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Preface

Albert Einstein's special theory of relativity, one of the supreme achieve

ments of the human intellect, is more accessible to a nonspecialist audi
ence than is commonly believed. Over the past twenty years I have taught
relativity with some success to a diverse group of students at the Univer
sity of Nebraska, including some with little or no previous physics and
with limited mathematical preparation. This book is intended to serve as
a text for such a course, as well as to guide the reader who wishes to study

the subject independently.
Relativity is a challenge, but the challenge is in the ideas, not in the

mathematics. The reader should not be put off by the fairly large number
of equations; nearly all of them involve nothing more than simple algebra.
Some of the more complex mathematical sections can be omitted without
disrupting the development.

Although this book is on an elementary level, it is by no means a
watered-down version of relativity. The logical arguments are presented
in a rigorous manner, and the major conceptual difficulties are addressed.
For example, I discuss in detail the connection between the possible rever
sal in the time order of events, predicted by relativity, and the logical
requirement of causality (the cause must precede the effect). It is my hope
that even sophisticated readers will find the presentation stimulating.

The emphasis throughout is on the concepts and the logical structure
of the theory. To that end, introduction of the Lorentz transformation is

delayed until chapter 4. In chapter 3, the relativity of simultaneity and
the time dilation and length contraction effects are deduced directly from

Einstein's two postulates and are analyzed exhaustively. These profound
conclusions concerning the nature of space and time constitute the heart

Xl
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of the theory. The reader who masters the content of chapter 3 will under
stand relativity.

An entire chapter is devoted to the paradoxes of relativity, including
the famous twin paradox as well as several based on the length contraction
effect. In addition to their intrinsic interest, the paradoxes are an effective
teaching tool and provide a convenient way to introduce some important
and subtle ideas.

A novel feature of this book is the use of the Loedel diagram, a geomet
rical representation of relativity that has received little attention in the
literature. The Loedel diagram exhibits the space-time consequences of
the theory in a visual way that many students find helpful and does not
share the major drawback of the better-known Minkowski diagram,
namely, the need to employ different scales for the length and time axes.
Because some instructors may prefer not to delve into the Loedel diagram,
however, it is set off at the end of chapter 5 and can safely be omitted. I
use it to help clarify the resolution of the paradoxes in chapter 6-but
only as a supplement to the more conventional explanations.

Chapter 7 deals with the application of relativity to atomic energy and
particle physics. I present Einstein's first derivation of the mass-energy
relation E == mc2 and use the same thought experiment to derive the
expression for relativistic momentum.

The last two chapters are an introduction to general relativity and to
cosmology. Those subjects cannot be treated at an elementary level in the
same depth and with the same rigor as can the special theory, but most
students are eager to learn something about curved space and the ex
panding universe. These two chapters should be considered optional. They
fit comfortably into a full-semester course such as the one I teach, but an
instructor who wants to devote only part of a semester to relativity may
choose to restrict the syllabus to the special theory.

I have included more historical material than is found in most treat
ments of the subject. Two mysteries in particular have fascinated me for
a long time: the role of the Michelson-Morley experiment in the genesis
of relativity and the contributions of Lorentz and Poincare and their influ
ence on Einstein. Detailed discussion of these topics is found in sections
3.2 and 4.8. Galileo's views on relativity are discussed in section 1.3.

Notes: Relativity makes frequent reference to observers, who come in
two genders; rather than repeatedly employing the construction "he or
she," I have assigned genders at random. Instructors may obtain answers
to the problems by writing to the author, Department of Physics and As
tronomy, University of Nebraska, Lincoln 68588.
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1 Galilean Relativity

1.1. RELATIVITY AND COMMON SENSE

A child walks along the floor of a moving train. Passengers on the train
measure the child's speed and find it to be 1 meter per second. When
ground-based observers measure the speed of the same child, they obtain
a different value; observers on an airplane flying overhead obtain still
another. Each set of observers obtains a different value when measuring
the same physical quantity. Finding the relation between those values is
a typical problem in relativity.

There is nothing at all startling about these observations; relativity was
not invented by Albert Einstein. Einstein's work did, however, drastically
change the way such phenomena are understood; the term "relativity" as
used today generally refers to Einstein's theory.

The study of relativity began with the work of Galileo GaHlei around
1630; Isaac Newton also made important contributions. The ideas de
scribed in this chapter, universally accepted until 1900, are known as
"Galilean relativity."

Galilean relativity is fully consistent with the intuitive notions that we
call /I common sense." 1 In the example above, if the train moves at 30

meters per second (m/sec) in the same direction as the child, common
sense suggests that ground-based observers should find the child's speed
to be 31 m/sec; Galilean relativity gives precisely that value. Einstein's
theory, as we shall see, gives a different result.

In the case of the child, the difference between the two theories is mi

nute. The speed measured by ground observers according to Einstein's

1. According to Einstein, common sense is "that layer of prejudice laid down in
the mind prior to the age of eighteen. If

1
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relativity differs from the Galilean value 31 m/sec only in the fourteenth

decimal place; no measurement could possibly detect such a tiny differ

ence. This result is characteristic of Einsteinian relativity: its predictions

are indistinguishable from those of Galilean relativity whenever the ob

servers, as well as all objects under observation, move slowly relative to

one another. That realm is generally called the nonrelativistic limit, al

though Galilean or Newtonian limit would be a more apt designation.

"Slowly" here means at a speed much less than the speed of light.

The speed of light plays a central role in Einstein's theory; whenever

any speed in the problem approaches that value, Einsteinian relativity

departs dramatically from that of Galileo and Newton. Because the speed

of light is so great, however, most commonly observed phenomena are

adequately described by Galilean relativity.

The 1/ special" theory of relativity, which is the principal subject of this

book, is restricted to observers who move uniformly, that is, at constant

speed in the same direction. If observers move with changing speeds, or

along curved paths, the problem of relating their measurements is much

more complicated. Einstein addressed that problem as well, in his 1/gen

eral" theory of relativity. Because the general theory involves quite ad

vanced mathematics, I can give only a descriptive treatment in chapter
8. The special theory, in contrast, requires only elementary algebra and

geometry and can be presented with full rigor.

Many of the conclusions of special relativity run counter to our intu

ition concerning the nature of space and time. Before Einstein, no one

doubted that time is absolute. Newton put it as follows in his Principia:
1/Absolute, true, and mathematical time, of itself and from its own nature,

flows equably without relation to anything external."

Special relativity obliges us to abandon the absolute nature of time. We

shall see, for example, that the time order of two events can depend on

the relative motion of the observers who view them. One set of observers

may find that a certain event A occurred before another event B, whereas

according to a second set of observers, who are moving relative to the

first, B occurred before A. This result is surely difficult to accept.

In some cases, a reversal of time ordering would be truly bizarre. Sup

pose that at event A a moth lands on the windshield of a moving car; the

car clock reads 12:00. At event B another moth lands; the car clock now

reads 12:05. For the driver of the car, the order of those events is a direct

sensory experience: she can see both events happen right in front of her

and can assert with confidence that A happened first. If observers on the

ground were to claim that event B happened first, they would be denying
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that sensory experience; moreover, the car clock would according to them
be running backward! (It would read 12:05 before it reads 12:00.)

As we shall see, special relativity implies that moving clocks run slow.
That is itself a strange result, but clocks running backward would be too
much to swallow. No such disaster arises, however. In the case of the
moths, event A happens first according to all observers. A reversal of time
ordering can occur only for events spaced so far apart that no single ob
server (and no single clock) can be present at both. The order of such
events is not a direct sensory experience for anyone; it can be determined
only by comparing the readings of two distinct clocks, one present at event
A and the other present at B. If two sets of observers disagree on the order
of those events, no one's sensory experience is contradicted and no one
sees any clock running back\vard. The proof of this assertion, given in
chapter 5, depends on the fact that nothing can travel faster than light,
one of the important consequences of special relativity.

A logical requirement of any theory is causality. If event A is the cause
of event B, A must occur before B: the cause must precede the effect. We
will see in chapter 5 that special relativity is consistent with the causality
requirement. Whenever a cause-and-effect relation exists between two
events, their time order is absolute: all observers agree on which one hap
pened first.

Figure 1.1 shows a hypothetical experiment to illustrate the relativistic
reversal of time ordering. Event A takes place in San Francisco and event
B in New York. According to clocks at rest at those locations, A occurs
before B. The same events are monitored by observers on spaceships mov
ing from west to east at equal speeds; one ship is over San Francisco when
event A occurs, and the other is over New York when event B occurs.
Special relativity predicts that if the ships are moving fast enough, their
clocks can show event B happening before A. Notice that no single clock
is present at both events; the relevant times in the problem are recorded
by four distinct clocks, two on the ground and two on the spaceships.

I hasten to add that no such experiment has ever been performed. The
fastest available rockets travel a few kilometers per second, only about one
hundred thousandth the speed of light. At that speed, the events of figure
1.1 would have to be separated in time by less than a millionth of a second
if a reversal of time order were to be detectable. Moreover, the speeds of
the two spaceships would have to be equal to within a very small toler
ance. The experiment is just too hard to carry out. But we can be confident
that if faster rockets were available and if other technical requirements
were met, the effect could be detected.
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Ship Clock

San Francisco

Earth Clock

Event A

Ship Clock

New York

Earth Clock

Event B

Fig. 1.1. Hypothetical experiment to demonstrate
the reversal of time ordering predicted by special
relativity. Event A occurs in San Francisco, event B
in New York. Each event is detected by two sets
of observers-one set fixed on earth and the other
located on spaceships flying at equal (constant)
speeds. Each set of observers measures the times of
the two events on its own clocks, which have been
previously synchronized. According to earth clocks,
event A happens before B, whereas according to
spaceship clocks, B happens before A. The time in
tervals shown on the clocks are much exaggerated.

The evidence that confirms special relativity comes principally from

atomic and subatomic physics. In many experiments particles move at

speeds close to that of light, and the effects of special relativity are dra

matic. Particles are created and annihilated in accord with the famous Ein

stein relation E== me2
. No understanding of such phenomena, or of the

kinematics of high-energy particle reactions, would be possible without

relativity. Thus Einstein's theory is confirmed daily in every high-energy

physics laboratory. Particle reactions are not within the realm of everyday

experience, however; in the latter realnl, everything moves fairly slowly 2

2. An obvious exception is light itself, which is part of everyday experience. Al
though any phenomenon that involves light is intrinsically relativistic, most opti-
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and relativistic effects are not manifested. If the speed of light were much
smaller, the effects of special relativity would be more prominent and our
intuition concerning the nature of time would be quite different.

The preceding discussion is intended to provide a taste of what is to
come and to encourage the reader to approach relativity with an open
mind. I am not suggesting that any conclusion contrary to one's intuition
be accepted uncritically, even though the context may be restricted to un

familiar phenomena. On the contrary, any such conclusion must be vigor

ously challenged. Before abandoning ideas that appear to be self-evident,
one must be satisfied that the experimental evidence is sound and the

logical arguments are compelling.

1.2. EVENTS, OBSERVERS, AND FRAMES OF REFERENCE

I begin by defining some important terms. In relativity an event is any
occurrence with which a definite time and a definite location are associ
ated; it is an idealization in the sense that any actual event is bound to
have a finite extent both in time and in space.

A frame of reference consists of an array of observers, all at rest rela
tive to one another, stationed at regular intervals throughout space. A

rectangular coordinate system moves with the observers, so that the x, y,
and z coordinates of each observer are constant in time. The observers

carry clocks that are synchronized: each clock has the same reading at the
same time.3

Each observer records all events that occur at her location. Each event
has four coordinates: three space coordinates and a time. By definition,
the space coordinates are the coordinates of the observer who detected the
event and the time of the event is the reading of her clock when it occurs.

A second frame of reference consists of another array of observers, all
at rest relative to one another and all moving at the same velocity relative
to the first set. They have their own coordinate system and their own
(synchronized) clocks, and they also record the coordinates of events. The
coordinates of a given event in two frames of reference are, in general,

cal phenomena can be explained without invoking the specific value of the speed
of light. For example, refraction (the bending of a light ray when it crosses the
boundary between air and glass) depends only on the ratio of the speeds of light
in the two media. Hence a nonrelativistic theory of refraction is quite adequate.

Effects of relativity are manifested in experiments that depend on the time
required for light to traverse a specified path, such as the Michelson- Morley ex
periment, discussed in detail in chapter 2.
3. The synchronization of clocks is discussed in detail in chapter 3.
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different. The central problem of relativity is just to determine the rela

tion between the two sets of coordinates; this turns out to be not so simple

a matter as it first appears.

Throughout this book, whenever observations in two frames of refer

ence are being compared, one frame will be called 5 and the other 5'.
Coordinates measured in frame 5' will be designated by primed symbols,
and those measured in frame 5 will be designated by unprimed symbols.

Events will be labeled E], £2' £3' and so on. Thus, x~, y~, zi, and ti denote
the coordinates of event £} measured in frame 5'; X2' Y2' 2 2 , and t2 denote
the coordinates of event £2 measured in frame 5, and so on.

As an illustration, let us return to the problem of the child walking on

a train. Figure 1.2 shows the child's motion as seen in two frames of

reference, one fixed on the train (sketches [a] and [b]) and one fixed on
the ground (sketches [c] and [d].) 5 is the ground frame and 5' the train
frame. The two sets of axes are parallel to one another. The train's motion
as seen from the ground is taken to be in the x direction and the floor of
the car is in the x-y plane. Since the child has no motion in the z direction,

the figure has been simplified by omitting the 2 and z' axes.

In figure 1.2a, the child is just passing a train observer labeled H'; this

is event E1 . The space coordinates of E} in 5' are x~ = 2, yi =1, zi =0; its
time coordinate ti is the reading of the clock held by H' as the child passes
her. Some time later, as shown in figure 1.2b, the child passes a second
train observer, labeled J'; this is event £2' The space coordinates of £2 are
x~ = 3, y~ == 4, z~ == 0; its time coordinate t~ is the reading of the clock held

by J'.
Figure 1.2c shows event E1 as seen in the ground frame. The child is

just passing ground observer B. The space coordinates of £1 in 5 are x} == 2,

Yl = 1, 2 1 = 0; its time coordinate is read off B's clock. Figures 1.2a and

1.2c should be thought of as being superposed: the positions of ground
observer B, train observer H', and the child all coincide when E} occurs.

Figure 1.2d similarly shows E2 as seen in frame 5; the child is now

passing ground observer Q. The space coordinates of E2 in frame 5 are

X2 == 5, Y2 == 4, 2 2 == O. The positions of Q, J', and the child all coincide at E2·

Notice that Band H', whose positions coincided at £1' no longer coincide
at £2' As seen from the ground, all the train observers have moved to the
right during the interval between the two events. (As seen from the train,
all the ground observers have moved an equal distance to the left.)

Inspection of the figures reveals that the length of the child's path mea

sured in the ground frame is greater than that measured in the train
frame. The child's speed in the ground frame is correspondingly greater
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J~JI'
Event

A to B
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(c) v--.. (d)

Fig. 1.2. Motion of child as seen in two frames of reference-one fixed
on the train (primed coordinates, sketches [a] and [b]) and one fixed on
the ground (unprimed coordinates, sketches [c] and [dJ). (a) Child passes
train observer H' (event £1); (b) some time later, child passes train ob
server J' (event £2)' The path of the child, as seen in the train frame, is
indicated by the dashed line in sketch (b). (c) Event £1 is noted by ground
observer B, whose location at that instant coincides with that of H' . (d)
Event £2 is noted by ground observer Q, who at that instant coincides
with J'. The dashed line in sketch (d) shows the path of the child as seen
in the ground frame.

(provided the elapsed time is the same in both frames, which is true in
Galilean relativity).

The notion of a frame of reference as an (essentially infinite) array of
observers is not intended to be a literal description of how measurements
are carried out. It would be impractical, to say the least, to station observ-
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ers throughout all space in the manner prescribed. But there is no reason
in principle why that could not be done. In what follows, every event is
assumed to be monitored by observers on the scene.

1.3. TIlE PRINCIPLE OF RELATIVITY AND INERTIAL FRAMES

The principle of relativity was first enunciated by Galileo in 1632. Gali
leo's argument is clear and graphically put.

Salviatus: Shut yourself up with some friend in the main cabin be
low decks on some large ship and have with you there some flies,
butterflies, and other small flying animals. Have a large bowl of wa
ter with some fish in it; hang up a bottle which empties drop by
drop into a wide vessel beneath it. With the ship standing still, ob
serve carefully how the little animals fly with equal speed to all
sides of the cabin. The fish swim indifferently in all directions; the
drops fall into the vessel beneath; and, in throwing something to
ward your friend, you need throw it no more strongly in one direc
tion than another, the distances being equal; jumping with your
feet together, you pass equal spaces in every direction. When you
have observed all these things carefully (though there is no doubt
that when the ship is standing still everything must happen in this
way), have the ship proceed with any speed you like, so long as the
motion is uniform and not fluctuating this way and that. You will
discover not the least change in all the effects named, nor could
you tell from any of them whether the ship was moving or stand
ing still. In jumping, you will pass on the floor the same spaces as
before, nor will you make larger jumps toward the stern than to
ward the prow, ... despite the fact that during the time that you
are in the air the floor under you will be going in a direction oppo
site to your jump.... Finally the butterflies and flies will continue
their flights indifferently toward every side, nor will it ever hap
pen that they are concentrated toward the stern, as if tired out
from keeping up with the course of the ship, from which they will
have been separated during long intervals by keeping themselves
in the air.... The cause of all these correspondences of effects is
the fact that the ships' motion is common to all the things con
tained in it.4

4. Galileo Galilei, Dialogue Concerning the Two Chief World Systenzs, translated
by Stillman Drake (Berkeley and Los Angeles: University of California Press,
1953), 186-187. It is not clear ,vhether Galileo ever actually performed the ship
experiments. Following the quoted speech, Sagredo says, IIAlthough it did not
occur to me to put these observations to the test when I was voyaging, I am sure
that they would take place in the ways you describe" (Dialogue, 188). This sug
gests that Galileo had not done the experiment. But see the remarks below.
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Galileo is asserting, in effect, that the laws of nature are the same in
any two frames of reference that move uniformly with respect to one
another. If identical experiments are carried out by two sets of observers,
with identical initial conditions, all the results will be the same. It follows
that there is no way to determine by means of experiments carried out in
a given frame of reference whether the frame is at rest or is moving uni
formly. Only the relative velocity between frames can be measured. This
set of assertions is called the principle of relativity.

Galileo's motivation was to refute Aristotle's argument that the earth
must be standing still. If the earth were moving, Aristotle had claimed, a

stone dropped from the top of a tower would not land at its base, since the
earth would have moved while the stone was falling. Galileo argues that

the earth plays a role entirely analogous to that of the ship in his example;
just as a stone dropped from the top of a mast lands at its foot whether
the ship is moving or at rest, so does one dropped from a tower on earth.
And just as observations carried out within the ship cannot be used to
decide whether the ship is standing still or moving uniformly, so the ob
served motion of objects on earth implies nothing about the motion of the
earth other than that it is (approximately) uniform.

Although Galileo may not have carried out all the ship experiments,
he definitely performed the falling rock experiment as well as many oth
ers on falling bodies. In a famous letter replying to Francesco Ingoli, who
had attacked his views and sided with Aristotle, Galileo says, "whereas I
have made the experiment, and even before that, natural reason had
firmly persuaded me that the effect had to happen in the way that it
indeed does." 5

Several remarks are in order concerning Galileo's principle of relativ
ity. First, the observations on which the principle was based were neces
sarily limited to quite slow speeds. Perhaps if the ship were moving very
rapidly, shipborne observers might detect unusual effects that would en
able them to conclude that their ship was indeed in motion. If that were
to happen, the relativity principle would be only approximately valid. The
laws of nature might be (very nearly) the same in two frames of reference

5. The Galileo Affair, editor and translator Maurice A Finocchiaro (Berkeley and
Los Angeles: University of California Press, 1989), 184. The motion of an object
dropped from a moving vehicle had been debated long before Galileo. Tycho
Brahe, as late as 1595, still sided with Aristotle, but Thomas Digges gave a correct
analysis in his book, A Perfitt Description of the Celestial Orbes, published in
1576. Giordano Bruno also studied the problem and came to the correct conclu
sion. According to Drake, Galileo probably knew about Bruno's work although he
did not refer to it. (Bruno had been burned at the stake as a heretic.)
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that move slowly relative to one another but quite different in two frames
whose relative velocity is great. Galileo's observations obviously could not
exclude such a possibility, and even today the direct evidence from physics
in moving laboratories is limited to fairly low velocities. Indirect evidence,
however, strongly supports the hypothesis that the relativity principle
holds for any speed.

Galileo's experiments all deal with phenomena in what is nowadays
called mechanics; on the basis of those experiments, therefore, one can
conclude only that a principle of relativity applies to the laws of mechan
ics. Perhaps other experiments, involving different phenomena, can dis
tinguish among frames.

Nineteenth-century physicists believed that electromagnetic and opti
cal phenomena provide just such a distinction. According to the view prev
alent during that period, there exists a unique frame of reference in which
the laws of electromagnetism take a particularly simple form. If that were
so, the principle of relativity would not apply to electromagnetic phenom
ena: the results of some experiments would depend on the observer's mo
tion relative to the special frame.

Many experiments were performed with the aim of determining
the earth's motion relative to the special frame, but they all failed to de
tect any effect of that assumed motion. The most important was the
Michelson-Morley experiment, described in chapter 2.

For Einstein, it was aesthetically unsatisfying that a principle of relativ
ity should hold for one set of phenomena (mechanics) but not for another
(electromagnetism.) He postulated that Galileo's principle applies to all
the laws of nature; this generalization forms the basis for special rela
tivity.

The relativity principle has an important philosophical implication. If
there is no way to distinguish between a state of rest and a state of uni
form motion, absolute rest has no meaning. Observers in any frame are
free to take their own frame as the standard of rest. Shore-based observers
watching Galileo's ship are convinced that they are at rest and the ship is
in motion, but observers on the ship are equally entitled to regard them
selves as being at rest while the shore along with everything on it moves.
The question, Which observers are really at rest? has no meaning if there
is no cqnceivable experiment that could answer it. (According to observers
in an airplane flying overhead, both shore observers and ship observers
are in motion.)

In sum, the principle of relativity denies the possibility of absolute rest
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(or of absolute motion). Motion can be defined only relative to a specific
frame of reference, and among uniformly moving frames strict democracy
prevails: any frame is just as good as any other. Any reference to a body
II at rest" should be understood to mean II at rest in a frame of reference

fixed on the earth" (or in some other specified frame).
The restriction to uniform motion is essential to the relativity princi

ple. The laws of nature are not the same in all frames of reference.6 As
Galileo fully realized, accelerated motion is readily distinguished from

uniform motion. If a ship moves jerkily or changes direction abruptly,
things behave strangely: suspended ropes do not hang vertically, a cake of
ice placed on a level floor slides away for no apparent reason, and the
flight pattern of Galileo's butterflies appears quite different than it does
when the ship is moving uniformly. Any of these effects tells the observ
ers that their frame is accelerated.

The distinguishing feature of uniformly moving frames is that in any
such frame the law of inertia holds: a body subject to no external forces
remains at rest if initially at rest, or if initially in motion, it continues to
move with constant speed in the same direction. In an accelerated frame,
the law of inertia does not hold. Instead bodies seem to be subjected to
peculiar forces for which no agent can be identified. Those forces, called
II inertial forces, II have observable consequences.

Frames of reference in which the law of inertia holds are called inertial
frames; 7 all others are noninertial. In terms of this nomenclature, we can
rephrase Galileo's principle of relativity as follows:

If 5 is an inertial frame and 5 f is any other frame that moves uni
formly with respect to S, then S' is also an inertial frame. All the
laws of mechanics are the same in S' as in S, and no (mechanical)
experiment can distinguish S' from S.

The discussion here will be confined almost entirely to inertial frames.
Observers in a given frame can determine whether their frame is iner

tial by carrying out experiments to test whether the law of inertia holds.
A frame of reference fixed on earth satisfies the criterion fairly closely;
for most purposes such a frame can be regarded as inertial. Because of the
earth's rotation, however, an earthbound frame is not strictly inertial.

Even a frame of reference fixed at the pole, which does not partake of
the earth's rotation, is not strictly inertial because the earth is moving in

6. See, however, the discussion of the principle of equivalence in chapter 8.
7. Einstein called them "Galilean frames."
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a curved orbit around the sun. And the sun is itself in orbit about the

center of the galaxy. An inertial frame is an idealization in the sense that
no experiment can assure us that our frame is strictly inertial, that is, that
a body subject to no forces does not experience some tiny acceleration.

1.4. THE GALILEAN TRANSFORMATION

An event E occurs at time t at the point x, y, Z, as measured in some
inertial frame S. What are the coordinates (x', y', z', t') of E in another
inertial frame, S', that moves at velocity V relative to S? The answer that

any physicist would have given to this question before 1905 is the Gali

lean transformation, derived here. The derivation is straightforward and
the results appear almost self-evident. As we shall see, however, special
relativity gives a different answer.

For convenience, let the two sets of axes be parallel to one another,

with their relative motion in the x (or x') direction (fig. 1.3). At some
instant the origins 0 and 0' coincide and all three pairs of axes are mo-

0,0' X, x' axes

z,z'axes y, y'axes z axis z' axis yaxis y'axis

(a) (b)
Fig. 1.3. Coordinates of an event in two fralnes of reference, according to
Galilean relativity. The primed coordinate system is moving from left to right,
as seen by observers in the unprimed system. (a) Primed and unprimed axes
momentarily coincide. The clocks of all observers are arbitrarily set to zero at
this instant. (b) The state of affairs at some later time, t. 0', the origin of the
primed system, has moved a distance Vt down the x axis. The x and x' axes
still coincide. The event in question occurs at the point labeled E. The space
coordinates of the event in both frames are indicated. As the figure shows, y
and y' are equal, but x' is less than x. (For simplicity, the z coordinate of the
event is assumed to be zero.)
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mentarily superposed (fig. 1.3a). At that moment 8 all observers in both
frames synchronize their clocks by setting all their readings to zero.

The relation between the times t and t' can be written directly. Since

time is absolute, we have simply

t' == t (l.la)

The spatial coordinates of E in 5' can be taken from the figure. At time t
the two origins are separated by the distance Vt. Hence the relation be

tween x and x' is

x' ==x- Vt

The y and z coordinates of E are the same in both frames:

y' ==y
z' == z

(l.lb)

(l.lc)

(1.1d)

Equations (I. la-d) constitute the Galilean transformation.

Inverse Transformation

Suppose we are given the coordinates of an event in 5' and want to find
its coordinates in 5. Solving equations (I. la-d) for the unprimed coordi

nates in terms of the primed ones, we get

t == t'

x==x' + Vt'
y==y'
z == z'

(1.2a)

(1.2b)
(1.2c)
(1.2d)

which is the desired inverse transformation.
If primed and unprimed coordinates are interchanged and V is changed

to - V, equations (I. la-d) turn into equations (1.2a-d), and vice versa.
This result is a logical necessity. It cannot matter which reference frame
we choose to label 5 and which 5'; the same transformation law must

apply. But V is defined as the velocity of 5' relative to 5. If we interchange

the labels, the magnitude of the relative velocity is unchanged but its sign

is reversed. (If ground observers see a train moving from left to right at a

given speed, train observers must see the ground moving from right to

left at the same speed.)

