (16.7)
0

e S o i o s
oo oD

1
0
0
0

where p = y?pp is the total energy density (each beam contributes half
of p). Finally, consider a set of particles moving with a range of velocities,
distributed isotropically (e.g., an ideal gas). The stress-energy tensor will
have the form

pc2 0 0 0

ab 0 r 0 0

=l 5 o (16.8)
0 0 0 p

where p is the pressure. More generally, any system whose stress-energy
tensor has this diagonal form in some frame is called an ideal Auid.
The frame in which the tensor is diagonal is the rest frame of the fluid
(since there is no momentum density or energy flux in that frame), In
a general frame such a tensor can be written as shown in table 16.1.
This table summarizes the two example systems we have considered.
The first system (particles not interacting and all sharing a common
4-velocity near any given event) is called ‘dust’.

Fig. 16.4 An example of 'dust (top)
and an ‘ideal fluid’ (bottom). Dust can
flow but does not have internal pressure
or stress; an ideal fluid has pressure but
not sheer stress.
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Fig. 16.5 A summary of the physical
interpretation of the stress-energy ten-
sor. The terms 'pressure’ and ‘stress’
here refer to contributions to the
momentum flux; in the case of a flowing
fluid they equate to what is ordinar-
ily called ‘pressure’ and ‘stress’ in the
rest frame, but not necessarily in other
frames.

Table 16.1 Two example stress-energy tensors. Entries left blank are zepq,
The examples are necessarily given in some suitably chosen reference frame
(the rest frame of the local fluid). The equation gives the form i g4y
arbitrary frame.

[ poc?
Dust 0 TR = peUtyt

pac®
Ideal fAuid P T = (po + p/c*)UCU® + pget

16.2 Stress-energy tensor for
an arbitrary system

Figure 16.5 summarizes the physical interpretation of the elements of the
stress-energy tensor. So far we have explained how this interpretation
arises for the case of an ideal fluid and for the case of a system at rest
but possessing internal forces. To prove that the interpretation is valid in
general one can adopt one of two strategies. The first strategy is to guess
that this must be the interpretation in general, in which case one can
now skip straight to section 16,3, and then upon examining the physical
predictions one is driven to the conclusion thal the guess was correct,
The second strategy is to start from the vest frame and transform to an
arbitrary frame, looking into the physical interpretation in detail of the
various quantities that arise in the expression for T*", This strategy is
more laborious, but one can learn something from it, so we shall display
it next.

energy
density enefrgy flux
TOO || TO1 T02 03
momentum
ol m\pi2 i f” ™
momentum T T T
density N
~N T20 || T2 T22 sheer
N stress
730 || 31 32 33
h ~ pressure
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Fiast coimicder tha pressure an blie wills of & cuble chamber of jdeal
gra In ihe resi frnme Sg the presaure oy s wotropic The foree on each
will I8 therefore pe A wheve A s the ares of & side of the cube. Now
puopt & reference frume i standard conflgurantion with 5. Applying the
equaliors for the Bramdurmation of force, ogn (4.8) [for the case of &
prire forve ), we find Lhe forces on the fuom porpondicilar to the motion
i wnchanged, while Lhat on the ather fucen 10 pechucad by 5. Those bees
are alin coutraited by =y, 8o the prossure b p o« pg on all leces: uniform
ot on doos not change Lhe presaure (we ghal] geneeadies the to arbitiary
shapar n the following)

Now comtider Lhe stressconargy Lansor far some glven amall portion
af & comblnuuus wysten sich s & solid or 4 fuld. Sinee we allow G
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o
:r‘i'

Ty i o -#' (169)
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By spplying an invers Lorenta transformation T = A "TeA " (80 tha
w= i | the weliscity of the Mabid bii the g fradan ), s Bod

IR b ea) B+ pl)  Beg?
Tom mﬂnnﬂiﬂwvm1l :% ;
| I

=(H “} (1640}

gc o'l

The diagonal element T i3 not the seme ws in Uhe st frame, bt did wr
ol just establish that the pressure s invarisnt”™ The answer bs smply
that the spatial shements of T in & (e other than the et frame

ik mod. repreEnl presare atd Bees alond. Hatber, ihey reprosmd falal
mementum density. When the Hold & Howing ihe momeilinn denaily

bt the direeion of fow hid eo contnbutions: one froms e poessice
or stress, one from the tramsport. of material, s shown v ogn (16 8), =
which ¢' =T"/c. For example, the 1] compoosn: of T @&

ot = 14 gl (1611}

r
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Fig. 16.6 Directions associated with
elements of %,

where we have used eqn (16.10) on the left and also to obtain g* op y,,
right. Solving for ¢! gives ¢!' = pf, confirming the interpretation that
t'! is pressure. In the following we shall prove this physical interpretatig,
more generally.

16.2.1 Interpreting the terms*

We would like to interpret the terms arising in the Lorent?.-transfurmed
stress-energy tensor (16.10). As we have just seen, it is necessary to dg
this in order to avoid misapplying concepts such as pressure. Let Sy he
the rest frame. We are interested in what is observed in some other frame
S relative to which the fluid moves at velocity u. In writing down eqp,
(16.10) we arranged the axes so that u is along the z direction.

First we define the 3-tensor ¢¥7 to be that tensor which gives the forces
per unit area on the sides of any small region within the moving portioy
of fluid. This is obviously a tensor, since it acts on vectors to produce
vectors. That is, the net 3-force per unit area on a boundary normal te
the n direction is

ft=1tn,.

e.g., for n along the ith coordinate axis, f is given by the ith column
of . Now, using the transformation of 3-force (4.6) and the Lorentz
contraction where appropriate, you can easily confirm that ¢ must
transform as
) it 2 4t
= @&y 8 32 | (16.13)
LA

For example, the (12) entry gives the force in the 2 direction, per unit
area, on a boundary normal to the y direction, The force is unchanged
but the boundary is contracted, yielding yt3?. The (21) entry gives the
force in the y direction, per unit area, on a boundary normal to the z
direction. The force is reduced while the boundary is unchanged, yielding
t8' /v. Note that the result is not symmetric.

Now consider the momentum flowing across a fixed plane. If pe?
is the energy density in the moving portion of fluid, we might guess
that the momentum density is g = pu (eqn (5.58)), but by now we are
prepared for the fact that the forces may also contribute momentum
fow (sections 5.6 and 16.1). For example, suppose 1 pull on a rope in
order to move a heavy object towards me. | am doing work, the heavy
object is acquiring kinetic energy. The energy must travel down the rope
from me to the object, and therefore (eqn (5.58) again) there is “hidden”
momentum in the rope, in the direction from me to the object. If the
rate of doing work is fv, then the size of this momentum is fv/c¢? per
unit length of rope.

Now consider thal any small region of fluid is serving as the ‘rope’
via which forces are communicated, and energy trangported, from one
place to another in the fluid. Consider a boundary across the ‘rope’ (i.e.,
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in the Auid), placed normal to the ! axis. The matter on the positive
side of the boundary experiences a force t(*) per unit area, where for
convenience we wrote t( for the vector (£'%,1%,¢%%). Note that this is
a column not a row of ¢. The matter is moving, so this force does work
at the rate (9. u. (Note that it does not matter whether or not you
consider that the boundary moves with the fluid; what is important is
that the matter on which the force acts moves.) It shonld be apparent to
you that, equally, the matter on the other side of the boundary has work
done on it at the rate —t( - u. However, this does not mean there is no
energy flow: consider the rope example again, where similar statements
apply. In the case of a rope in tension, the direction of energy flow is
against the direction of motion of the rope; for a rod in compression the
energy flow is along the direction of motion of the rod. In general, we
find that the energy flow per unit area in the direction x* is

t@ . u = 17 (16.14)

{not t*Yu;—the 3-tensor is not symmetric). Therefore the total momen-
tum density of a small portion of fluid is

gt = pu’ +ust?t /2. (16.19)

Using eqns (16.15) and (16.13) we are almost ready to interpret the
first row and column of T. First we need an expression for p.

In the absence of forces (e.g., for dust) we expect p = v*pg: one factor
of «y for the energy, one for the Lorentz contraction of the volume. In the
presence of forces we must also consider the work done by those forces.
The argument hinges on the relativity of simultaneity. Figure 16.7 shows
the relevant region of spacetime. The quantity po refers to the energy
content (per unit volume) in frame Sy of a set of particles at the events
along the line OA. p refers to the energy content (per unit volume) of the
same set of particles, but now as observed in frame S, and at the events
along the line OB. We have alrcady mentioned that in the absence of
forces we would have p = y%py. It remains to consider the work done,
in frame S, between OA and OB. We only need to consider the particle
at the end AB of the region of fluid: all other forces are either internal
or, at end O, do no work. The other fluid does work on the particles at
AB (these are the particles at the boundary) at the rate pAu, where p
is pressure and A is the area of the boundary face. If event O is at the
origin, then event Bisat ¢ = 0in S, and event A is at t = —yuLg/c? (by
Lorentz transformation from (0, — Lo, 0,0), where Ly is the rest length
of the portion of Auid). Therefore the work done is

pAulyLo/c?.

The volume of the fluid portion in S is ALg/7, so the total energy per
unit volume is

2
) . SU , X
pcz ES “.ylzp‘_j(,'2 + AIZ_C?t&l, \16]‘6)

Fig. 16.7 Spacetime diagram to aid
the calculation of work done in a fluid.
The arrows mark the time axes of
frames S and Sg. The shaded region is
a small portion of fAuid at rest in Sg.
OA is a Jine of simultaneity in Sp; OB
is a line of simultaneity in S.
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where we have substituted ¢3' for p. Now, by combining egns (16.16)
(16.15), and (16.13) one can describe the stress-energy tensor in § i,
terms of its components in Sg, and by comparison with eqn (16.10) thug
confirm egn (16.5). The net result is to gain a correct interpretation (the
one offered by eqn (16.5)) of the stress-energy tensor of a moving fiyjq.
the tensor expresses the density and flux of energy and momentum,

We have considered the case where the energy transfer was purely by
work and by flow of material; if there was also heat flow then this woy]g
contribute a further term to eqn (16.15). This would also change th,
situation in the rest frame, and a term would correspondingly have
be added fto eqn (16.9).

Note that in the case of a fluid moving at the speed of light—{or exay,.
ple, a set of electromagnetic waves all moving in the same direction—the
concept of 4-stress still applies (as elucidated in section 16.4.3 below),
but it is no longer possible to speak of a rest frame, so the decompositioy
(16.5) is meaningless and t* becomes irrelevant.

16.3 Conservation of energy and
momentum for a fluid

So far we have established what physical quantities are expressed by the
elements of T. We have not yet established any constraint on how T may
vary as a function of position and time—from a purely mathematical
point of view, it might have any functional form whatsoever. However
if T is to describe a real fluid, then it must be constrained by the
laws of physics, and in particular the laws of energy and momentum
conservation.

We learned how to apply the idea of conservation to a scalar invariant
quantity in chapter 6, where we discussed the continuity equation
(6.13), which we reproduce here for convenience:

dp _

Fri -V -j or d-J=0. (16.17)

If we now examine the 4-divergence of the stress-energy tensor, then by
setting it equal to zero we get four continuity equations: one for energy,
and one for each of the components of momentum:

O-T = 0
18
(za? V') =4
8 _ o (2 9 _ o &
& T V- (c’g) 5 V.ol (16.18)

where s is energy density, g is momentum density, (so (c®g) is energy
flux), and o is the jth column of ¢*. In order to physically interpret
these equations, integrate each of them over the volume of some region of



fa.5  Conservadion of energy end momertum for e fueid 3685

gpace, This makes the interprotation easier heeause most of 1w find Huox
through a surface easier bo think about than divergence. The integral
of ¥ -[eg) over the volime of some fwgion s equal to the neb flux of
energy out of that region, so the fivse equation says that the rate of
incheaze of erergy in any region s equal bo mines the smount of sprgy
Aowing oul of that reégion. The second aguation save that the rate of
imzreass of comomentom m sny region s oquel b minve the smoung of
r-momentum fowing out of that region, and similarly for y-momesitim
aned s-mornentuim.

The abuwwe is & parfectly legilimate way o interprel the stress-onergy
tepsor. I mplies that osch column of T has s densiby followed by o
Aux. However, in the [Hersture the ollowing version of the costinuiby
equativn for the stress-energy bensor is very often uged:

AT =1 {16.19)

Thiz iz slightly different, because it takes 8 sum over & given row Tather
than & given colums of T, Sines T ls symmetric this is equally valid,
bub it implies & slightly different. point of view, in which each row of
T ia to he interpreced as a density followed by o Aok, This @ why the
companents of the stross-enerpy tonsor are usually interproted as shown
e Fig. 1.5,

Mow suppase 8 Auid 18 Aowinge in a region whers it i subjocted to an
external foree (not just the internal forces it generates between parts of
igsell]. For example, think of an slestrically charged fluid Aowing in bk
regiom of exterpally applied clecivic feld. The external hebd can ‘peach
in" and 'grab’ any part of the Ouid, adding to the forces experienced
there. In this case we must wirite

- T=K (1620

where K is the density of external 4-foree. If the idea of "orce density” is
untamiliar, get some inslght once agnin by integrating the equation over
i small cegion: the integral of Kowith respect toovolome, cver any smisd]
ragion, 18 the pet 4-force on the materiel ineide the region.

Foor i puare Torce, W Eakes the form (koufe, K] where o s the loead Ao
velociby and k iz the external J-force por imit volume. In compoment

form, egn (16.20) then reads
Congervation of d=momentum for a Auld

(e )= (22 0) (542) oo

which gives

r_'z‘ifif'!:-J P ¥.or+k o, {1622}

L]
'{% = 't 4 kL (16.23)
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Wo have nsed p=8/¢® here, sinee this is usually done, but one by
keep i mind thot the physies here is about energy, not mass, The (i
of these equations iy be enlled the continuity equation for energy o
equivalontly, the expression of conseruntion of eneryy. The stcond ""II:Iu:
ten may be calbéd any oc all of the condwndly equation for nig T
the expression of conservation of mementum, the sguelion of T?'h'J!iur;
[since it relabes momentum changes o forces), or the relativistic Eulp,
eguation for 4 fuid;

Let us apply eqn (16:30) to vhe case of an ideal Mod, whose styee
ciergy tenanr bikes the form

1o = (o + pfetJURU 4

[ge bubie 16.1) where we ised 1?"“ for Lhe Minkowski metric in order ey
avaold eonfusion with momentam density. We then fingd

i
U"ll*ﬁ-tm + e (o + pfv‘!% (LY 4 ;%rr“ - KY. 116.24)
Ik 8 interesting to node that Bhe proper density of the Ruld alweays enfees
this expreszion in company with the pressure (divided by 21, To driw
ouit Ehe implicativng we shall frst manipulate the expression into an
exact stalement about encegy, and then obbain the equation of mation
i the case of a sbowly-moving fiuid.