8. Because tilne is absolute in Galilean relativity, phrases like 1/at that moment"
and 1/ t seconds later" have the same meaning in both frames. When we come to
special relativity, we shall have to exercise great care in using such language.
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Invariance of Distance

Suppose train and ground observers wish to measure the distance between

two telephone poles situated alongside the track. The S positions of the
poles are independent of time:

(1.3)

and the distance X2 - Xl between them is just B- A.
The equations of motion of the poles in S' are obtained by applying

equation (1.2b) to both Xl and X2 in (1.3). The result is

Xi == A - Vt'

x~ == B- Vt'

(1.4a)

(1.4b)

Both these equations describe bodies moving from right to left at speed V,
as they must.

Suppose train observers measure the position of pole #1 at time t~ and
that of pole #2 at time t~. The difference between the two readings is

X~ - x~ == B - A - V(t~ - t~) (1.5)

Inasmuch as the poles are moving in S', the two position measurements
must be made at the same time if their difference is to yield the cor

rect distance between the poles. With t~ == t~, equation (1.5) gives
x~ - x~ == B- A, the same as the result obtained in frame S.

This discussion introduces the important concept of invariance. A
quantity is said to be invariant if it has the same value in all frames of
reference. I have shown that the spatial separation between two events
that occur at the same time is invariant in Galilean relativity. The analo
gous statement in special relativity is not true.

Transformation of Velocity

Suppose a body movesin the X direction at velocity v, as measured in the
ground frame S.9 If the body sets out from the origin at t == 0, its position

at time t is

X == vt (1.6)

Using equations (1.2a,b) to express x and t in terms of x' and t', we
obtain

9. Throughout this book, velocities of objects are denoted by lowercase letters.
The velocity of one frame relative to another is denoted by a capital letter, usually
V.
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x' + Vt' == vt'

x' == (v - V)t'

/ 15

(1.7)

Equation (1.7), like (1.6), expresses motion at constant velocity; the
magnitude of the velocity, which we may call v', is

v' ==v- V

The inverse transformation is obviously

v==v' + V

(1.8a)

(1.8b)

With v'==l m/sec and V=30 m/sec, equation (1.8b) gives v=31
m/sec, the value cited earlier as the"commonsense" result.

If the motion is not confined to the x direction, we can write instead of
equation (1.6)

x == vxt

Y == vyt
Z == vzt

(1.9a)
(1.9b)
(1.9c)

where Vx ' v y ' and V z denote the three components of velocity in S.
When we transform to S' coordinates as before, the x equation re

produces the result expressed in equation (1.8a), with a subscript x on v

and v':

(1.10a)

Since y == y' and t == t', equation (1.9b) becomes

which implies that

(1.10b)

Similarly, we find that

(1.10c)

Only the component of velocity in the direction of the relative motion
between frames changes when we change frames.

In deriving equation (1.8) we assumed that the velocity of the body in
question was constant. If the velocity is changing, the result still holds
provided v and v' refer to the instantaneous values of velocity (measured
at the same time, of course). This is readily shown with the help of the
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calculus; one simply differentiates equation (1.1) with respect to time. The

same result can be derived by purely algebraic methods.

Combination of Galilean Transformations

Suppose two trains travel along the same track, one at velocity V and the

other at velocity U relative to the ground. Let x', y', and z' and x", y",
and z" denote coordinates in frames of reference attached to the first and

second train, respectively. The transformation from (x, y, z, t) to (x', y',
z', t') is given by equation (1.1); that from (x, y, z, t) to (x", y", z", t")

must be given by a similar set of equations, with U in place of V:

x" ==x- Ut
y" == y z" == z
t" == t

(1.11)

What about the transformation from the coordinates of the first train
to those of the second? Eliminating (x,y,z,t) from equations (1.1) and
(1.11), we find directly

x"==x'-(U-V)t'

y"==y' z"==z'
t" = t'

(1.12)

Equation (1.12) describes another Galilean transformation, with rela
tive velocity U - V. This is just the velocity of the second train as mea
sured by observers on the first.

Acceleration

Finally, we examine the transformation properties of acceleration, the rate

of change of velocity. This can be done without any equations.

According to equation (1.8), the velocities of a moving body in 5 and
5' always differ by the same amount, V. If the velocity measured in 5
changes from VI to V2 during some time interval, the velocity Ineasured

in 5' changes from VI - V to V2 - V; the increment in velocity in 5' is

V2 -Vv the same as in S. Since acceleration is defined as change in velocity

per unit time, it has the same value in both frames. Letting a and a' denote
the accelerations measured in the two frames, we have simply

a' == a (1.13)

Acceleration is invariant in Galilean relativity. We shall see in chapter
4 that in special relativity it transforms in a much more complicated
manner.
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An interesting application of the velocity transformation law is provided
by stellar aberration, the change in the apparent direction of a star caused
by the earth's motion around the sun. 10 A similar effect can be detected

when driving through a rainstorm: raindrops falling vertically appear to
be moving obliquely.

Let 5 be a frame of reference in which the sun is at rest and the earth's
orbit is in the x - y plane. Suppose the orbital velocity V points in the x
direction.

Consider a star that is located on the z axis and is not moving relative to

the sun (fig. 1.4a). The analysis is simplest for this special case, although a

similar result applies to any star.

The velocity components in frame 5 of a light ray that reaches earth

from the star are

vx==O

v y == 0
V z == - c

(1.14a)
(1.14b)
(1.14c)

If the earth were not moving, a telescope pointed in the z direction
would receive light from the star.

We want to find the direction of the light ray in 5', the earth's rest
fraIne, which moves at velocity V relative to s. The Galilean velocity

transformation, equation (1.10), gives the velocity components in S':

v~==vx- V== - V

v~==Vy==O

v~==vz== -c

(1.15a)
(I.ISb)
(1.15c)

Figure 1.4b shows the direction of the light ray in frame 5'. The "ap
parent" direction of the star (the direction in which our telescope must be
pointed) differs from its "true" direction by a small angle called the aber
ration angle, 0'. For the special case under consideration, the aberration

angle is determined by the trigonometric relation

v' V
tan 0' == -7 == -

V z C
(1.16)

10. Aberration is not to be confused with stellar parallax, which is due to the
changing position of the earth as it traverses its orbit. Unlike aberration, parallax
depends on the distance of the star. Even for the nearest stars, the parallax angle
is much smaller than the aberration angle.
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Fig. 1.4. Effect of the earth's orbital motion on the apparent
position of a star. Sketch (a) is drawn in a frame of reference, 5,
in which the star is at rest on the z axis and the earth is moving
in the x direction at velocity V. A light ray from the star, moving
in the negative z direction, reaches earth. Sketch (b) shows the
same ray in frame 5', in which the earth is at rest and the star
is moving. 5' moves at velocity V relative to 5. The velocity
components of the star are given by eg. (1.14) in 5 and by (1.15)
in 5'. To see the star, an astronomer must point his telescope at
an angle, a, given by eg. (1.16); this effect is called aberration.

The value of V is known to be 30 km/sec. Equation (1.16) therefore

gives tan a == 10 - 4 or 0' == 20" of arc. Although this is a very small angle,

it is readily measurable with a good telescope.

If the earth's motion were uniform, the aberration effect would be un

detectable since the II true" direction of the star is unknown. But because

the direction of the earth's orbital velocity changes regularly, the aberra

tion effect likewise changes. Six months after the situation shown in the

figure, the earth's velocity in frame 5 will have reversed its direction and

in 5' the star will appear to be on the other side of the z axis. Over the

course of a year, the apparent position of the star traces out a circle whose

radius is about 20 seconds of arc; for a star in an arbitrary direction, the
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path is an ellipse. The effect was detected and explained correctly by James

Bradley in 1725.11

The aberration formula can also be derived by analyzing the situation

from the outset in frame S. Between the time the light ray enters the

telescope and the time it reaches the eyepiece, the telescope has moved.

Unless the telescope is tilted, therefore, the light ray will run into the side

of the instrument. The result obtained by such an argument is, of course,

the same as equation (1.16). The advantage of the derivation given here is

that it is readily generalized when we analyze the problem from the point

of view of special relativity in chapter 4.

1.6. TIlE COVARIANCE OF PI-IYSICAL LAWS

The principle of relativity, set forth in section 1.3, asserts that the laws of

physics are the saIne in any two inertial frames of reference. This principle

can be rephrased as a requirement on the mathematical properties of

physical laws.

A typical physical law expresses a mathematical relation between quan

tities like velocity, acceleration, and force. All these quantities must be

measured in some frame of reference, say, S. Suppose we transform to a

second frame 5' using the Galilean transformation. If the primed quanti

ties are related in exactly the same way as the corresponding unprimed

ones, the relation is said to be covariant under the transformation. The

principle of relativity demands that all the laws of mechanics be covariant
under a Galilean transformation.

Consider the basic law of mechanics, Newton's second law:

F==ma (1.17)

Here m is the mass of a body, F is the total external force acting on it, and

a is its acceleration, all measured in some frame S.

Let F' and a' be the force and acceleration measured in some other

inertial frame S'. If the second law is covariant, the relation

F' == rna' (1.18)

must follow from (1.17).

To be perfectly general, we should have written equation (1.18) as

F'==m'a' (1.19)

11. Bradley used his theory of aberration to deduce a quite accurate value for the
speed of light.
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with m' the mass appropriate to frame 5'. In classical mechanics, however,

mass is considered an intrinsic property of a body and must be invariant.
Hence we can put nI' == m.

We showed earlier (eq. [1.13]) that acceleration is invariant under a
Galilean transformation: a' == a. Hence equation (1.18) follows from (1.17)

if and only if the force F is also invariant,12 that is, if

F' ==F (1.20)

One has to investigate case by case whether the forces that exist in
nature satisfy the invariance requirement (eg. [1.20]). For example, the
gravitational attraction between two bodies is given by Newton's law of

gravity:

(1.21)

Here m 1 andm2 are the masses of the bodies, r is the distance between
them, and G is a constant. We have already shown that distance is invari
ant under a Galilean transformation. Hence the gravitational force is in

deed invariant and the law of gravity is consistent with the principle of

relativity.
The most important example of a force law that is not covariant in

Galilean relativity is electromagnetism. The laws of electricity and magne
tism were codified in the late nineteenth century in a system known as
Maxwell's equations. If one assumes that these equations hold in some
frame 5 and makes a Galilean transformation to another frame 5', the
equations in 5' do not have the same form: Maxwell's equations are not
covariant under a Galilean transformation. This was very troubling to

Einstein and motivated his quest for a new theory.
There were three logical possibilities:

(i) The relativity principle does not apply to electromagnetism; Max

well's equations are valid only in one special frame of reference.

(ii) The relativity principle does apply to electromagnetism, but Max

well's equations are only approximately correct; they must be replaced by
a more general set of equations that are strictly covariant.

12. If every term in a relation is invariant, as in the present example, the relation
is obviously covariant. This is not a necessary condition, however. Covariance
requires only that both sides of the equation transform in the same way. Suppose,
for example, that under some hypothetical transformation, a' = 2a and F' = 2F.
Eq. (1.18) would be satisfied and the law would be covariant.
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(iii) The relativity principle applies universally and Maxwell's equa
tions are exact, but the Galilean transformation is wrong.

Alternative (i) was the one preferred by nineteenth-century physicists;
the ether frame, discussed in chapter 2, was postulated to be the special
frame in which Maxwell's equations hold. Einstein rejected that view and
boldly asserted that alternative (iii), which a priori seems the least plausi
ble, is in fact correct. This assumption led him to special relativity.

1.7. THE CONSERVATION OF MOMENTUM

As a final application of Galilean relativity, we examine the law of conser
vation of momentum and show that it is covariant.

Newton defined momentum (which he called "quantity of motion") as

the product of mass and velocity. The modern symbol for momentum is

p; thus p == mv.
Momentum is a vector quantity: it has direction as well as magnitude.

By definition, the momentum of a body points in the same direction as
its velocity. The components of momentum along a given set of axes are

(1.22)

Any of these components can be positive or negative.
An important law in classical mechanics is the conservation of momen

tum: the total momentum of an isolated system remains constant. The
law is a consequence of Newton's second and third laws.

The most common application of the conservation of momentum is to
problems that involve collisions. When two bodies collide, the momentum
of each body changes as a consequence of the forces exerted on it by the
other. The total momentum of the system, however, is the same after
the collision as before. If the collision involves motion in more than one
dimension, each component of momentum is separately conserved.

Figure 1.5 illustrates the conservation of momentum in collisions be
tween bodies of equal mass m. In each case body A, moving at velocity v
in the x direction, collides with body B, which is initially at rest. The total

momentum of the system before the collision is mv. In collision (a), body
A comes to rest and B moves at velocity v after the collision in the direc

tion of A's initial motion. The final momentum is mv, in accord with the
conservation law.

Figure 1.5b shows a different possible outcome: A and B stick together,
and both move at velocity v/2 after the collision. The final momentum of
each body is n1v/2, and the total is again mv; momentum is conserved.
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Fig. 1.5. The conservation of momentum according to Gali
lean relativity. Shown are three collisions, in each of which
momentum is conserved. The initial state in each collision is
that shown in the top sketch: body A, moving in the x direc
tion, collides with body B, initially at rest. The bodies have
equal masses. After collision (a), A is at rest and B moves with
A's original velocity, v. After collision (b), each body moves
with velocity v/2 in the x direction. After collision (c), each
body has some y motion as well as some x motion. The y com
ponents of velocity (and of momentum) are equal and opposite;
thus the total y momentum is zero.

Figure 1.Sc shows yet another possible outcome. In this case, each body
has some y velocity and therefore some y momentum after the collision.
Since the initial y momentum was zero, the total y momentum after the
collision must also be zero. The y momenta of the emerging bodies must

have equal magnitudes and opposite signs; since the masses are equal, the
y velocities must likewise be equal and opposite.

As these examples demonstrate, conservation of momentum does not
determine the outcome of a collision. If we know only the initial velocities
of the colliding bodies, we cannot predict whether the final velocities are
those shown in (a), in (b), in (c), or something different still.13 The out
come depends on data that have not been specified, such as the elastic

13. The conservation law (see eq. [1.23]) is one equation with two unknowns (the
two final velocities). It has an infinite number of solutions.
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properties of the bodies and whether the collision is head-on or at a glanc

ing angle. A head-on collision between two billiard balls would lead to

outcome (a), whereas a glancing collision between the same billiard balls

could lead to outcome (c). Colliding lumps of putty are likely to stick

together, outcome (b).

Consider a collision between two bodies, A and H, whose motion is

confined to one dimension. Conservation of momentum is expressed by

the relation

(1.23)

where C and D refer to the bodies that emerge from the collision. C and

D might be the same as A and H, but they might be different. Such "re

arrangement" collisions are of particular interest in nuclear physics.

To prove that momentum conservation is a covariant law, we assume

that equation (1.23) holds in some inertial frame 5 and show that the

same relation holds also in any other inertial frame 5'.
The velocity of each body in 5' is related to its velocity in 5 by the

Galilean velocity transformation, equation (1.7):

VA == V~ + V, VB == V~ + V, and so on (1.24)

where, as usual, V is the speed of frame 5' relative to 5.
Using equation (1.24) we can express each term in equation (1.23) in

terms of velocities measured in 5'. The result is

mA(V~ + V) + mB(v~ + V) == mc(v~ + V) + mo(v/; + V)

Expanding and grouping terms, we obtain

(1.25)

(1.26)

Equation (1.26) represents momentum conservation in frame 5', pro
vided the last term on the right side vanishes. Since V is not zero, this

requires that

(1.27)

Condition (1.27), which must be satisfied if momentum conservation

is to be a covariant law, expresses the conservation of mass. In classical

mechanics, mass can be neither created nor destroyed; equation (1.27)

must be valid. If, as a result of a collision, the colliding bodies exchange

mass or even break up into many fragments, the total mass of the emerg

ing bodies must be exactly the same as the total mass of the bodies that

collided. As we shall see, that statement is not true in special relativity.
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The proof of covariance is readily extended to collisions in more than
one dimension. Each component of momentum can be treated separately.

The preceding analysis shows that if x momentum is conserved in S, it is
conserved as well in S'. (V, the relative velocity of the two frames, is
assumed to be in the x direction.) But according to equation (1.10), the y
velocity of each body is the same in S' as in S. Since momentum is veloc
ity times mass, it follows that the y momentum of each body is likewise
the same in both frames. Hence if y momentum is conserved in frame 5,

it is likewise conserved in S'. The same is true of z momentum.
In summary, the law of conservation of momentum, with momentum

defined as mass times velocity, is covariant under a Galilean transforma
tion, provided that mass is conserved. We shall see in chapter 7 that in
special relativity, momentum must be redefined if the conservation law is
to be covariant.

PROBLEMS

1.1. A train moves at a constant speed. A stone on the train is released from rest.
(a) Using the principle of relativity, describe the motion of the stone as seen

by observers on the train.
(b) Using the (~alilean transformation, describe the motion of the stone as seen

by observers on the ground. Draw a sketch.

1.2. This problem deals quantitatively with the experiment of problem 1.1. Let 5
denote the ground frame of reference and 5' the train's rest frame. Let the speed
of the train, as measured by ground observers, be 30 m/sec in the x direction, and
suppose the stone is released at t' = a at the point x' = y' = 0, z' = 7.2 m.

(a) Write the equations that describe the stone's motion in frame 5'. That is,
give x', y', and z' as functions of t'. (Note: A body starting from rest and moving
with constant acceleration g travels a distance 1/2 gt2 in time t. Gravity produces a
constant acceleration whose lnagnitude is approximately 10 m/sec/sec.)

(b) Use the Galilean transform,ation to write the equations that describe the
position of the stone in frame S. Plot the stone's position at intervals of 0.2 sec,
and sketch the curve that describes its trajectory in frame 5. What curve is this?

(c) The velocity acquired by a body starting from rest with acceleration g is gt.
Write the equations that describe the three components of the stone's velocity in
5', and use the Galilean velocity transformation to find the velocity components
in S.

(d) Find the magnitude of the stone's speed at t = 1 sec in each frame.

1.3. A jetliner has an air speed of 500 mph. A 200-mph wind is blowing from
west to east.

(a) The pilot heads due north. In what direction does the plane fly, and what
is its ground speed? (Hint: Define a frame of reference 5' that moves with the



Galilean Relativity I 25

wind. In Sf there is no wind; hence the plane always moves in the direction it is
headed, at 500 mph. Use the velocity transformation to find the components of
the plane's velocity in the ground frame.)

(b) In what direction should the pilot head in order to fly due north? What is
the plane's ground speed in this case?

1.4. A river is 20 m wide; a 1 mlsec current flows downstream. Two swimmers,
A and B, arrange a race. A is to swim to a point 20 m downstream and back while
B swims straight across the river and back. Each can swim at 2 mlsec in still water.

(a) In what direction should B head in order to swim straight across? Illustrate
with a sketch. (See the hint for the preceding problem.)

(b) Who wins the race, and by how much time?

1.5. An elastic collision is one in which kinetic energy as well as momentum is
conserved, that is, the total kinetic energy after the collision is equal to the total
initial kinetic energy. The Newtonian definition of kinetic energy is K = 1/2 mv2

.

Consider the collision shown in fig. 1.5a. The mass of each body is 2 kg; the
initial velocity of body A is 0.6 mlsec. In frame 5, the frame in which the figure
is drawn, the collision is obviously elastic. (The initial kinetic energy of B and the
final kinetic energy of A are both zero; in the collision A's momentum and kinetic
energy are simply transferred to B.)

Analyze the same collision in a frame Sf that moves to the right at 0.2 mlsec
relative to S. Find the kinetic energy of each body before and after the collision
and verify that the collision as seen in 5 f is elastic.

1.6. The object of this problem is to investigate whether, as suggested by the
result of problem 1.5, the definition of an elastic collision is invariant under a
Galilean transformation.

Consider the general one-dimensional collision discussed in section 1.7, in
which bodies A and B collide and bodies C and Demerge. (C and D might be the
same as A and B, or they might be different.) Assume that momentum is con
served, that is, eq. (1.23) is satisfied.

(a) Write the equation that expresses the conservation of kinetic energy in
frame S. Now transform to a frame Sf that moves at velocity V relative to S. Show
that kinetic energy is conserved in Sf, provided mass conservation is satisfied.

(b) Suppose the collision is inelastic: the total kinetic energy of C and D in
frame 5 differs from the total kinetic energy of A and B by an amount Q. Is the
value of Q invariant? Justify your answer.

1.7. Raindrops are falling vertically at 2 m/sec. A person is running horizontally
at 3 m/sec. At what angle to the vertical should she hold her umbrella for maxi
mum effectiveness? (Consider the path of the raindrops in the runner's rest
frame.)

1.8. Anaiyze the stellar aberration effect for a star that lies in the plane of the
earth's orbit. How does the magnitude of the aberration angle vary as the earth
traverses its orbit?



2 The Michelson-Morley
Experiment

2.1. THE ETIlER

The Michelson-Morley experiment occupies a special niche in the pan
theon of relativity. Contrary to many accounts, the experiment did not
strongly influence Einstein's discovery of special relativity.l It nonethe

less provides strong experimental underpinning for the theory and was

instrumental in promoting its widespread acceptance. Albert A. Michel
son's experiment was rooted in late-nineteenth-century ideas concerning

the nature of light. I begin therefore with a brief exposition of those ideas.
That the speed of light is very great had been known for a long time.

Galileo had tried to measure it but did not succeed. The first determina
tion of the speed of light was obtained in 1676 by Ole Romer from his
observations of the eclipses of one of Jupiter's moons. Because the earth
Jupiter distance changes, the interval between successive eclipses varies;
the variation measures the time required for light to travel the additional
distance. Romer's result for the speed of light, 2.2 X 108 m/sec, was about
25 percent low.2 The best modern value is 2.998 X 108 m/sec.

During the eighteenth century a lively controversy raged over the
question, Does light consist of tiny particles or is it a wave phenomenon?

Expert opinion was divided; Newton, for example, favored the particle

hypothesis. Many properties of light, such as reflection and refraction,
can be explained in either view.

Strong evidence in favor of the wave hypothesis was provided by ex
periments performed by Thomas Young, Augustin-Jean Fresnel, and oth-

1. See section 3.2 for a detailed historical discussion.
2. The principal source of error in Romer's determination was uncertainty in the
distance between earth and Jupiter.

26
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ers, which showed that light exhibits interference and diffraction. These
characteristic wavelike phenomena are well-nigh impossible to explain on
the basis of a particle description.

Although the wave character of light seemed firmly established by the
early 1800s, the nature of the waves was not at all clear. The model fa
vored at first was that light waves, like all other known waves, are a me
chanical oscillation of some material medium. (A sound wave in air, for

example, consists of longitudinal vibrations of air molecules.) The light
medium was called the "luminiferous ether"; I shall refer to it simply as
the ether.

The ether, if it exists, has quite unusual properties. It must pervade all

space, even where no matter is present. (Unlike sound, light propagates

readily through the best vacuum.) It must be extremely tenuous, inas

mnch as the earth and all other astronomical bodies pass through ether
filled space with no detectable loss of speed. Finally, the ether must be
capable of vibrating at extremely high frequencies. (The frequency of visi
ble light is more than 1014 cycles per second, much higher than that of
any known mechanical oscillation.)

Important progress took place when James Clerk Maxwell showed that
the equations of electricity and magnetism have solutions that consist of
traveling waves, whose speed can be calculated in terms of known con
stants. The calculated speed of those electromagnetic waves turned out to
be almost exactly equal to the measured speed of light. This was convinc
ing evidence that light is in fact an electromagnetic phenomenon.

After Maxwell's work, the mechanical model of light was abandoned.
No material substance vibrates when an electromagnetic wave propagates;
the oscillation is in the magnitudes of the electric and magnetic fields,
which are only mathematical quantities.

If no mechanical oscillation takes place, no medium is required. Most
physicists were nonetheless unwilling to accept the notion that electro
magnetic disturbances can propagate through an absolute vacuum. The
ether thus lived on, viewed now as a medium that somehow "supports"
the oscillations associated with the propagation of light even though it
does not itself vibrate. The nature of that medium became even more

mystifying.

2.2. PRELUDE TO MICHELSON-MORLEY

Numerous attempts were made during the late nineteenth century to con
firm the existence of the ether. The Michelson-Morley experiment is the

best known of those attempts. The experiment is described in the next
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section; here I indicate its basic idea by sketching an analogous experiment
using water waves. The discussion is entirely within the framework of
Galilean relativity.

In a wave phenomenon that involves a medium, the rest frame of the
medium is a unique frame of reference. Observers in any frame can carry
out experiments to determine their velocity relative to the medium.

Suppose a ship is at rest in still water. Observers on the ship measure
the speed of water waves moving in various directions. Because the me

dium is isotropic (the water looks the same in all directions), the measured
speeds must all be equal.3 Let c denote that common speed.

An identical experiment carried out on a moving ship has a quite differ
ent outcome: the wave speed in that case varies with direction. A wave

traveling in the same direction as the ship moves more slowly than one
traveling in the opposite direction. In fact, if the ship's speed is c, a
wave traveling in the same direction as the ship does not appear to move
at all.

The speeds of a given wave in the rest frame of the water and in the

rest frame of the ship are related by the Galilean velocity transformation,
equation (1.8). The fact that one is dealing with a wave instead of a mate

rial object does not affect the validity of the simple argument by which
the transformation equations were derived.

By measuring the speeds of water waves in all directions, then, ship
borne observers can determine the velocity of their ship relative to the
water. The direction in which waves travel slowest must be the ship's
heading, and the magnitude of the minimum speed is c - V, where V is
the speed of the ship. If all waves are found to travel at the same speed,
the ship must be at rest relative to the water.

The same argument can be applied to the propagation of light, with the
ether in place of the water and the earth playing the part of the ship. In
the rest frame of the ether light travels at the same speed c in all direc
tions, whereas in the earth frame the speed of light should vary with

direction; the magnitude of the variation depends on V, which now de

notes the speed of the earth relative to the ether. Michelson proposed to
determine the value of V by detecting the difference in travel times of
light rays traversing a given distance in different directions.

One does not have to believe in the ether to conclude that the speed of
light measured on earth should vary with direction. The Galilean velocity

3. Any motion of the source does not affect the speed of the waves, which is
determined by the forces between adjacent water molecules.
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transformation implies that light can travel at the same speed in all direc
tions only in one reference frame; we may call that the 1/ isotropic frame"
if we are not committed to the existence of an ether. Unless the earth
happens to be at rest in the isotropic frame (which is highly improbable a
priori), the speed of light in the earth's frame must depend on its direc
tion.

2.3. THE EXPERIMENT

Michelson's experiment differed in one important respect from the hypo
thetical water wave experiment described in the preceding section. Waves
in water travel only a few meters per second; a ship can easily move as

fast as (or even faster than) the waves. The speed of water waves measured

on a moving ship can therefore vary by a substantial fraction. In the case
of light, however, the ratio Vic was expected to be very small. The effect

that Michelson was trying to detect was a very weak one.

A lower bound on the value of Vic can be deduced from the earth's

orbital velocity around the sun, Vorb ' whose magnitude is known to be
about 30 kmlsec. V, the earth's velocity relative to the ether, is the (vec
tor) sum of Vorb and the sun's velocity relative to the ether, V5; the latter
is completely unknown.

If Vorb and V5 happen to point in opposite directions, their sum can be
much smaller in magnitude than either one. Since the direction of Vorb

reverses every six month.s as the earth traverses its orbit, however, such
cancellation cannot persist. No matter what the magnitude of Vs ' V must
sometimes be at least 30 km/sec. The minimum value of vic over the
course of a year is therefore 10-4

.

To be sure, Vs might happen to be very large, in which case Vic would
be much greater than 10- 4

. But Michelson could not count on such good
fortune; he had to be prepared to detect a variation of only one part in
ten thousand in the speed of light. Michelson's great achievement was to
construct a device, called an interferometer, sensitive enough to detect so

small a variation.
Figure 2.1 is a schematic view of Michelson's interferometer. Light

from a source, S, strikes a glass plate, P, inclined at 45°. The plate is sil
vered so that it reflects about half the light incident on it and transmits

the rest. The transmitted ray strikes mirror A and is reflected back to P,
where it is again partially reflected and finally reaches observation point
C. (The transmitted part of this ray is of no interest and is not shown.)

The reflected portion of ray SP strikes a second mirror, B, which re

flects it back to P. The transmitted part of this ray reaches the observation
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Fig. 2.1. Schematic of the Michelson-Morley experiment.
Light from source 5 strikes the half-silvered mirror P, where
part is reflected, reaching mirror B; the rest is transmitted,
reaching mirror A. The two rays return to P, where each is again
partially transmitted and partially reflected. Some of the light
that reaches a detector located at C has followed path SPAPC,
while the rest has followed path SPBPC. The two components
"interfere" and produce a pattern of light and dark fringes at C.

point together with the ray that has traveled along the other path. The
1/arms" PA and PB are of equal length, L, and the entire apparatus is
mounted on a rotatable platform.

If the earth is moving relative to the ether, as Michelson believed, the

speed of light is different along each arm of the interferometer and the

travel times for the paths SPAPC and SPBPC differ slightly. Since the first
segment, SP, and the last, PC, are common to both paths, the difference in
travel times is determined by segments PAP and PBP.

Assume for the moment that SPA is aligned in the direction of the
earth's motion through the ether, which we take as the x direction. The
speed of ray PA is then c - V, while that of ray AP is c+ V; the travel
times for the two segments are
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Fig. 2.2. (a) A light ray moves in the y direction in the earth frame,
S'. (b) In the ether frame, S, the ray has both an x and a y component
of velocity. The y components of velocity are the same in both frames;
the x components are related by eq. (1.IOa). Since v~ = 0, (1.IOa) gives
vx=v.

L L
tPA==c_VtAP==e+V

and the time for the round-trip PAP, which we call T1 , is

I have defined

T - L + L _ 2Le _ 2L
1--- -------

C - V e+ V e2
- V 2 e(l- {32)

(3== Vic

(2.1)

(2.2)

This is standard notation in relativity.
The speeds of rays PB and BP can be found with the help of the Gali

lean velocity transformation. Let 5 be the ether frame and 5' the earth's
rest frame. Figure 2.2a shows the direction of ray PB in 5'. By hypothesis,
this ray is traveling in the y' direction and v~ must be o. According to
equation (1.8b), then,

v ==v'+V==Vx x (2.3)

Figure 2.2b shows the direction of the same ray in frame 5. Since in
this frame all rays travel at speed e, we can write

e2 == v 2 + V 2 == V 2 + V 2
x y y

which gives

v == -Ve2 - V 2
y
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Finally, using equation (1.10b),

v' == v == -Vc2
- V 2

y y (2.4)

Since v~ == 0, (2.4) is the desired speed of ray PB in the earth frame. The
speed of ray BP is clearly the same. Hence

L L
tpB == tBP == ==---

-Vc2 - V 2 c-VI - f32

and the time, T2 , for path PBP is

(2.5)

2L
T2==tpB+tBP== _~ (2.6)

c'll - f32

Since f3 is less than 1, -VI - f32 is greater than 1- f32 and T2 is less than
T1. (For f3 == 0, both T1 and T2 are equal to 2L/c.)

It is instructive to carry out the same calculation in the ether frame,S,
in which the entire apparatus is moving to the right with velocity V. In
this frame all rays travel at the same speed, c, but the paths of the rays
differ in length. The travel time of each ray must of course be the same
inSasinS'.

Figure 2.3a shows the path of ray PA in frame S. The ray travels a
distance L + VtpA , where VtpA is the distance the apparatus moves during
the time, tpA , that the ray is in transit. Since the speed of the ray is c, we
can write

L + VtpA == ctpA

Solving this simple algebraic equation for t pA , we find

L
t pA ==-

c-V

which is the same as the travel time for this ray calculated in the earth
frame.

The analysis of the return leg AP is similar. The length of its path is
L- VtAP (fig. 2.3b). We have then

whose solution is

L
tAP ==--

c+V

again the same as the result calculated in the earth frame.
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Fig. 2.3. Paths of the rays in Michelson's experi
ment as seen in the ether frame. (a) Ray PA, which
travels in the +x direction, travels a distance greater
than L. The difference is the distance the apparatus
has moved during the time interval tpA or VtpA . (b)
Ray AP, which moves in the -x direction, travels a
distance less than L by the amount VtAP' (c) Ray PB
moves diagonally in this frame. The distance it trav
els is the hypotenuse of a right triangle whose legs
are Land Vt pB• All three rays travel at speed c.

Figure 2.3c shows the path of ray PB in frame S. PB is the hypotenuse
of a right triangle whose legs are Land VtpB. Hence we can write

(ctpB)2 = L2 + (VtpB)2

whose solution is
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L
t ----
PB - -Vc2 _ V 2

once more the same as the earth frame result.
In either frame, then, the difference in travel times is

T1 - T2 == (time for path SPAPC) - (time for path SPBPC)

2L( 1 1)
= ~ 1 - {32 - --./1 - {32

(2.7)

Since f3 is expected to be small, we can write an approximate form for

equation (2.7). The binomial expansion (see the appendix to chap. 4) gives

and (2.7) becomes

(2.8)

Notice that in equation (2.8), from which the unknown V is to be calcu
lated, only the square of the small quantity f3 appears. Since the square of
a number much smaller than 1 is smaller still, the expected effect is tiny.
With L a few meters and f3 == 10 - 4, T1 - T2 is only about about 10 -16 sec,

much too small to measure even with present-day equipment. Michel
son's interferometer was, however, capable of detecting changes in T1 - T2

of that order of magnitude; that was sufficient for his purposes.
As the name suggests, the operation of an interferometer is based on

the "interference" between two or more waves. Figure 2.4 shows two ex

amples of rays that start at the same point and are reunited after travers

ing different paths. In case (a), the paths contain equal numbers of waves.

Hence a crest of one wave arrives at the observation point 01 together

with a crest of the other and the two waves reinforce one another. This is

called constructive interference; it occurs whenever the numbers of waves

in the paths differ by an integer.

In case (b), the lower path contains half a wave more than the upper

one. A crest of one wave arrives at 02 together with a trough of the other
and the waves cancel each other. This is called destructive interference.

Cancellation occurs whenever the numbers of waves in the two paths dif

fer by an integer plus a half. This can be caused either by a difference in

the lengths of the paths or by a difference in the speeds of the rays (or by
a combination of both factors).
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Fig. 2.4. Wave interference. Waves start at source
point 5 and arrive at two adjacent observation points, 0 1

(a) and 02 (b). Crests of each wave are shown by solid
arcs, troughs by dashed arcs. In (a), the total paths of
the two rays are of equal length. Two crests are shown
arriving together at the observation point (constructive
interference). In (b), the path of the lower ray is half a
wavelength longer than that of the upper ray. Hence a
trough of the lower ray arrives together with a crest of
the upper one, creating destructive interference. In the
interferometer, a bright fringe would be observed at 0 1

and a dark fringe at 02'

In Michelson's experiment, rays SPAPC and SPBPC interfere when
they reach the observation point. Because light rays are not geometrical
lines but have a finite width, light arrives not just at the single point
marked C but over a finite region in the vicinity of C. For every point in
that region, the lengths of the paths followed by the two rays differ
slightly. At some points constructive interference takes place, while at
others the interference is destructive. The observer sees a pattern of
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Fig. 2.5. Fringe pattern from a repeat of the Michelson-Morley experiment
carried out by Georg Joos in 1930.

closely spaced bright and dark bands called interference fringes. Adjacent
bright fringes correspond to a difference of one additional wave between
the two paths.

The spacing of the fringes depends on the wavelength of the light and
on the geometry. In Michelson's interferometer, the fringes were a frac
tion of a millimeter apart. Figure 2.5 shows a typical fringe pattern.

If, for any reason, the difference between the numbers of waves in the
two paths changes, the fringe pattern shifts. A change of one wave causes
the pattern to shift by one full fringe. A shift of a fraction of a fringe is
readily detectable; the interferometer is therefore sensitive to a change in
the light paths as small as a fraction of a wave.

The high sensitivity can be demonstrated by inserting a thin glass plate
in the path of one of the rays. Since light travels more slowly in glass than

in air, the travel time of the ray that passes through the glass increases by
an amount that depends on the thickness of the glass and on its index of
refraction. The fringe' pattern is observed to shift by just the predicted
amount.

The calculation thus far is based on the assumption that ray PA travels
in the direction of V, the earth's velocity relative to the ether. Since the
direction of V was unknown, Michelson had no way of knowing how the
arms of his instrument were oriented relative to that direction. He there
fore observed the behavior of the fringes as he slowly rotated the appara
tus. At some time, arm PAP must be aligned in the direction of V.4 At
that instant TI is given by equation (2.2), T2 by equation (2.6), and TI - T2

by equation (2.8).

After an additional rotation of 90°, the two arms will have changed
places: arm PB is now aligned in the direction of V, and arm PA is perpen
dicular to that direction. At that instant TI is given by equation (2.6) and
T2 by equation (2.2). Hence TI - T2 has the magnitude expressed in equa-

4. This statement is correct only if the direction of V is in the plane of the inter
ferometer. In general, PAP will at some time be aligned with the projection of V
on that plane.
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tion (2.8), but its sign is negative. One expects, therefore, that as the inter
ferometer is rotated the fringe pattern will shift back and forth, with a
maximum shift given by twice the magnitude of (2.8). By measuring the
maximum shift, Michelson expected to determine the value of V.

In Michelson's first experiment, performed in 1881, the arms of the
interferometer were 1.2 meters long. With f3 = 10 - 4, equation (2.8) gives
T1 - T2 = 4 X 10 -17 sec. The maximum change in TI - T2 is twice this
amount, or 8 X 10 -17 sec. During that time light travels 2.4 X 10 - 8 m.

Since the wavelength of visible light is about 5 X 10 -7 m, the ex

pected maximum shift in the fringe pattern was about one-twentieth of

a fringe.
Michelson, a skilled observer, was confident that he could detect even

so small a shift. To his surprise, he found no shift whatever in the fringe
pattern as he rotated his interferometer. He concluded that the velocity of

the earth relative to the ether is zero and interpreted the result as support

ing George Stokes's ether drag theory. Such an interpretation is, however,
untenable. (See the discussion of ether drag in sec. 2.4.)

The result of the 1881 experiment was considered inconclusive because
the predicted fringe shift was so small.5 Because of the importance of the
problem, Michelson was urged to refine the apparatus and improve its
sensitivity; that task occupied him for several years. In 1887, in collabora
tion with Edward Morley, he performed a much-improved version of the
experiment, in which multiple reflections increased the effective path
length to about 11 Ineters. Figure 2.6, taken from Michelson's paper,6

shows the 1887 interferometer.
The amplitude of the expected variation in the 1887 experiment was

about half a fringe, far more than the sensitivity of the instrument. But
amazingly, there was still no detectable effect. The fringe pattern exhib
ited no measurable shift as the interferometer was rotated, implying that
the earth must be at rest relative to the ether. Michelson concluded that
the upper limit on the value of V was about 1 km/sec.

As noted earlier, V could be that small if the motion of the sun relative
to the ether happens to cancel the earth's orbital velocity. But even if such
an improbable coincidence were to occur at some particular time, it could
not persist. Six months later, when the direction of the earth' 5 orbital

5. Because of an error in Michelson's theoretical analysis, his calculated value of
the expected shift was too small by a factor of two. The error was pointed out by
Hendrik Lorentz and independently by Alfred Potier.
6. A. A. Michelson and E. W. Morley, "On the Relative Motion of the Earth and
the Luminiferous Ether," American Journal of Science 34 (1887):333-345.
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Fig. 2.6. Michelson's interferometer. Sketch (a) shows the apparatus; (b)
shows rays being reflected from the array of mirrors. The multiple reflection
effectively increases the path of the rays and would have increased the magni
tude of any fringe shift. These figures are taken from Michelson's paper: A. A.
Michelson and E. W. Morley, "On the Relative Motion of the Earth and the
Luminiferous Ether," An1erican Journal of Science 34 (1887):333-345.
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velocity had reversed, V would have been about 60 km/sec and a large
fringe shift should have been detected.

In his paper, Michelson promised to repeat the experiment at three
month intervals to eliminate the possibility of an accidental cancellation.
He never did so, but others did and obtained the same result. No matter
what time of year the experiment was done, no measurable shift in the
fringe pattern was detected.

All conceivable sources of experimental error were carefully investi
gated; none was found. During the following half-century, the experiment
was repeated many times by different investigators, with improved tech
nique and variations in the procedure. No reliable experiment has ever
yielded a positive result; in fact, the upper limit on the value of V consis
tent with the data was reduced even further. The experimental result had
to be accepted as correct.

Although Michelson's experiment is now regarded as one of the most
important in the history of physics, he himself considered it a failure. He
had not achieved his objective-to measure the speed of the earth relative
to the ether.

2.4. ATTEMPTS TO SALVAGE THE ETHER

Taken at face value, the Michelson-Morley result implies that the speed
of light in the earth's frame is always the same along both arms of the
interferometer, no matter how the instrument is oriented. But from the
point of view of Galilean relativity and the ether hypothesis, the speed of
light is independent of direction only when the earth is at rest relative to
the ether. How can the earth always be at rest relative to the ether when
we know that the earth's velocity is continually changing? This was the
enigma posed by Michelson's experiment.

Einstein's answer is simple and yet revolutionary. He postulates that
the speed of light is independent of direction in any inertial frame. Mi
chelson's result follows directly, but Einstein's postulate is clearly incom
patible with the Galilean velocity transformation. In the context of con
ventional nineteenth-century physics, it makes no sense.

In the next chapter we shall see how Einstein's postulate leads to special
relativity. Here I describe three attempts to explain the null result of
the Michelson-Morley experiment within the framework of nineteenth
century physics: ether drag, emission theories, and the FitzGerald-Lorentz
contraction. Although all three attempts were unsuccessful, one turned
out to be on the right track.
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Ether Drag

If the moving earth drags along the ether in its immediate vicinity, earth

and ether are always at rest with respect to one another. The velocity of

light is then always independent of direction, and the Michelson-Morley

result follows.

The possibility that some ether might be dragged by moving bodies had

been considered by many investigators during the nineteenth century. It

is not an unreasonable hypothesis; material fluids such as air and water

are, after all, dragged along to some extent when bodies move through

them. Why should not the same thing happen to the ether?

Sir Oliver Lodge tried to confirm the existence of ether drag by passing

beams of light near the edge of rapidly spinning metal spheres. He found

no measurable effect. His result was inconclusive, however. The amount

of ether dragged might depend on the size of the object; if so, the effect

might be undetectable in the case of a small sphere and yet be substantial

for the large earth.

Several versions of the ether drag hypothesis had been put forward. A
theory proposed by Stokes assumed total drag: a moving body imparts its

full velocity to the ether in its immediate vicinity; the amount of drag

diminishes with distance. Such a model accounts for Michelson's failure

to detect any fringe shift. Michelson in fact at first interpreted the result
of his experiment as confirmation of Stokes's theory.

Although the assumption of full ether drag accounts for the result of

Michelson-Morley, it runs into difficulty with other optical phenomena,

notably stellar aberration. If the et1}er that surrounds the earth were fully

dragged, no aberration effect would be detected. The direction of a light

ray in the earth's frame would be unaffected by the earth's motion, and

the apparent position of any star would be the same as in a reference

frame in which the earth is moving. 7 The observations on stellar aberra

tion therefore render Stokes's theory (or any other in which the ether is

fully dragged) untenable.

Other theories assumed that the ether is only partially dragged. They

defined an ether drag coefficient, which measures the extent to which the

ether shares the velocity of a body moving through it. In Fresnel's theory,

the ether drag coefficient inside a moving body is 1-1/n2, where n is the

index of refraction of the material in question; the ether outside the body

remains stationary. This was the favored theory because it explains the

7. See D. Bohm, The Special Theory of Relativity (New York: W. A. Benjamin,
1965), for a detailed discussion and a useful acoustic analogy.
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result of Hippolyte Fizeau's experiment on the speed of light in moving
water. (See sec. 4.5.) Fresnel's theory is consistent with the aberration
data because for air, whose index of refraction is very nearly unity, it
gives a drag coefficient nearly zero. However, Fresnel's theory cannot ac
count for the result of Michelson-Morley.

In summary, no ether drag theory can explain both stellar aberration
and the null result of the Michelson-Morley experiment.

Emission Theories

A very different hypothesis was put forward by Walter Ritz and others.
They proposed that the speed of light is c relative to the source of the
light instead of relative to the ether.8 This is admittedly strange behavior
for waves; it is more characteristic of particles. However, Ritz managed to
construct an II emission theory" in which electromagnetic waves behave in
this peculiar fashion. Einstein himself, before he developed special relativ

ity, apparently leaned toward the emission theory.
An emission theory readily explains the result of the Michelson

Morley experiment. Inasmuch as the light source in the experiment was
always at rest with respect to the interferometer, the speed of light is

always the same and no change in the fringe pattern is to be expected as
the interferometer is rotated.

The emission theory has been directly disproven in an experiment by
T. Alvager et al. that detected the high-frequency radiation (gamma rays)
emitted in the decay of rapidly moving neutral particles called pions.9 If
the speed of light were c relative to the source, then (according to Galilean
relativity) the laboratory speed of a gamlna ray emitted in the direction
of the pion's velocity should be greater than c while that of a gamma ray
emitted in the opposite direction should be less than c. No such difference
in the speeds was observed.

Another disproof of the emission theory was provided by experiments
of the Michelson-Morley type performed with light from extraterrestrial
sources. The emission theory predicts a number of complicated effects.
For example, because the sun is rotating, light originating from different
parts of the sun's disk should travel at different speeds; this would compli
cate the interference pattern. The experiments were performed in 1924 by

8. One has to make an additional assumption about the velocity of a light ray
reflected from a moving mirror. In Ritz's theory, the velocity of the reflected ray
is c relative to the mirror.
9. T. Alvager, F.]. M. Farley, J. Kjellman, and I. Wallin, "Test of the Second
Postulate of Relativity in the GeV Region," Physics Letters 12 (1964):260-262.
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Fig. 2.7. Light reaches earth from a member of
a binary star system, which moves in a circular
orbit. When the star is at point A, it is moving
toward earth; when it is at point C, it is moving
away froln earth. According to Ritz's emission
theory, the light from A should travel at speed
c + V and the light from C at speed c - V, where
V is the star's orbital velocity.

R. Tomaschek using starlight and in 1925 by Dayton Miller using sun

light; in each case, none of the effects predicted by the emission theory

was observed.

At the turn of the century, neither of the aforementioned pieces of

evidence was available. However, a fairly convincing argument against the

emission theory was put forward by Willem de Sitter, based on the prop

erties of binary stars.

Binary stars orbit around their center of mass; if the stars have equal

mass, the center of the orbit is halfway between them. Consider that sim

ple case and assume that the orbit is circular, with the earth in the plane

of the orbit (fig. 2.7). The apparent separation of the stars as seen from

earth oscillates, reaching a maximum when the stars are at positions A
and C. One quarter of a period later, when the stars are at positions Band

0, they eclipse one another and only one image is visible. If the rotation
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is in the sense indicated in the diagram, each star is approaching earth as
it passes position A and receding as it passes position C.

According to the emission theory, the light emitted by either star in
the direction of earth when the star is at A travels at speed c+ V relative
to us, while that emitted at C travels at speed c - V; V here denotes the

orbital speed of the star. The difference in travel times of light reaching
earth from the two positions gives rise to peculiarities in the observed
motion. The predicted effect is not small; the difference between the two

travel times is given by

t} - t2 == (time for light to reach earth from position C)
(time for light to reach earth from position A)

2LV

where L is the (mean) distance of the stars from earth. Since V is much
smaller than c, the above expression is approximately

t1 - t2 ~ 2LVIc2 (2.9)

LIc, the mean travel time, can be a thousand years or more. Even if
VIc is as small as ,10-4

, therefore, the time difference t1 - t2 can be several
months or more. For close binaries this can exceed the period of the stars'
orbital motion. If that were the case, the light emitted from the later posi
tion, A, traveling faster, would reach earth before that emitted from C.
During part of its orbit the star would appear to be moving backward!
Numerous peculiar effects of this nature would be expected. On some
occasion~ two images of the same star would be observed. The fact that
no such effects are detected conclusively rules out the emission theories,
or so it was thought at the time.10

The FitzGerald- Lorentz Contraction

Finally, we examine the most interesting of the attempts to reconcile the
Michelson-Morley result with conventional theory-the proposal, first

put forward by George FitzGerald, that the dimensions of material bodies

change when they move through the ether. Lorentz had the same idea
independently a short time later and developed it in detail. 11

10. The validity of de Sitter's argument was challenged many years later by J. G.
Fox, "Experimental Evidence for the Second Postulate of Special Relativity,"
American Journal of Physics 30 (1962):297-300.
11. FitzGerald discussed the contraction hypothesis often in his lectures but pub
lished only a brief qualitative note on the subject.
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Lorentz and FitzGerald postulated that when a body moves through

the ether, its dimension in the direction of motion is contracted by the

factor

(2.10)

The transverse dimensions remain unchanged.

Repeating the analysis of section 2.3, we can verify that the contraction

hypothesis accounts for the result of the experiment. If the length of the

longitudinal interferometer arm PAP is reduced by the factor expressed

in equation (2.10), T2 is reduced by the same factor and becomes equal to

TI . Hence no change in the fringe pattern is to be expected as the interfer

ometer is rotated.12

As Lorentz himself pointed out, the contraction hypothesis is hard to

test directly. The effect is very weak: the diameter of the earth contracts

by only 6 centimeters as a result of its assumed motion through the ether.

Moreover, any meterstick used to measure lengths itself shrinks; hence

the contraction effect is not manifested in a simple length measurement.

To detect the effect, one would have to use a meterstick that moves at a

speed different from that of the object being measured; that is not an easy

experiment to carry out.

Lorentz proposed a physical explanation for the contraction in terms of

changes in the intermolecular forces when a body is in motion; his mecha

nism is described in section 4.9. He admitted, however, that his contrac

tion proposal was essentially ad hoc.

According to Lorentz, the null result of Michelson-Morley represents

the cancellation of two effects. The contraction of the longitudinal arm of

the interferometer compensates for the differences in the speed of light

along the various paths. The correct explanation, provided by special rela

tivity, requires no such fortuitous cancellation. As we shall see, special

relativity does predict a length contraction but only in a reference frame

in which the object is moving. In the earth's frame, Michelson's apparatus

is at rest and is not contracted.

A slightly modified version of the Michelson-Morley experiment, car

ried out by Roy Kennedy and Edward Thorndike many years later, dis

criminated between Lorentz's contraction hypothesis and Einstein's the-

12. The same conclusion follows if the transverse dimensions increase by the
factor 1/~1- V 2

/C
2 while the longitudinal dimension remains unchanged. Lorentz

quickly decided that the contraction hypothesis is more plausible.
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ory; the results favored Einstein. Kennedy and Thorndike used an

interferometer with arms of unequal lengths, L1 and L2 . Repeating the

derivation of section 2.3, we find for the difference in travel times instead

of equation (2.7), the expression

T - T =~(~ - L2
) (2.11)

1 2 C 1 - {32 ~1 _ {32 .

Under the contraction hypothesis, T1 is reduced by the factor -VI - {32.

Hence the time difference T1 - T2 becomes

(2.12)

When the apparatus is rotated, the value of TI - T2 does not change;

hence in the standard Michelson-Morley experiment, no shift in the

fringe pattern is to be expected. If {3 were to change, however, the value

of T1 - T2 would change and the fringe pattern ought to shift.

To observe the effect, one has to keep the fringes under observation

until the earth's velocity relative to the ether has changed appreciably. A

small diurnal change in {3 is caused by the earth's rotation about its own

axis; the rotational speed alternately adds to and subtracts from the orbital

speed. Since the rotational speed even at the equator is only about 0.5 kml
sec, however, this effect is very small.

A much larger effect is caused by the earth's orbital motion, which, as

discussed earlier, causes V to change by about 60 kmlsec during the course

of a year. In 1932, Kennedy and Thorndike performed the experiment and

managed to keep the fringes under continuous observation for several

months. According to the ether theory, even with a correction for the

FitzGerald-Lorentz contraction, a shift in the fringe pattern should have

been detected; no such effect was found. In special relativity, as we shall

see, the time difference is always 2(L1 - L2)1c, and no effect is to be ex

pected.

Other experiments related to the motion of the earth through the ether

and the contraction hypothesis were performed during the first years of

the twentieth century. Several were based on the property of many solids

and liquids that they become doubly refracting under strain: the indices

of refraction for the two possible polarizations of light differ slightly.

Since the FitzGerald contraction can be viewed as a strain, it should give

rise to a double refraction whose magnitude changes as the apparatus is

rotated. The magnitude of the effect should be proportional to (V/C)2. In
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1902, Lord Rayleigh looked for the effect and failed to find it. Dewitt
Bristol Brace at the University of Nebraska repeated the experiment in
1904 with greatly increased accuracy but also obtained a null result. I3

The sensitivity of Brace's experiment was such that he could have de
tected a difference between the two refractive indices as small as 10- 13;

an effect at least twenty times greater was expected. Brace argued that the
absence of double refraction was evidence against Lorentz's contraction
hypothesis. However, an explanation for the null result was proposed by
Lorentz and also by Joseph Larmor in the same year.

Another interesting experiment was carried out in 1903 by Frederick
Trouton and H. R. Noble, who suspended a parallel-plate condenser from
a string. For fairly complicated reasons, there should be a torque on the
condenser that depends on the angle between the condenser plates and the
direction of the earth's velocity through the ether. The predicted effect
was of the order (V/C)2. The outcome of this experiment too was negative:
no torque was detected.