Absolute dorlvative, [ discussions lovalvidg Bow o movemel,
along & curve, ther Enderan deroalive o absolufe dirmiondive 15 ofton
sselul. For any quantily g associated wikh o fow or with o cupve (eg,,
aworldling], the sbsolute derimtiva ol g i the cate of ehange of § he
it would appear to an sheerver following along the Aow or moving
slong the o, In Mewtonian mechanies this is

Dy _de
T
In Special Helativicy It is
% = Pag [ UsOg (16.25)

The proof of this i given befors egn {14.25), which is an sxample of
precisely this same ides; we merely postponed raming it untll now,
ln particle mechanles, if g 1s a property of a particle then Dy/Dr =
dg/dr: in other waords, the ahsolute dervative is merely & new name
for something we have already met- DX/Dr 8 dvelocity, DL /D
i dencenloention, ete, In the esve of Auid Bow the notation can be
wseful in order o clarify which change sl which proper time s being
referred bo,
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First, apply the product rule (C.6) of differentiation:
8y (UAUY) = (8,UM)UP + UMg, U

xap . DUP
= (UM + Or
where in the second step we used eqn (16.25) (see box above). The second
term on the right is the 4-acceleration of a fiuid element. Noting this, we
can obtain a simpler equation by substituting this expression into egn
(16.24) and then dotting the whole equation with U (i.e., contract with
Us). Then, since U,A® = U - A = 0, the acceleration term disappears and
we have (after also nsing 7*°U, = U™)

—c* (U*Br(po +p/¢*) + (po + p/?)BrUY) + (Brap)U* = KU,
= AUNpo + (poc® + p)hU* = —K°U,
D
= CQD—pTO = —(po+p)0-U+K-U (16.26)

which may be read as a partner to eqn (16.22), giving the rate of change
of proper energy density with respect to proper time.

Now let us examine the case of a slowly-moving fluid, such that U% ~ ¢
and U* <« ¢. Then, returning to eqn (16.24) and writing out the b= 0
and b = 7 equations separately, we have

, op
U8 (po + /%) + (po + p/c*)0x (Ure) — 2 k- u/e
A 2 2 Ay Ip i
UU*d(po + p/c?) + (po + p/c*)Ox (UML) + i = "
Now multiply the first equation by U*/c and subtract it from the second
equation:

dp Uidp B
e 2ot

where we have used the product rule (C.6) for the differential 8 (U*U?),
which then allowed two terms to be cancelled. The first term on the left is
(po + p/c*)Du/Dr by making use of eqn (16.25) again. Upon neglecting
terms of order u?/c? (including time dilation: i.e., we write t = 7) we
bave the overall result

(po + p/ YUV +

Kt — (k- u)g—2 (16.27)

p\ Du Foie
(po + c'?-) ;= k- Vp. (16.28)

This is the classical Fuler equation for an ideal fluid, also called the
Navier—Stokes equation, except that the term representing the inertia
of the fluid is augmented by the pressure. So, according to Special Rel-
ativity, internal pressure as well as mass contributes to inertia! A high-
pressure fluid will respond more sluggishly to a given force, compared
to a low-pressure fluid of the same density. For ordinary fluids this is a
small effect, but for thermal radiation, or a gas at very high temperature,
it is significant.
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Fig. 16.8 Two charged particles move
on orthogonal trajectories. At the
morment when one passes directly in
front of the other, the forces are not in
opposite directions (the electric contri-
butions are opposed, but the magnetic
contributions are not). Does this mean
that momentum is not conserved?

16.4 Electromagnetic energy and
momentum

Now we turn our attention from material fluids to electromagnetic fields

Consider two identical point charges that are released from regy aé
the same moment, at some modest distance from one another, They
will repel one another, so fly apart with equal and opposite moment,
Thus momentum is conserved. However, consider these events from the
perspective of another frame of reference moving along the line betweer,
the particles. In the new frame the release events are not simultanegys.
one particle starts fo accelerate before the other one. It has changed it
momentum, but the other has not, so what has happened to conservatiop,
of momentum?

Consider another scenario, depicted in Fig. 16.8. Two charges are
moving at right angles to one another in a comnion plane, so that one
passes in front of the other. The electric field produced by each particle
at the other is directed along the line between them, so the electric forceg
are in opposite clirections. Since a moving charge produces no magnetic
field along its line of motion, at the moment when g is moving directly
towards q;, the latter experiences no magnetic field, so experiences no
further force: the net force on it is directly away from ¢o. However, i
produces a non-zero magnetic field at g, and the latter is in motion
through this field. Therefore g, experiences a transverse force: the total
force on it is not directly away from ¢;, but somewhat off to one side,
So the forces are not equal and opposite! No momentum conservation
again?

In both these examples an attempt was being made to talk about
momentum conservation between events at separate locations. However,
Relativity teaches us that this is doomed to failure. A conservation law
has to be local, not just global. That is, the conservation of a substance
such as water does not mean merely that the total amount of water in the
room is fixed (assuming the door is shut and no chemistry is going on):
it means much more than that. If water were to disappear from a vase,
it is not enough inerely that an equal quantity of water should appear
somewhere else such as on the window. We insist that the water has to
get there by flowing across from the one place to the other (for example,
by evaporation and convection). In classical physics we might imagine
that a less tangible quantity such as momentum might disappear from
one place and appcar in another without flowing across the intervening
space, but Relalivity teaches us that a quantity is conserved locally or
not at all. The Principle of Relativity requires that the law, if it is valid,
should apply in all relerence frames, and the relativity of simultaneity
shows that a conservation law that relies on simultaneous behaviour at
separate places cannot hold in all reference frames.

Faced with the observed behaviour of charged particles, we must either
abandon the principles of conservation of energy and momentum, or
else assert that something in addition to the particles, and near to
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them, can carry energy and momentum. The obvious candidate is the
electromagnetic field (or possibly the potentials, but in view of gauge
freedom, it wounld seem less likely that it should work out that way).
We have in fact assumed this already when we allowed ourselves to talk
about ‘the energy carried by a pulse of light’, and when we applied to
light-pulses concepts such as an energy-momentum 4-vector. Now we
shall investigate whether this idea can be made precise and cxtended to
all fields, including static ones. It turns out that it can, and it will Jead
to a new and more satisfactory way of understanding ‘potential energy’.

We shall start with energy, and turn to momentum afterwards, but
aim to finish with a covariant treatment in terms of a stress-energy
tensor. We could resirict ourselves to covariant 4-tensor notation from
the outset, but 1 think it is easier to understand what is going on in the
more familiar language of flow through space and rate of change with
time.

In what follows we shall need to discuss the energics both of particles
and of fields. It will help if you agree at the ountset to abandon all talk
of ‘potential energy’. You may have been taught that a charged particle
‘possesses potential energy ¢¢’ when it is in a static electric field whose
scalar potential is ¢, but we are going to show that this sort of talk
is quite muddled and misleading. The only energy a particle has is its
rest energy mgc® and its kinetic energy (y — 1)mgc?, which together
make its total energy ymoc?. The kinetic energy is the energy a particle
has because it is moving, not because of where it is, and the rest mass
is constant, unchanged by interactions with the electromagnetic field.
Note the great contrast with gravitational physics.

Now let us suppose that an electromagnetic field possesses an encrgy
per unit volume (scalar, called u) and an energy current density (vec-
tor, N) which is the energy flowing across a small area, per unit area
per unit time. These quantities should satisfy the continuity equation

ou

i V- N.
At least, that is what we should expect for fields in free space, when
there are no charged particles aronnd. But of course, clectromagnetic
fields can interact with particles, and presumably exchange energy with
them. How does that come about? Only and wholly through the Loreniz
force equation, because according to our theory that is the only ‘point of
impact’ of the fields onto matter. Since we have a pure force, we can use
f - v to get the rate of doing work by the force. To be precise, this is the
rate of change of kinetic energy of the particle being pushed (that is, the
rate of change of its full, relativistic kinetic energy). This is dW/d¢ =
gE - v for a particle of charge ¢. We model a general distribution of
charge as many small volumes dV, each containing charge ¢ = pdV. The
combination gv = pvdV can be recognized as jdV, where j is the current
density, so the rate of doing work at some given point, per unit volume,
is E-j. This work is the energy being given to the charged particles
(increasing their kinetic energy) and therefore being taken from the field.
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If the particles are being siowed then this is taken care of by the sign of
E - j. Therefore the conservation of energy is represented by the equatioy,

-—— =V -N+E-j (16.29)

The left-hand side says how much energy is going out of the field in some
small volume (per unit volume), and the right-hand side says how much
is field energy but is flowing out of the region, and how much is being
given to the particles. We have accounted for the total energy of fielq
and particles, and asserted that it is conserved.

You may be concerned that in a typical electric circuit with a constant
current, there is inside any resistor a field E and a constant curreny,
density j. The E - j says that work is being done, but the constant j says
that the particles are not in fact speeding up—so where is the energy
going? Is it ‘potential energy’ after all? The answer is that the curreng
carriers inside the resistor are continually being accelerated by the field,
but they immediately suffer collisions with the material of the resistor
(nuclei and bound electrons), transferring their new-found kinetic energy
to kinetic energy and field energy of the rest of the resistor, in a random
form called ‘heat’. A detailed model of all these effects must end up
confirming eqn (16.29), because it is derived from the only fundamental
point of interaction of field and matter.

The following beautiful argument is due to John Henry Poynting
(1852-1914).

We should like to find out how u and N in eqn (16.29) depend on the
fields E and B. To this end, we can use the Maxwell equation M4 to
express j in terms of the fields, giving

E'j=€0C2E' (V/\B)—E()E'%—E:.
The last term is (0/0t)(3€E - E), so it looks as though that this is at
least a part of du/dt. Therefore, we want to turn the first term into the
divergence of something.

A divergence involves V- and a vector. The vectors we have available
are E, B and E A B. The term we are investigating involves both E and
B so we try taking a look at V - (E A B). The general result for the
divergence of a vector product is

V- (EAB)=B: - (VAE)-E.(VAB). (16.30)
The last term is just what we have. We deduce that
a
E j=—€c*V-(EAB)+¢c’B-(VAE) - o (LeoE - E).
This is a nice divergence and a time-derivative, plus a part in the middle
that is not in the form we want. However, Maxwell’s equations will sort

it out for us again, this time by using M3 to replace V A E, giving

E J = —6()62V . (E AN B) — gt_ (%GOCZB -B -+ %éoE : E) (163])
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This beautiful result shows that we can make our energy conservation
equation (16.29) apply very nicely to fields and particles together. We
just need to define

%eocsz + %60E2 ,

60(:2E A B.

U

N (16.32)

‘We have not proved that eqn (16.32) represents a unique solution: it
is possible to define more complicated versions of w and N, such that
after differentiating one and taking the divergence of the other, one still
obtains egn {16.31); but this form is the most obvious, and is consistent
with all observations in electromagnetism. It is believed to be correct.!

N = ¢yc’E A B is called the Poynting vector, after its discoverer. It
gives the energy flow per unit area per unit time (also called flux). For
an oscillating field such as a light-wave, its time average is the power
per unit area, called the intensity. The Poynting vector is often written

N=EAH

where H is a field closely related to B, being given in free space by
H= B/,U/O = 6062B.

16.4.1 Examples of energy density and energy flow

Now we shall explore the physical meaning of  and IN by considering
some examples.

Consider a stationary spherical ball of charge. We suppose the ball
has a uniform charge density p. There is no movement, so no magnetic
field. Suppose we had to construct such a ball: we would have to arrange
to bring up some charge from a long way away, and push it onto the
ball. At any given moment, part way through this construction process;,
the ball has radius r and therefore total charge

a(r) = (4/3)rr’p.

The work required to bring up the next little piece dg of charge from
infinity to the edge of the ball is

aw = — / fdp = 20)da

4egr

where f is the Coulomb force. Let us write Q = (4/3)ma’p for the total
charge on the ball when it reaches its final size a, then

q(r) = (r/a)’Q, = r=(q/Q)?a.

This allows us to perform the integral for W, obtaining

W:/Q q Q I/BdQ=§Q2
o 4mepa \ g 5dmega’

Now let us calculate the energy stored in the fields, according to the
energy density eqn (16.321).
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! It is not possible to use electromag-
netic theory alone to distinguish this
choice of u and N from other choices
that still satisfy eqn (16.31). In Gen-
eral Relativity, however, these quanti-
ties enter into the formula for the grav-
itational field. A precise gravitational
experiment could therefore allow a test
to distinguish Poynting’s choice of wu,
N from others that could be made.
However, observations to date are not
sufficiently accurate to carry out such
a test.



372 Energy density

Fig. 16.9 The energy density u and
Poynting vector N in the vicinity of
a uniform sphere of charge in uniform
motion, with no fields present other
than its own. The shading indicates w,
and the arrows indicate N (by theiv
length and direction).

Outside the ball the electric field is the same as the field due to a po;
charge: E = Q/(4mepr?), radially outwards. Inside the ball the fielq at
any given 7 is also the same as the field due to a point charge, but g,
charge in question is now that contained inside the radius r: i.e., q(r).
This leads to a field radjally outwards again, but increasing linearly with
radius: E = r@Q/(4mrega®). The total field energy given by eqn (16.32) s

a 2 oo 2
€p T'Q Q
— = — V
v = fuv=e{ [ () v+ [ (52a) ]

2 3 2
5 A (11—0+%)=—Q (16.33)

Amrega 5 dmega

(where the volume element is dV = (47r2)dr). This is a standard exer-
cise in elementary electromagnetism, but we displayed 1t in full in order
to comment on the result and raise some more subtle issues later. The
amount of work done against the Coulomb repulsion of the charges is
found to equal the amount of energy stored in the whole field, both
inside and outside the ball. So who ‘owns' the energy? When one first
learns electrostatics, one is usually invited to say that the work done
in bringing one charge near to another charge can be described in
terms of ‘potential energy’ of the charge. The work is done, but the
charges are not moving at the end, so where did the energy go? In
order to preserve energy conservation, this idea of ‘potential energy’
was introduced. We now see that this was misleading. The charges do
not possess any energy beyond their rest energy and kinetic energy.
The energy someone provided by doing the work has gone into the
field. ‘Potential energy’ is misleading, especially in relativity theory,
because it is non-local and does not contribute to the inertia of a
particle.

It seems odd at first that the energy is not contained in the ball. That
is where it might appear that we put it, but in fact we did not: the forces
pushed on the charges throughout their journey from far far away, and
they did their work locally, putting energy into the electromagnetic field
at each place. Again, Special Relativity insists on local conservation if
energy is to be conserved at all. Only a small part of the total energy
ends up inside the ball. Indeed, if we had constructed instead a thin
spherical shell of charge then one could arrange that only a negligible
fraction of the total energy is inside the shell.

Next we investigate the Poynting vector N.

Figure 16.9 shows the Poynting vector in the vicinity of a uniformly
moving sphere of charge (with no fields present other than its own).
We shall call this sphere a ‘particle’. However, we shall not allow our
‘particle’ to be point-like, because we want to avoid the possibility of
infinite field energy. Since the E field is radial and B circles around, ™N
is everywhere directed tangential to the surface of a sphere around the
particle. The vector is directed from behind the charge to in front of it,
representing the movement of field energy as the fields fade away behind
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where, for simplicity, we treat the case of a slowly moving charge, v « .,
The magnetic field is

B_,VAEFI ~ qusind -

= ¢
c? Amegc?r?