PROBLEMS

2.1. Galileo proposed a simple way to measure the speed of light. He stationed
himself on a hilltop with a lantern and an assistant with an identical lantern on
another hilltop. Both lanterns were initially lit. The assistant was instructed to
shut off his own lantern as soon as he saw Galileo's go out. The time delay be
tween the instant when Galileo shut off his own lantern and the instant when he
saw the assistant's lantern go out would measure the time required for light to
travel back and forth between the two hilltops.

Galileo's method failed because the times in question were too short to mea
sure. Assuming that the distance between hilltops was 10 km and that Galileo
could detect a time delay of 0.1 sec, what is the highest value for c that he could
have detected? With the actual value of c, how far apart would the hilltops have
to be in order to permit a determination? Neglect the human reaction time, which
would also contribute an error.

2.2. A Michelson interferometer is operated with light of wavelength 5 X 10- 4

mm. By how many fringes should the interference pattern shift when a glass plate
1 mm thick is inserted in the path of one of the beams? The index of refraction n
of the glass is 1.2. (The speed of light in a transparent medium is cln.)

2.3. This problem deals with de Sitter's objection to Ritz's emission theory, in
which the speed of light is assumed to be c relative to its source. Refer to fig. 2.7.
Let T be the period of the star's circular orbit, L its mean distance from earth, and
V its orbital velocity. (L is much greater than the radius of the orbit, so the light

13. D. B. Brace, "On Double Refraction in Matter Moving through the Aether,"
Philosophical Magazine 7 (1904):317-328.
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rays from any point on the orbit may be assumed to be parallel.) Neglect any
relative motion between earth and the center of the star's orbit and assume that
the emission theory is valid.

(a) Find the difference between the arrival times of the light emitted when the
star is at position C and that emitted when it is at position A, at a time T/2 later.
Your answer should be expressed in terms of V, c, L, and T.

(b) Find the relation between V, L, and T if light rays emitted by the star at A
and C arrive at earth at the same time. To an observer on earth, the star appears
to be at both places at once.

(c) Let V= 100 km/sec and T= 106 sec (about 10 days). For what value of L
does the star appear to be at two places at once? Express your answer in light
years.

2.4. In the derivation of the expected time difference in Michelson's experiment
in section 2.3, arm PA of the interferometer was assumed to be aligned in the
direction of the earth's motion through the ether. Since that direction is totally
unknown, the assumption is not justified. The object of this problem is to derive
a more general result.

Assume that arm PA makes an angle 4> with the direction of V, the earth's
velocity relative to the ether. Repeat the derivation and obtain a general expres
sion for the quantity T2 - TI . (For 4>= 0, the result should reduce to eq. [2.7].)
What happens when 4> is 90°?



3 The Postulates of
Relativity and Their
Implications

3.1. THE POSTULATES

In 1905 Albert Einstein, a twenty-six-year-old technical expert third class
at the Swiss patent office in Bern, published three monumental papers in
the Annalen der Physik. One of those papers set forth the theory now

known as special relativity.l The theory is based on two postulates, which

I paraphrase as follows:

Postulate 1 (Principle of Relativity): The laws of nature are the same
in all inertial frames.

Postulate 2 (Constancy of the Velocity of Light): The speed of light in
empty space is an absolute constant of nature and is independent of
the motion of the emitting body.

All of special relativity follows by logical deduction from these two

postulates. The only other assumption required is that space is homoge

neous and isotropic, that is, no region of space is intrinsically different
from any other and there are no preferred directions in space.

As described in chapters 1 and 2, a principle of relativity had been

propounded in the seventeenth century by Galileo but for a long time was

believed to apply only to the laws of mechanics. Einstein's first postulate

1. liOn the Electrodynamics of Moving Bodies," Annalen der Physik 17
(1905):891-921. For a long time the only English translation available was in The
Principle of Relativity: A Collection of Original Memoirs, first published by
Methuen in 1923 and reprinted by Dover Books in 1952. That translation has been
criticized as containing many inaccuracies. New translations are found in Arthur
I. Miller, Albert Einstein's Special Theory of Relativity (Reading, Mass.: Addison
Wesley, 1981), and in the second volume of The Collected Papers of Albert Ein
stein, ed. John Stachel (Princeton: Princeton University Press, 1989).
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is simply the extension of Galileo's principle to encompass all the laws of
physics, including those of electromagnetism and optics? Such a general
ization had great intuitive appeal for Einstein. In his popular exposition
of the theory, he says /I that a principle of such broad generality should

hold with exactness in one domain of phenomena, and yet should be in
valid for another, is a priori not very probable." 3 The quest for generality

and for unifying principles guided Einstein in all his research.
The second postulate is the revolutionary part of special relativity. As

Einstein says in the introduction to the 1905 paper, the second postulate
is /I only apparently" irreconcilable with the first. What he means is that
the two postulates are irreconcilable only if one insists on retaining the
Galilean transformation, which implies that the speed of light (like that

of anything else) should be different when measured by two sets of ob
servers in relative motion.

The second postulate implies that the Galilean transformation, self
evident though it may appear, must be rejected. Its replacelnent, the Lo
rentz transformation, is derived in chapter 4. The principal conceptual
consequences of special relativity can, however, be demonstrated directly
from Einstein's two postulates without employing the Lorentz transfor
mation. That is the task of this chapter.

As noted in chapter 2, the second postulate provides a simple explana
tion for the null result of the Michelson-Morley experiment: if the speed

of light is an absolute constant, the light travel times along the arms of
the interferometer are always equal, no matter how the instrulnent is
oriented. Hence, no fringe shift is to be expected as the interferometer
is rotated. The Michelson-Morley experiment therefore provides strong
(though indirect) support for the second postulate. (See, however, the his
torical remarks in sec. 3.2.)

Direct experimental confirmation of the second postulate came only
many years afterward. The most convincing data were provided by Alva
ger's experiment on the decay of neutral pions, cited in section 2.4 in

connection with Ritz's emission theory. In that experiment, pions moving

at O.9998c were observed to decay into two photons (light pulses). One
photon was emitted in nearly the forward direction (the direction of the

2. In his 1905 paper, Einstein states the relativity principle as follows: /lIn all
coordinate systems in which the mechanical equations are valid, also the same
electrodynamic and optical laws are valid" (p. 140 of translation in Collected Pa
pers).
3. A. Einstein, Relativity: The Special and the General Theory, 15th ed. (New
York: Crown Publishers, 1952), 14. The first edition was published in 1916.
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decaying pion) and the other in nearly the opposite direction. According
to Galilean relativity, the forward-moving photon should travel at speed

1.9998c and the other at only 0.0002c. Instead, both photons were ob
served to travel at speed c to within about three parts in 105.

Demise of the Ether

In nineteenth-century electromagnetism, the ether played a central role.
It provided a unique frame of reference in which Maxwell's equations
hold and the speed of light is the same in all directions. According to
Einstein's postulates, every inertial frame has that property. There re
mains no role for the ether to play in the description of natural phenom
ena; it has becoine superfluous.

Many physicists, including both Lorentz and Michelson, were reluctant
to abandon the ether. Although Lorentz quickly accepted Einstein's rela
tivity, he continued to maintain that a medium of some kind is needed as
the carrier of the electromagnetic field. In his Theory of Electrons, pub
lished in 1909, he said, "I cannot but regard the ether, which can be the
seat of an electromagnetic field with its energy and its vibrations, as en

dowed with a certain degree of substantiality, however different it may be
from all ordinary matter." 4 Michelson expressed similar views. Refer
ences to the ether continued to appear in the literature long after relativity
had gained general acceptance. Gradually, however, the ether faded from
discussion.

Special relativity dispenses also with the notions of absolute rest and
absolute motion. So long as an ether was believed to exist, its rest frame
provided a standard with respect to which absolute motion nlight be de
fined. A body could be said to be in a state of absolute rest if it was at rest

relative to the ether. With the demise of the ether, all inertial frames are

completely equivalent. There is no way to define absolute rest or absolute
motion.

The first postulate implies that no experiment can have a result that
favors one inertial frame over another. Nature imposes strict democracy

among inertial observers; this rule dictates the outcome of many experi

ments. For example, consider two uniformly moving trains that approach
each other on a straight track. The trains are equipped with identical
speed-measuring devices, such as the radar employed by traffic patrols.

4. H. A. Lorentz, The Theory of Electrons, 2d ed. (New York: Dover Publications,
1952), 230. First published in 1909.
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Observers on each train aim their device at the other train and measure its
speed of approach. How are the results of the two measurements related?

In a world governed by Galilean relativity, it is easy to show that the
two measured speeds must be equal. Suppose one train moves at 30 m/sec
and the other at 40 m/sec relative to the ground. The distance between
the trains diminishes by 70 m each second, and both speed indicators must

read 70 m/sec.
In special relativity, this simple argument is not valid. As we shall pres

ently discover, space and time have many unexpected properties. Observ
ers on each train find that the other train is contracted and its clocks run

slow. Hence it is not at all obvious that the two speed measurements

should yield identical results. That outcome is demanded by the first pos

tulate, however, for any other would violate the requirement of equality
among inertial observers. If the two radars were to register unequal read
ings, which speed should be the greater? There is nothing in the problem

to distinguish between the two trains, other than that they are moving in
opposite directions; the isotropy of space assures us that this cannot make
any difference. The only outcome consistent with Einstein's first postulate
is that the two measured speeds are equal.

3.2. TIlE ROLE OF TIlE MICHELSON-MORLEY EXPERIMENT IN

THE GENESIS OF RELATIVITY

Special relativity appears to be a classic case of a theory constructed ex
pressly to explain a puzzling experimental finding. The second postulate,
the heart of the theory, seems to be based directly on the result of the
Michelson-Morley experiment. This indeed is the way the story is pre
sented in much of the literature. Robert Millikan, in an article written in
honor of Einstein's seventieth birthday, put it as follows:

That unreasonable, apparently inexplicable experimental fact [the
result of Michelson-Morley] was very bothersome to 19th-century
physics, and so for almost twenty years physicists wandered in the
wilderness in the disheartening effort to make it seem reasonable.
Then Einstein called out to us all, "Let us merely accept this as an
established experimental fact and from there proceed to work out
its inevitable consequences," and he went at that task himself with
an energy and a capacity which very few people on earth possess.
Thus was born the special theory of relativity.5

5. R. A. Millikan, "Albert Einstein on His Seventieth Birthday," Reviews of Mod
ern Physics 21 (1949):343.
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Millikan's account paints a dramatic (and credible) picture. Yet in his
own writings Einstein suggests that Michelson's experiment played at

most a minor role in the genesis of special relativity. The 1905 paper

makes no mention of the experiment, although Einstein does refer to "un
successful efforts to discover any motion of the earth relative to the 'light
medium,' " without identifying those efforts.6 The Michelson-Morley ex
perimentwas only one of them.

There is some question as to whether Einstein even knew about the

experiment when he wrote his paper. In an interview conducted in 1950,
Einstein told Robert Shankland that he became aware of the Michelson
Morley result through the writings of Lorentz, but only after 1905. "Oth
erwise," he said, "I would have mentioned it in my paper." He added that
the experimental results that had influenced him most were the observa
tions on stellar aberration and Fizeau's experiment on the speed of light
in moving water. "They were enough," he said. 7

When Shankland raised the question again two years later, Einstein
gave a different response. "This is not so easy, /I he said. "I am not sure
when I first heard of the Michelson experiment. I was not conscious that

it had influenced me directly during the seven years that relativity had
been my life." He added that in the years 1905-1909 he thought a great
deal about Michelson's result. He then realized that he had also been con
scious of the re'sult before 1905, partly from the papers of Lorentz and
more because he had "simply assumed this result of Michelson to be
true.,,8

Abraham Pais, who knew Einstein well and wrote his scientific biogra
phy, is certain that Einstein did know about the Michelson experiment
before 1905.9 He points out that Einstein was in his seventies and not in

good health when he talked to Shankland; at the first interview he proba
bly did not remember that Michelson's experiment was discussed in Lo
rentz's 1895 monograph, which he had definitely read before 1905 (see

sec. 4.8).

Even if Einstein was aware of Michelson-Marley's result, we must ac

cept his assertion that it was not a major motivating factor in the genesis
of relativity. He repeatedly uses terms like "negligible," "indirect," and

6. The 1905 paper contains no references whatever. Einstein's first reference to
the Michelson-Morley experiment was in a review article he published in 1907.
7. R. S. Shankland, "Conversations with Albert Einstein," An1erican Journal of
Physics 31 (1963):47-57.
8. Ibid.
9. A. Pais, Subtle Is the Lord (Oxford: Oxford University Press, 1982), 116.
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"not decisive" to describe the influence of Michelson's experiment on his
thinking.

In his penetrating analysis of the issue, Gerald Holton concludes that
"the role of the Michelson experiment in the genesis of Einstein's theory
appears to have been so small and indirect that one may speculate that it
would have made no difference to Einstein's work if the experiment had
never been made at all." 10 In light of this assessment, Einstein's achieve

ment looms all the more remarkable.
If he was not influenced by Michelson's experiment, how did Einstein

arrive at the second postulate? That is the intriguing question. Einstein's
paper provides little guidance. In it he presents the second postulate with

no explanatory remarks or motivation, as though it were a commonly
accepted proposition instead of a daring departure from conventional no

tions. An illuminating passage is found in the autobiographical notes writ

ten by Einstein in 1949.

By and by I despaired of the possibility of discovering the true
laws by means of constructive efforts based on known facts. The
longer and the more despairingly I tried, the more I came to the
conviction that only the discovery of a universal formal principle
could lead us to assured results.... After ten years of reflection
such a principle resulted from a paradox upon which I had already
hit at the age of sixteen: If I pursue a beam of light with the veloc
ity c, I should observe such a beam as a spatially oscillatory electro
magnetic field at rest. However, there seems to be no such thing,
whether on the basis of experience or according to Maxwell's equa
tions. From the very beginning it appeared to me intuitively clear
that, judged from the standpoint of such an observer, everything
would have to happen according to the same laws as for an ob
server who, relative to the earth, was at rest. For how, otherwise,
should the first observer know, i.e., be able to determine, that he is
in a state of fast uniform motion 711

The seed of the theory of relativity had evidently been planted when
Einstein was only sixteen years old! The idea that light has the same speed
in all inertial frames, so difficult for an ordinary mind to grasp, was a

10. G. Holton, "Einstein, Michelson, and the Crucial Experiment," a chapter in
his Thematic Origins of Scientific Thought (Cambridge: Harvard University Press,
1988). See also G. Holton, "Einstein and the Crucial Experiment," American Jour
nal of Physics 37 (1968):968-982.
11. "Autobiographical Notes," in Albert Einstein: Philosopher-Scientist, ed. P. A.
Schilpp (Evanston: Harper Torchbook, 1949), 53.
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quite natural one for Einstein. He was prepared to accept it even without
strong experimental evidence.

In the years following 1905, the postulates of relativity have been con
firmed by ample experimental evidence, including refined versions of the
Michelson-Morley experiment. But the genesis of the theory, apparently,
lay in Einstein's inspired intuition.

3.3. THE RELATIVITY OF TIME: SIMULTANEITY

The most profound conceptual implication of special relativity is the
change it has brought about in our perception of the nature of time. Rela
tivity requires us to reject the notion of absolute time, which was taken
for granted by Newton and by all the thinkers who followed him. (New
ton's definition of absolute time was quoted in chap. 1.)

In a world in which time is absolute, the following proposition is surely
valid: if observers in different inertial frames measure the time interval
between two events, using identically constructed clocks, the measured
time intervals will in every instance be equal. The proposition is (at least
in principle) subject to experimental test. Although our intuition strongly
suggests that the result of all such tests must be positive, it is conceivable
that the measured time intervals might sometimes turn out to be differ
ent. In that case, absolute time would have to be abandoned. Einstein's
postulates predict just such an outcome, and the prediction is confirmed
(albeit indirectly) by experimental evidence. All the major conceptual con
sequences of special relativity can be related to the relativity of time.

I introduce the relativity of time by analyzing the concept of simulta
neity. If tin1e is absolute, two events that occur at the same time according
to one set of observers must be simultaneous as well for any other set.

The second postulate leads inescapably to a contrary conclusion: other
observers find that the events are not simultaneous. This result suffices
to establish the relativity of time.

One bit of reassurance can be offered the reader. If two events occur
simultaneously at the same place, a single observer can directly experi
ence both: she can see them happen together. Such events are simultane

ous in any frame even according to special relativity. In fact, since an
event is characterized by its space and time coordinates, two events that
occur at the same time and at the same place can be regarded as parts of a
single event. 12

12. The Lorentz transformation, derived in chapter 4, is a prescription for calcu
lating the coordinates of an event in frame 5', given its coordinates in S. Each 5'
coordinate can depend only on the four numbers x, y, z, and t. If all four of those
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If, however, two events take place at different locations in a particular
frame of reference, no single observer in that frame can experience both.
Determination of simultaneity in such a case is a complicated procedure,
as has already been discussed in chapter 1. Two observers are required,

one at the location of each event; each observer records the reading of a

clock on the scene, and the two readings are subsequently compared. If

the readings are the same (and if the clocks are properly synchronized),

the observers conclude that the events in question were simultaneous.

After all that exchange. of information, however, simultaneity at a dis
tance must be regarded as an inference rather than a sensory observation.

Special relativity predicts that if observers belonging to a different inertial

frame record the times of the same two events on their (separated) clocks,

those clock readings will be unequal. That prediction, although counter

intuitive, does not contradict any sensory experience.

The experiment shown in figures 3.1 and 3.2 demonstrates the relativ

ity of simultaneity. A train moves with constant speed V relative to the
ground. One frame of reference, S, is fixed on the ground while another

frame, S', moves with the train. F', R', and M' are train observers situated
at the front, rear, and midpoint of the car. At some instant, M' flashes a

light. Call this event EIt and call events E2 and E3 the arrivals of the light

flashes at the rear and the front platforms, respectively.

We analyze the experiment first in frame S' (fig. 3.1). Let t~, t~, and t~

be the times of the three events as recorded by train clocks located at the
scene of each event. Since F' and R' are at equal distances from M', the
light flashes, traveling at the same speed, take equal times to arrive. Hence

t~ == t~ (3.1 )

In the train frame of reference, then, E2 and E3 are simultaneous.
Figure 3.2 shows the same set of events as seen in the ground-based

frame of reference. Ground observer M witnesses the emission of the light

flashes, and ground observers Rand F witness their arrivals at the rear

and front of the car. While the backward-moving flash was in transit, the

train moved ahead. The distance MR traversed by that flash is therefore

less than half the length of the car (fig. 3.2b). A similar argument shows

that the distance MF traversed by the forward-moving flash is more than

half the length of the car (fig. 3.2c). Hence MF is longer than MR.

numbers are the same for event B as for event A, then no matter what form the
transformation law may take, the result for B must be the same as for A.
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Fig. 3.1. Simultaneity experiment as seen by train
observers. (a) Light flashes leave M' (event 1); (b)
light flashes arrive at R' (event 2) and at F' (event
3). Since the paths of the two rays are of equal
length, their arrivals are simultaneous: t~ = t~.

According to Einstein's second postulate, both flashes travel at the
same speed c in the ground frame as well as on the train; consequently,
ground observers must see the backward-moving flash arrive first. In the
ground frame, then, events £2 and £3 are not simultaneous. If t1 , t2 , and

t3 denote the times of the three events measured by ground clocks, we

infer that

(3.2)

The second postulate is directly responsible for this perplexing result.

It is easily verified that in Galilean relativity £2 and E3 are simultaneous
in both frames. If the light flashes travel at the same speed c according to
train observers, then in the ground frame the forward-moving one travels

at speed c+ V and the backward-moving one at speed c - V. The faster
speed of the forward-moving flash exactly compensates for the greater
distance it has to travel (see problem 3.1) and the arrivals of the two
flashes are simultaneous just as they are in the train frame. The hypothe
sis that the two light flashes travel at the same speed c in both frames
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Fig. 3.2. Simultaneity experiment as seen by
ground observers. (a) Light flashes leave M (event
1); (b) light flash arrives at rear of train (event 2);
(c) light flash arrives at front of train (event 3).
Event 2 occurs before event 3. Note that in sketch
(b), the forward-moving ray is still en route.

leads to the discomforting conclusion that their arrivals are simultaneous
in one frame but not in the other.

Notice we have not assumed that ground observers agree with those
on the train as to the length of the car; that assumption would be wrong,
as we shall presently see. (Ground observers see the train as contracted.)

Both sets of observers do have to agree that the flashes start out from the
midpoint of the car. That is assured by symmetry considerations: since
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the front and rear portions of the car are identical and move with the same

speed, there is no reason why either should appear longer than the other

in any inertial frame.

The magnitude of the difference between the arrival times of the two
flashes in the ground frame depends on the length of the car and on its
speed. For reasonable values of length and speed, the difference turns out
to be extremely small-too small to be detected even with sensitive mod
ern equipment. (See problem 3.2.) For that reason, the simultaneity ex
periment has never been performed. It is, however, conceptually straight
forward. We shall describe many such "thought experiments"; even
though they have never been performed, their outcome is unambiguously

predicted by special relativity and their analysis is helpful in clarifying
the subtleties of the theory.

If, instead of being at the midpoint of the car, M' were a short distance
ahead of the midpoint when he flashed his light, the forward-moving
flash would travel a shorter distance than the other and would therefore
arrive first according to train observers. Provided the displacement from
the midpoint were small enough, ground observers would still see the
backward-moving flash arrive first. The order of E2 and E3 would thus be
reversed in the two frames. This is the phenomenon discussed in chapter
1 to illustrate the strange predictions of special relativity.

Causality

If a cause-and-effect relationship exists between two events, a reversal of
their time ordering is clearly unacceptable. In our light-flash experiment,
event E1 is clearly the cause of event £2' A theory that predicts that any
observers would see those two events in the opposite order, that is, see

the arrival of a light flash before its emission, would be bizarre indeed.

The principle of causality-that the cause must precede the effect-is not
one we are prepared to abandon. Fortunately, special relativity does not

require us to do so. I shall prove in chapter 5 that if two events are causally
related, the cause precedes the effect in any frame of reference. Con
versely, if the order of some pair of events is different in two frames of
reference, neither one can be the cause of the other.13 Special relativity is
thus fully consistent with the causality principle.

According to the first postulate, any inertial frame of reference is as
good as any other. If observers in one frame see a given pair of events as

13. In the light-flash experiment, events £2 and £3 are not causally related: nei
ther is the cause of the other.



The Postulates of l\elativity / 59

simultaneous while those in another frame see them as separated in time,
it is fruitless to inquire whether the two events are "really" simultaneous;
there is no operational way to answer the question. We conclude, rather,
that simultaneity is not absolute but can hold only in a particular frame

of reference. This conclusion, a direct consequence of the second postulate,

is an integral part of special relativity.
A few remarks may help the reader come to grips with a conclusion

that seems so contrary to common sense. First, as already emphasized,

absolute simultaneity is being abandoned only in the case of spatially sep
arated events, for which it is an inference rather than a direct observation.

Moreover, the magnitude of the effect is substantial only when the rela

tive velocity of the observers involved is close to the speed of light or

when the events are separated by a huge distance. It is therefore not ob

servable in everyday experience.

Finally, I would call attention to the following analogy. Two events

that coincide in space (i.e., that occur at the same location) in one frame

of reference do not coincide in any other frame if the events occur at

different times. Suppose a ball is thrown straight up inside a moving train.
According to orservers on the train, the ball lands, some time later, in the

saIne place it started.. Ground observers, however, see the ball follow a

parabolic path and land at some point down the track. This result is not at

all surprising (it is equally true in Galilean relativity), but it is analogous
to the earlier result that is so contrary to our intuition, except that the
roles of space and time are interchanged:

Statement A: Events that happen at the same place but at different
ti1nes according to one set of observers happen at different places ac
cording to a second set of observers moving relative to the first.

Statement B: Events that happen at the same time but at different
places according to one set of observers happen at different times ac
cording to another set of observers moving relative to the first.

The symmetry between the two statements is striking, yet the first

seems plausible while the second is perplexing. We are accustomed to
thinking of space and time as entirely different entities; in the pre

Einsteinian formulation of the laws of physics, space and time take very

different roles.

Special relativity, in contrast, treats space and time on a much more

symmetrical basis. We shall find that except for minus signs here and
there, all the equations of the theory are unaltered when space and time

are interchanged. This symmetry endows the theory with a certain ele

gance. It does not, of course, prove that the theory is right; a theory can
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be elegant and yet not conform to nature. Still, theories that are simple

and elegant have an undeniable appeal.

Although the discussion of simultaneity has been based on the proper

ties of light, the conclusions are in fact quite general and apply to any pair

of events. Consider two events, £1 and E2 , that occur simultaneously in

some frame of reference at positions P and Q. Imagine that halfway be
tween P and Q, light flashes were emitted at some earlier time; the flashes

arrive at P and Q simultaneously.

If the emissions were timed so that one flash arrives at P at the time of

E1 , the other flash arrives at Q at the time of E2 . The results of this section
imply that in any other frame of reference, the arrivals of the light flashes

at P and Q are not simultaneous. However, since £1 and the arrival of the

first flash at P coincide in both time and space, those two events must be
simultaneous in all frames. Likewise, E2 and the arrival of the second flash

at Q must be simultaneous in all frames. Since the two light flashes arrive
at different times in the second frame, the same must be true of events £1

and £2' We have proved that if any two events occur simultaneously at
different locations in some frame 5, those events will be observed to occur

at different times in any frame moving relative to S.

3.4. TIlE SYNCIIRONIZATION OF CLOCKS

In the preceding section, the simultaneity of separated events was defined
in terms of clock readings: the time of every event is measured by a clock
at the site of the event, and two events are simultaneous if the clock read
ings are equal. Implicit in this definition is the assumption that the clocks
are properly synchronized; this is a far from trivial condition when the

clocks are separated. In fact, we seem to be confronted with a serious

logical problem. The assertion that clocks A and B are synchronized is

equivalent to saying that the events /I clock A reads 6:00" and /I clock B

reads 6:00" are simultaneous. But if silTIultaneity is defined in terms of

clock readings, how can the simultaneity of the clock readings themselves

be verified? The argument appears to be circular.

A possible procedure would be to synchronize the clocks while they are

together and then move them slowly to their final locations. That proce
dure is not satisfactory because we cannot be sure that lTIotion does not

affect synchronization. One would like to be able to test directly whether

two separated clocks are synchronized.
Einstein's second postulate provides the solution to the problem. Two

separated clocks can be synchronized by exchanging light signals between
them, taking advantage of the fact that all light signals travel at the same
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Fig. 3.3. Synchronization of distant clocks by exchange
of light (or TV) signals. (a) Observer A sends out a sig
nal; his clock reads 12:00. (b) Signal arrives at Band
triggers a TV camera, which sends out a picture of the
clock located there. (c) Televised picture of B's clock ar
rives at A; A's clock reads 2:00. If the picture shows B's
clock reading 1:00, A concludes that B's clock is synchro
nized with his.

speed c. If the distance between clocks is L, the travel time of a light sig
nal from one clock to the other is LIc. Hence, if a signal emitted from
clock A when it reads to reaches clock B when B reads to + LIc, we can
conclude that the clocks are synchronized. Alternatively, an observer,
M, could be stationed halfway between A and B. If A and B are syn
chronized, signals emitted from them when each reads to should reach M
together.

A variant of this method allows clocks to be synchronized without re
quiring any length measurement at all. Observer A sends out a light sig
nal and records the reading of his clock as he does so (event 1, fig. 3.3).
When the signal reaches H, it triggers a television camera trained on the
clock there (event 2). The picture is transmitted back (at the speed of light)
to A, who records his clock reading at its arrival (event 3).

If the clocks are properly synchronized, the picture of H's clock should
show it reading exactly halfway between A's initial and final readings.
Suppose, for example, that A's clock reads 12:00 at event 1 and 2:00 at
event 3. If the picture shows B's clock reading 1:00, A concludes that the
clocks are indeed synchronized. If it does not, he can make the appropriate
adjustment ori his clock.
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It is not hard to show that if clock A is synchronized with Band B is
synchronized with a third clock C, then A and C are also synchronized.
All the clocks in a given frame of reference may thus be synchronized
with one another. We shall always assume that this has been done.

Although the nature of time is more complicated in special relativity
than in the classical relativity of Galileo and Newton, the synchronization
of clocks by exchange of light signals is actually simpler. In Galilean rela
tivity the speed of light depends on the speed of the observer relative to
the ether and in general varies with direction. If Galilean observers wish
to synchronize their clocks by exchanging light signals in the manner just
described, they cannot assume that both signals travel at the same speed.
Hence the travel times of the two signals are different and the criterion
for synchronization is more complicated than the one for special relativ
ity. (See problem 3.3.)

Synchronization by exchange of light signals works only for clocks that
are at rest relative to one another. Suppose we try to apply the same
procedure to two clocks in relative motion. Figure 3.4a shows the sequence
of events as seen in the rest frame of A, in which B is moving to the right.
In this frame the two light signals travel equal distances. Hence their
travel times are equal and the criterion for synchronization is the same as
before: the reading of B's clock at event £2 should be halfway between the
readings of A's at events £} and E3 .

A problem arises, however, when we examine the same sequence of
events in the rest frame of B, in which A is moving to the left (fig. 3.4b).
In that frame the return signal travels a greater distance and therefore has
a longer transit time. Hence if the clocks are synchronized, the reading of
B's clock at event E2 should be less than halfway between the readings of
A's clock at events E} and E3 .

This outcome is logically unacceptable. According to special relativity,
there is no way to tell whether A or B is the moving clock; the results can
depend only on their relative velocity. Yet the criteria for synchronization
are different depending on whether the motion is ascribed to A or to B.
We conclude that clocks in relative motion cannot be synchronized. In the
next section we will learn why: the clocks keep time at different rates.
Even if they could be synchronized at one instant, they would not stay
synchronized.

A still more surprising result can be demonstrated. Suppose that train
observers and ground observers have each synchronized their own clocks
by exchanging light signals. Train observers propose to check on the syn
chronization of ground clocks by carrying out the following experiment.
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Fig. 3.4. An attempt to synchronize clocks in relative
motion, using the procedure of fig. 3.3. Clock B is moving
to the right relative to clock A. The sketches in (a) show
the experiment in the frame in which A is at rest. The
light flashes travel equal distances; hence the synchroni
zation criterion is the saIne as for clocks that are station
ary relative to one another. (b) The same experiment in
B's rest frame, in which A is moving to the left. In this
frame the two light flashes travel unequal distances; hence
the reading of B at event £2 should not be halfway be
tween those of A at £1 and £3 if the clocks are synchro
nized. Since we cannot arrive at a unique criterion for
synchronization, we conclude that the clocks cannot be
synchronized.
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Fig. 3.5. Clock synchronization experiment as
seen in the ground frame. (a) Stationary observ
ers A and B emit light flashes when their (syn
chronized) clocks both read 5:00 (events 1 and 2).
(b) The light flashes meet some time later (event
3) at a point halfway between A and B. The train
has moved in the interim, so the light flashes
meet somewhere in the rear half of the cabin.

At some prearranged train time, the train observer who sees ground clock
A passing her records the reading of A. At the same (train) time, the train
observer who sees ground clock B passing her records the reading of B. If

the two clock readings are the same, A and B are indeed synchronized.

The results of the preceding section imply that the outcome of this

test must be negative: according to train observers, ground clocks are not
synchronized. The two events "clock A reads 5:00" and "clock B re~ds

5:00" are simultaneous in the ground fra1ne. But if two separated events
are simultaneous in one frame, they cannot be simultaneous in any other.
In the train frame, therefore, when clock A reads 5:00, clock B reads some
other time. The same must be true of any two ground clocks. Train ob
servers conclude that all ground clocks are out of synchronization.

Figures 3.5 and 3.6 elucidate this all-important result. Ground observ
ers A and B emit light pulses when their clocks read 5:00. Call the emis-
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Fig. 3.6. Clock synchronization experiment as seen
in the train frame. (a) Light flash leaves front plat
fonn (event 1); ground clock A, passing at that mo
ment, reads 5:00. (b) Light flash leaves rear platform;
ground clock B, passing at that moment, reads 5:00.
(c) Light flashes meet at a point in the rear half of
the train. Train observers infer that event 2 occurred
after event 1 and therefore that clocks A and Bare
not synchronized. In sketch (b), clock A has moved
from its position in (a) and reads a time later than
5:00.
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sions of those pulses events 1 and 2 (fig. 3.5a). Just at that instant (as
judged by ground observers), the front and rear ends of a passing train
happen to coincide with A and B. The light pulses meet, some time later,

at a point midway between A and B; call that event 3. By this time the
train has moved, so the meeting occurs opposite a point in the rear half of
the train (fig. 3.Sb).

Figure 3.6 shows how the same three events look to train observers. At
event 1 (fig. 3.6a), a light pulse leaves the front platform; ground clock A,
which is passing just as that pulse is emitted, reads 5:00. Another pulse
leaves the rear platform just as ground clock B, passing at that moment,
reads 5:00 (event 2, fig. 3.6b). The pulses meet (event 3, fig. 3.6c) at a
point closer to the rear of the train than to the front. Both sets of observers
must agree on this qualitative statement even though their length mea
surements differ, as we shall see.

From the point of view of train observers, the pulse emitted from B has
traversed a shorter distance than the other and must therefore have
started out later. In the train frame, then, event 2 occurs after event 1.
Clock Breads 5:00 not when A does but some time afterward. By the time
Breads 5:00 (fig. 3.6b), A has moved some distance and reads later than

5:00. According to train observers, then, the two ground clocks are not
synchronized. This confirms our earlier conclusion, but we have learned
something more about the effect: clock A is running ahead of B.

If ground observers were to check on the synchronization of train
clocks by a similar experiment, they would likewise find those clocks to
be unsynchronized. At a given time (according to ground clocks), a train
clock at the rear of the train is ahead of one at the front. This result is
demanded by the first postulate: each set of observers must reach the same

conclusion regarding the others' clocks. Otherwise, one frame would be
singled out. We can express the general result as follows: if a set of clocks,
synchronized in the fra1ne of reference in which they are at rest, is exam
ined by observers in any other frame, the clocks will be found to be out
of synchronization; the one that is behind in the direction of travel is
ahead in its reading.

Figure 3.7 summarizes our findings to this point. Sketch (a) is a view
of ground and train clocks as seen by train observers at 10:00, train time.

All train clocks read the same, whereas each moving ground clock has a
different reading: A is ahead of B, which is ahead of C, and so on. Figure
3.7b is a similar view, showing how things look to ground observers at
8:00, ground time. Here the ground clocks are all synchronized while each
train clock has a different reading.
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Fig. 3.7. Summary of our knowledge concerning clocks in
relative motion. (a) Train and ground clocks as viewed by
train observers at 10:00 (train time). All events in this picture
are simultaneous in the train frame. Train clocks all read the
same while ground clocks are out of synchronization. (b)
View seen by ground observers at 8:00 (ground time). Here
all events are simultaneous in the ground frame. Ground
clocks all read the same while train clocks are out of synchro
nization. Notice that the spacings of the clocks are different
in the two frames. The magnitudes of the differences be
tween the readings of moving clocks are much exaggerated.

These pictures, strange though they appear, represent nothing more
than the relativity of simultaneity. If each clock reading is regarded as a
distinct event, all the events in figure 3.7a are simultaneous in the train
frame whereas all those in figure 3.7b are simultaneous in the ground
frame.

One feature of these results is worth reemphasizing. Notice that in (a),
a train frame picture, ground clock B is opposite train clock Q; Breads
8:00 and Q reads 10:00. In (b), a ground frame picture, B is also opposite
Q, and the readings of both clocks are the same as in (a).

When two clocks are at the same place, their readings can be considered
parts of a single event. All observers must agree on what those readings
are. The statement "when train clock Q reads 10:00, ground clock Breads
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8:00" is true in both frames. Differences arise only when one asks a ques
tion like "What does clock A read when Q reads 10 o'clock 7" This is

equivalent to asking, "What event involving clock A is simultaneous with
the event at which Q reads 10 o'clock 7" Since A and Q are in different
places when that event occurs, the answers in the two frames differ. Train
observers reply 9:00 (a), whereas according to ground observers the an

swer is 8:00 (b).
Notice also that in figure 3.7b the train clock opposite ground clock C

is labeled M, not P. As I shall show in section 3.7, the distance between
moving clocks is seen as contracted. Clock P in this picture is somewhere

between clocks Q and M.
The differences in the readings of moving clocks in figure 3.7 were

chosen arbitrarily, but some general comments can be made about what
those differences should be. Because space is homogeneous, the difference
must be proportional to the distance between clocks; the reading of a clock
halfway between A and B in figure 3.7a, for example, must be 8:30, half
way between the readings of A and B. The difference in clock readings
must depend also on V, the relative velocity of the two frames. (If V were

zero, observers in both frames would agree that all clocks are synchro
nized.) The dependence on V will be derived in chapter 4.

The actual differences between clock readings, for reasonable separa
tions and velocities, are much less than shown in the figure and are too
small to be detected. (See problem 4.2.) Nonetheless, the nonsynchroniza
tion of moving clocks is a central element of special relativity and is essen
tial to the further development of the theory.

Nothing has yet been said about the rate at which clocks in one frame
run according to observers in another frame. That result ("moving clocks
run slow") will come in section 3.5, after the time dilation effect has been

derived. Synchronization refers solely to the question of how clocks ap

pear at one particular instant.

3.5. TIME DILATION

Another important relativistic effect is demonstrated by the thought ex

periment shown in figure 3.8. A light pulse emitted by a source S (event
£1) is reflected by a mirror M that is stationary relative to the source and

a distance L away (event £2)' Observers in the laboratory frame, in which
both light source and mirror are at rest, see the sequence of events shown
in figure 3.8a; according to them, the reflected pulse returns to its starting

point (event £3)'
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Fig. 3.8. Experiment to demonstrate time dilation.
Sketch (a) shows the light path from the point of view
of observers in the laboratory, for whom the apparatus
is at rest. Sketch (b) shows how the same experiment
looks to observers in a frame 5', which is moving to the
left at speed V relative to the laboratory.

Figure 3.8b shows the same sequence of events as seen by observers in
a frame S' that moves from right to left at speed V relative to the labora
tory. Those observers see the entire apparatus moving to the right at speed
V; according to them, the light follows the zigzag path indicated in the
figure. Observers in each frame measure the time interval required for
the light to travel to the mirror and return.

This experiment should look familiar: it is just the transverse part of
the Michelson-Morley experiment. We can repeat the analysis of section
2.3 with one important difference. In the earlier analysis, based on Gali
lean relativity, the speed of light was assumed to be different from c in
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one reference frame; here, in accord with the second postulate, we must

put the speed of light equal to c along every path in both frames.

The diagrams show that the light path in frame S' (fig. 3.8b) is longer

than the path in the laboratory frame (fig. 3.8a). Since the speed of light

is the same in both frames, the time interval between E1 and E3 measured
in S' must be longer than the interval between the same two events mea

sured in the laboratory. (We assume that the distance between source and

mirror is the same in both frames; that assumption will be justified in sec.

3.8.)

The quantitative relation between the travel times measured in the two
frames is readily calculated. In the laboratory frame, the total path tra
versed by the light is 2L; hence the time interval between E1 and E3 is

(3.3)

(3.4)

The analysis in frame 5' follows that of section 2.3; the total travel time
is given by equation (2.6):

" 2L 2L
t3 -t1==.g -yV2 c

C 1--
c2

I have introduced the parameter y, defined as

(3.5)

This is standard notation in relativity theory. It is clear from the defini
tion that y is always equal to or greater than 1 and approaches infinity as

V -t c; it does not differ appreciably from unity unless V is quite close to

c. (See table 3.1.)
It is convenient to use the symbol a, followed by a variable, to denote

the difference between two values of that variable. Here, let at denote

t3 - t1 and dt' denote t~ - t~. Equations (3.3) and (3.4) can be written sim

ply as

at' == y(at) (3.6)

This effect is known as time dilation.
Equation (3.6) does not assert that the time interval between any two

events is longer in Sf than in 5; such a relation would distinguish between
the two frames in a manner inconsistent with the first postulate. For the
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Table 3.1. Values of relativistic factor y
as a function of vic

Vic

I 71

.0001

.001

.01

.1

.5

.8

.9

.95

.99

.999

.9999

.99999

1.000000005
1.0000005
1.00005
1.005
1.16
1.67
2.29
3.20
7.09

22.4
70.7

224

particular pair of events E} and E3 , the laboratory frame has a unique
property: the events happen at the same place, whereas in any other frame
they happen at different places. The result can be stated as follows:

The time interval between two events is shortest when measured
in the reference frame in which the events occur at the same place
(if such a frame exists). In any other frame, the interval between
the events is longer by the factor y.

An interval between events that happen at the same place is called a
proper time interval (sometimes written aT); any other interval is called
improper. Given two arbitrary events, a frame in which the events occur
at the same place does not necessarily exist. If no such frame exists, the
proper time interval between the events is not defined. The present analy
sis enables us to compare time intervals in two frames of reference only
if one of the two intervals is proper. In the next chapter we shall see how
to extend the result to any pair of events.

The proper time interval between two events can be read off a single

clock, which is present at both events. Any improper interval necessarily

represents the difference between the readings of two distinct clocks, one

present at each event.
Suppose a body moves with constant speed V. In a frame moving at

the same speed, the body is stationary; that frame is called the rest frame
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of the body. A clock attached to the body records the proper time interval
between any two events in which the body is involved, since all such

events occur at the same place in the body's rest frame. 14

If a body travels between two points whose separation (as measured by
ground observers) is L, the time for the trip measured by ground frame
clocks is T == L/V; this is clearly an improper time interval. The proper
time for the trip is 1.t1easured by observers who travel with the body and

is shorter than T by the factor 1':

T== T/1'== T~l- V2 /c2

As the body's speed approaches c the time for the trip as measured by
ground clocks approaches L/c, but the proper time approaches zero! If a
spaceship travels to a distant star, the time of the trip as measured by
clocks on the spaceship goes to zero as the ship's speed approaches e. This
consequence of relativity forms the basis for much fanciful speculation
about space travel. In principle, there is no limit to the distance one could
travel in one's own lifetime.

EXAMPLE. A spaceship travels from earth to Alpha Centauri at speed
0.8e. The distance between earth and Alpha Centauri is 4 light-years, mea
sured in the earth frame. (Assume that Alpha Centauri is at rest relative
to earth.)

(a) How long does the trip take according to earth clocks?
(b) How long does it take according to spaceship clocks?

SOLUTION. (a) We measure distance in light-years and time in years.
In these units the numerical value of c is 1 light-year/year. In the earth
frame,

t == L/V == 4/0.8 == 5 yr

(b) The interval between departure and arrival is a proper time interval

in the spaceship frame. For this problem,

1'== 1/~1- (0.8)2 == 1.67

Hence t' :::: tl1'== 3 yr.

14. If a body's speed is not constant, proper time for the body can still be defined
as the time read by a clock attached to it. Although the body is not at rest in any
inertial frame, at any moment it is instantaneously at rest in the inertial frame
whose laboratory speed is the same as its own. Over an infinitesimal time interval,
clocks in this instantaneous rest frame record the body's proper time. The proper
time over a finite interval is the sum of the infinitesimal contributions thus de
fined.
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.P
Event 1

.0
Event 2

y Event 3 ( Light from Event 1 arrives at 0)

'§ Event 4( Light from Event 2 arrives at 0)

Fig. 3.9. Moving clock viewed by a single observer.
When the clock is at P, it reads 12:00; when it is at Q,
it reads 12:05. To observer 0, the clock appears to be
running slow. This is not a relativistic effect.

Equation (3.6) makes no sense if V, the relative velocity between the
two frames in question, is equal to or greater than c. For V== c the time
dilation factor y is infinite; for V> c it is imaginary and cannot represent
the ratio between two time intervals, which must be real numbers. As we
shall see, the speed of light plays the role of a limiting velocity in special
relativity. The results of this section, although not a proof, are already
highly suggestive of that conclusion.

Moving Clocks Run Slow

Time dilation is often summarized by saying, "Moving clocks run slow."
That statement is correct if properly interpreted but is also the source of
much needless confusion.

There is one trivial sense in which a moving clock may be said to run
slow. As already noted, an observer viewing a distant event sees it not

when it occurs but later. The delay is the travel time of the light between
event and observer.

Suppose a clock is moving away from an observer 0 (fig. 3.9). When
the clock reads 12:00, it is at point P (event 1); when it reads 12:05, it is at

point Q (event 2). Light emitted at events 1 and 2 reaches 0 at events 3
and 4, respectively. Since the light from Q has traveled farther than that
from P, the interval between the time when 0 sees the clock reading 12:00
and the time when she sees it reading 12:05 is more than 5 minutes even
if the moving clock is keeping time correctly. The clock therefore appears
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Train 0-Clock
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Fig. 3.10. Relativistic description of a moving clock viewed
by a sequence of stationary observers. (a) Train clock X is
adjacent to ground clock A (event 1); both clocks read 12:00.
(b) Some time later, X is adjacent to ground clock C (event
2). The difference between the reading of C in sketch (b) and
that of A in sketch (a) represents the interval between events
1 and 2 in the ground frame. With the help of fig. 3.11, one
finds that X has lost time between the two events: it is run
ning slow.

to be running slow. This argument depends only on the finite velocity of
light and applies equally in Galilean relativity. Moreover, only a receding
clock runs slow; a similar argument shows that an approaching clock ap

pears to run fast. These results have nothing to do with time dilation.15

The only way to discover the "true" rate of a moving clock without

introducing extraneous effects due to light travel time is to compare its
reading on two occasions with those of adjacent stationary clocks. Two
distinct stationary clocks are required.

We turn once again to the example of a train moving from left to right
along a straight track; let clocks be distributed at regular intervals both on

15. They are related to the Doppler effect, discussed in chapter 4.
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Ground Clocks

Fig. 3.11. The events of fig. 3.10 are shown as they appear
in the train frame. The two events occur at the same place;
hence the time interval between them is proper and is shorter
than the interval between the same events measured in the
ground frame. The proper time interval is read directly off a
single clock, X.

the train and along the track. Each set of clocks is synchronized within its
own frame.

Figure 3.10 indicates the precise measurements that ground observers
carry out to determine the rate at which a particular train clock, labeled
X, is running. At event 1 (fig. 3.10a), X is adjacent to ground clock A;
suppose they both read 12:00 at that moment.16 Some time later, say, at
12:15 according to ground clocks, X has moved and is now adjacent to
ground clock C (event 2, fig. 3.10b).

From the point of view of train observers (fig. 3.11), all ground clocks
are in motion while X is stationary. It is apparent that in the train frame,
events 1 and 2 occur at the same place. Hence the interval between them,

16. The rate at which clock X is running is determined by measuring the dif
ference between its readings at events 1 and 2. It is purely a matter of conve
nience and involves no loss of generality to assume that X reads the same as A at
event 1.
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measured by clock X, is a proper time interval and must be shorter than

the ground-frame interval between the same two events. The latter quan

tity is 15 minutes; we conclude that X reads less than 12:15 at event 2.

For concreteness, suppose the speed of the train is such that the time

dilation factor y (defined by eq. 3.5) has the value 1.5; the ratio of proper

to improper time is then 2/3 and X reads 12:10 at event 2. Ground observ

ers monitoring X report that it has lost 5 minutes while moving from A
to C. The same must be true of any other train clock. Ground observers

conclude, therefore, that train clocks run slow.
A logical problem arises at this point. If train clocks run slow according

to ground observers, it would appear to follow that according to train

observers, ground clocks run fast. Such a conclusion would run counter to

the first postulate, however, since it would establish an asymmetry be

tween the two frames. Why should train clocks run slow and ground

clocks run fast rather than vice versa? Each set of observers sees the other

set's clocks as moving, and they ought to reach identical conclusions con

cerning the behavior of each other's clocks. According to the first postu

late, train observers must find that ground clocks run slow, not fast.

How can that be? And why can train observers not conclude from the

observations of figure 3.11 that ground clocks run fast, compared to train
clocks? The answer is that two different ground clocks appear in figure

3.11: clock A in event I, and clock C in event 2. Since, as we have already

learned, ground clocks are out of synchronization according to train ob

servers, comparing the reading of one ground clock at one time with that

of a different ground clock at another time yields no information about

the rate at which either clock is running.

Only by examining the same ground clock on two occasions can train

observers learn anything about the rate at which ground clocks run. An

other observation, in addition to the ones shown in figure 3.11, is re

quired. Train observers could, for example, examine the reading of clock

C in figure 3.11a. That clock face has been left blank in the figure; we do

not know what it reads, but from what we have learned about synchroni

zation, we can be sure that it reads more than 12:00. If train observers

examine the same ground clock on two occasions, they indeed find that it

has lost time and conclude that ground clocks run slow, in accordance with

the first postulate.

Still, a skeptic will argue, this is an absurd result. How can each of two

sets of clocks be running slow with respect to the other? If the readings of

a single train clock (say, X) and a single ground clock (say, A) were com-
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pared on two distinct occasions, there would be only three possible out
comes:

(i) X has lost time relative to A;
(ii) X has gained time relative to A; or
(iii) both clocks show the same elapsed time.

All observers would have to agree as to the outcome. In case (i), they

would conclude that X is slow (or A is fast). In case (ii), X is fast (or A is
slow). In case (iii), the clocks are going at the same rate. But this experi
ment cannot be carried out. Since X and A are moving uniformly relative

to one another, they can be together at most at one instant, after which

they separate forever. Hence their readings can be directly compared only

once. Ground observers monitoring X must compare its readings with

those of two different ground clocks; similarly, train observers must com
pare the readings of A with those of two different train clocks. The conclu
sions of the two sets of observers are therefore based on distinct sets of
measurements. In each case, a single moving clock is compared with two
different stationary clocks, and in each case the moving clock indicates the
passage of a shorter time interval. I-Ience there is no logical contradiction.

The statement "Moving clocks run slow" means precisely that.

If a clock is monitored by observers in a frame of reference in
which the clock is moving, the clock is found to run slow by com
parison with clocks that are stationary in that frame.

Astute train observers can explain why ground observers"mistakenly"
think that train clocks run slow. They reason as follows: "Ground observ
ers monitor our clock by comparing its reading on two occasions with
those of their own clocks. But their comparison clocks are out of synchro
nization: the second is ahead of the first. That is why they erroneously
conclude that our clocks run slow, whereas in fact theirs are the ones
running slow." Ground observers can, of course, pursue an identical line
of reasoning and reach the same conclusion. The resolution of the paradox
is clearly tied to the relativity of simultaneity.

The question inevitably arises, Do moving clocks really run slow, or

do they only appear to run slow? The question is essentially a metaphysi
cal one: what does "really" mean in this context? If the thought experi

ments here described could actually be performed, they would turn out as
predicted by the relativity postulates. (See the following section for a real
experiment that supports the hypothesis.) The slowness of a moving clock
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Fig. 3.12. Complete description of the behavior of moving
clocks. (a) Train and ground clocks are viewed by train observ
ers at 10:00, train time. Ground clocks are out of synchroniza
tion. (b) Clocks are again viewed by train observers at 11:00,
train time. Ground clocks have moved, and each has lost 20
minutes compared to the stationary train clocks.

is as "real" as any physical effect that can be measured. The events of
figure 3.10 are not an optical illusion. They could be photographed, if
cameras with fast enough shutters were available; the pictures would
show a clock that is clearly running slow.

The results described here concerning moving clocks complement those
of section 3.4. There we examined two different moving clocks at the same
time and found that they are out of synchronization; here we have exam
ined a single moving clock at two different times and found that it is
running slow. Combining these results, we obtain a complete picture of
the behavior of moving clocks.

Figure 3.12a shows ground and train clocks as seen in the train frame
at 10:00, train time; all ground clocks are out of synchronization. (This is
merely a repetition of fig. 3.7a.) Figure 3.12b is another view seen by train
observers some time later, at 11:00 train time; the ground clocks are again
out of synchronization. When the two views are compared, it is apparent
that each ground clock has lost 20 minutes during the intervening inter-
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val. The two sketches contain all relevant information concerning the be
havior of moving clocks.

3.6. THE DECAY OF MUONS

The experiment described in section 3.5, from which we deduced the time
dilation effect, is only a thought experiment. Although it demonstrates
without doubt that time dilation is a logical consequence of Einstein's
postulates, it cannot prove the reality of the effect because the experiment
has never been carried out.

Real experiments have been performed, however, which provide strik
ing confirmation of time dilation. In this section, I describe an experiment
based on the decay of muons-unstable particles that were first discovered
among the cosmic rays that continuously bombard the earth. I

?

Muons decay according to the scheme

muon --) electron + neutrino + antineutrino

The details of the decay process are irrelevant; the only feature we need
be concerned with is that muon decay, like any radioactive decay, is a
probabilistic process characterized by a half-life, T. Out of any group of
identically prepared muons, approximately half will have decayed within
a time interval T. After another interval T has passed, half the survivors
will have decayed and only a quarter of the original number remain, and
so on. The half-life of muons at rest is about 1.5 microseconds (1 J-Lsec ==

10-6 sec).
The question at issue concerns the half-life of muons in motion. Ac

cording to Galilean relativity, the motion should have no effect on the
probability of decay; moving muons should have the same half-life as
muons at rest.

Special relativity predicts a quite different outcome. Consider a beam
of muons, all moving at the same speed v. The first postulate implies that
in the muons' rest frame their half-life must be 1.5 microseconds. That is,
after 1.5 microseconds have elapsed according to clocks that move with
the muons, half of them will have decayed. The 1.5 microseconds is a
proper time interval.