(where qb is a unit vector in the azimuthal direction). The Poyntmg
vector has two contributions:

N = ¢c?EAB = ¢c?(Ep AB + B, A B).

The second of these (the contribution from the charge’s own fields) ig
directed around the sphere of integration, neither in nor out. The firgt
(the applied electric ficld combining with the charge’s magnetic field) is
directed towards the z axis. This is the only term that will contribute
to the surface integral. It has size

FEoqusin b
Aarr®

so the net flux in through the surface of R is

6062 Eo B =

N {=n)dg = 220 / / sin? 0 72 sin 0dOd¢
A 4r?

where n is the unit vector normal to the surface, and we used N - (-n) =

N sin 6. Thus there are three factors of sin 8: one from Eq A B, one from

N - n, and one from the surface element dS. The integral is easily done

using sin® 8 = sin8(1 — cos? #), and we obtain

2
—/ N -ndS = ,—qEQ’U. (1(’)34)
= 3

Thus the net energy flow in through our chosen surface is proportioual
to quFy, the work done on the charge, but there seems to be a mistake: a
factor 2/3 when we expected 1. There is no mistake. It is simply that we
have not yet finished. We need to think about the field-energy density
u as well. Is it constant or increasing or decreasing, inside region R7 At
first one might imagine that we have a symmetry, so that f udV would
be constant at the moment when the particle reaches the centre of R,
but the situation is not symmetrical forward and back. In front of the
particle the fields Eq and E, are in the same direction; they reinforce
one another to mnake a big E2. Behind the particle the fields Eg and E,
are opposed; they tend to cancel one another out, leaving a small E%. So
we can picture the energy density u = ¢gF?/2 as ‘heaped up’ in front of
the particle (see Fig. 16.10). In a given smiall time interval dt the particle
travels a distance dz = vdt. If the particle is just passing through the
centre of R then in the next travel distance dz the distribution of energy
density will shift, such that a relatively lai’ge ‘chunk’ of energy is lost
from the upper hemisphere of R, while the lower hemisphere gains a
smaller amount. Note that here we are not talking about a transport



of energy (we have already calculated that) but a rise or fall of energy
owing to non-zero values of du/dt. The net effect is caleulated (by you)
in the exercises: it is found to be just dU = —(1/3)gEpdz, so

d 1
L V = —=gEgv. .
dt/ﬂud 39Eov (16.35)

The net effect, then, is that the energy influx of (2/3)qEyv plus a power
(1/3)qEqu liberated from the field inside R combine to provide the
gEyv, which ends up being transferred to the viscous medium (or, more
generally, to whatever further object or system the charge is pushing on).

It is noteworthy that whereas the applied force here acts along the
direction of travel, the energy flows towards the charge from the sides,
at right angles to the motion. This is connected to the fact that in this
example the momentum of the charged object is not changing.

Fig. 16.11 shows the case of two opposite charges being pulled apart
at constant speed. Since the charges mutually attract, their outward
motion must be being caused by another system (such as a strong
man) which does work on them. However, their energy is not increasing
(their velocity is constant), so they are passing all this energy on to the
electromagnetic field. The field energy moves outward from the charges.
Although the field (E; + E;) between the charges is becoming smaller, so
the energy density at any point there is falling, the volume of the region
where (E; + E;)? > (E? + E2) is becoming larger, with the net effect
that the total field energy, integrated over all space, is increasing. Note
once again that the direction of the energy flow is at first surprising—
at right angles to the forces that do the work. Near either charge the
situation is as in Fig. 16.10 but with directions reversed.

Other ‘canonical’ examples of Poynting’s vector are the capacitor, the
resistor, and the plane electromagnetic wave. In a plane wave (section
8.1) N points in the direction of the wave vector k, which makes sense. Its
size at any moment is egcE? (since the fields are perpendicular and E =
¢B). If E oscillates as Eg cos(k - r — wt), then N oscillates as Ny cos?(k -
r — wt). Thus its direction is fixed but its size oscillates between zero and
eUcEg . The wntensity I is defined as the power per unil area, averaged
over a cycle: i.e., I = (N) = egcEZ/2. For such a wave the electric and
magnetic contributions to the energy density are equal. Their total is
u = egE?%, which also oscillates. Its spatial average is ¢y F2/2, and one
can see that the intensity is ¢ times this. The summary is

== (N) = (u) c= %EQE&C‘

Next consider a cylindrical resistor of length o and radius a. If a
current [ flows and the voltage between the ends is V then the power
dissipated in the resistor is V /. The magnetic field at the surface is
B = ugl/2ma = [/(2mepc®a), directed in loops around the resistor in a
right-handed sense with respect to the current. Inside the resistor there
is an electric field in the direction of the current flow, of size E = V/d.
Therefore the size of the Poynting vector is

Fig. 16.11 Energy density and Poynt-
ing vector for a pair of charges being
pulled apart, so as to move uniformly
away from each other.

Fig. 16.12 Energy fow. The strong
man is pulling the oppositely charged
particles apaert, thus putting energy
wmto the electromagnetic field. (The
flow of energy in the man's muscles is
not shown).
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Fig. 16.13 Current-carrying resistor,

v

"~ 2mad
and its direction is radially inwards: i.e., pointing straight in through the
curved surface. The area of that surface is 2mad (circumference timeg
length), so the total energy flow in to the resistor is V/ per unit time__
exactly matching what we know is dissipated there, This exact balanee
satisfies us that energy is conserved, but the sign needs a moment'y
thought. Surely the power VI is leaving the resistor, not coming in? Thg
answer is that there is a conversion of energy going on: electromagnetjc
field energy enters the resistor and is used up accelerating the charges
that carry the current. These charges in turn collide with the materjg)
of the resistor, heating it, turning their kinetic energy into heat. Thijg
heat subsequently leaves the resistor. Therefore the sign of the flow of
field energy is correct: into the resistor.

The location of this flow can seem bizarre at first, however,

The battery is pushing on the charges, which are moving up the wire,
s0 one might think the work is being done right there in the wire. One
would expect that that is where the energy is being transported too:
down the wire, from the battery to the capacitor. But Poynting says it
is not: it is coming in from the sides! The example of a pair of charges
(Fig. 16.11) should have prepared you for this. In fact, a moment's
reflection should convince you that close to zero work is being done
in the wire, because the electric field (and therefore the force) is close
to zero there. The work is done in the battery, which draws on energy
stored in the fields of its molecules (also called ‘chemical energy’) to pull
apart electrons and positive lons (the very process shown in Fig. 16.11).
This ‘pumps’ energy out of the sides of the battery into the surrounding
field. The energy is transported through the field and eventually comes
in through the sides of the resistor.

A similar argument can be made for a parallel plate capacitor being
charged at a constant rate. The field between the plates grows, and the
energy it needs arrives by coming in through the sides, not along the
wires.

It turns out that often we do not need to keep track of these energy
movements: we can just trust the fields to take care of it without our
needing to know the details. However, if we want to hold on to the
principle of energy conservation, then Poynting's vector gives a clear
and thorough (and correct!) treatment.

16.4.2 Field momentum

The Poynting vector describes the flux of energy. We would like to know
also about momentum. Does an electromagnetic field carry momentum?
The only Lorentz-covariant answer is yes. We already presented in sec-
tion 5.6 the fact that there is a very general relationship between energy
flux and momentum density; eqn (5.58). Therefore, we should like to
claim that the momentum per unit volume carried by an electromagnetic
field is given by
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g =N/ (16.36)

This turns out to be correct, but in the course of looking into it we shall
begin to uncover the liwuits of classical electromagnetism.

First let us give some evidence for our claim that we can apply the
formula (16.36) to electromagnetic fields. Consider, for example, the
phenomenon of radiation pressure. A plane wave incident on a (non-
transparent) material body exerts a force on the body. To see how
this comes about, consider the motion of a charged particle such as an
electron on the surface of such a body. The electric field of the incident
wave drives the electron in the transverse direction. For example, if the
wave is propagating in the z direction and is linearly polarized with
its electric field along z, then the electron is pushed in the z direction.
This does not give rise Lo a force in the direction of propagation of the
wave. However, the non-zero x component of velocity causes the electron
to feel also the magnetic force gv A B, and this is in the z direction,
and causes the radiation pressure. The electron of charge ¢, velocity v
absorbs energy from the wave at the rate ¢E - v. For simplicity let us
suppose the motion of the electron is always in the z-direction (the force
in the z-direction heing opposed by equal and opposite forces from the
rest of the body). Then the rate at which energy is being transferred
from the field to the body via the electron is ¢Fw, and the Lorentz
force component in the z direction is guB. Therefore the energy and the
impulse delivered during some time interval ¢ are?

energy = /qudt, momentun = /q'qut.

Since for a plane wave the field strengths are related by E = ¢B, we find
the ratio of the energy delivered and momentum delivered is ¢, the same
as the ratio of energy and momentum for particles of zero rest mass. 1t
follows that egn (16.36) can be asserted for electromagnetic plane waves,
and therefore (by using Fourier analysis) for electromagnetic waves more
generally.

The ‘4/3 problem’

Next, let us consider another example in which energy is transported by
a field. Suppose there exists an clectromagnetic field that presents itself
as a static electric field in some reference frame. The field possesses
energy, the integral of its energy density u over all space. Now consider
the situation from the point of view of a reference frame moving with
respect to the first. Is the energy content of the field moving in the
new frame? The answer is surely ‘yes’. Whatever charges gave rise to
the field in the first frame are now in motion. The energy of the field
must be moving af precisely the same velocity as the charges, because
we can imagine deconstructing the charge distribution at some later
time and reclaiming the energy stored in the field. For example, think
of a capacitor sent on an interstellar journey. It assuredly takes its field
energy with it!

2 If the electron moves freely apart
from the forces arising from the wave,
then during each cycle of oscillation it
undergoes a driven motion but does not,
on average absorb any energy; a body
witlt only such particles in it would be
transparent. [f the electron experiences
forces from the rest of the body which
tend to damp its motion, then the aver-
age of gE - v over a cycle is non-zero.
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Now let. us calculate the momentum content of such a ‘moving statje
field”. For the sake of simplicity we will consider a spherically symmey,; o
static electric field, and we will assume the new reference frame Moves
at low velocity v < ¢ relative to the frame containing the static ﬁeh[
Then the electric field E in the new frame is equal to that in the ﬁmi
[rame (up to order »%/c?) and the magnetic field is B =v AE/¢2, The
momentum density is

=N/ = =2
g=N/c* =¢EAB= EQEAVAE'

Let v be along the z-axis and let 6 be the angle between r and this axig
then g has size g = (eo/c?)E?vsiné and its z-component is g. = gsing
When we integrate over all space to determine the total momentum iy
the field, only the z component survives, and therefore we have

E o0 "2
p = f / El‘% g sin® § 2 sin 6drdf 2
o Jo e

oo

34?&12 /0 %EUEQ‘I?TTsz (16.37)
Now, for the low velocity under consideration the magnetic field is weal,
and contributes negligibly to the energy density compared to the electric
field. Therefore, we can recognise the integral on the right-hand side of
eqn (16.37) as the total energy content £ of the field (here we write & for
energy to avoid confusion with the electric field strength). We conclude
that

b
£

This result violates the relation p = £v/c?, which is the universal rela-
tionship between energy and momentum for bodies moving at any speed.
This ‘4/3 problem’ troubled early workers such as Lorentz. It implies,
for example, that the total energy and momentum of this field cannot
be considered as a 4-vector,

There is nothing wrong with our calculations of the energy and
momentum in the field. Both are correct. The ‘problem’ is merely that
we cannot consider this energy and momentum to be parts of a 4-
momentum. The reason is that the field we have considered is not an
1solated system. It is in continual interaction with the charges which
act as its source. The relation p = £v/c? applies only to particles or to
extended objects that can be considered as isolated entities, free of exter-
nal influences. We did not encounter this problem for electromagnetic
waves because they have a special property: they can be source-free. That
is to say, although the disturbance which gives rise to electromagnetic
waves is usually a charged object in motion, once the source ceases
to accelerate the emitted radiation continues to propagate, such that
there can exist a source-free volume of space completely containing the
electromagnetic radiation field. Such a field can be considered to be

| <

(16.38)
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an isolated system possessing an energy and momentum of its own.
Therefore it is legitimate to regard a light-pulse as a single entity with
a well-defined energy-momentum 4-vector.

The non-4-vector nature of £, p for a static feld is also an illustration
of the issue we discussed in connection with figure 5.3 and eqn (5.9): one
cannot assume that adding up 4-vectors evaluated at different points in
space will necessarily give a 4-vector total. It requires something like a
conservation law to come into play, to guarantee that the total will give
the same 4-vector no matter which tiine slice is used to calculate it. In the
present case we are adding up (i.e., integrating over voluine) the energy
and momentum of each small region of field; the sum is a 4-vector only
if the [ield is an isolated system, nol exchanging energy and momenturn
with anything else. A static Reld is not exchanging energy with other
things, but it is in a state of continuous interaction with its sources,
pulling on them. We can think of this, roughly, as a process of continuous
elastic collision. 1f the sources are not accelerating then it must be that
some other force is constraining them, and the net result is an interaction
between the electromagnetic field and the other force-providing entity,
mediated via the charges. A more complete understanding will emerge
after we have grappled with this idea in more general terms. That is the
subject of the next section.

16.4.3 Stress-energy tensor of the
electromagnetic field

In view of our comments in section 16.1 of this chapter, it should not
be surprising that the energy density of the electromagnetic field can
be understood as one element of a tensor, and that tensor is the stress-
energy tensor T for the electromagnetic field. It describes energy density,
energy flux, momentum density, and momentum flux, just as we have
already considered for particle bearns and fluids, though now we are
talking about an electromagnetic field.

Note that we do not construct a 4-vector out of u and the Poynting
vector; rather, we find that they form one column of T. Note also that as
soon as we allow the idea of energy density, then by Lorentz covariance
we must also have not only momentum density but also momentum
Aux—the o part of the tensor. Electromagnetic waves carry momentum
with them, so they can transport momentum across a plane just as surely
as can material particles (Fig. 16.1). Furthermore, even static fields exert
forces, which means they too transport momentum.

To study the energy and momentum flow in full, a good starting point
is the interaction of the fields with the charges, described by the Lorentz
force. The conservation of energy and momentum must be expressed by
an equation like (16.20), but we shall define the force per unit volume
W to be the force exerted by the field on the particles, so the equation
we want is
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3 WV is not a 4-force, because it is
missing a factor v, says eqn (2.75). W
is8 a d-vector however: it is a 4-force
divided by an tnvariant volume dVp,
namely a volume element in the rest
frame of the local charge, dVy = vdV.
The 4-force on the charge contained
in the laboratory frame volume dV is
WdVy = AWdV. Thus W can be inter-
preted either as work rate and 3-force
per unit volume, or as d-force per unit
proper volume. One does not need to
know this, however; the algebraic devel-
opment will be physically consistent
and will lead to an easily interpreted
final result in terms of E, B, p, j.