For earth observers, the corresponding time interval is improper. The
time interval during which half the muons decay, as measured by earth

17. Muons are created in the decay of another unstable pa~ticle, the pion. Cosmic
ray pions are produced in collisions between energetic protons or heavy nuclei and
atoms in the atmosphere. .
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clocks, is therefore y(v) times 1.5 microseconds, where y(v) is the time
dilation factor that corresponds to the speed v. Letting To denote the rest
half-life and T(v) the half-life for muons moving at velocity v, we con
clude that according to special relativity,

T(v) = y(v) To (3.7)

The faster the muons move, the longer they should survive according
to clocks at rest in the laboratory.I8 We may regard the group of muons
as a specialized clock that "ticks" once every 1.5 microseconds in its own
rest frame; at each tick, half the muons decay. According to observers in
the laboratory, for whom that clock is in motion, it (like any other moving
clock) runs slow: it "reads" 1.5 microseconds when the true elapsed time,
measured by clocks at rest in the laboratory, is longer by the factor y(v).
This prediction is subject to direct experimental test.

The first experiment was carried out in 1940 by Bruno Rossi and D. B.
Hall, who used the cosmic ray "beam" that was then beginning to be
studied and was known to contain many muons moving at speeds very
close to c. If the half-life of those muons were equal to To, the beam
should advance a distance cTo, some 450 meters, by the time half the
muons had decayed. According to special relativity, with the half-life
given by equation (3.7), the distance should be greater.

Rossi and Hall measured the attenuation of the cosmic ray muon beam
as it proceeds down through the atmosphere; the attenuation is caused
primarily by the decay of muons en route. They designed an array of
Geiger counters that would register a count whenever a muon passed ver
tically through it and not when any other type of particle passed through.
They took their equipment to several stations in Colorado, at different
elevations. At each elevation, they measured the average number of
counts per second. Figure 3.13 is a schematic view of the experiment,
showing one trial with the detector at Echo Lake (elev. 3,200 m) and an
other at Denver (elev. 1,600 m).

In addition to decays, another effect depletes the muon beam as it
passes through the atmosphere: some of the muons collide with oxygen
or nitrogen atoms in the atmosphere and are absorbed. The experimenters
corrected for this effect by placing a layer of iron above the detector at the
higher elevation. Since iron is much denser than air, about 20 centimeters
of iron absorbs as many muons as does all the atmosphere between the

18. This is essentially the spaceship experiment discussed on p. 72. The muons
are the space travelers; in the earth frame they live much longer than they do in
their own rest frame.
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Fig. 3.13. Experiment carried out by Rossi and Hall to measure the
lifetime of rapidly moving mu mesons. Identical detectors, sensitive to
the passage of mu mesons, are exposed at Echo Lake (elev. 3,200 m)
and at Denver (elev. 1,600 m). An iron absorber is above the detector
at the higher elevation. The difference in counting rates measures the
number of mesons that have decayed en route.

two elevations. Any difference in the measured counting rates at the two
stations could therefore be attributed to the decay of muons in the in
tervening region. 19

A muon traveling at nearly the speed of light requires 5.33 microsec
onds, more than three times To, to traverse the 1,600 m of atmosphere
between the elevations of Echo Lake and Denver. According to Galilean
relativity, then, practically all the muons should decay en route: the
counting rate at Denver should have been reduced by a factor of about 12
compared to that at Echo Lake. Special relativity predicts that the fraction
of muons surviving the trip should be considerably greater, because in the

muon frame the elapsed time is less. The precise value of the enhallcement

factor depends on the speed of the muons.
Cosmic ray muons have a spectrum of velocities; hence the muons in

Rossi and Hall's experiment did not have a unique value of y(v). The

19. A few muons are added to the beam by the decay of cosmic ray pions, but
their number is negligibly small.
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counters were designed to respond only to lTIUOnS with speeds greater
than 0.995c. The value of 'Y for this speed is about 10. Hence according to
special relativity, the half-life for the muons detected in the experiment

should have been at least 10 times longer than To.
The result of the experiment was just as predicted by special relativity.

The ratio of the counting rates at the two locations was 0.88: only about 12
percent of the muons decayed in traversing 1,600 meters of atmosphere.
According to the muon clocks, the trip had lasted not three half-lives but
much less than one. Because of the velocity spread in the beam, Rossi and
Hall could not test the theory quantitatively; their results were, however,
consistent with equation (3.7).20

In 1963, David Frisch and James Smith carried out an improved version
of the experiment. In their setup, the array of counters was sensitive only
to muons with velocities in a very narrow range. Hence they could make
a definite prediction of the ratio of counting rates at two different eleva
tions. Their results were in excellent agreement with the prediction of
special relativity.

The muon lifetime experiments provide strong evidence for the reality

of time dilation. No other plausible explanation has been suggested for
why so many of the muons should survive a trip that lasts much longer
than their rest half-life, that is, for why the half-life of muons in motion
is longer than for muons at rest. Special relativity accounts for the results
in a straightforward manner. 21

In 1977, experiments carried out at the European Center for Nuclear
Research (CERN) measured the lifetime of rapidly moving muons directly
and confirmed the correctness of the relativistic prediction.

Experiments with real clocks have more recently been carried out.

Atomic clocks were carried on jet planes circling the earth in opposite
directions. Their readings at the conclusion of the trip were compared with
each other and with those of clocks that had remained on the ground. The
results were in conformity with the time dilation effect. (An effect due to

general relativity must also be taken into account in interpreting the data.)

The effect is very small because 'Y differs from unity by only about one

20. A decline in the counting rate of 12 percent in 5.33 JLsec corresponds to a half
life of 29 JLsec, about 20 times To. If all the muons had the same speed, the value
of 'Y would have had to be about 20. Since the minimum value of 'Y accepted by
the counters was 10, the result was quite reasonable.
21. According to Miller (Albert Einstein's Special Theory of Relativity, 266), the
lifetime experiments prove only the self-consistency of special relativity, because
the data analysis itself depends on relativity.
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part in 1012
. The experiments will be described in chapter 6 because they

are closely related to the twin paradox discussed there.

3.7. LENGTH CONTRACTION

One important relativistic effect remains to be derived: the change in
length of an object that is moving relative to the observer. This effect, like
time dilation, can be linked to the relativity of simultaneity.

To measure the length of an object, one marks the positions of its end
points on some scale and subtracts one reading from the other. If the
object is at rest, those measurements can be carried out at leisure. If the
object is moving, however, the two position measurements must be car
ried out simultaneously; otherwise, the result will surely be in error.

As we have seen, simultaneity depends on the motion of the observer.
If ground observers measure the position of the front and rear ends of a
moving train simultaneously according to their clocks, these measure
ments take place at different times according to train clocks. According to
train observers, therefore, the length measured by ground observers is
incorrect.

The easiest way to determine the magnitude of the effect is to analyze
a somewhat less direct, though equally legitimate, method of determining
the length of an object moving at a known (uniform) speed, namely, by
measuring the time required for the object to pass a stationary observer.
The product of that time and the speed of the object is its length.

Figure 3.14a illustrates how ground observers can measure the length
of a moving train. At event 1, the front of the train passes ground observer
0; at event 2, the rear of the train passes O. After measuring the times t1

and t2, ground observers conclude that the length of the train is

(3.8)

where V is its speed.
Figure 3.14b shows the same events as they appear to (primed) train

observers. For them the train is stationary and 0 is moving to the left at
speed V; at t~ 0 passes the front of the train and at t~ he passes the rear.
The time between those events is

(3.9)

where Lo is the length of the train according to train observers, which
they may measure by conventional methods since the train is at rest in
their frame.
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Fig. 3.14. Determination of the length of a moving object
by measuring the time required for it to pass a stationary
observer. (a) At event 1 the front of a moving train passes
observer 0; at event 2 the rear of the train passes O. 0
concludes that the length of the train is V times the differ
ence between the two clock readings. (b) The same two
events as they appear in the train frame. The time interval
measured by the single ground clock in (a) is proper; that
measured by the two train clocks in (b) is improper.
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The time interval t2 - t1 measured by earth clocks is proper, whereas
the corresponding interval t~ - t~ is improper. A standard time dilation
argument shows that

t~ - t~ = 1'(t2 - t1)

Combining equations (3.8-10), we find that

L = Lo/1'

(3.10)

(3.11)

In the ground frame the train is shorter, by the factor 1', than it is in
its own rest frame. The effect is completely symmetrical: if train observers
measure the length of the platform by an analogous experiment, they find
it to be contracted. The length they measure is less than the value obtained
by ground observers, for whom the platform is at rest.

The length of an object measured in its own rest frame is called its
proper length and is generally designated with a subscript zero. It is the
largest possible result of a length measurement; observers for whom the
object is in motion measure a length contracted by the relativistic fac

tor 1'.
The contraction applies to all length measurements. In particular, a

meterstick at rest in the station is less than 1 meter long when measured
by train observers, and a meterstick at rest on the train is less than 1
meter long when measured by ground observers. This assertion at first
appears to be self-contradictory, just like the similar statement about
moving clocks running slow. If one were to measure the length of an
object with a /I meterstick" that is only half a meter long, one would expect
to obtain twice the true length. Why then do not ground observers, with
their contracted metersticks, obtain a result greater than the /I true" one
when they measure the length of the train, or of the train meterstick for
that matter?

The resolution of this paradox relies once again on a simultaneity argu
ment. Figure 3.15 indicates the precise sequence of measurements by
which ground observers determine the length of a train meterstick. In (a)
those measurements are shown as they appear in the ground frame.
Ground observers scratch marks on their metersticks at the position of the
right end of the train meterstick (event 1) and of the left end (event 2);

those events are simultaneous in the ground frame, and the train me
terstick is found to be less than 1 meter long.

Figures 3.15b and 3.15c show how the same events look to train observ
ers. At event 1 they see a ground observer scratch a mark on his me
terstick (fig. 3.15b), corresponding to the position of the right end of the
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Fig. 3.15. Measurement of the length of a moving meterstick by
ground observers. In (a), ground observers mark the position of the
front end of the train meterstick (event 1) and of the rear end (event
2) on their own meterstick. The two events are simultaneous in the
ground frame. The distance between the marks is 0.8 m. Sketches
(b) and (c) show the two events as seen by train observers. In (b), a
ground observer marks the position of the front end of the train
meterstick on a (short) ground meterstick. (c) Some time later, a
different ground observer marks the position of the other end of
the train meterstick. The separation between the two marks is less
than the "true" length of the stick.

train meterstick at that time. The ground meterstick looks short in this
picture.

Some time later, train observers see a different ground observer scratch

another mark on the ground meterstick, corresponding to the position of

the left end of the train meterstick (event 2, fig. 3.15c). Because the
ground meterstick has moved between the two events, the distance be
tween the two marks is less than the true length of the train meterstick.
Thus train observers understand -how ground observers manage to obtain

too small a value for the length of the train meterstick, in spite of the fact
that their meterstick is less than a meter long.

To measure the length of the ground meterstick, train observers must
scratch a mark on their own meterstick at event 1 and another mark at
the position of the other end of the ground meterstick, simultaneously
with event 1. That is not event 2, which is simultaneous with event 1 in
the ground frame. Just as in the case of moving clocks, we reconcile the
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apparently contradictory conclusions that each meterstick looks short to
observers in the other frame by emphasizing that the conclusions follow
from analysis of different pairs of events. Each pair of measurements is
simultaneous in one frame but not in the other. Hence there is no logical
contradiction. 22

As the preceding discussion illustrates, length contraction is a logical
consequence of the relativity of simultaneity. In fact, the contraction for
mula (3.11) can be deduced purely from such considerations. (See prob
lem 3.6.)

Is a moving rod "really" contracted, or does it only appear to be con

tracted? A similar question was asked in connection with time dilation in
section 3.5; the answer here is the same. The rod is not contracted in an
absolute sense: in its own rest frame, it retains its proper length. But as
far as observers in another frame are concerned, the contraction is as real

as any physical effect that can be measured.
I noted in chapter 2 that before Einstein put forward his relativity the

ory, Lorentz and FitzGerald had proposed a contraction hypothesis to ex
plain the outcome of the Michelson-Morley experiment. The relativistic
effect is still sometimes referred to as the FitzGerald-Lorentz contraction,

even though Lorentz's explanation is not correct.
In Lorentz's theory, a body is contracted when it moves relative to the

ether. That contraction is absolute and is in principle measurable in any
frame, including the rest frame of the body (although observers in the
rest frame would find it difficult to measure because all their instruments
would be similarly contracted). In Lorentz's explanation of the Michelson
Morley experiment, the absence of any fringe shift results from the can
cellation of two effects: the contraction of one of the arms of the interfer
ometer and the different speed of light along the two arms.

According to Einstein, a contraction is measurable only in a frame in
which the body is moving; in the rest frame of the body its length is the
proper length. The correct relativistic explanation of Michelson's result
has nothing to do with contraction. The arms of the interferometer have

equal lengths no matter how they are oriented, and the speed of light

along the two paths is always c. Hence the travel times are always equal.
According to Lorentz, the contraction has a physical origin; it is caused

by changes in the intermolecular forces in moving matter. (A discussion
of this mechanism is given in sec. 4.8.) For Einstein, the contraction is a

22. The problem of mutual contraction is the basis for the pole and barn paradox,
discussed in detail in chapter 6.
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consequence of the properties of space and time. According to special reia
tivity, the distance between two bodies is shortened when it is measured
by observers for whom the bodies are in motion, even if no matter occu
pies the space between them. The Lorentz model cannot account for this
contraction of "empty space."

As with all the relativistic effects we have discussed, length contraction
is negligible unless the relative velocity between observers and the object
being measured is close to the speed of light. For that reason, no experi
ment has directly demonstrated the effect. However, the muon lifetime
experiment, described in the preceding section and cited as experimental
confirmation of time dilation, can be interpreted equally well as an effect
of length contraction.

Consider the events marked 1 and 2 in figure 3.12. In the ground
frame, they may be described as follows:

1. Muons pass elevation of Echo Lake at speed V;

2. Muons pass Denver at the same speed.

Since Echo Lake and Denver are both at rest relative to the laboratory,
the difference between their elevations, 1,600 meters, is a proper length.
In the muon rest frame, in contrast, Echo Lake and Denver are both mov
ing upward at speed V. The same two events in this frame may be de
scribed as follows:

1. Echo Lake passes stationary muons at speed V;
2. Denver passes stationary muons at speed V.

The vertical distance between Denver and Echo Lake, as measured in
the muon rest frame, is an improper length. It is therefore Lorentz con
tracted to the value 1,600/y m and the time interval between events 1 and
2, measured in the muon rest frame, is 1600/yV. This is the same conclu

sion we reached earlier on the basis of a time dilation argument. The
analysis illustrates the intimate relation between time dilation and length
contraction: neither effect could logically exist without the other, and ei
ther can be used to derive the other.23

3.8. TRANSVERSE LENGTHS

In the preceding section we compared the results of "longitudinal" length
measurements. To complete the picture, we must investigate the measure-

23. Joseph Larmor, in his book Aether and Matter, pointed out that the Lorentz
FitzGerald contraction implies a change in the rate of moving clocks. Larmor's
book was written in 1900, five years before Einstein published his relativity paper.
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Fig. 3.16. (a) Vertical meterstick on a train.
(b) and (c) show two possible appearances the
meterstick might have when viewed by ground
observers for whom it is in motion. Since there
is no reason to prefer either of these to the
other, neither can be right. We conclude that
the moving meterstick must look vertical, as
in (d).
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ment of lengths that are perpendicular to the direction of relative motion
of the observers. The outcome in this case is that there is no contraction:
observers in both frames of reference obtain the same results.

Figure 3.16 shows a vertical meterstick on a moving train. Suppose
ground observers wish to measure the length of the moving meterstick.
It is not entirely obvious that the meterstick appears vertical in the ground
frame, but we can demonstrate this with the help of a symmetry argu
ment.

The only unique direction in the problem is defined by the motion of
the train. The meterstick is symmetric with respect to that direction: if
figure 3.16a were turned upside down, the picture of the meterstick would
be unchanged. The corresponding ground frame picture must therefore
also look the same when turned upside down (technically, when reflected
in the plane of the ground).

If the meterstick appeared inclined to the vertical to ground frame ob
servers, as in figure 3.16b, the reflected picture would show the opposite
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(a) (b)

Fig. 3.17. (a) Ground observers emit light flashes as
the top and bottom of the moving train meterstick
cross their stationary meterstick (events 1, 2). The two
events are simultaneous. (b) The two light flashes
meet, at a point opposite the midpoint of the stick
(event 3). (c) The same events as they look in the train
frame. Train observers see the light flashes follow the
indicated paths. Since the paths are of equal length,
train observers agree that events 1 and 2 were simulta
neous.

inclination (fig. 3.16c). But there is nothing in the problem to distinguish
top from bottom, no more reason for 3.16b than for 3.16c to be the correct
reflected picture. Hence neither one can be right. The only acceptable pic
ture is the symmetric one that favors neither top nor bottom, namely,
3.16d. The moving meterstick must appear vertical.

Ground observers can measure the length of the moving meterstick by
an experiment similar to that shown in figure 3.15. They agree to scratch
a mark on their own vertical meterstick where the top of the train me
terstick crosses it and another mark where the bottom crosses. The dis

tance between the two scratches is the length of the moving meterstick.
Since the train meterstick is vertical, its ends cross the ground me

terstick at the same time: the two scratches are made simultaneously in
the ground frame. In this case, unlike that of the horizontal meterstick,
train observers agree that the two scratch marks are simultaneous. To
verify that, let the ground observers emit light flashes aimed directly at
each other (fig. 3.17a) as they mark the passage of the top of the me
terstick (event 1) and of the bottom (event 2). The two flashes meet at a
point opposite the midpoint of the nleterstick, which has by then moved
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Ground Meter Stick~ ~Train Meter Stick
E2

Fig. 3.18. Hypothetical result of the measurement
of a vertical train meterstick. If this were the pic
ture seen by ground observers, they would con
c�ude that the train meterstick is contracted. But
since train observers agree that events 1 and 2 are
simultaneous (see fig. 3.17), they would have to
conclude that the ground meterstick is stretched.
Such a result would violate the first postulate and
cannot occur.

along (fig. 3.17b). This is the same procedure used in figure 3.15 for longi
tudinallength measurements.

Observers on the train see the light flashes move along the inclined
paths shown in figure 3.17c. It is apparent that the two paths are of equal
length. Consequently, train observers conclude that the emissions of the
two light flashes (as well as the measurements signaled by those emis
sions) were simultaneous events. This conclusion is in marked contrast
with that of figure 3.15, in which train observers did not agree that the
two position measurements of the ground observers were simultaneous.
This accounts for the different conclusion. Figure 3.17 should be carefully
compared with figures 3.5 and 3.6 and the accompanying analysis.

To train observers, the ground meterstick is in motion, but for the
reasons already cited it appears vertical. Ground and train observers there
fore agree that at the time of events 1 and 2 (which are simultaneous in
both frames), the two metersticks are aligned with one another. Their
views of the two metersticks at that moment must be identical and enable
either set of observers to measure the length of the others' meterstick.

Suppose (incorrectly) that ground observers found the train meterstick
to be contracted. Figure 3.18 shows how the two metersticks would appear
at the time of events 1 and 2. Since this picture is valid in both frames,
train observers would see the two scratches made by the ground observers
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(a) (b)

Fig. 3.19. Measurement of a triangularly shaped
object, at rest on a moving train. (a) Train observers
measure the horizontal base, L, and the vertical
height, H. (b) Ground observers find the base to be
contracted to a length LI "I, but the height is un
changed. The hypotenuse is contracted, but by a fac
tor ~ess than y.

to mark their meterstick and would conclude that the ground meterstick
is longer than their own. Ground observers would conclude that the train
meterstick is shorter than theirs. Those conclusions would violate the first
postulate by creating an asymmetry between the two frames. Why should
ground observers find the train meterstick to be contracted and train ob
servers find the ground meterstick to be expanded, rather than vice versa?
The only outcome that avoids this logical dilemma is that both sets of
observers agree that the two metersticks are of equal length.

The all-important difference between the present situation and the one
analyzed in the preceding section is the agreement over the simultaneity
of the two position measurements. In measuring the length of horizontal
metersticks, the two sets of observers disagree over simultaneity; they
therefore employ two different pairs of events to measure the length of
each other's meterstick. Hence it is logically acceptable that each should
find the other's meterstick to be contracted. In the present case, the same
pair of measurements serves for both sets of observers and a similar con
elusion would be unacceptable.

The results of this section can be combined with those of the preceding
one to yield a description of length measurements for objects with an
arbitrary orientation. Consider the triangular object shown in figure 3.19,
carried on our moving train. The horizontal base has length L and the
vertical height is H. Both those quantities are proper lengths, since the
object is at rest in the train frame. Ground observers who measure
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the length of the base find the contracted length L/ 'Y. When they measure
the height, they obtain the same value H as do train observers. The length
of the hypotenuse, which is according to train observers, is therefore
found by ground observers (fig. 3.19b) to be

'./(L/ 'Y)2 + H2

An obliquely oriented moving object is found to be contracted but not

by the full factor 'Y. The shape of th~ object is different in the moving
frame than in its rest frame.

3.9. SUMMARY

In this chapter we have demonstrated, with the help of a few simple
thought experiments, how Einstein's two postulates lead inescapably to
several important and unexpected conclusions concerning time and space
measurements. The principal results are as follows:

1. The concept of simultaneity, when applied to spatially separated
events, is not absolute: two events that occur at the same time but at
different places according to one set of observers occur at different times

when measured by another set of observers moving relative to the first.
2. A set of clocks, all at rest with respect to one another, lTIay be

synchronized by exchanging light signals. When viewed by observers for
whom they are in motion, the clocks are found to be out of synchroniza
tion: the one ahead in the direction of motion is found to be behind in its
reading.

3. If two events occur at the same place in some frame of reference,
the time interval between them measured by observers in that frame
(proper time interval) is shorter than the interval between the same events
measured by observers in any other frame.

Corollary: If a clock is examined by observers for whom the clock is
moving, it is observed to be running slow. That conclusion is reached by
comparing the reading of the moving clock on two occasions with those
of (distinct) stationary clocks.

4. The length of an object is greatest when measured by observers in

its rest frame (proper length). If a meterstick is measured by observers

moving along the direction of the meterstick, it is found to be contracted.

5. If a meterstick is measured by observers moving perpendicularly
to the direction of the meterstick, its length is found to be the same as the

proper length.
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PROBLEMS

3.1. Analyze the simultaneity experiment of section 3.3 from the point of view of
Galilean relativity. Assume that the train is at rest in the ether frame and the
ground is moving at speed V relative to the ether; figure 3.1, in which both light
pulses travel at speed c, then correctly describes the experiment in the train frame.
Using the Galilean velocity transformation, show that the light pulses arrive at
the front and rear platforms simultaneously in the ground frame as well as in the
train frame.

3.2. Refer to figure 3.3. The length of the railroad car (as measured in the ground
frame) is 30 m and its speed is 100 m/sec. Find the difference between the arrival
times of the two light pulses as measured in the ground frame.

3.3. For this problem, assume that Galilean relativity is valid. The objective is to
synchronize clocks by a procedure similar to the one described in section 3.4.
Suppose clocks A and B are both at rest in a frame S, which moves at velocity V
in the x direction relative to the ether. A is located at the point x = 0, B at x = L.
When A's clock reads to a light pulse is emitted toward B; B's clock reads t1 when
the light pulse arrives, and a return pulse is immediately emitted toward A. A's
clock reads t2 when the return pulse arrives.

(a) What is the value of t1 if the clocks are synchronized?
(b) What is the value of t2?
(c) Show that if the relation

is satisfied, the clocks are synchronized.

3.4. Clocks A, B, and C are all at rest relative to one another. Prove that if A is
synchronized with Band B is synchronized with C by the method described in
section 3.4, then A is synchronized with C. For simplicity, assume that only the x
coordinates of the clocks differ.

3.5. The bright star Sirius is 8 light years from earth. (Assume that earth and
Sirius are at rest relative to one another.)

(a) How fast must a spaceship travel in order to reach Sirius in 6 years ac
cording to clocks on the spaceship? Express your answer as a fraction of the speed

of light.
(b) How long does the trip take according to earth frame clocks?
(c) What is the distance between earth and Sirius according to observers in the

spaceship frame?

3.6. For this problem, pretend that you do not know about length contraction but
you do know about time dilation.

A spaceship whose length in its own rest frame is La moves at velocity V
relative to earth. Let L be the length of the spaceship as measured in the earth's
rest frame, S.
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(a) A light pulse emitted at the rear of the spaceship (event E1) arrives at the
front (event E2 ). In the spaceship frame, Sf, the time interval between E1 and E2 is
t f

- t~ = Lo/ c. Find the time interval between the same two events in frame 5, in
terms of L, V, and c. (See fig. 2.3a. Note that this time interval is not proper in
either fralne.)

(b) The light pulse is reflected and arrives at the rear of the spaceship (event
£3)' Find the time interval between £2 and E3 in frame S.

(c) Applying a proper time argument to the interval between E1 and E3 , show

that Land Lo are related by the length contraction formula: L = Lo~1- V 2
/ c2

.

3.7. Devise a thought experiment, analogous to that of problem 3.6, by means of
which the time dilation effect may be inferred from length contraction. Each effect
implies the other.

3.8. A steel wire connects two trains at rest on the same track. The wire will snap
if it is stretched by as much as 1 percent. The trains begin to accelerate in such a
way that their velocities, as measured in the ground frame, are always equal.
Eventually, the wire snaps. Explain carefully why this happens. How fast are the
trains moving when the wire snaps?

3.9. Spaceships A and B, each of proper length 120 m, pass each other moving in
opposite directions. According to clocks on ship A, the front end of B takes
2 X 10 - 6 sec to pass A, that is, to move from the front end of A to the rear end
of A.

(a) What is the relative velocity of the spaceships?
(b) According to clocks on ship B, how long does the front end of A take to

pass B?
(c) According to clocks on ship B, what is the interval between the time when

the front end of A passes the front end of B and the time when the rear end of A
passes the front end of B? Why is this answer different from the answer to (b)?

3.10. A spaceship passes earth at speed 0 .. 6c (event E1). Clocks on earth and on the
spaceship read zero. Five minutes later, according to earth clocks, a light pulse is
emitted in the direction of the spaceship (event E2). At some later time the light
pulse catches up to the spaceship (event E3 ). Let 5 denote the earth frame and Sf
the spaceship frame.

(a) Draw sketches showing the sequence of events in each frame. Each sketch
should show the position of earth, spaceship, and light pulse at a given time in the
appropriate frame. .

(b) Is the interval between E1 and E2 a proper time interval in either frame? If
so, which one? What about the interval between E2 and E3 ? What about the inter
val between £1 and £3?

(c) What is the time of £2 according to Sf clocks?
(d) According to Sf observers, how far away is earth when the light pulse is

emitted? Express your answer in light-minutes.
(e) From your answers to (c) and (d), find the reading of the spaceship clock

when the light pulse arrives.
(f) By analyzing the problem entirely in frame S, find the time of E3 according
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to 5 frame clocks. Verify that your answers to (e) and (f) are consistent with your
assertion concerning proper time in part (b).