Transfer of 4-momentum per unit volume from fields tq

matter
=-0.T [Wh = -\ (16.39)
The 4-force density is defined as
we = F, (E-j/e, pE+jAB). (16.4[])
(W = F-J|]

This is called the Lorentz force density. To understand it, multiply by 5
small volume dV, and then you find that the components are ¢E - v/,
and g(E + v A B). This is the rate of doing work and the Lorentz force
on the charge ¢ contained in the volume dV.?

T" has the physical dimensions of force per unit area or (equivalently)
energy per unit volume.

We can already see that the first column of T%® should be equal to
(u, N/c), which will yield energy conservation; eqn (16.29). Now we
will show how the rest of T is obtained from the field equations. We
shall do this in two ways, both of which provide useful insight. The
first method uses 3-vectors and Maxwell's equations to look at just the
momentum flow; this results in a suggestion as to how the stress-cnergy
tensor might be formed. The second method uses Lorentz-covariant
language (4-vectors and 4-tensors) throughout, and therefore proves that
the resultant object is a 4-tensor (i.e., is guaranteed to transform in the
right way). This also offers practice in 4-tensor manipulation.

Method 1: 3-vector approach

We examine dg/dl. This should tell us about the rate of change of
momentum, and therefore about the force. Note that although g is
related to the Poynting vector N, it is best to temporarily forget that
relation here. In the conservation argument the momentum density g
plays the role, for momentum, which was played by energy density v in
the Poynting argument. The quantity handling the flow of momentum
(i.e., the job done for energy by N) is the tensor T.

Conservation of momentum will be achieved if the force on the parti-
cles in a small volume dV is equal and opposite to dV8g/adt, plus another
term which signifies the rate at which the field is carrying momentum
away. Using eqn (16.36) and Maxwell’s equations M3, M4, we have

g B OE
—a}--—((}(Ef\a‘T“FEAB)
=—jAB+¢ ((VAE)AE +(VAB)AB).

The first term is the magnetic part of the Lorentz force per unit volume
(recall jdV = gv), with a minus sign as expected. The rest must be either
to do with the electric part of the force, or with momentum flow. The
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electric part of the force per unit volume is pE, which in terms of the
fields alone is ¢o(V - E)E (using M1). Adding this on, in order to obtain
the total force, we have

. og
PE +jAB = —8—%+eo[(V-E)E
+(VAE)AE +2(VAB)AB]. (16.41)
The term in the square bracket can be written, we hope, as minus the

divergence of something. It can, but this argument does not offer an
automatic way to see it. Take a look at eqn (16.47) and you will find the

answer is
Oaix Oaiu 00'1';
ol li=-{>5, * 5 * o

where
05 = %éo(Ez + CQBQ)(S-L']‘ — Go(Ei.Ej + CzBiBj).

You are invited to check this by performing the differentiation. You will
find that the B? term is needed to give part of (V AB)AB; it also
contributes a (V - B)B term, but this vanishes by M2.

Method 2: 4-vector calculation

Now for the manifestly covariant approach. We start from the force
density, eqn (16.40), and just as we used a Maxwell equation to express
j in terms of the fields in Poynting’s argument, now we use the first field
equation (13.7) to express J in terms of F:

W = —F*(epc?)05F, |W == ¢c®F - (O F)] (16.42)

The matrix notation helps to see clearly what we have: it has the
structure ‘ada’, so it should be possible to relate it to ‘O(aa)’. This
is the equivalent of step (16.30) in Poynting’s argument, and eqn (C.6)
(the product rule) contains the result we need:

O™ (F*Fy,) = F*0*Fy, +Fy, (O2F*). (16.43)

The left-hand side of eqn (16.43) is a divergence of a tensor—the very
thing we are looking for—so next we concentrate on the last term:

Fy, (02 F*).

Just as in Poynting’s argument, we need to bring in the other field
equation—this time the homogeneous one (the one without a source
term). That equation, (13.8) has things such as ‘@°F%® in it. Clearly,
what we need to do is contrach it with Fg,:

]Fcb (acIFab +8aIFbc + ab[Fca) _ O
= F,0°F% = —F,0%F% —F.,0°F,
ie. Fr (MF) = —[Fy,0°F* — F),0MF** (16.44)

381
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# See exercise 16.11 for the result using
a metric of different signature.

where all we did was to carry two terms to the right-hand side, and then
relabel dummy indices to make them look more like what we want,

Now, practising the advice given in section 12.2.3 to ‘look for scalare
we spot thal the first term on the right-hand side is almost a scalay, .It‘.
is an example of eqn (C.9), except that one pair of indices is the Wrong
way round. However, since F is antisymmetric, we can swap them ang
imtroduce a minus sign, so we have +0%D where D = Fy, FM /2 (see
eqn (13.12)).

With the hint that a transpose might be useful, now take a look g
the last term in eqn (16.44) and transpose both occurrences of F. Thig
makes it look just like the left-hand side, except that the dummy indigeg
are labelled differently. That does not matter, so we have [ound that

Fsu (0 F*) = 3°D — ), (07 F%)

= Fau (0 F%#) = —;—G“D.

Substituting this into eqn (16.43), and returning to eqn (16.42), we have
We = —epe? (a* (FF5,) — %6“{)) ,
1
= W = —¢pc? (a,\ (FATF*,) — 58"9) : (16.45)

(by reversing the order of the product then using the see-saw rule twice
and changing from a to b). We would like to set this equal to —3,T*, so
we want to convert the &° in the second term to 8. This is easily done by

& = g0,

Finally, using the antisymmetry of F, we have

Stress-energy tensor?
1 ;
T = ¢yc? (-F“HF; = Eg““u), (16.46)
where D = 3F,.F*",

[ie. T = egc? (—IF P — %QD) ]

Substituting for [F from eqn (7.46), we find
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where

energy density u = leo(E? + 2 B?)
Poynting vector N = ¢c*E A B

3-stress tensor oy, = udy; — eo( ELE; + ¢* B, B;) (16.47)
M
i)
The ‘Maxwell stress tensor’ o,-"f is olten used in the literature, and
its standard definition is such that it is the negative of T%. By using
Oij = —cr,-’f we preserve a greater uniformity in the equations describing
conservation of energy and momentum below.

T is fully symmetric. The symmetry of the space-space part is not
surprising; the symmetry of the time-space part merits a comment.
Suppose N is a 4-vector direction, then T - N quantifies the How of energy
and momentum in that direction. The first row of T is used to calculate
the flow of energy, and the elements of the first column are used, together
with @5, to calculate the low of momentum. That the first row is equal
to the first column is an example of the equality of energy flux and
momentum censity that we noted in section 5.6.

You can now confirm that the time component of the relation
W = —[J. T is indeed eqn (16.29) as expected, which represents energy

= —g

conservation.
Using eqn (16.40) and examining the z-component of (1T, we find
i 1 ON,
(pE + j AB); = —E‘é—a—t* - Vi0;z .

To interpret the equation it may be helpful to integrate over a small
volume to make the terms more familiar. If the volume is taken small
enough that all the charge ¢ in it moves at the same velocity v, then we
have

ot

where we wrote o, for ;. This is the flux of z-momentum, and we used
eqn (16.36) to convert the Poynting vector into a momentum density.
Eqn (16.48) can be ‘read’ as a statement of Newton's Third Law for the
interaction of charge and field. On the left is the force on the charge, and
on the right is the force on (i.e., rate of injection of momentum into) the
field. The equation slates that these forces (‘action’ and ‘reaction’ if you
like) are equal and opposite. The rate of injection of momentum into the
field appears in two parts: dg, /0t is the rate at which the momentum
of the local field is growing; V - o5 is the rate at which momentum is
being supplied to the rest of the field by Howing out of the region under
consideration. This confirms the notion of momentum transport that we
expected before embarking on the calculation of T.

Gathering the energy and all three momentum components together,
the overall conclusion is:

g(E+vAB), =- + V.04V (16.48)
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Fig. 16.14 A repeat of Fig. 16.8, but
with the effects on the field shown.
Each black dol represents a parti-
cle, and the attached arrows show the
volocity of and force on the particle
Each circle vepresents a small volume
of field, the attached arrows show the
rate of injection of momentum from
the sources into that volume of field.
Conservation of momentum is achieved
locally. The stress and momentum den-
sity throughout the rest of the [ield
is not shown; it satisfies a continuity
equation for each component.

Conservation of 4-momentum of both matter and fielq

together
v) ( o B )(16.49)

This result is at the heart of all energy-momentum conservation i
electromagnetism.

It is sometimes stated that Newton’s third law (on action and reaction)
breaks down in Special Relativity. It certainly does not, and eqn (16.49)
is the proof for the case of electromagnetic interactions. However, j;
is true to say that Newton's Third Law should not be taken to be 5
statement about forces at separate locations (e.g., on particles with finite
separation); it must be applied locally. What was missing in Fig. (16.8)
was a pair of arrows showing the rate of change of momentum in the
field. We can now provide those arrows; see Fig. 16.14.

The intuition that 4-momentum should be conserved has been fully
born out by the theory. Indeed, the requirement to conserve energy
in all reference [rames implies the conservation of momentum, by the
zero-component lemma. We have discovered that in order to make
sense of these great conservation principles it is necessary to credit an
electromagnetic field not only with energy and momentum, but also with
pressure and stress.

10
cot'

(E-j/e, pE+jAB) = —(

Simple examples of stress and pressure

We introduced the stress-energy tensor of the electromagnetic field by
using the language of energy and momentum transport. However, in view
of the discussion in the first part of this chapter, we know that ¢'7 can
also be interpreted as force per unit area. This helps to get a physical
intuition of what it means. Some examples are given in table 16.2.

The part of the stress acting normal to the boundary of an object, in its
own rest frame, is the pressure, and this is the easiest part to understand.
Consider a capacitor, for example. For a parallel plate capacitor aligned
along z there is a uniform electric field £ in the z direction, and no
magnetic field. The force on either plate is f = QF/2, where the charge
on the plate Q = ¢gAE, so f = g E%A/2. Now look at the 3-stress tensor.
It is

1 -1 00
oy = ieoEg 0 10 (16.50)
0 0 1

A negative pressure is a tension; it means that in the x direction the
field i1s pulling its boundary (i.e., the charges on the plate) in towards
it (the field). This is the attraction between the capacitor plates that
we normally describe as the mutual attraction of opposite charges. The
positive zz and yy terms tell us something further: there is an outwards

pressure at right angles to the field direction. In general, in the absence
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of magnetic fields there is always a tension along the electric field lines,
providing the ‘mechanism’ by which opposite charges attract, and there
is a pressure at right angles to the field lines, tending to push them
apart, and providing the ‘mechanism’ by which like charges repel.

In a solencid with a magnetic field B along the z direction, the 3-stress
tensor is the same as eqn (16.50), but with E replaced by ¢B. There is
an outward pressure B?/2uo on the walls of the solenoid, and a tension
along the axis.

An electromagnetic wave in free space exerts a force in the direction of
travel, and no transverse force. We can always align the x axis with the
direction of propagation and write down both T and the 4-wave-vector
K = (k, k,0,0). By spotting that for this case

BEZ
T = g —5 cos® (X, KH)K K"
[

we deduce that this is the general relationship. By the quotient rule,
this implies that in this context EZ/w? is a scalar, and therefore for
a given wave examined in two arbitrarily related reference frames, the
energy density, momentumn flux, pressure, electric field, and frequency
are related by

w g! p.f E!.S? w;2

SELE T (16.51)

Table 16.2 Example stress-energy tensors. Entries left blank are zero. The exam-
ples are necessarily given in some suitably chosen reference frame; for a covariant
expression in each case use eqn 16.46. The capacitor, solenoid and plane wave are
aligned along the x axis. ‘Point charge’ refers to the Coulomb field of 2 point charge
at the origin. All but the last example are stress-free in the chosen frame. Note that
for electromagnetic fields, T} = 0 (easily proved [rom eqn (16.47)).

1
Capacitor Leg B2 =L
apacitor €0 1
1
1
Salenoid jeoc’B? = ]
1
11
Plane wave  eqE§ cos®(ka — wt) ! 0 = eoc®(E? JwP)KEKE
0
92
T 0 0 0
Point charge TZQ—E b == o 5 Bk
S 0 —yx T —yz
0 —zx —zy % —z?
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This is the result that we established by less sophisticated methods in
chapter 2 (eqn (3.9)).

The point charge (Coulomb field) exhibits a negative pressure and
stresses directed towards the origin. What this means is that if you
arrange a ‘boundary wall’ in some region—such as to leave the fielq on
one side of the boundary unaffected but reduced to zero on the other
side—then in this case the boundary will be pulled in the direction of
the side where the field remains non-zero. For example, place a uniforn,
spherical shell of total charge —g around the point charge g, at sompe
finite radius. Then the field inside the shell is unchanged and the fielq
outside is reduced to zero (from Gauss’s theorem). The stress tensor te])g
us that the spherical shell will experience forces pulling it in towardsg
the origin—which of course we know to be true from the attraction of
opposite charges.

What is striking about all this is that the electromagnetic field ig
behaving like a substantial thing, like a lump of jelly that we could
push or pull and be pushed and pulled by in return. It is no wonder
that so much time and energy was devoted to the aether model of
electromagnetism in the nineteenth century. This time was not wasted:
it forced physicists such as Maxwell, Lorentz, and Minkowski to discern
and expound these properties. They make the field seem very much like
a mechanical entity. Now we have come full circle, and one could say
that we do have an ‘aether’ after all, but the field itself is the ‘aether’. It
is an aether with properties that could not be grasped before the advent
of Special Relativity, such as the ability to propagate signals that you
cannot catch up with.

Having started in chapter 7 with the idea that electromagnetic fields
can seem intangible, it is time to reconsider. Far from being ‘hard to
see and touch’ the electromagnetic field is just about the only thing
we ever see or touch! The retinas of our eyes respond to incoming
light-waves; the nerve receptors in our fingers respond to the pressure
that results when we push the electron clouds of our skin molecules up
against the fields supplied by the electron clouds of other objects. The
chemical reactions that stimulate our taste buds are a dance of electrons
in response to fields in further molecules. Even sound—a pressure wave—
relies on electromagnetic flelds to allow the air molecules to pass on the
pressure as they collide.

Trouton—Noble revisited

We briefly considered the Trouton—Noble experiment in chapter 4; see
Fig. 4.1. We there gave an argument sufficient to show that there is
no net torque on the system, in any frame, but we did not examine
the way by which torque and angular momentum is distributed between
the three entities that are involved: rod, charges, and electromagnetic
field. ,

Fig. 4.1 makes clear that the net force on either of the charged particles
is zero. Nevertheless, there is a force communicated by each charged
particle on to the end of the rod to which it is fixed. Therefore the rod
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does experience non-zero force on each end, and the two forces are not
aligned (in frames other than the rest frame), so there is an external
torque on the rod, equal to (see Fig. 16.15)

filocoso — filosinfo/y = flgsinfgcosbo(l —1/+°)
flo(v?/c?)sinfgcosby  (16.52)

where [y is the rest length of the rod, and 6y is the angle between the
rod and a vertical axis in the rest frame.

It follows that the rod must be acquiring angular momentum (and the
electromagnetic field is losing angular momentum). So why does the rod
not start to rotate? Or to put it another way, how does it manage to
‘push back’ in a direction that generates a counter-torque?

To answer this question, notice that the upper [orce does positive
work f-v that provides energy to the top of the rod, and this energy
is removed at the bottom where the other applied force does negative
work. Therefore there is an energy current dE/dt = f - v = fvsinfy and
an associated momentum density. If A is the cross-section through which
the energy flows, then the energy flux is (fv/A)sinéy, and therefore
the momentum density is (fv/c®A)sinfy. The direction of this “hid-
den” momentum is surprising: it is vertically downwards. 1t is located
throughout the rod (in equilibrium the internal forces simply pass it on
without either angmenting or diminishing it), so the total momentum in
the Aow is

p= f ;;—;sin bodV = f(v/c?)losin b cos By

(since the vertical height of the rod is [y cosélp). Let dp be the amount
of momentum in any given small region; if this region is at position r
then it contributes an angular momentum about the origin of r A dp.
The rate of change of this angular momentum is v A dp, and therefore
the total rate of change of angular momentum is

dL .
e VADp= f('v?/cz)ig sin 6 cos fye
where e is a unit vector in the direction of v A p. This matches both the
size and direction of the applied torque.

16.5 Field and matter pushing
on one another

Now for a beautiful result.

In this chapter we first discussed the energy and momentum of a con-
tinuous material system, and then discussed the energy and momentum
of the electromagnetic field. Now suppose that we have a fluid, and that
the external forces on it are wholly electromagnetic in origin. Then the
force density K in eqn (16.20) is none other than the Lorentz force density
W. Therefore we shall find

fpcosfy

!0551’1(90){1"!’

Fig. 16.15 Lengths and directions in
Trouton—Noble experiment.
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Elje Fmabher == W»
0l Trﬁul(i = _W\

therefore
Matter interacting with electromagnetic field

L (‘]rnmtl.er + Tﬁeld) =0 (1653)

The total stress-energy tensor of matter and field together has zep,
dwergence. This result encapsulates energy-momentum conservation
for electromagnetic interactions. When other interactions are present,
further terms must be added, and the overall result remains of the
same form: the total stress-encrgy tensor of an isolated system ig
divergence-free. This is a completely general way to express energy.
momentum conservation, and it is an important basic idea in Genera|
Relativity.

Footnote on the Lorentz force equation

In chapter 13 we obtained Maxwell’s equations by starting from the
notion of a pure force, with the result that the field tensor was initially
defined through the Lorentz force equation (13.2). We then hypothesized
field equations, and we had to confirm laboriously that energy and
momentum were conserved. Fortunately it turned out that they were.
One wonders whether there is another way to get at this connection.
There is. By using Lagrangian methods suitable to fields, one can guess
or hypothesize Lagrangian densities for the simplest possible fields in
vacuum, and by proceeding to a Hamiltonian one obtains eqn (16.47)
for the stress-encrgy tensor of one possible tensor field without even
wmentioning the idea of charge or particles. One then finds that V- E
is the density of a conserved quantity, so it is named ‘charge density’.
Upon evaluating C1- T one finds that it can be non-zero. This leads one
to propose the existence of something that the field can push on, and
one introduces eqn (16.39) as a definition of 4-force density W (rather
than a way to find T). Then one is led inexorably to the fact that the
thing pushed by the field (the ‘passive charge’) is also the source of the
field (the ‘active charge’). This interesting discovery enables one to write
W as in eqn (16.40). Hence the Lorentz force equation may be regarded
as a derived result, rather than an axiom, if one places the axiomatic
emphasis on 4-momentuin conservation.

16.5.1 Resolution of the ‘4/3 problem’
and the origin of mass*
The ‘4/3 problem’ indicated in eqn (16.38) was the problem that the

energy and momentum of a field in interaction with sources do not
constitute the energy and momentum of an isolated system. Equally, a
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charged particle (or a charged composite body) cannot be considered to
be an isolated entity because it is in continuous interaction with its field.
However, we would like to be able to discuss the dynamics of charged
particles, and we normally take it for granted that we can do so by
furnishing them with a 4-vector momentum—which is what we did in
the studies of collisions in chapter 4, for example. We can do this if
we can construct a 4-momentum that contains the energy of both the
field and the particle together. This extended ‘composite’ system can be
isolated, and therefore the law of conservation of energy-momentum can
be applied to it.

For the field part one can always mathematically construct a suitable
4-vector and refer to it as ‘the energy-momentum of the field’ as long as
one is consistent. For example, for a case where there exists a reference
frame in which the problem is static, one could define the 4-momentum
of the field to be AZP?‘O), where P‘(*O) = (Ees/C, 0) is its value in the
static frame, chosen to agree with the electrostatic energy in that frame.
Another reasonable choice would be (4/3) of this. However, we shall
describe another, more physically motivated solution, due to Poincaré,
that treats the source and field together.

Before constructing the 4-vector we need to beware that we will not
be able to apply this idea to point-like particles: the point-like charged
particle is a concept fraught with difficulty because it is associated with
infinite field strength close to the particle, and infinite associated energy
and momentum. Classical physics does not apply in this limit, but similar
issues arise in quantum physics. The infinite energies are avoided because
in fact no charged particle (such as an electron) ever has its wavefunction
concentrated at a point of infinitesimal dimensions—the wavefunctions
are always spread out in practice (although for calculational purposes
it may be useful to include the highly concentrated wavefunctions in an
integral over all ‘possible’ states of affairs).

In the classical regime we must insist that any distribution of finite
charge must have a finite extent, and if a body carries a net charge
then there must be binding forces that keep the charges attached to
the body. These binding forces cannot all be electromagnetic and clas-
sical in origin, because static charge distributions are not stable under
electromagnetic forces (a sphere of charge, for example, will fly apart
if only electromagnetic forces are present). In the case of the proton,
the binding forces are provided by the strong interaction (gluon field)
between the quarks inside the proton; in the case of larger objects they
may be provided by covalent bonds which rely on quantum theory to
allow stable ‘orbits’ without emission of radiation.

One can keep the binding forces in the energy and momentum account-
ing without knowing the details of their origin, simply by asserting that
they provide whatever forces are needed to make the charge distribution
stable. This is done by adding another stress tensor onto the electro-
magnetic one, such that the total stress tensor describing the ‘fields of
all kinds’ is

389
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N

Fig. 16.16 A closed 3-surface and its
outward normal N%. The divergence
theorem relates an integral over the
interior to an integral over the surface.

Sab _ Tab + Bﬂb.

and this total stress tensor has zero divergence, as in eqn (16.53).

The extra stress B is called the Poincaré siress tensor, after Heny
Poincaré, who described this resolution. In order to make syre the
modification describes a particle that is holding itself together: i.e., tly
corresponds to what is observed, we pick B in such a way that not, oy, ly
is 8% divergence-free, but also it describes a system in stable mechanijey)
equilibrium, not imploding nor flying apart. The condition for this is thae
the self-stress vanishes, meaning that the volume integral of the spagiy)
part of $% vanishes in the rest frame;

/Szfj)dV(g) = D

Divergence theorem in four dimensions

Gauss's theorem connecting a surface integral to a volume integral in
three dimensions reads

A-dszf V. Ad’x

(R) R

where (R) designates the surface of region R and the surface element
dS is furnished by convention with a vectorial character, pointing
in the outward normal direction. The 4-dimensional version of this
connects an integral of a 4-flux over a ‘3-surface’ (i.e., a three-
dimensional entity) to an integral of a 4-divergence over a ‘4-volume’:

j£ ANV = f ANk, (16.54)
(R} R

where N is a unit 4-vector in the outward normal direction and dV
is an invariant volume element. The notation de* = N*dV for the ‘3-
surface’ (i.e., volume) element may also be used. The outward normal
is space-like for some parts of the surface, and time-like for others
(see Fig. 16.16). Where it is space-like there is a reference frame in
which that part of the integral is a spatial surface integral integrated
over time. Where it is time-like there is a reference frame in which
the 4-surface lies al an instant in time; in that frame dV = dadydz
in rectangular coordinates, and N = either (1,0,0,0) or (-1,0,0,0).
In other frames N is Lorentz-transformed but dV is invariant. If
desired, it can be expressed in terms of the new coordinates by
dV = yda'dy’dz’ (since the integral in the first frame was over a
region such that dt = 0 between events in the region).

Gauss's theorem also applies to each row of a tensor (exercise 16.16):

M doy = [ M4z (16.55)
(R) R
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(this is an integral over all space at a fixed time; the subscript (0)
denotes the rest frame). Consider, for example, two like charges con-
nected by a rubber band: the electrostatic field has pressure on the
line between the charges, which is compensated by the tension in the
rubber band. The total 4-momentum of the particle is then defined
to be

pe = / Se04 V. (16.56)

This is guaranteed to be a 4-vector. Proof: the condition that this P is a
4-vector is that the integral (16.56) should not depend on the orientation
in spacetime of the time-slice used to evaluate it (recall Fig. 5.3). We
prove this by writing the integral

/S“ANAdV, (16.57)

where N = (1,0,0,0) and using a four-dimensional version of the diver-
gence theorem (see box above, eqn (16.55)), as follows.

Construct a 4-cylinder in spacetime. That is, a region with ends
formed by ‘time-slices’ at t = 0 and ¢ = £; (in some reference frame), with
t1 large and negative, and sides at some r (which we will allow to tend to
infinity). Then the integral (16.57) can be understood to be ‘3-surface’
integral (i.e., an integral over what we normally call a volume), adding
up the amount of $?° crossing the 3-surface at ¢ = 0 in the forward time
direction. This 3-surface is one end of our 4-cylinder. Now complete
the 3-surface integral of S* over the whole the 4-cylindrical surface, in
the outward normal direction. Using the divergence theorem, the total
must be zero, because it equals the 4-volume integral of OJ- S, which
is zero. Consequently the amount of S ‘passing through’ our time slice
at t =0 is equal to minus the amount passing out of the rest of the
cylinder. By making r large enough, we can argue that the contribution
from the curved sides is negligible, and therefore the amount passing
into the lower end of the cylinder equals the amount passing out of the
top end (this is just another way of talking about energy-momentum
conservation). Finally, allow the top end of the cylinder to vary from
one time-slice to another (corresponding to different inertial frames),
while leaving the bottom unchanged. Since the total flux out remains
zero, and the bottom integral does not change, neither does the top
integral. QED.

The 4-momentum reasured in experiments and discussed in collision
theory is the one given by eqn {16.56). There is no unique answer {offered
by classical electromagnetism) to the question ‘how much of the rest
energy comes from the matter, how much from the field?’, because one
does not know how much binding energy to associate with the Poincaré
stress part. However, the subject does at least raise the rather wonderful
possibility that we can explain the origin of mass this way: perhaps the

Fig. 16.17
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whole rest energy (and therefore rest mass) of fundamental particles sy,
as electrons and protons comes from their electromagnetic field energy?

A distance scale associated with any particle (or composite object) of
given charge and mass arises in connection with this question:

qQ

Tp = 5 —.
4megnc?

(16.58)

This is the distance such that the work required to bring two particleg
of charge g, mass m from far apart to this separation is equal to the
rest energy of one of them. Equn (16.33) shows that if a static uniformly
charged sphere of charge ¢, mass mn has radius r. then its electromagnetic
field energy is sufficient to account for 3/5 of its rest energy. More gene;-
ally, an object of mass m and charge ¢ will generate enough field energy
to account for the whole of its rest mass if the physical size is of order r,
(the exact value depending on the distribution of the charge). If ¢ and
m are the charge and mass of the electron, then r, is called the ‘classical
radius of the electron’, equal to 2.818 x 10~ m. In early work this wags
envisaged quite literally as a finite radius possessed by the electron (to
within a factor of order 1). However, particle collision experiments have
shown that electrons are point-like down to much smaller sizes than this.
Therefore the ‘classical radius of the electron’ should not be thought of
as a true indication of the ‘size’ of an electron, but it does indicate a
distance scale below which it is difficult to get sensible predictions from
classical electromagnetism. The difficultics arise because if a charged
sphere had a radius much less than 7, then its rest energy mc® would be
smaller than its associated fleld energy, which implies that the matter
of the sphere must have negative mass, leading to unphysical behaviour
such as self-acceleration.

The Bohr radius and the Compton length of the electron are both
much larger than 7, (see appendix B), so in any case classical physics
has to be replaced by quantum physics well before one approaches
r.. However, the difficulty of infinite energy persists in the theory of
quantumn electrodynamics or ‘QED’, and leads to the famous renormal-
ization problem. In this sense the electrodynamics are indeed crucial
to understanding the observed mass. Ultimately QED does not account
for the rest mass of the ‘bare’ clectron, but assumes it as a parameter.
However, the masses of composite entities such as the pions (139.570
MeV/c? for m*, 134.977 MeV/c? for 7°) include a small contribution
from electromagnetism, and the gluon field can account for most of the
rest of mass. (The neutron is heavier than the proton because its different
internal strong interactions dominate the electromagnetic ones.) Gluons
have zero rest mass. If the quarks also had zero rest mass, the mass
of the proton and the neutron would not change by much. In this way
Special Relativity, via its prediction of mass-energy equivalence, came
close to solving a profound puzzle of the universe: the nature and origin
of mass. '
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Exercises

(16.1) A cable of proper density pp is subjected to a
teusion ¢ per unit cross-sectional area. Find the
maximum value of t for which p > 0 in all frames.

(16.2) In this chapter we established that pressure in a
fluid is independent of veference frame. However,
the ficlds of an electromagnetic plane wave are
frame-dependent, and therefore so is the radiation
pressure. Is there a countradiction here? Explain.

(16.3) By applying energy-momentum conservation (eqn
(16.19)) to the stress-encrgy tensor for dust,
T —= poU“UP®, prove that, in the absence of exter-
nal forces, every part of the dust moves uniformly,
i.e., that dU/dr = 0. (Hint: use eqn (16.25); do not
assume that po is uniform.)

(16.4) §'Incompressible motion’ of a fluid is motion in
which the proper volume of each fluid element is
conserved. Prove that the sufficient and necessary
condition for this is that the flow velocity field sat-
isfies [0 - U = 0. Prove that, for the case of a pure
fluid subject to pure (i.e., rest-mass-preserving)
external forces, this condition is equivalent to
dpo/dt = 0 for each fluid element.

(16.5) Field energy near a charge moving in an
applied electric field. Obtain eqn (16.35), as
follows. Show that for v < ¢ the energy density 1
is dominated by the contribution from the electric
field. Obtain E-E. Do not try to integrate u
over the whole sphere, but instead concentrate on
that part of the integral which will change over a
small time interval d¢. The region of integration
R is fixed, but the charge moves. Let R be a
sphere centred at the origin, and consider another
sphere centred on the charge, of the same radius
a as that of R. Show that when the charge is at
2z = vdt for small df, the distance in the radial
direction between the two spherical surfaces is
dr = vdt cosf. Hence in order to find the change
dU in field energy over the next time interval dt,
it suffices to integrate u over angles 6 and ¢ with
a volume element (udt cos #)a? sin #dfd¢. Perform
such an integration and thus obtain eqn (1.6.35).