3.11. Spaceship A passes earth at speed V when its clock (as well as the adjacent
earth clock) reads zero (event £1). When the earth clock reads T, spaceship B passes
earth, moving at speed U in the same direction as the first (event £2). Assume
that U> V; let 5 be the earth frame and S' be the rest frame of ship A. Eventually,
ship B catches up to A (event £3). Note the similarity between this problem and
problem 3.10.

(a) Find the time of £3 in frame S.
(b) Find the time of E2 in frame 5'.
(c) Find the time of £3 in frame 5'.
(d) According to 5' observers, how far away was earth at £2?
(e) From these results, find the velocity of ship B as measured by observers on

A. This is the relativistic velocity transformation law, which will be derived from
the Lorentz transformation in the next chapter (eq. [4.15]).

3.12. Positive pions at rest decay with a half-life of 1.8 X 10- 8 sec. An accelerator
produces pulses of pions; each pulse consists of 2 X 1011 pions moving at very
nearly the speed of light (y= 20). How close to the exit port of the accelerator
must an experiment be located if at least 5 X 1010 pions per pulse are required?



4 The Lorentz
Transformation

4.1. INTRODUCTION

The fundamental problem of relativity is the transformation of coordi
nates: if x, y, z, and t denote the coordinates of an event measured in some
frame 5, what are the coordinates x', y', z', and t' of the same event
measured in another frame, 5', that moves at velocity V relative to 5?

As we have already noted, the classical solution to the problem, the
Galilean transformation (eq. [1.1]), is inconsistent with Einstein's postu
lates and must be rejected. Our task here is to derive its replacement, the
Lorentz transformation.

The new transformation law must satisfy several requirements:

(i) The transformation should be linear. That is, x' must be express
ible in the form

x' == ax + by + cz + dt

in which the coefficients a, b, c, and d depend only on V. Similar expres
sions hold for y', z', and t'.

The linearity requirement is imposed by the homogeneity of space. If

the equations were not linear, the transformation would depend on the

choice of origin, which is unacceptable in homogeneous space.

(ii) The transformation must be symmetrical between the two
frames: the same rules that specify the transformation from 5 to 5' must

apply also to the inverse transformation from 5' to 5. In other words, it

should not matter which frame we choose to call 5 and which 5'; if we

interchange the labels (and change the sign of V), the equations must
remain valid.

Properties (i) and (ii) are shared by the Galilean transformation.

97
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(iii) The velocity of light must have the same value, c, in both frames

for any direction of propagation. This is just the statement of Einstein's

second postulate.
(iv) The transformation law should approach the Galilean form in the

nonrelativistic limit. (That limit must be defined with some care.)

Requirements (i) through (iii) uniquely determine the form of the

transformation.

4.2. THE TRANSFC)RMATION EQUATIONS

The literature contains many derivations of the Lorentz transformation. I
present here a simple derivation that makes use of the results concerning
length contraction derived in the preceding chapter.

As in the derivation of the Galilean transformation in chapter 1, we
assume that the primed and unprimed axes are parallel to one another and
that the relative motion between the two frames is along the x (or x')
direction. When the origins pass one another, then, the two sets of axes
momentarily coincide. These restrictions simplify the algebra without in

volving any loss of generality.
In deriving the Galilean transformation, we assumed that all clocks in

both frames are set to zero at the instant when the origins 0 and 0'
coincide. Such a prescription would be inconsistent with special relativity:
observers in each frame can synchronize their own clocks but will not
agree that clocks in the other frame are synchronized.

Two clocks that are moving relative to one another can, however, be
set to read the same when they are at the same location. We therefore
stipulate that when 0 and 0' coincide, the 5 and 5' clocks at their com
mon location are set to zero. In other words, the event whose 5 coordi

nates are (0, 0, 0, 0) also has the coordinates (0, 0, 0, 0) in S'. Each set of

clocks can then be synchronized using the standard procedure described

in section 3.4.
Figure 4.1a shows a rod of proper length L, at rest in S' and aligned

along the x' axis. The left end of the rod is located at x' ==°and its right
end is at x' == L. In frame 5 the rod is moving to the right with velocity V

and is therefore contracted to the length LI 'Y. At t ==°its left end is at
x == 0 and its right end is at x == LI'Y (fig. 4.1b). At some later time, t, the
entire rod has moved a distance Vt (fig. 4.1c); the right end is therefore at
the position

x == Vt + LI'Y
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Fig. 4.1. Diagrams used to derive the Lorentz
transformation. (a) A rod of proper length L is at
rest in frame 5' . (b) The same rod as seen at t = 0
in frame S; the rod is contracted to length L/ y. (c)
The rod as seen at time t in frame S. The entire rod
has moved a distance Vt. Hence the left end is at
x = Vt and the right end is at x = Vt + L/ y.



100 I The Lorentz Transformation

The constant position x' == L in frame 5' corresponds to the changing

position x == Vt + LIy in 5. Since this must be true for any value of L, we

can replace L by x' in the above equation and conclude that

x==Vt+x'ly

or, solving for x',

x' == y(x - Vt) (4.la)

Equation (4.la) is the first of the desired transformation relations.

The same analysis can be applied to a rod at rest in frame 5, with its

left end at the origin a and its right end at x == L. In 5', this rod is moving

with velocity - V and is contracted by the factor y. At time t' == 0, its left

end was at x' == 0 and its right end was at x' == LI y; hence the position of

the right end at time t' is x' == LIy-Vt', which must correspond to x == L.
L again being arbitrary, we may write

x' ==~-Vt'
y

or, solving for x,

x == y(x' + Vf')

Eliminating x' frorn equations (4.1a) and (4.2a) gives

t'=y(t-5 x)

while eliminating x from the same equations gives

(4.2a)

(4.1b)

(4.2b)(
' V ,)t==y t +"2 x

Equations (4.1b) and (4.2b) replace the simple relation t' == t of Galilean

relativity. In special relativity, the time coordinate of an event in one

frame depends on its position as well as on the time in the other frame.

The remaining two equations, those involving the y and z coordinates,

can be written down directly. As we saw in chapter 3, lengths perpendicu

lar to the direction of relative motion are not contracted. Hence by consid

ering rods oriented along the y or the z directions in either frame, we

conclude that

y' ==y (4.lc)
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z' =z
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(4.1d)

just as in Galilean relativity.
Equations (4.1a-d) constitute the famous Lorentz transformation, on

which all the mathematical results of special relativity are based. The in
verse transformation is given by equations (4.2a-d). For future reference,
the full sets of equations are exhibited together below.

Direct Transformation Inverse Transformation
x' = y(x - Vt) (4.1a) x == y(x' + Vt') (4.2a)

y'=y (4.1c) y=y' (4.2c)

z'=z (4.1d) z == z' (4.2d)

t'=y(t-~ x) (4.1b) (, V ,) (4.2b)t=yt+"2 x

Let us check whether these results satisfy the requirements given in
the introduction. The equations are indeed linear (requirement [i]) and
symmetric (requirement [ii]): if all primed and unprimed quantities are
interchanged and V is changed to - V, equations (4.1a-d) go over into
(4.2a-d), and vice versa.

To verify that requirement (iii) is satisfied, consider a light pulse that
leaves the origin of frame 5 in the positive x direction at t == O. Its position
at time t is x = ct. We transform this equation to frame 5' by substituting
for x and t their expressions in terms of primed quantities, given by equa
tions (4.2a,b). The result is

y(x' + Vt') = cy(t' +~ x')
c

which reduces to

x' == et'

The light pulse travels at speed c in 5', in accord with the second postulate.
Finally, we investigate whether requirement (iv) is satisfied by examin

ing the transformation equations when V is much smaller than e. An ap
proximation applicable in this limit is based on the fact that the square of
a number much smaller than 1 is much smaller than the number itself;
higher powers are smaller still. If a quantity can be expressed as a sum of
powers of Vic, an approximation that should be good when Vic is very
small is to keep the term proportional to Vie and neglect terms propor-
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tional to (Vle)2 and all higher powers of VIc. This is called the first-order

approximation.
I show in the appendix to this chapter that" the relativistic parameter 'Y,

defined by equation (3.5), can be written as the following infinite series:

1 (V)2 3 (V)41'==1+ 2 ~ +8 ~ + ... (4.3)

The expansion (4.3) contains no term proportional to VIe; only even

powers of Vie appear. To first order, then, 'Y is just 1 and the transforma
tion law for x, equation (4.1a), reduces to the Galilean form, equation
(l.la). However, the time transformation, equation (4.1b), becomes

, V
t ==t--- X

e2
(4.4)

which is not the same as equation (l.lb): it contains the additional term
- Vxle2

. The presence of this term is puzzling.
The quantity of interest in most problems is not the time of a single

event but the time interval between two events, say, E1 and E2 . Writing
equation (4.4) for each event and subtracting one equation from the other,

we get

or

The notation

, V (V ~x)~t ==Li.t--~x==tit1---
e2 e etit

(4.5)

(4.6)

was introduced in chapter 3.
Equation (4.5) reduces to the Galilean relation tit' == tit only if the term

Vtixle2tit on the right side can be neglected. If in addition to V < < e, the

condition

Llx«eLlt (4.7)

is satisfied, the extra term is the product of two very small quantities and
is indeed negligible.

If E1 and E2 refer to the position of a body on two occasions, Llx/Llt is
the body's average velocity over the time interval Llt; condition (4.7) is
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then just the requirement that the velocity of the body be much less than

c, which is part of the standard definition of the nonrelativistic limit. In
general, however, (4.7) is an independent requirement.

If two events occur at nearly the same time at widely separated loca
tions, equation (4.7) is not satisfied. Any problem that involves such
events must be considered intrinsically relativistic; its description is mark
edly different even in two frames that move slowly relative to one an
other.

One other feature of the Lorentz transformation becomes apparent if

we treat ct instead of t as the time variable (ct is proportional to the time

but has the dimensions of a distance). A trivial rewriting of equations

(4.1a-d) gives

ct
f
= y[ct - ~(X)]

(4.8a)

(4.8b)

Equations (4.8a,b) are completely symmetrical between the space and
1/ time" variables: if x and ct are everywhere interchanged, the equations

remain the same. This is a manifestation of the striking symmetry be
tween space and time in special relativity. In Galilean relativity, space and
time are totally distinct; in special relativity they are intimately related
and it is appropriate to speak of a single entity called space-time.

4.3. SOME CONSEQUENCES OF THE

TRANSFORMATION EQUATIONS

The Lorentz transformation can be used to derive, in straightforward
fashion, all the relativistic effects described in chapter 3: the relativity of
simultaneity, time dilation, and length contraction. It is instructive to see
how these effects follow from the transformation equations; we shall also

be able to extend many of the results obtained in chapter 3.

Consider two arbitrary events, £1 and £2' Let (Xl' Y1' Zl' t1) and (x~,

y~, z~, t~) denote the coordinates of £1 in frames 5 and 5', respectively,

and similarly for the coordinates of £2' We use the ~ notation (see eq.
[4.6]) for the time and space intervals between the two events.

Simultaneity

The general relation between the time intervals ~t and ~t' follows directly

from equation (4.1b):
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!it' =Y(At - ~ AX) (4.9)

If E1 and E2 are simultaneous in frame 5, ~t is 0 and equation (4.9)

becomes

(4.10)

which differs from zero unless dx is zero as well. Equation (4.10) ex

presses the relativity of simultaneity: the two events in question are not

simultaneous in 5' unless they occur in the same place as well as at the

same time in 5; in that case, as already noted, they can be considered a

single event.

Equation (4.10) provides a quantitative measure of the departure from

simultaneity in 5'. We can, for exanlple, use it to determine how far out

of synchronization two clocks appear to be in a frame in which they are

moving. (See problem 4.2.)

Time Dilation

To derive the time dilation effect from equation (4.9), we simply put

~x == O. Equation (4.9) gives ~t' == 'Y(~t). This is just the statement of time

dilation. (~t is a proper time interval since the events happen at the same

place in 5.) We can go further and relate the time intervals Lit and Lit'
even when neither one is proper.

EXAMPLE. E1 and E2 have the following coordinates in frame 5:

£1: x == 1 m, t == 3 X 10 - 8 sec

£2: x == 9 m, t == 4 X 10-- 8 sec

(a) What is the time interval between the two events in a frame 5 f that

travels at V== 0.6c with respect to 5?
(b) Does there exist a frame in which E1 and E2 are simultaneous? If

so, what is its speed relative to 5?

SOLUTION. From the given data, ~x == 8 fi, ~t == 1 X 10- 8 sec.

(a) For Vlc==0.6, y== 1/\1'1- .36== 1.25.
Using equation (4.9), we find

Lit' == 1.25(1 X 10--8 _ 0.6(8))
3X108

== -7.5 X 10-- 8 sec
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Since dt' is negative, the two events occur in the opposite order in 5' than
they do in 5.

(b) If the events are simultaneous in 5', dt' is O. Substituting this in
equation (4.9), we find

~= (3 X 108) (1 X 10- 8)/8
c

=0.375

the desired answer.

Length Contraction

A similar procedure enables us to relate the space intervals dx and dx'
between two arbitrary events. From equation (4.1a) we obtain

dx' = 'Y(dx- Vdt) (4.11)

This general expression for dx' leads directly to the length contraction
effect. Suppose an object is at rest in 5', and let observers in 5 measure
the position of one end (event E1) and of the other end (event E2) simulta
neously according to 5 clocks. For these events, dt = 0 and (4.11) gives

dX=dx'/'Y

Since dx' is a proper length, this is just the Lorentz-FitzGerald contrac
tion: observers for whom the object is in motion see it contracted by the

relativistic factor 'Y. The result is hardly surprising, inasmuch as we used
the length contraction formula to derive the transformation equations.
Once again, however, we can go further and relate the two distance inter
vals ax and dx' even when neither represents a proper length.

Returning to the previous example, we inquire:

(c) What is the spatial interval between E1 and E2 in frame S'?
(d) Is there a frame in which E1 and E2 occur at the same place? If so,

what is its speed relative to 5?

SOLUTION

(c) Substituting the values for ~x and ~t in equation (4.11), we find

~x' = 1.25 [8 - (1.8 X 108) (1 X 10- 8)]

=7.75 m

(d) If the events are to occur at the same place in 5', ~x' must be zero.

Substituting this in equation (4.9), we obtain

V=dx
dt

= 8 X 108 mlsec
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Since the result exceeds the speed of light, it is not physically accept
able. We conclude that there is no inertial frame in which the two events
occur at the same place. Given any two events, one can in general find
either a frame in which they are simultaneous or a frame in which they
occur at the same place, but not both. l This assertion will be proven in
chapter 5.

Invariant Interval

In chapter 1, I introduced the concept of an invariant-a quantity that has
the same value in all inertial frames. The time interval tit between two
events is invariant in Galilean relativity, since time does not change in a
Galilean transformation. In special relativity, tit is not invariant. There
does, however, exist a combination of space and time intervals that is
invariant. It is called as and is defined by the relation

(4.12)

Since the right side of (4.12) can be positive or negative, as can can be
either real or imaginary.

as' is defined in terms of at' and ax' by a relation analogous to (4.12).
Using equations (4.9) and (4.11), we can express (as')2 in terms of at and
ax. After some algebra, we find that

which demonstrates that as is invariant as claimed.
If there exists a frame in which ax == 0, we can calculate as in that

frame and obtain

as== ± cat (ax == 0)

In chapter 3, we defined a proper time interval between two events as
the interval measured in a frame in which ax == O. The invariant interval
tis is therefore just c times the proper time interval between the events,
whenever the latter is defined.

In three dimensions, the definition (4.12) takes the generalized form

(4.12')

1. There is one exception: if £1 and £2 represent the positions of a light rayon
two occasions, ~x = ±c~t and ~x' = ±c ~t'. In this case there exists neither a
frame in which the events are simultaneous nor one in which they occur at the
same place.
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The proof of invariance proceeds just as before, since fly' == fly and
dz' == dz.

The invariant interval will prove useful in the discussion of causality
in chapter 5.

4.4. THE TRANSFORMATION OF VELOCITY

I next derive the relativistic transformation law for velocity, which re
places the simple Galilean relation v' == v-V. Consider a body that moves
with constant speed v in the x direction, as measured in frame 5. Its equa
tion of motion is

x==vt (4.13)

We transform equation (4.13) to 5' coordinates using (4.2a) and (4.2b).
After rearranging terms, we get

, v-V,
x ==--t

1_ vV

c2

(4.14)

which again describes motion at constant velocity since x' is proportional
to t'. The velocity in 5' is

Solving for v in terms of v' gives the inverse transformation

v'+V
v==---

1+ v 'V
c2

(4.15)

(4.16)

which is consistent with the symmetry requirement: if in (4.15) we inter
change v and v' and reverse the sign of V, the result is (4.16).

In the nonrelativistic limit, with both v and V much smaller than c,
(4.15) reduces to the Galilean form v' == v - V, as expected.

Although equation (4.15) was obtained by assuming motion at constant

speed, the result is quite general. If the speed of a body changes with time,

the instantaneous values of v and v' are related by equation (4.15). (The

velocities must be calculated at different times, t and t', which are related
by eq. [4.1b].)

Notice that v' == 0 implies v == V, as in Galilean relativity: an object at
rest in frame 5' is seen by 5 observers as moving with the velocity of 5'.
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When v == e, equation (4.15) gives v' == e, as required by the second pos
tulate.

Limiting Velocity

An important property of special relativity is that if a body moves at a
speed less than e in one frame, its speed is less than e in any other frame
as well. Suppose for concreteness that v' and V are both positive. We want
to prove that if v' < e and V < e, then v < e. Define {3 = vie, {3' == v' Ie, and

B= Vic, and put

(3' = 1- X- B==l-K

with X- and K both positive numbers smaller than one. Equation (4.16)
then reads

2--X- K
f3==---

2 - X- - K+ X-K
(4.17)

In the fraction on the right side of equation (4.17), both numerator
and denominator are positive numbers and the denominator is obviously

greater than the numerator. Hence {3 must be less than one, the result we

set out to demonstrate.
This result strongly supports (though it does not prove) the hypothesis

that e is a limiting velocity. If a limiting velocity does exist, it must have
the same value in all inertial frames; any other outcome would violate the
postulate of relativity.

In Galilean relativity, no limiting velocity is possible. Suppose a body
moves with speed 0.ge as measured in some frame s. In a frame 5', which
moves at speed -0.ge relative to 5, the Galilean speed of the body is 1.8e.

In a frame 5", which moves at -0.ge relative to 5', its speed is 2.7e. It is

clear that by passing through a sequence of frames, each of which moves
at -0.ge relative to the preceding one, we can find a Galilean frame in

which the body moves with arbitrarily high speed.
The situation in special relativity is quite different. With v = 0.ge and

V== -0.ge, equation (4.15) gives

O.ge - (-0.ge~1 1.8
v' = 1- (-0.9)( -0.'9) - 1.81 c= O.994c

instead of the Galilean result v' == 1.8e.

We have not yet demonstrated that e is a limiting velocity. What we
have shown is that such a result is consistent with the first postulate: if
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all bodies move at speeds less than c in one frame, the same is true in any
other frame. 2

A similar derivation shows that if the speed of a body is greater than c
in one inertial frame, it is greater than c in any other. Thus c acts as a
kind of velocity barrier. I will show in chapter 7 that any material body
requires an infinite amount of energy to cross this barrier. Hence a body
can never attain the speed of light starting from a slower speed. But Ein
stein's statement that /I superluminary velocities have no possibility of ex
istence" 3 is not strictly correct.

The possibility that particles with superlight velocity might exist has
been studied by Gary Feinberg, who named them tachyons. If tachyons
do exist, they have very peculiar properties. They are discussed briefly in
chapter 7.

Lighthouse Effect. The notion of a limiting velocity applies only to
material bodies and to signals; there is no limit on the speed of purely
kinematic effects. Suppose, for example, that a powerful lighthouse bea
con shines on a distant cylindrical screen. If the beacon rotates at a steady
rate, the spot on the screen moves at a speed that is proportional to the
rotational velocity and to the distance L between lighthouse and screen.
By making L great enough, we can make the spot move arbitrarily fast,
even faster than c. 4 Relativity is not violated because nothing is actually
moving in the direction of the spot and no information is being transmit
ted in that direction.

Transverse Velocities. We have thus far analyzed only velocities in the
direction of relative motion between frames. What about transverse veloc
ities? Since the y and z coordinates of any event are the same in S as in
5', we might be tempted to conclude that the same is true of the y and z
components of velocity, as in Galilean relativity. In special relativity,
however, the time transformation brings about a change in transverse
velocity.

2. It can be shown that under a Lorentz transformation, at most one speed is
invariant. Hence if there is a maximum speed, it must be the speed of light.
3. "On the Electrodynamics of Moving Bodies," Annalen deT Physik 17 (1905);
p. 170 of translation in Collected Documents, Vol. II.
4. In recent years, powerful laser beams have succeeded in reaching the moon. If
the laser is rotated at a modest angular velocity, the spot on the moon moves at a
speed greater than c.
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Consider a body that moves in the x-y plane with constant velocity
components V x and vy measured in frame 5. Its position is given by

(4.18)

Proceeding as before, we transform these equations to 5' coordinates,

using equation (4.2). The x equation reproduces the result (4.15), with v

and v' replaced by V x and v~. That is,

v -Vv' == __x __

x 1- V x V
c2

For the y equation we get

, (' V ')Y ==y==v t==v Y t +- x
y Y c2

Dividing both sides by t' gives

(4.19a)

Notice that v~ appears in the expression for v~; this effect has no coun
terpart in classical relativity. Substituting for v~ its value from equation
(4.19a) we obtain after some algebra

(4.19b)

A similar derivation yields the transformation law for V z:

(4.19c)

When V x == 0, equations (4.19b,c) take the simple forms

v'==vl'V
Y Y I

This result can be interpreted as a pure time dilation effect.
The inverse velocity transformation, from 5' to 5, is

v~+ V
v ==-----

x 1 + v~Vlc2
(4.20a)
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v~
v ==-----

y 'Y(1+v~Vlc2)

v'
v == z

z 'Y(1+v~Vlc2)

4.5. FIZEAU'S EXPERIMENT
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(4.20b)

(4.20c)

A significant test of the velocity transformation is provided by Fizeau's
experiment on the passage of light through moving water. Light travels

more slowly in a material medium than it does in a vacuum. Its speed
may be written as cln, where the index of refraction n depends on the

material. For water, n is 1.33: the speed of light in water is only three

fourths its speed in vacuum.

Suppose water flows at velocity V, and consider a light ray that propa
gates in the direction of the water flow. In a frame, S', that moves at the
sanle velocity V, the water is at rest and the speed of the light ray must be
cln. Its speed in the laboratory frame is obtained by using the relativistic
transformation law (4.15). The result is

~+V
v+=_n__

1 + Vine
(4.21a)

A similar argument shows that the speed of a light ray moving in the
opposite direction from the water is

~-V
n

v -- == -l---V-I-n-c (4.21b)

For n == 1 both these expressions reduce to v = c, as they must.
Since the speed of the water in any feasible experiment is necessarily

much less than c, good approximations to equations (4.21a,b) can be ob
tained by making a power series expansion and retaining only terms pro
portional to VIc, as we did in section 4.1. The details are given in the
appendix to this chapter; the results are

v+ ~~+ V(l-~)
n n2

_ c ( 1)v ~--V 1--
n n2

(4.22a)

(4.22b)

Fizeau's experiment is shown schematically in figure 4.2. Water flows
through the transparent V-shaped tube in the direction indicated in the
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water in

+

water out half-silvered
mirror

Source

Fig. 4.2. Schematic sketch of Fizeau's experiment. For the sake of
clarity, the rays that travel in opposite directions are shown as sepa
rated; in the actual setup the rays traverse the same path and create
interference fringes when viewed by the observer.

figure. Light from the source 5 strikes the half-silvered mirror M1 where
it is partially reflected and partially transmitted. The rays follow the paths
indicated in the sketch, being reflected by mirrors M 2 , M 3 , and M4 before
being finally rejoined. One ray travels in the same direction as the water
along both long segments, while the other travels in the opposite direction
to the water along both segments. The travel times for the two rays are
Llv + and Llv -, where L is the total length of the path within the water.

With the speeds given by equations (4.22a,b), the difference between

the travel times of the two rays is

dt =:; L__

~- V(l-~)
n n2

L

~+ V(l-~)
n n2

(4.23)

(4.24)

Since terms quadratic in VIc have already been neglected, it is appro
priate to expand the fractions in equation (4.23) and retain only first
order terms, obtaining the simpler form

dt :::::: 2L v~ (n2 - 1)
c2

On viewing the reunited rays, one observes a set of interference
fringes. (See the discussion in sec. 2.3.) As the speed of the water is varied
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the fringe pattern should shift, by an amount that can be predicted from
equation (4.24).

The entire setup is very reminiscent of the Michelson-Morley experi
ment.s In each case a light ray is split into two parts, which are finally
reunited after having traversed different paths. There is one important
quantitative difference, however: the predicted effect in Fizeau's experi
ment is of first order; it is proportional to Vic, not to the square of that
quantity as in the Michelson-Morley experiment. This makes it possible
to detect the predicted fringe shift even when Vic is only of order 10- 8

,

that is, for water velocity as low as a few meters per second.
Fizeau performed his experiment in 1851, long before Einstein had dis

covered special relativity. His interpretation of the experiment was based
on the ether picture and Galilean relativity. In such an interpretation one
can assume that the laboratory is at rest with respect to the ether, since
any overall velocity relative to the ether will produce corrections only of
order (VIC)2.

According to the classical picture, the speed of light is cln in the rest
frame of the ether. Its speed in moving water depends on the extent to
which the ether is dragged along by the moving water. (See the discussion
of ether drag in sec. 2.4.) If no ether is dragged, the motion of the water
has no effect on the speed of light; it is still cln. At the opposite extreme,
if the ether is dragged along at the full speed of the water, the speed
of light is cln in the frame of the moving water; the Galilean velocity
transformation then tells us that the speed in the laboratory frame is
(cln) ± V, where the plus sign applies to light moving in the direction of
the water flow and the minus sign to light moving in the opposite direc
tion.

In an intermediate case, if the ether is only partially dragged by
the moving water, the speed of light in moving water can be written as
(cln) ± fV, where f is the so-called ether drag coefficient, which can have
any value between 0 and 1 (f == 0 for no ether drag; f == 1 for complete
drag). Fizeau's objective in doing his experiment was precisely to measure
the value of the ether drag coefficient.

The Galilean expression for the difference in travel times is

L L
dt==-----

~-fV !.-+fV
n n

(in Galilean relativity)

5. Michelson himself carried out a very accurate version of Fizeau's experiment
in 1885.
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(4.25)(in Galilean relativity)

which can be simplified in the same way as the relativistic expression

(4.23). The result is

A __ 2LV 2f
ut----- n

c2

On comparing the prediction of special relativity, equation (4.24), with

that of Galilean relativity, equation (4.25), we see that if the ether drag

coefficient f has the value 1-1In2
, the two pictures give the same result

(up to terms of first order in Vic). By coincidence, Fresnel had some time

earlier proposed a theory of the ether that predicted just that value for f. 6

Fresnel's theory is consistent with the observations on stellar aberration,

since for air (n ~ 1) it predicts practically no drag.