(16.6) Show that for a particle at rest possessing both
electric charge and magnetic dipole moment (e.g.,
the electron), the Poynting vector runs in loops
around the dipole axis. Could this account for the
intrinsic angular momentum of the electron?

(16.7) Investigate the Trouton-Noble experiment using
the stress-energy tensor, by writing down the
stress-energy tensor for a rod at rest in com-
pression, and hence that of a moving such rod.
Calculate dL/dt = [v AgdV and thus confirm
the discussion surrounding Fig. 16.15.

(16.8) Consider the lever paradoz, as follows. A right-
angled lever ABC has its pivot B at the origin,
with AB on the z axis and BC on the y axis.
The lengths of the arms are equal, AB = BC = a.
A force f is applied at A in the vertical (y)
direction and at C in the horizontal (z) direc-
tion. Since the torques are balanced in the rest
frame, the lever does not rotate. Show that in
another frame in standard configuration with the
rest, there is a clockwise torque fav?/c? due to
these applied forces. Explain where the conse-
quent steadily increasing angular momentum can
be found.

(16.9) Sketch the Poynting vector in the vicinity of the
moving pair of charges shown in Fig. 4.1. Does the
clectromagnetic field contain angular momentum
about the origin, and if it does, then in what
direction?

(16.10) Find the energy stored in the electromagnetic field
inside the capacitor shown in Fig. 7.1, for eacl of
the three different states of motion. Hence show
that the field energy in case (c) is larger than
in case (b) by eE”Adyv®/c?. This shows that,
for a given capacitor in internal equilibrium and
moving at speed v through the laboratory, the
energy of the field is smaller when the normal
to the capacitor plates is along the direction of
motion (case (b)). Does this mean there is a torque
tending to rotate the capacitor to this orientation?

Explain.
(16.11) Change of metric. Confirm that if we change
Minkowski metric from (— + ++) to (+ — ——)

then eoc® = —epc? in eqns (16.42)—(16.46).
Thus for given E and B fields, F and g¢,, change
sign but T does not.

(16.12) Prove that the electromagnetic stress-energy ten-
sor satisfies

TST) = (Seoc®)?(D? + 40765,
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where D and « are the invariants given in egns (16.15) Show (e.g., by carrying out the matrix multiplic,

(18.12) and (13.13). (Hint: first suppose « /= 0, so
there is a frame in which the fields are parallel,
and pick axes judiciously, and then infer the other
cases. )

(16.13) §Explain why a disordered distribution of radia-

tion (‘photon gas’) must have the following prop-
erties after averaging over time:

(i) B = E}= B%, B: = B, = B}
(i) By By, = E,E, = E.E. =0,
B:By=ByB,=B.B: =0
(iiif) EAB =0.
Deduce that the stress-energy tensor is diagonal,
and matches that of an ideal fluid with p = ppc?/3.

(16.14) §An absorbing plate moves at constant velocity v

through a random radiation field as in the previ-
ous exercise. Prove that the force per unit area on
the front and back surfaces of the plate are

(1+v/c)‘2p/‘2 _ (1 —w/c)?

Dp = : =
& 1-v/c b 1+v/c

p/2.

Verify that pr + pp = y i (assuming the plate
moves in the z’ direction). (Hint: you must inte-
grate over solid angle, making use of eqn (3.12).
The radiation field is isotropic in its rest frame
but not in the rest frame of the plate.)

tion) that for antisymmetric F"'b., with dual jrab

gﬂl/ (1;1n.u}7:bv — jﬁ{;,pﬁbl/) = %gabFFVFMU

and hence that the stress-energy tensor of the elec.

tromagnetic field (eqn (16.46)) can alternatively
be written

Tovb — %5()(‘-29“11 (IF(uLIFbu + [[E'(‘”]F‘by) ]

(16.16) Assuming the four-dimensional Gauss' theoren

(16.54), prove egn (16.55). (Hint: introduce ap
arbitrary constant 4-vector B and consider A% —
B, M%)

(16.17) Define the total angular momentum of a fluid

relative to some origin by

1ot — 1 / (xa.[rbo _ xb.]rao) av

[

where T*® is the stress-energy tensor. Prove that
if the fuid is isolated then this quantity is con-
stant in time, and also establish its tensor char-
acter. (Proceed as in the argument following eqn
(16.56).)



What is spacetime?

Yesterday upon the stair

I met a man who wasn't there,
He wasn't there again today,
Oh, how I wish he'd go away.

after W. H. Mearns

Treatments of Relativity often examine Newton's ‘absolute space’ and
‘Mach's principle’ early on, in order to point out some of the issues and
subtleties of the idea of absolute motion. We examine them last, because
these issues are indeed subtle and not fully understood.

Consider the following thought experiment, proposed by Newton and
discussed again by Berkeley and Mach, who in turn influenced Einstein.

A bucket of water is suspended by a rope and set into a spinning
motion. The following sequence is observed:

(1) At first, the bucket rotates while the water remains predominantly
flat and still.

(2) Owing to viscous forces, the water acquires the rotational motion
and rotates at the same angular velocity as the walls of the bucket.
Its surface is then curved: it rises up at the the edge and is depressed
in the middle.

(3) The bucket is then stopped. For a while the water continues to rotate
and continues to have a curved surface.

(4) Finally the water comes to a standstill, and then its surface is flat
again.

‘When the water rotates, its surface is not flat. The question arises: how
does the water ‘know’ to form a curved surface? That is, what defermines
whether or not the water is rotating, as opposed to merely being observed
from a rotating frame? The answer has nothing to do with the bucket
{nor anything else nearby), because in stages 1 and 2, and again in stages
3 and 4, the shape of the water differs while the motion of the bucket
is the same. Also, in stages 1 and 4, and equally in stages 2 and 3, the
state of the water is the same while the motion of the bucket differs.

A related experiment is that of Foucault’s pendulum. I strongly urge
you to take a chance to visit (or construct) a Foucault pendulum and
ponder at length the question: how does the pendulum ‘know’ not to
rotate its plane of swinging along with the Earth?

Fig. 17.1
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A pendulum constructed at the North Pole will rotate once, relative tg
Earth, each 24 hours. Observers on Earth also find that the distant stayg
move around circular orbits once, relative to Earth, each 24 hours. Thig
seems to be a remarkable coincidence. What has the local pendulum got,
to do with the distant stars?

These experiments all explore profound questions about inertig
motion. Ernst Mach, without being completely specific, proposed that
the properties of local inertial motion must be in some way connected
to the average mass distribution of the distant stars. This idea is called
Mach’s principle. It can be formulated more specifically in various ways,
but there is no clear consensus on its precise role or whether it is fully
obeyed. It suggests that physics should be primarily relational, which
is largely born out by General Relativity and quantum mechanics, and
it hints at a connection between inertial motion and matter distribuy-
tion, which is born out by the connection between matter content and
spacetime geometry which underlies General Relativity.

Newton wrote of the concept he called ‘absolute space’, in the following
terms

Absolute space, in its own nature, without regard to anything external,
remains always similar and immovable ... Absolute motion is the translation
of a body from one absolute place into another; and relative motion, the
translation from one relative place into another.

According to Newton’s own theory, however, and according to modern
physics too, there is no way in practice to detect the distinction he is
here making. We can in principle detect every kind of relative motion,
but we have no way to say which of all those motions did or did not
constitute a displacement relative to ‘absolute space’. We cannot even
tell which inertial frame is at rest relative to ‘absolute space’. Because
of these facts, most textbooks advise students to abandon the concept
of ‘absolute space’. It is too hard to define it in a sensible way, such
that it has observable consequences. The same can be said of attempts
to define ‘absolute time’ (although in Newtonian/Galilean physics that
idea is sensible).

However, both Special and General Relativity are very elegantly and
successfully treatable in terms of geometric concepts such as spacetime
and the metric. This seems to suggest that we can assert the existence
of something absolute after all: the spacetime which the metric refers to.
After all, we can detect absolute properties such as spacetime curvature.
If there is a curvature, does that not imply that there is ‘something there’
that is curved? Or if there might in principle be curvature but none is
found, then does that not imply that there is ‘something there’ that is
flat? When gravitational waves propagate from one place to another,
surely something oscillates and carries the energy and momentumn.

One of the important lessons of physics is that on some (not all) ques-
tions there can be room for physical pictures that differ without being
mutually contradictory. For example, in classical physics one person may
assert that each particle moves in response to the net force acting on it
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Fig. A.1 Michelson-Morley
interferometer.

Some basic arguments

A.1 Early experiments

Special Relativity was discovered in part by careful interprelation of the
implications of theoretical results coming from the theory of electromagnetism
(Maxwell's equations), and in part from counter-intuitive experimental data,
Among the important experiments were those on the speed of light in moving
water, carried out by Hippolyte Fizeau in 1851, the stellar aberration first
observed by James Bradley in 1727 (see chapter 3}, the Michelson-Morley
experiment of 1887, and the experiments on the velocity-dependence of the
charge-to-mass ralio of cathode rays (electrons) performed by Walter Kauf-
mann between 1901 and 1905,

Bradley’s measurements showed that the direction of starlight arriving at
Earth is consistent with the idea that the light moves independently of the
Earth. From a modern point of view this is not surprising, but it helped to
rule out the idea that the light was propagated by a substance (‘aether”) which
could be disturbed by the motion of the Earth.

Fizeau used an interferometer to study the way the speed of light relative
to his laboratory was affected by the motion of water through which the light
was travelling. If the refractive index of the water is n, then the speed of light
relative to the water is ¢/n, and he found that, relative to his laboratory, the
speed w of the light-waves that travelled through moving water was

w=?%—|— (l—é)v (A1)

(to within experimental precision), where v is the speed of the water. To
interpret this result, Fresnel proposed that the factor (1 — 1/n?) came about
by the water partially dragging a medium (‘aether’) that conveyed light-waves.
In Einstein’s theory no such assumption is needed. Rather, as we shall show
below, Fizeau’s observation was an early example showing (approximately)
the way velocities must be added.

Michelson and Morley used an interferometer first developed by Michelson,
in which light-waves are split info fwo paths at right angles, and recombined
after reflection from mirrors placed in each ‘arm’ (Fig. A.1).

[f the interferometer is at rest then the round trip time in both arms is 2Lg /e
where Lp is the length of either arm. The concept of the Michelson—Morley
experiment. was that if the interferometer is in motion relative to a medium
conveying light-waves, then, according to Newtonian or Galilean notions of
distance, time, and velocity, one expects the round trip time in each arm to
depend on the orientation of that arm relative to the direction of motion of
the interferometer. On this basis the times would be expected to be (exercise
for the reader)
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Ll L] QL:/C
= — A2
T e¥v ec-v 1- ve/ec? (A-2)
T 2L,  2L3/c (A.3)

:s/c?—u’— V1 —v2/c?

for an arm oriented along and at right angles to the motion, respectively,
By rotating the interferometer, in order to reverse the roles of the arms, any
difference between the times can be detected accurately (by looking for a
movement of the interference fringes) without requiring the lengths Ly and
L3 to be known precisely. No such difference was found. This observation is
consistent with a Special Relativistic treatment, in which the length L, above
is predicted to be modified to L;(1 —v?/c?)Y/2,

In Special Relativity we reconsider the very definition of distance and time,
in such a way that the Main Postulates of the theory are upheld. The rest of
this Appendix presents some simple arguments that adopt and expound such
a special relativistic treatment.

A.2 Simultaneity and radar coordinates

If two events happen at the same place in some reference frame, then it is
casy to define the time and distance between them. The distance in this case
is zero, and the time is determined by the number of ticks of a standard clock
situated at the location of both events. (In practice we would also need to
agree some sort of standard of time, which is currently done by observing the
oscillations of the nucleus of a caesium atom in vacuum, but the details are
not necessary in order to study Relativity; we just need Lo agree that some
such standard can be defined. The Principle of Relativity ensures that the
definition applies in all reference frames equally.)

For events happening at different places, the time and distance between
them has to be defined carefully. A convenient method is first to use ‘radar
coordinates’, and then derive times and distances from those. For any given
reference [rame F we can pick a position to serve as the spatial origin O of a
coordinate system. The particle located at such an origin will have a straight
worldline. Now consider an arbitrary event R, not at the origin. We imagine
a ‘radar echo location’ scenario. That is, at time £, the particle at the origin
of F sends out an electromagnetic pulse, propagating at the speed of light ¢
(think of it as a radio-wave pulse or a flash of light, for example). We suppose
that the pulse is reflected off some object present at event R (so R is the event
of reflection), and then the pulse propagates back to the particle at the origin,
arriving Lhere at time 3. The times (f1,f2) constitute the radar coordinates
of event R in reference frame F. Together with the direction of travel of the
pulses, they suffice to determine the position and time of R in frame F. Let
us see how,

First, since the speed of light is independent of processes such as reflection,
the outgoing and incoming pulse must have the same speed ¢ in F. It follows
that the outgoing pulse takes the same time to get to R as the incoming one
takes to come back, so R must occur at a time half way between t; and t4: i.e.,
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slightest difference in the laws of physics which determine its metabolism, and
yet it would live for 150 years (i.e., 22 times longer than slow rabbits), when
the time is measured by clocks relative to which it has this high speed. This
effect has not been observed for rabbits, owing to experimental difficulties, but
it has been observed for muons and other particles, and for atomic clocks. Its
influence has also been inferred in & host of other observations [rom astronomy
and particle physics.

To deduce the time dilation factor, one can argue from the invariance
of the interval but the conceptually most simple derivation is arguably the
‘photon clock’ argument; see Fig, A.4. Note that once the time dilation for one
physical phenomenon is known (such as the light-pulse clock), that same factor
must apply to all other physical phenomena, by the Principle of Relativity.
Otherwise physics would differ from [rame to frame. The reader should think
through this point carefully. The argument hinges on the fact that ‘keeping in
synchrony' is frame-independent. For example, if a man steps onto a train at
a certain station once each day in the morning, and steps off once each day in
the afternoon, then observers in all frames will agree that the man boarded the
train, that it was daytime, etc. No observer will find that two rotations of the
Earth happened between boarding events, for example. Similarly, two clocks
that are situated next to one another and agree in one frame (though their
internal workings may differ) will also be found to agree by observers moving
quickly past them, because the number of ticks each has made between any
given pair of events is merely a matter of counting, which cannot depend on
reference frame. Consequently, if one is found to be running slow (relative to
the observer's proper clock) then both must be found to be running slow by
the same factor. Such clocks could be furnished by physical phenomena such
as the hyperfine splitting of hydrogen, or the hall-life of the muon, or the
heart-beat of a rabbit, etc.

Twin paradox

An important idea related to time dilation is called the ‘twin paradox’. A pair
of twins are initially the same age; one then travels away from Earth in a
high-speed rocket for some time, and returns at similarly high speed. Owing
to time dilation, the traveller does not age as much as the twin who remained
at home. The ‘paradox’ arises if one asserts that the situation is symmetric,
since Earth travelled away and back relative to the rocket, which suggests the
two twins should both age equally. However, the situation is not symmetric,
because one twin accelerated (in order to turn back for the return journey),
the other did not. This may be illustrated by plotting the worldlines on a
spacetime diagram: one worldline is straight, the other is not. The prediction
made by Special Relativity is unambiguous, and in truth there is no paradox.
However the thought experiment is useful and will be invoked several times in
the text.

A.4 Lorentz contraction

If a pair of events has a space-like separation, then there exists a reference
frame in which they are simultaneous. The distance between the events, as
observed in such a reference frame, is called the proper distance Lo. Owing to
the fact that we normally study the evolution of particles and systems, the
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Fig. A.4 The photon clock. A pair of
mirrors is attached to a rod of rest
length dp, such that light can bounce
between them, In the rest frame, the
time for a round trip of a hight-pulse
between the mirrors is v = 2dp/c. The
figure shows the situation observed in a
reference frame F travelling to the left
relative to this ‘clock.’ In F, the mirrors
have a speed v to the right. Let the
round trip time in F be t. To complete
a round trip the light-pulse must travel
a distance 2h. Clearly, since h > dp
we must find ¢ > v: time dilation. By
Pythagoras' theorem, h? = df 4 (vts)?
where t), = t/2. Therefore t = 2h/c =
(2,’::}(dﬁ - v2t? /4)/2, Solving for t one
finds ¢ = 7. The argument hinges on
the fact that the events ‘pulse leaves'
and ‘pulse returns' are just that: events,
50 t is the time between the same fwo
events as those whose time-separation
is 7 in the rest [rame.



402 Some basic arguments

concept of proper time is much more useful in practice than the concepl of
proper distance. However, distance is also needed in order to obtain a complete
description when changing from one reference frame to another,

A physical object can be regarded as a set of worldlines (those of tlje
particles of the object). I these worldlines are straight and parallel then the
object has constant velocity and fixed size. The spatial size of an object iy
defined as the size of the region of space it occupies at any instant of time,
Owing to the relativity of simultaneity, this concept is a relative one: i.e., it ig
well-defined only once a reference [rame is specified, and the value obtaineq
for the size can depend on which reference frame is adopted.

Suppose we choose some direction in space, and take an interest in sizes of
physical objects along this direction. The length of an object in its own rest
frame (i.e., the frame in which its velocity is zero), along the chosen direction,
is called its rest length. In any reference frame moving with respect to the rest
fraune, the object has some non-zero velocity v. In such a reference frame the
length of the object, along the chosen direction, is given by

= L0 (A7)
7(vy)

where vy is the component of velocity along the chosen direction. Since L < Ly,
this is called Lorentz contraction ov space contraction, It means that an object
in motion is contracted along the direction of motion compared to its size when
at rest. For example, a rabbit carried along in a rockel moving at v = 0.999¢
would have physical dimensions approximately 15 cm x 20 em x 1 cm, when
measured by rods relative to which it moves at this high speed.

To deduce this result, consider a clock flying at speed v across a room of
rest length Lo. The time taken to cross the room is Lo /v according Lo clocks at
rest in the room. During this period the fAlying clock registers a smaller time,
owing to time dilation: namely, 7 = (1/7v) Lo /v. An observer on the flying clock
finds that the room moves with speed v, and since it takes time 7 for the room
to pass him, he deduces that the width of the room is L =vr = Lg/~. Thus
he finds the moving room to be contracted by a factor v compared to its rest
length.

[t is instructive to consider also another argument based on radar or light-
pulse reflection. We use a photon clock once again, but now the clock is
oriented along the direction of motion. Thus, suppose a pulse of light is emitted
from one end of a rod and travels to the other end, wheve it is reflected and
comes back to the first end. In the rest frame of the rod, the time between
ewnission and final reception is 2Lg/c where Lg is the rod’s rest length. The
events of emission and final reception happen at the same place in the rest
frame of the rod, so their time separation in that frame is the proper time
between them, 7 = t3 — £;. The time between these events in any other frame
must therefore be

T:’rr:’y%.

The rod singles out a direction in space by its own axis, and we now consider a
reference frame in which it moves in that direction. In such a reference frame
the emitted light-pulse moves at speed ¢ and the far end of the rod moves at
speed ©. It follows that the time taken for the light-pulse to reach the point
of reflection is L/(e¢ — v) and the thme taken to come back is L/(c 4+ v}, where
L is the length of the rod in the new reference frame. Hence
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L L 2cL -2 Lo
c—v+c+v ¢ —? c? Lo v

This is eqn (A.7) in the case where vy = v. It explains the modification needed
to treat the Michelson-Morley interferometer by correcting eqn (A.2). The
general case is treated in chapter 2.

A.5 Doppler effect, addition of velocities

Suppose two particles, moving along a line, pass one another at event O, and
then at event A the first particle sends a light-signal to the second, where it
arrives at event B; see Fig. A.6.

We take O as the origin of position and time. If the relative velocity ol the
particles is v then, in the reference frame F of the emitter, the reception event
takes place a distance d = vtg away, so the signal travel time is d/c = vtg/c.
It follows that tg = t4 + (v/c)tg, therefore

b= 1 —uv/c (A38)

Events O and B take place at the same place in the reference frame F’ of
the receiver, so their time separation tp is a proper time in that frame, so
tg = yt'5, hence

g _ 1 1 _ ’1‘”2/62_ [1+v/e
ta Tyl—wfe” Y (L=v/e)? T V1 -vfc (A.9)

We can use this result to deduce the Doppler effect for light-waves, All we need
to do is suppose that the emitter emits regularly space signals, once every time
ta in his reference frame, then the above argument applies to all the signals,
and the receiver will receive them spaced in time by t as given by (A.9). This
set of signals could in fact be one continuous stream of light-waves, with period
t4. Then the event A could be, for example, 'the electric field of the light-wave
at the emitter is at a maximum', and the event 7 could be ‘the electric feld
of the light-wave at the receiver is at a maximum’. Since we define the period
of a wave to be the time interval between successive maxima, it follows Lhaf,
eqn (A.9) relates the periods observed at the emitter and receiver. By taking
the inverse, we obtain the relationship between the frequencies. Hence if light-
waves of frequency vy are emitted by a particle, then the frequency observed
by any particle moving directly away from the emitter at speed v is given by

(A.10)

This is called the longitudinal Doppler effect, or just Doppler effect. It permits
one to deduce, for example, the speed of a star relative to Earth, from the
frequency of the received light, if one has independent evidence of what the
emitted frequency was.

Now we shall use the Doppler effect to deduce a formula concerning relative
velocities. Suppose F' moves relative to F with speed u, and F” moves relative
to F' with speed v (ie, v is the speed of F” as observed in frame F'), all

Fig. A.5 An ordinary house subject
to Lorentz contraction along its direc-
tion of motion relative tg some refer-
ence body.

X 0

Fig. A.6 A simple set of events suited
to reasoning about the Doppler effect.
Two particles (with relative velocity
less than e) pass one another at the
origin O. At event A the first particle
sends a light-signal to the second par-
ticle, where it arrives at event B.
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motions being along the same direction. Then we can calculate the speed 1 of
" relative to F by using the Doppler effect formula three times, as follows;

gl A e e e A8 g glwle
1+ufe 1+v/e 1+w/e

1t follows that
1—wufc\ (1-v/c) _1—wfc
L+ufe) \1+v/e) 14w/c

and after a little algebra we obtain

w4+ v

w=——"
1+ uw/c?

(A.11)

This is the formula for ‘relativistic addition of velocities’. The generalization
to velocities in any direction is presented in chapter 2. The formula predicts
that w is never greater than c as long as u and v are both less than or equal
to ¢; this is in agreement with the Light Speed Postulate, The result predicted
by classical physics is w = u + v; the relativistic formula reproduces this in
the limit uv < ¢*.

Eqn (A.11) explains Fizeau's observation (A.1) of the speed of light in
moving water, which turns out to be an approximation to the exact result
predicted by eqn (A.11):

efn+wv
w=—t—,

1+v/nc
Note that the velocities in the formula (A.11) are all what we call ‘relative
velocities’, and they concern three different reference frames. There is another
type of velocity that can be useful in calculations, which we shall refer to as
‘closing velocity’. The concept of ‘closing velocity’ applies in a single reference
frame, and il refers to the rate of change of distance between two objects,
all distances and times being measured in a single reference frame. When
both objects are moving relative to the reference frame, a closing velocity
is not necessarily the velocity of any physical object or signal, and it can
exceed the speed of light. For example, an observer standing at the collision
point of a modern particle accelerator will observe two bunches of particles
coming towards him from opposite directions, both travelling at close to ¢. The
positions of the bunches are, to good approximation, given by z; = L — ¢f and
z3 = —L 4+ ¢t in the rest frame of such an observer, where L is a constant
(equal to half the distance between the bunches al ¢t = 0). Hence the distance
between the bunches is z1 — 22 = 2L — 2¢t. This distance changes at the rate
—2¢, therefore the observer finds that the two particle bunches have a ‘closing
velocity' of 2c. Nevertheless, the relative velocity of the bunches is w = 2v /(1 +
v?/c?), which is less than ¢. The relative velocity is the velocity which an
observer moving along with one bunch will ind the other to have.



Constants and length
scales
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Compton length Ao iy 86 roquiee quantum fold
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the copbination of distance and momentom uncertainty i8 of the oeder of Lhe
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Lheory i reguireed: pnmely, quantum feld Ueary,
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Derivatives and index
notation

Trapaformation wmoiriz. For any functien f depending on  coordinates
{42, . 2} wn may write

= 'j-lr 4 ﬂl a_ll s ﬂ i
df = H:” i ﬂrth+E|,yL’l+ s s £
In predex potation this 2 writlon
dif = ::r;d':t:'“:-!'ﬂ_\ﬂliz"'-. (Ci

Il we introdoce s seoond conrdinate system [, 0’4", 2"}, then as one oxplores
spucetime ench of the primed coordibabes = some funcelon of all the unpomed
codpdinates, to which the apove result can be applied, and Bherefore

T .
ile =—ﬂ_-r-_;‘-llr-"

]
Thiz expression shows how one four-versor, nemaly dx™, I8 expressed in the
new coordinate system o other wosds, 6 tells us that the fransformagion
mutrix A'y 18 none other than the ot of partial derivatives appesaring on the
right hand side of th eqa (32

e, 3
ﬁi = Fl {:.'I-‘:l

For Bpecial Helativity, for example, this set constitutes the Losents transfor-
mabion and gives o symmetric malziz More genecally, kowever (in General
Rufpbivity, for exampla), the translormation maicid mesl oot b symmeteic
(g, coosider the case v = g4 2, 2 =z}

When we inbresiuced the grodient eperater O In chagter 8, we proved that
i orepuired & mines slign in the timedenvative, Inoorder by ensore that, o
sgilar f, CIF i pod-voctor. We gun now arpgue that this sign was owing to the
fact Bhat &f e e covarint. This can be proved in geseral by using egn
(.30, as (oilows.

W have, e any scolar Tonction f

df = %dr".



Derivatives and index notation

We Lake an interest in the partisl derivatives of f with respect to some other
set of coordinates {t', 2/, %', z’}. To this end, divide the cquation by dz® while
holding z* 7% constant:

o _ o o
8zy” T Jx Dy’

The RHS can be written &) (3f/8z), where the transformation matrix is

a ox”
I(ng = W. (C4:)

The transpose of this matrix is the inverse of A"c:, since from eqn (C.2) we
have that

Az oz 9zt
Hz T Dar 828 (©5)

Bul, obviously,

aj“‘

7
a
v S

50, using eqns (C.3) and (C.4) in (C.3),
ASKD = 65

which shows that K7 = A~', Thus we have proved that &f/d2® transtorms
like a covariant vector. This justifies the placement of the index in the
definition of 8, presented in eqn (12.5). The gradient operator @/8z° is said
to be naturally covariant (and the o on the bottom of the partial derivative
gives a reminder that the object one obtans should be exhibited with a lower
index).

As usual with derivative operators, the order of symbols matters: ,u%0° is
not the same as u’0,v°. (A practice that ¢can be useful when a lot of operators
are in play is to introduce a commas notation after all the indices: further
indices after the comma indicate partial derivatives. Thus a result such as

Aa(ugv™) = (Dgug)v" + up (8.0°)
would be written
a [ a [ a c
(ugv)a = UpgV + Uy Va

"This notation restores full frecdom in the order of writing the symbois. We
have not used it in this book, however, because we do not want Lo require you
to learn new notation unneccessarily.)

The partial derivative opervators coramute among theraselves because

B f/0xBy = B* f/Bydx, etc. (assuming the functions arc single-valued). So,
for example:

BaOvu” = 0pDpu”.

407
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The product rule for differentiation reads, for some generic tensors A and B,
6. (A..B...) = B.oo (B.A..) -+ A.. (a.Booo) (CG)

where the dots signify any combination of indices, not necessarily repeated.
It is just like taking the derivative of a product of scalars, because, after al],
each clement of a tensor is just a scalar (in the sense of a single number, not
a Lorentz scalar).

For example, consider a scalar product of two 4-vectors:

8% (UMVy) = (8°UMV, + (8°VMU,. (C.7)
When U = V we obtain
8" (UMU,) = 2(8°UM)U,,
ie. (U - Uy = 2(0U) - U. (C.8)

When the size of a 4-vector U is constant (i.e., independent of time and space),
one has (U - U) =0, and then eqn (C.8) says that each row of its gradient
tensor 8*U? is orthogonal to U. This is used in the derivation in appendix D.

Another useful application of the product rule is observed in expressions
such as

A8 A

Noting the repeated indices, we should like to think we have a scalar some-
where, which is right. We just need to spot that

AL B, A% = %Bas where s = A,., A"". (C.9)

(check it by applying eqn (C.6) to the right-hand side). This is the general-
ization of the familiar (d/dz)(f?) = 2f(df /dz).



The field of an arbitrarily
moving charge

This appendix contains two calculations relevant to the problem of finding the
electromagnetic field when the charge and current distribution is given,

D.1 Light-cone volume element

We claimed in eqn (8.32) that in the case of integration over a light-cone (e.g.,
a past light-cone) the combination d®r./rs is Lorentz-invariant, where the
notation refers to a volume element divided by spatial distance from source
event to the field event, where the source event lies on the cone and the field
event is at its apex.

To prove this we can, without loss of generality, place the field event at the
origin. We then propose that the variables z.,y., z. form the spatial part of
the null 4-vector

—Tgf
Ro=| ™ (D.1)

UYs
Zs

where 7y = (22 4+ y? + 22)'/? (since now the field event is at the origin).
This allows us to understand how the volume element transforms from one
reference frame to another, for the case of integration over a light-cone. To
reduce clutter, we now drop the subscripts s and sf. When expressed in a new
coordinate system (z',9', 2) the volume element becomes

s B Bx
8=’ By bx
dedydz=| 2y 2y 2y dz'dy'dz’. (D.2)
bs 8z gz
0s’ By oz

It is clear by symmetry that this element is invariant under rotations, so it
suffices to consider how it varies under the standard Lorentz transformation.
We have

z=v(z' +ot') =v(z' —vr'/c) = % = (1 = Ii)

using dr'/dz" = z' [r'. Hence

9z y( —vx'fe) T
ar’ ! T

D.1 Light-cone volume
element

D.2 The field tensor

409
410



410  The field of an arbitrarily moving charge

Fig. D.1

dr

dz

where in the final step we used that —r is the time part of the 4-vector Ry,
which transforms as R, = ARy,. Using also y = ¢ and z = 2z’ we find that the
complete Jacobian is

r/r 0 0 ,
0 1 0 - -
o o 1| T
Hence
dedydz _ (r/r')da’dy'ds’ _ da'dy’ds’
r - r o 7’

for the region of integration (i.c., the past light-cone) under consideration.
Reinstating finally the subscripts s and sf, we have the result shown in
eqn (8.32).

D.2 The field tensor

To obtain the electromagnetic ield of an arbitrarily moving point charge, we
take as our starting point the Liédnard—Wicchert potential, eqn (8.33):

.9 U
"~ 4reqeR-U

(D.3)

where R = Ry — Ry is the 4-displacement from the source event to the ficld
event, and U is the 4-velocity at the source event, the source event being
retarded, such that R is null. Let

then we are interested in

. 80,U" —U"3,s
O.A" = —}-—27—“ (D.4)
3
where we have dropped the factor —g/4mcoe; we shall reinstate it at the end.
Let o” = dU”/dr be the 4-acceleration at the source event, and observe (see

figure) that since U = U{r),

or
or

o _avor _ .
dc  dr Bx_a

and similarly for other partial derivatives of U¥. Hence
8,U" = "o, (D.5)
More gencrally, for any quantity at the source event,

_ 0 _ 8717(( ,.)i
BT g T dzudr T VM dr

(D.6)

To find 8,7 we use a trick which takes advantage of the fact that R is of fixed
size (always null) as we move the field point around. First, since R = Rf — R;
we have



dRY

OuRuzé'::— 135“1'_0 —Ua‘r (D.?)

But since R is of fixed size, it is orthogonal to its gradient (see eqn

(C.8)), so

R,OR” = 0 = R, —R,U”8,r

Ry

= duT = :
- s

After multiplying by a” and using eqn (D.5) we obtain a simple expression for
the first term in the numerator of eqn (D.4):

58, U" = o"R,. (D.8)
Now we calculate the second term. We need dys, which is
8u(RLUY) = (8uR")U, + R, (9,U") (D.9)

where we have used a see-saw to bring out the relationship to eqn (D.7). Using
eqns (D.7) and (D.B) this is

(u“ ~U"U, ) + R,,a"R—S“

= U, + % (& 4R a)

= U”@us:U”U,‘Jr%(CQ—I—R-a) u”. (D.10)

Substituting egns (D.10) and (D.8) into eqn (D.4) and gathering terms in
Ry, we find

-U“U, *R. -,

where!
v v 1 v v
0" =U" - 5 (s = U"e-R). (D.11)

Upon substituting this into the antisymmetric form F#¥ = §*A” — 8 A* the
first term disappears and, after reinstating the factor —g/4mepc, we have

1Y _ RV
e (R0¥ - R70¥)
Ames (RyUM?

(D.12)

This is the field tensor for the electromagnetic field of an arbitrarily moving
point charge,

We have presented the calculation for the metric (— + ++). The corre-
sponding expressions in the case of the metric (+ — ——) are obtained by
substituting ¢ — —¢® in eqn (D.11).

e

The ficld tensor

411

! This can also be written 0¥ = U¥ —

1
c

- ((LVUA _—

UVO.A) R,\.
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The field of an arbitrarily moving charge

To find the electric field, use E = ¢F%, keeping in mind

R¥ = (v, 1)
U* = v(c,u) = s=R-U=+v(-cr+u-r)
o =(¥e, yu + va).

Upon substituting these into the expression for U* one finds that the ¥ terms
cancel, and one is left with

U° = ~vc+ 73a -r/c,
- 72
U'=~yu+ = (v(2 - c)u -+ sa).

Putting tlis into eqn (D.12) leads directly to the expression given in eqn (8.48).



Bibliography

Introductory

Einstein, A. Relativity: The Special and the General Theory (Pober
Publishing Company, 2010) (first published 1916).

Fayngold, Moses. Special Relativity and How it Works (Weinheim: John
Wiley, 2008).

Feynman, Richard P. Siz Not-so-Easy Pieces (London: Penguin Books,
1999).

French, A. P. Special Relativity (Wokingham: Van Nostrand Reinhold,
1968).

Mermin, N. D. It’s About Time: Understanding Einstein’s Relativity
(Princeton: Princeton University Press, 2009).

Muirhead, H. The Special Theory of Relativity (London: Macmillan,
1973).

Rindler, W. Introduction to Special Relativity (Oxford: Clarendon Press,
1982).

Rosser, W. G. V. An Introduction to the Theory of Relativity (London:
Butterworths, 1964).

Steane, A. M. The Wonderful World of Relativity (Oxford: Oxford
University Press, 2011).

Taylor, E. F. and Wheeler, J. A. Spacetime Physics (New York: W. H.
Freeman, 1992).

Taylor, J. G. Special Relativity (Oxford: Clarendon Press, 1975).

Williams, W. S. C. Introducing Special Relativity (London: Taylor and
Francis, 2002).

Intermediate or advanced

Cheng, Ta-Pei. Relativity, Gravitation and Cosmology (Oxford: Oxford
University Press, 2005).

d’'Inverno, R. Introducing Einstein’s Relativity (Oxford: Clarendon Press,
1992).

Jackson, J. D. Classical Electrodynamics (Hoboken: John Wiley, 1999).

Landau, L. D. and Lifshitz, E. M. The Classical Theory of Fields
(London: Butterworth—Heinemann 1987).

Misner, C. W., Thorne, K. S., and Wheeler, J. A. Gravitalion (New
York: W. H. Freeman, 1973).

Rindler, W. Relativity: Special, General and Cosmological (2nd edn.)
(Oxford: Oxford University Press, 2006).

Schwarz, P. M. and Schwarz, J. J. Special Relativity, from Einstein to
Strings (Cambridge: Cambridge University Press, 2004).






Index

aberration 44-51, 284, 398
spherical 289
Abraham, M. 199
absolute 8, 20, 218, 225
derivative 366
space 395-396
velocity 59
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accelerated frame 266
see also: uniformly accelerated frame
acceleration 30, 33-35, 60-62, 74, 104
gravitational 210-222, 257, 269-272,
281, 291, 296, 298, 397
self- 157, 327, 392
transverse, longitudinal 34, 60
and electromagnetic radiation 186,
188-191, 198-204
and rotation: see Thomas-Wigner
rotation
see also: hyperbolic motion
accelerator 24, 44, 68, 89, 404
accretion dis¢ 281-282, 291
action 329-337, 340
advanced potential 178-180
aether 59, 386, 398
affine connection vij
Alice 63
ambiguity 243, 288, 317, 356, 397
analogy 281, 292
angle excess 255, 258, 260, 267
antenna 194-196
antisymmetric tensor 166, 167, 169,
311, 317, 320-323, 394
apparent size 53, 55, 289
arc 50, 212
length 48, 222, 252-255, 267,
284, 339
circular 197, 246, 250, 280
Aristotle 210
associative 135
astronaut 218-220, 292, 298
astrophysics 47, 96, 204, 291
atomic
energy levels 85-87, 241-243
structure 95, 205, 353
see also: clock

axial vector 315, 341, 346
axiom 80, 107, 265, 322, 388
see also: postulate

Bargmann, Michel, Telegdi
equation 353
basis vector 307-310
beauty 161, 237, 264, 283, 370, 387
Ben-Menaham, S. 129
Berkeley, G. 395
Birkhoff’s theorem 273, 295
billiards 93
binary star system 6, 15, 54, 266
binding energy 85, 218, 389
Biot-Savart law 156, 193
bird 349
black body 114
black hole 238, 279, 282, 290-295,
298
Kerr 296
thermodynamics 296
Bohr
magneton 132
radius 95, 205, 392, 405
Bolton, C. T. 291
Bondi, H. 15
Bradley, J. 51, 398
Braes, L. 291
breaking strength 58, 121-123, 141,
153, 214, 246
bremsstrahlung 96, 200
brightness 50, 201, 204

cabin 211, 220224
canonical
momentum 330, 332, 335-337
equations 331
capacitor 59, 150, 153, 375-377,
384, 393
Carroll, L. (C. L. Dodgson) 63
causality 7, 15, 120
centre of
mass: see centroid
momentum: see CM frame
centrifugal barrier 71, 281
centroid 342-347, 354

Ceres 286
CERN, Geneva 89
Chandrasekhar, S. 291
charge, electric 144, 150-152, 155
density 107, 110, 149, 153, 176
point: see electric field
Cheng, T. 413
Christoffel symbol vii
classical: see Newtonian
clock 3, 15, 41, 218, 225, 231-240, 261,
293, 399-402
closure 135
CM frame 40, 88-94, 98-101, 103, 342,
345
collision 24, 79, 84-92, 103-105, 247,
341, 345, 391
elastic 76-79, 92-97, 379
comet 72
commutation 10, 134, 306, 312,
321, 407
compass 143, 154, 349
complex notation 171, 194, 328
Compton 115
effect (scattering) 94-96
length 95, 392, 405
concept vii-412
conduction, conductivity 152, 313,
376
cone: see light-cone
conformal 257
conservation 37, 337
angular momentum 69, 71, 280, 341
charge, particle number 111, 140,
144, 152, 321
energy 7, 37, 241-246, 265, 280, 295,
370-376
energy-momentum 76-105, 337, 340,
364-366, 380, 384, 388-393
momentum 7, 56, 76, 157, 337, 368,
384
see also: conservative, continuity
equation
conservative 70, 73, 330
conspiracy 150, 153, 211
continuity equation 112, 321, 364-369,
384, 388
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contraction
Lorentz vii, 14, 18-20, 34, 46, 52,
107, 111, 120124, 129, 140, 152,
156-158, 170, 228-232, 247, 356,
362, 401-403
of tensors 308, 313, 367, 381

see also: expansion fleld, curved space

contravariant 66, 165, 306-311
convention 13, 31, 223, 307, 314, 390
coplanar 104, 141, 351
Cornell 201
cosmic
ray 94, 103, 158
microwave background radiation 96,
104
cosmology vii, 262, 266, 413
Couch, W. 290
Coulomb

feld, law 71, 132, 147, 186, 188, 260,

371, 385
gauge 162, 173
potential 180, 183
covalent bond 389
covariance

of Maxwell’s equations 150, 159-162,

168, 182, 319-323
general 226, 266
covariant
equation 37, 79, 112, 114, 150, 210,
345, 353, 380384, 397
Euler-Lagrange equations 332-336,
340
four-vector 306-311, 406
Crab nebula 204
cross product: see vector product
curl 150, 159, 172, 316, 322
current
density 30, 110-113, 140, 149, 181,
313, 323, 370
-carrying wire 151-154, 194-196,
204, 375
see also: energy, Poynting vector
curvature
extrinsic 256
Gaussian 253-258, 267, 275, 298
intrinsic 248-266
line 221-223, 278
of space 263, 280, 288
Riemann 264
cyclotron 68
Cygnus X-1 291

d’Alembertian 107, 114, 316
de Bourcy, C. ix

de Broglie wave 114, 118
d'Inverno, R. ix, 413

de Sitter 266, 279

decay 24, 42, 85-91, 104
deflection 266, 286-289
see also: aberation, lensing
deformation: see rigidity
density: see charge, current, energy,
momentum
determinant 135, 139, 267, 328
diagram: see spacetime
Dicke, R. 217
diffraction 195
dipole moment 170, 328, 353
Dirac, P. 115, 324
delta function 176
notation 165
dispersion relation 117
distance (definition of) 3
distortion 122-124, 140, 256
divergence 109, 159, 189, 316
theorem 177, 390
see also: continuity equation
Doppler effect 15, 18, 43-50, 54, 95,
224, 403
Draconis 51
dragging 296, 398
Droste, J. 291
dual tensor 317, 323, 346, 394
dummy index 307-312, 321, 382
dust 200, 296, 359, 393
dyadic product 165

Earth 6, 50, 103, 212, 215-219, 224,
240, 245, 264, 273, 280, 298, 395,
398

Basther, R. 74

eccentricity 283, 208

eclipse 288

Eddington, A. 288, 294

-Finkelstein coordinates 292, 299

effective potential 72, 74, 281-284

eigenvalue, eigenvector 134, 326-328,
348

Einstein, A. ix, 6, 76, 115, 142, 211,
214, 283, 395, 413

field equation 263-266, 292, 295,
397
radius 289
ring 289
train 9
elastic: see collision
electric field
definition 144, 320
motion in 67, 326
of arbitrarily moving point
charge 188
of charge in hyperbolic motion 196,
204
of oscillating dipole 194

of uniformly moving point
charge 156, 170
transformation 147, 313
electromagnetic wave 48, 115, 171-174,
178, 189, 194, 221, 241
electron 67, 73, 90, 95, 115, 204, 392,
393, 405
gyromagnetic ratio 141, 353
electrostatic 154, 159, 162, 170, 175,
218, 372, 389
Ellis, R. 290
ellipse 38, 51, 73, 98
ellipsoid 258, 267
ellipticity: see eccentricity
embedding 249, 274, 279
emission 24, 46-50, 54, 85, 96, 201,
291, 297
energy 30, 36-40, 42, 70, 73, 75, 79, 83,
103, 116
current, flux 47, 50, 101, 197, 357
density 47, 263, 266, 355-394, 397
electromagnetic field 190, 369-376,
382-394
gravitational 241-246, 280282, 294,
298
kinetic 57, 59, 329, 333
-momentum 36, 42, 80-105, 112, 199
potential- 70-74, 103, 109, 159, 240,
329, 369-373
threshold 89
see also: binding, conservation
entropy 115, 297
Eotvos, L. 215
equilibrium 122, 216, 387, 390
equivalence
mass-energy 79, 83
Principle, weak 215
Principle, strong 220
ergosphere 296
Eriksen, E. 196
escape velocity 121, 273, 291
Buclidean: see geometry
Euler
-Lagrange equations 330, 335, 338,
340
equation (fluid mechanics) 366, 367
Bulerian derivative: see absolute
derivative
event 4-8, 14, 15, 17, 41, 46, 49, 63
field-, source- 169, 179, 182-188, 196,
204
expansion field 249-253, 258-263, 274
explosion 23, 53

Faraday, M. 149
law 159
tensor 168-169, 313, 319-328
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Tekete, J. 215
Fermat's principle 246, 287, 340
Feynman, R. 188, 413
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