Fizeau's result, f = 0.48, was consistent, within the experimental error,

with Fresnel's prediction 1-1/(1.33)2 = 0.43. Fizeau believed that he had

confirmed Fresnel's theory. From a modern point of view, we can inter

pret the same result as confirming the relativistic velocity transformation.

Einstein in fact cited Fizeau's experiment as an important element in sup

port of special relativity.

By continuing the power series expansion to the next order, one ob

tains a more accurate expression for the predicted effect. If the coefficient
of the quadratic term could be measured, it would provide a tTIore strin

gent test of the theory. Unfortunately, the experiment cannot be per

formed with the required precision; with VIe only one part in 108
, the

second-order fringe shift is just too small to detect.

4.6. THE TRANSFORMATION OF [)IRECTION AND

RELATIVISTIC ABERRATION

The results of section 4.4 can be used to derive the relativistic formula for

stellar aberration, which was analyzed from a Galilean point of view in

section 1.5. The same derivation can be repeated using the relativistic

transformation law for velocity instead of the Galilean one.

Consider again a star whose direction is perpendicular to the plane of

the earth's orbit in a frame, S, in which the star is at rest and the earth is

moving, as in figure 1.4a. Light from the star has the velocity components

6. Fresnel postulated that the density of ether within matter is proportional to the
square of its dielectric constant; a given volume of water contains more ether than
does an equal volume of empty space. Only the "extra" ether is dragged along by
a moving medium. These assumptions lead to a drag coefficient f = 1 -1/n2

.

Fresnel's theory suffers from one serious defect. The index of refraction of
most substances varies with the frequency of the light (dispersion). It is hard to
imagine how an ether drag coefficient could be frequency-dependent.
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(4.26)

Transforming these velocity components to the earth's rest frame 5',
using equations (4.15) and (4.19), we obtain

v~ = -e/'Y v~=O (4.27)

(4.28)

where V is the earth's velocity relative to the star. The value of v~ differs
frorn that given by equation (1.15), which is based on the Galilean velocity
transformation.

The aberration angle a, defined in figure 1.4b, is given by

v~ V
tan a=-= 'Y-

v~ e

The Galilean result was

V
tan a=

e
(1.16)

The only difference between the two results is the factor 'Y in equation
(4.28). In principle, this difference is subject to observational test. How
ever, for a typical value of V, a few hundred kmlsec, Vie is of order 10- 4

and 'Y differs from unity by only about one part in 108
. Since the aberra

tion angle itself is only about 20" of arc, the relativistic correction would
be of order 10 -7", much too small to be detected. Hence aberration mea
surements provide no additional confirmation of special relativity.

The same approach can be used to derive the general transformation
law for the direction of any motion. We confine the discussion to two
dimensional motion.

Suppose a body moves in the x-z plane, with velocity components V x

and V z as measured in some frame 5 (fig. 4.3a). The velocity components
v_~ and v~ measured in another frame 5' are related to V x and V z by equa
tion (4.16). Letting 0 and 0' denote the angles between the body's direc
tion and the z and z' axes, respectively, one has the trigonometric rela
tions

v'
tan 0' =-2:

v'z
(4.29)

Substituting for v~ and v~ their values from (4.16), we find

, 'y(v x - V)
tan 0 =---

V z

Finally, using V x = v sin 0 and V z == v cos 0, we get



116 /

(a)

(b)

The Lorentz Transfor1nation

z

Vx-- --------------7

e
---f'---------------- X

z

-----f---------------- x'

Fig. 4.3. The transformation of direction. (a) In frame S,
the object in question has velocity components V x and V z •

Its direction of motion makes an angle (J with the z axis. (b)
The same motion as seen in frame S'. The velocity compo
nents v~ and v~ are related to V x and V z by eq. (4.16). The
direction of motion makes an angle 0' with the z' axis; 0' is
related to 0 by eq. (4.30).

y( v sin 0- V)
tan 0' == 0

v cos
(4.30)

Equation (4.30) is the desired transformation law for direction. With

v == c it gives the general aberration formula, which applies to stars in any

direction.

4.7. ACCELERATION IN SPECIAL RELATIVITY

The last transformation law to be examined is that for acceleration. We
saw in chapter 1 that in Galilean relativity acceleration transforms in a
very simple way: it is invariant (a' == a). Newton's second law, F== rna, is
covariant under a Galilean transformation provided the force is invariant.

The situation in special relativity is more complicated. Consider a body
that starts from rest and moves in the x direction with a constant accelera

tion a. Its position as a function of time is given by
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1
x == - a t2

2
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Transforming this equation to frame S' by using equation (4.2), we

obtain

, V' 1 (, V ,)2X + t ==- a ')' t +- x
2 c2

Equation (4.31) is not of the form

x' == (a constant)t' + (another constant) (t')2

(4.31)

(4.32)

nor can it be put into that form by any algebraic manipulation. Equation

(4.32) is the most general equation that describes motion with constant

acceleration; hence the acceleration in S' is not constant. Motion with

constant acceleration in one inertial frame appears in another inertial

frame as a motion in which the acceleration changes with time.

A general expression for a' can be derived; I quote the result only for

motion in one dimension:

, a
a == ----

')'3(1- vVIc2 )3
(4.33)

Notice that v as well as a appears on the right side of equation (4.33).

Thus a' changes even when a is constant.
If Newton's second law is to be covariant, the quantity Flm must trans

form in the same complicated way as does the acceleration. We can hardly

expect that to happen, and indeed it does not. The second law is not a

general law of nature; it is only the low-velocity limit of a more general

covariant law.

In Newtonian mechanics, a body subjected to a constant force acceler

ates at a constant rate and ultimately exceeds the speed of light. That

cannot happen, of course, according to special relativity; the body's accel

eration initially has the Newtonian value Flm but then decreases steadily

and approaches zero; the speed approaches c but never reaches it. This is

due in part to the relativistic increase of mass with velocity, to be discussed

in chapter 7.

4.8. THE DOPPLER EFFECT

An interesting problem in relativity is the theory of the Doppler effect,

the change in the frequency of light detected by an observer who is mov-
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ing relative to the light source. A Doppler effect occurs for any wave phe
nomenon. The effect for sound is familiar: the pitch of a train whistle

sounds higher when the train is approaching us than when the train is at
rest and lower when the train is moving away. A similar effect is detected
when an observer moves toward or away from a stationary source of
sound.

The Doppler effects for sound and for light differ in one important
respect. Sound waves propagate in a medium. Motion of the source and of
the observer are therefore distinguishable; 1/ moving source" and 1/ moving
observer" signify motion relative to the medium. A different formula ap
plies to each case. In the case of light, however, one cannot distinguish
between motion of the source and of the observer; only their relative ve

locity is defined, and there can be only one Doppler formula.
Suppose a source, S, emits light of frequency f, measured in its own

rest frame. The light is detected by a receiver, R, that is receding from the
source at a relative velocity V. The frequency f' detected by the receiver
is the number of waves per second that pass the receiver, measured in its
rest frame.

Figure 4.4 is drawn in the source's rest frame. At event E1 (fig. 4.4a),

wave crest A is just passing the receiver; at event E2 (fig. 4.4b), the next
crest, B, passes the receiver. The distance between A and B is the wave

length A == elf.
Let Llt denote the interval between £1 and £2' measured in the source

frame. During that interval the receiver has moved a distance VLlt while
each wave crest has moved a distance eLlt. From the figure we see that

Solving for dt, we find

eLlt==A+ VLlt

A 1
~t==--==---

e- V f(1- Vic)

(4.34)

(4.35a)

If the receiver is approaching the source, a similar analysis leads to the

result

A 1
Llt ==-- ==----

c+ V f(1 + Vic)
(4.35b)

We are interested in Llt', the interval between £1 and £2 measured in
the receiver rest frame Sf. Since £1 and £2 occur at the same place in S',
Llt' is a proper time interval and we can write

(4.36)
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Fig. 4.4. The Doppler effect is shown in the rest frame of the
source, S. The receiver, R, is moving away from the source at
velocity V. In (a), wave crest A is just passing the receiver. The
distance between successive wave crests is the wavelength 'A.;
each crest moves at velocity c. In (b), the next wave crest, B, is
passing the receiver. The elapsed time interval, measured in
frame S, is lit. The receiver has moved a distance Vdt, while
each wave crest has moved a distance cLit.

The desired frequency f' is the reciprocal of ilt':

I' == -.l == 11f (1 + VIc)
ilt

(4.37)

(4.38a)

(4.38b)

f' == f

f' == f

where the minus sign refers to the case of receiver and source receding
and the plus sign to receiver and source approaching.

A little algebra enables us to rewrite equation (4.37) in the forms

Source and receiver
receding

Source and receiver
approaching

Equations (4.38a,b) are the relativistic Doppler formulas. The radicals

in these equations can be expanded using the binomial theorem, as dis
cussed in the appendix to this chapter. The result is the series

(4.39)
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To first order in V/ c, equation (4.39) takes the simple form

df ff -f _V-==--== +-
f f C

(4.40)

The nonrelativistic Doppler formulas, which apply to sound, are derived

in any standard physics text. The result for stationary source, moving
receiver is

For stationary receiver, moving source, the result is

f' f==1± vic

(4.41a)

(4.41b)

The upper sign applies to source and receiver receding and the lower sign
to source and receiver approaching. In lowest order, both these equations
reduce to the form (4.40): when Vic is very small, the relativistic Doppler
shift and both forms of the nonrelativistic shift are identical. This result

is not unexpected.

EXAMPLE. A neutral pion decays by emitting two gamma rays (high
frequency light). When the pion is at rest, the gamma rays travel in oppo
site directions and each has a frequency fa.

Suppose a pion moving at 0.8e decays and the gamma rays are emitted
forward and back along the pion's original direction. What are the fre
quencies of the gamma rays measured in the laboratory?

SOLUTION. In the pion's rest frame, the gamma rays must both have
the frequency fa. Assume the pion was moving to the right. In the labora

tory frame the frequency of gamma ray #1, moving to the left, is given
by equation (4.38a) (source and receiver receding):

, ~1-0.8 1
f == fo 1 + 0.8 == 3" fa

The frequency of gamma ray #2, moving to the right, is given by equa

tion (4.38b) (source and receiver approaching):

f'-f A {1+0.8- 3f- 0 ~~1"=- 0.8 - a

The nonrelativistic formulas (4.39) and (4.41) give 0.55fo and 5/0 for
the two frequencies. The experiment confirms the correctness of the rela
tivistic formulas.
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~ Velocity of source

Fig. 4.5. Geometry for the Doppler effect when
source and receiver are not approaching each other
or receding directly. 0 is the angle between the veloc
ity of the source and the path of the light ray, as seen
in the receiver's rest frame.
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The formulas we have derived apply only when source and observer
are moving directly toward or away from one another. The general case
is shown in figure 4.5, in which (j denotes the angle between the direction
of relative motion and the line that connects source and observer at the
instant the light is emitted, measured in the observer's frame. A general
ization of the preceding analysis shows that instead of equation (4.37), the
frequency measured by the observer is given by

(4.42)

The case of head-on approach corresponds to (j == 0°; in that case, (4.42)
reduces to (4.38b). Similarly, the case of direct recession corresponds to
(j== 180°; in that case, (4.42) reduces to (4.38a).

The Doppler effect for light has been detected experimentally on count
less occasions. It is not easy, however, to confirm the relativistic correc
tion. The difficulty is the usual one: the correction is of order (V/c)2, and
in most experiments the relative motion between source and observer is
too slow to lead to a measurable effect.

The first confirmation of the second-order Doppler effect was provided
by Herbert Ives and G. R. Stilwell in 1938.7 They observed the light emit-

7. Herbert E. Ives and G. R. Stilwell, "An Experimental Study of the Rate of a
Moving Atomic Clock," Journal of the Optical Society of America 28 (1938):215
226. It is of interest to note that as late as 1938 Ives and Stilwell still did not
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ted by a beam of hydrogen ions and compared the wavelengths of a

specific spectral line emitted in the forward and backward directions. Al

though the Galilean and Einsteinian predictions differed by less than a

tenth of an Angstrom (1 A=10- 10 m), the experiment was accurate

enough to detect so small a difference; the results agreed with Einstein's

formula.

A way to detect the relativistic Doppler effect was suggested by Ein
stein himself. He pointed out that when (}= 90° in figure 4.5, the source

is momentarily neither approaching nor receding from the observer. Just
at that instant the observed light is emitted transversely to the direction

of relative motion. According to classical theory, no change in frequency
should be detected in this case. The relativistic formula (4.42), in contrast,

predicts f' = fl 'Y. This "transverse" Doppler effect is due entirely to time
dilation. Although the predicted shift is small, detection of any shift what
ever would confirm the relativistic effect.

The experiment is very difficult; the transverse Doppler effect is detect
able only if (} is almost precisely 90°. If (} differs from 90° by even a small

fraction of a degree, cos (} in equation (4.42) differs from zero sufficiently

to cause a frequency shift that totally swamps the effect of the relativistic

factor 'Y. For a long time, the necessary precision could not be achieved.
The transverse Doppler effect was first demonstrated successfully in

1963 by Walter Kiindig, who used a rotating turntable with an emitter of

radiation at the center and an absorber on the rim.8 In such an arrange
ment, the relative motion of source and absorber is necessarily perpendic
ular to the path of the radiation. The Mossbauer effect makes it possible
to measure wavelengths with very high precision. The results were con
sistent with Einstein's formula (4.40) within 1 percent.

4.9. THE ROLE OF LORENTZ AND POINCARE IN THE

BIRTH OF RELATIVITY

According to Max Born, an eminent physicist who witnessed its birth,

"special relativity was not a one-man discovery. Einstein's work was the

keystone to an arch which Lorentz, Poincare and others had built." 9 In

believe in special relativity. They claimed that their results confirmed the
"Larmor-Lorentz theory," based on the ether, and never even mentioned rela
tivity.
8. W. Kundig, "Measurement of the Transverse Doppler Effect in an Accelerated
System," Physical Review 129 (1963):2371-2375. There is also an effect due to
general relativity in this experiment; see chapter 8 for discussion.
9. Max Born, Physics in My Generation (New York: Springer-Verlag 1969),106.
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my judgment, Born's metaphor exaggerates the contributions of Lorentz
and of Henri Poincare. Einstein did not just complete their structure; he
built a much grander arch according to his own design. In this section I
examine the work of Lorentz and Poincare and comment on their influ
ence on Einstein.

Lorentz

The reader may have wondered why the transformation that forms the
basis for special relativity bears Lorentz's name rather than Einstein's.lo
The transformation equations appear in a paper published by Lorentz in
1904, a year before Einstein's relativity paper.11 Lorentz's interpretation
of those equations, however, was quite different from Einstein's.

Lorentz was considered the foremost theoretical physicist of his time.
As part of a broad investigation of the electrical properties of matter, he
studied electromagnetic phenomena in moving bodies. He published his
results in a series of papers between 1892 and 1904.12

Lorentz postulated a perfectly rigid and immovable ether. He assumed
that Maxwell's equations, which relate the electric and magnetic fields to
the distribution of charge and current, hold in the frame of the stationary
ether, s. The solutions of Maxwell's equations include waves that travel
with velocity c in any direction.

10. The term "Lorentz transformation" was coined by Poincare in 1905. Some
authors call it the Lorentz-Einstein transformation.
11. The equations were in fact first published by Woldemar Voigt in 1887. Work
ing on an elastic theory of light, Voigt noted that the wave equation retains its
form under a transformation that is the same as eq. (4.1) up to a scale factor.
Although Lorentz knew Voigt and corresponded with him about the Michelson
Morley experiment, Voigt's paper somehow escaped his notice. Larmor's treatise,
Aether and Matter, published in 1900, also contained a set of equations equivalent
to the Lorentz transformation.
12. Lorentz's work is most readily found in H. A. Lorentz, Collected Papers, 9
vols. (The Hague: Martinus Nijhoff, 1934-1938). The most important publications
are "The Electromagnetic Theory of Maxwell and Its Application to Moving Bod
ies," Archives Neerlandaises 25 (1892):363 (Collected Papers, II:164-343); Ver
such Einer Theorie del' Elektrischen und Optischen Erscheinungen in Bewegten
Korpern (Leiden: Brill, 1895) (Collected Papers, V:1-138); "Simplified Theory of
Electrical and Optical Phenomena in Moving Systems," Verslagen en Mededee
lingen del' Koninklijke Nederlandse Akademie van Wetenschappen, English ed., 1
(1899):427 (Collected Papers, V:139-155); and "Electromagnetic Phenomena in a
System Moving with Any Velocity Less than That of Light," Proceedings of the
Royal Academy of Amsterdam 6 (1904):809 (Collected Papers, V:172-197). The
1904 paper and a short section of the Versuch appear in The Principle of Relativity,
9-34 and 1-7. Lorentz's book, Theory of Electrons, is a good exposition of the
theory. See also Kenneth Schaffner, "The Lorentz Electron Theory of Relativity,"
American Journal of Physics 37 (1969):498-513.
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Suppose a body moves with constant velocity V in the x direction, rela
tive to the ether. Lorentz showed in his 1892 paper that if one makes a
Galilean transformation to a frame 5r that moves with the body, Max
well's equations change their form.

This result should not be at all surprising. If the ether is stationary,
Maxwell's equations cannot hold in Sr' In particular, the speed of light in
Sr must vary with direction.

Lorentz's aim was 1/ to reduce, at least as far as possible, the equations
for a moving system to the form of the ordinary formulae that hold for a
system at rest." 13 Accordingly, he looked for a mathematical transforma
tion to a new set of (primed) variables, in terms of which the field equa
tions would resemble Maxwell's equations. He found the solution in steps:
initially to first order in V/ c, then to second order, and finally (in the
1904 paper) an exact formula valid to all orders. This was the Lorentz
transformation, under which Maxwell's equations are covariant: they take
the same form in terms of the primed coordinates as they do in terms of
the 5-frame coordinates.14

Lorentz never interpreted the primed variables as anything more than
a mathematical construct, an "imaginary system" 5' in which the body is
formally at rest. The real rest system is 5r and the real time is t in all
frames. The parameter t', which Lorentz called "local time" (Ortszeit), is
not the time recorded by a clock in the rest frame of the moving body.

Under such an interpretation, the covariance of the equations is of only
formal interest. One can use Lorentz's transformation to generate addi
tional solutions of Maxwell's equations, but one is not justified in inter
preting those new solutions as the fields measured in the body's rest
frame. Lorentz nonetheless used the 5' solutions as the basis for physical
arguments; this logical flaw in his theory has not been sufficiently
stressed in the literature.

In the 1892 paper, Lorentz used his theory to "derive" the contraction
that he and FitzGerald had earlier proposed to account for the outcome of
the Michelson-Morley experiment. Consider a rod at rest on the earth
and aligned in the direction of the earth's velocity V through the ether,
which we take to be the x direction. Let F' denote the force on a charged
particle in the rod measured in system 51,. that force is purely electrostatic
because everything is at rest in 5'. (I'he thermal motion of the molecules

13. Lorentz, Theory of Electrons, 196.
14. Because of a technical error, Lorentz did not succeed in demonstrating the full
covariance of Maxwell's equations. (An extraneous term appeared in the equation
for the electric field.) The error was corrected by Poincare in 1905.
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is ignored.) The corresponding force F measured in the ether frame is
partly electric and partly magnetic. Lorentz showed that the relation be
tween F' and F is

F~ =: Fx

F~ == yFy F~ == yFz

(4.43a)

(4.43b)

where y is defined in the usual way. The transverse components of force
are greater in 5' than in 5 by the factor y, whereas the longitudinal com
ponents are the same in both frames.

Lorentz pointed out that the size and the shape of any solid body are
determined by the intermolecular forces; each molecule must be in equi
librium under the forces exerted by its neighbors. He assumed that all

molecular forces transform between systems 5 and 5' in the same way as

electrostatic forces do, although he conceded that "there is no reason"

why that should be so.
If the rod has the same dimensions in both systems, the fact that Fy

transforms differently from Fx implies that an equilibrium configuration
in 5' will in general not translate into another equilibrium configuration
in 5. But if the rod is shorter by a factor yin 5 than in 5', the transverse
dimensions remaining the same, the forces in the two systems scale in the
same proportion as the dimensions. For any equilibrium configuration in
5', the corresponding configuration in 5 will then also be in equilibrium.
According to Lorentz, "the displacement would naturally bring about this
disposition of the molecules of its own accord, and thus effect a shortening
in the direction of motion in the proportion of 1 to ~1 - V 2/ c2." 15 That
shortening is the FitzGerald contraction. The contraction applies to the
electron itself; if it is a sphere when at rest in the ether, it is flattened into

an ellipsoid when moving.
Aside from the questionable assumption concerning the transforma

tion properties of molecular forces, Lorentz's derivation is unconvincing

because it assumes that the rod's length in S' is the same as its length
when at rest in the ether. Since 5' is not the physical rest frame of the
rod, that assumption has no justification.

In Einstein's treatment of the same problem, 5' is the inertial frame in
which the rod is at rest. The principle of relativity therefore demands that
the rod's length in 5' be its proper length; the contraction measured in

frame 5 then follows naturally from the transformation equations.
In the Versuch of 1895, Lorentz proved a "theorem of corresponding

15. Lorentz, Versuch (1895), p. 7 of excerpt in The Principle of Relativity.
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states," which is nothing but the covariance of Maxwell's equations to
first order in Vic. Given any set of electric and magnetic fields E and B
that satisfy Maxwell's equations in the ether frame 5, he showed that
there exists a corresponding solution in 5', in which E' and B' are (to first
order) the same functions of the primed variables as E and B are of the
coordinates in 5.

Lorentz used his theorem of corresponding states to argue that for any
experiment in which both observer and light source are attached to the
earth, the earth's assumed motion through the ether can have no first
order effect. He applied this argument to several experiments, including
Fizeau's experiment and stellar aberration using both air- and water-filled
telescopes. The 1904 paper extended the theory to all orders in Vic; in
that form it applies to all terrestrial experiments.

The theorem of corresponding states has been called "the germ of mod
ern relativistic tendencies." 16 It is indeed a relativistic theorem but only
if one identifies the system 5' as the actual rest frame of the body and E'
and H' as the fields measured by observers in that frame. Lorentz was not
prepared to take that crucial step because it would have required him to
give up the privileged status of the ether as well as the concept of absolute
time. As a result, his theory is an amalgam of relativistic and nonrelativis
tic elements that does not hold together. He insists that the Galilean frame
Sr is the real rest frame but ascribes physical significance to the S' system.
This position is logically inconsistent: if the S' system is only a mathemat
ical construct, the application of the theorem to real earthbound experi
ments is not justified.

Even after he had grasped the significance of Einstein's theory, Lorentz
was unwilling to fully abandon his beloved ether. A certain wistfulness is
apparent in the following excerpt from a lecture given by Lorentz in 1913.

According to Einstein, it has no meaning to speak of motion rela
tive to the aether. He likewise denies the existence of absolute si-
multaneity The acceptance of these concepts belongs mainly to
epistemology However, it depends to a large extent on the way
one is accustomed to think whether one is attracted to one or an
other interpretation. As far as this lecturer is concerned, he finds a
certain satisfaction in the older interpretations, according to which
the aether possesses at least some substantiality, space and time
can be sharply separated, and simultaneity without further specifi-

16. Ludwik Silberstein, The Theory of Relativity (London: Macmillan, 1924), 67.
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cation can be spoken of. In regard to the last point, one may per
haps appeal to our ability of imagining arbitrarily large velocities.
In that way, one comes very close to the concept of absolute simul
taneity.I?

These are hardly the words of a confirn1ed relativist.
In sum, Lorentz's theory falls short of being a theory of relativity in

several important respects:

1. His theory is firmly rooted in the ether. In his view, the Lorentz
transformation does not relate two arbitrary inertial frames but is only a

mathematical relation between a physical frame (that of the ether) and
a nonphysical set of coordinates, the Sf system. Lorentz's theory is not

symmetric between the two sets of coordinates; his transformation is re

ally not a coordinate transformation at all, in the sense that one cannot
use it to change from one physical frame to another.

2. Lorentz did not derive the transformation equations from basic

principles, as did Einstein, but discovered them by trial and error.
3. Perhaps most important was Lorentz's failure to grasp the true

significance of the time transformation. Only Einstein realized that a fun
damental reassessment of the nature of time is required; this is the key
conceptual step in relativity.

It is instructive to look at what Einstein himself had to say about the
connection between his work and that of Lorentz and Poincare. In 1955,
shortly before his death, he wrote to Carl Seelig,

It is beyond doubt that the special theory of relativity, if we regard
its development in retrospect, was ripe for discovery in 1905. Lo
rentz had already recognized that for the analysis of Maxwell's
equations the transformation later named after him is essential,
and Poincare had deepened this knowledge. As for myself, I knew
only Lorentz's important work of 1895 18 but not Lorentz's later

17. Quoted by Pais, Subtle Is the Lord, 166.
18. Here Einstein cites Lorentz's papers of 1892 and 1895. G. H. Keswani argues
that Einstein must have suffered from a lapse of memory and had actually read
Lorentz's 1904 paper when he wrote his own. G. H. Keswani, "Origin and Concept
of Relativity," British Journal for the Philosophy of Science 15 (1965):286-306;
16 (1965):19-32. Keswani's case is not persuasive. At the very beginning of his
1905 paper, Einstein notes that"as has already been shown to the first order of
small quantities, the same laws of electrodynamics and optics will be valid for all
frames of reference for which the equations of mechanics hold good." The first
order result was just what Lorentz had obtained in 1895; in the 1904 paper, he
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work, or the subsequent investigations of Poincare. In this sense
my work of 1905 was independent.

What was new about it was the realization that the significance
of the Lorentz transformation transcends its connection with Max
well's equations and is concerned with the nature of space and time
in general. Also new was the understanding that "Lorentz invari
ance" is a general condition for every physical theory.19

Einstein credits Lorentz's early work with motivating him to think
about the transformation properties of Maxwell's equations. It is clear,
however, that Lorentz was not a major influence on him.

Lorentz was generous in acknowledging the superiority of Einstein's
approach. At a conference in 1927, he explained,

A transformation of the time was necessary. So I introduced the
conception of a local time which is different for all systems of refer
ence which are in motion relative to each other. But I never
thought that this had anything to do with real time. This real time
for me was still represented by the old classical notion of an abso
lute time, which is independent of any reference to special frames
of coordinates. There existed for me only this one true time. I con
sidered my time transformation only as a heuristic working hy
pothesis. So the theory of relativity is really solely Einstein's work.
And there can be no doubt that he would have conceived it even if
the work of all his predecessors in the theory of this field had not
been done at all. His work is in this respect independent of the pre
vious theories.2o (Emphasis added.)

Poincare

The brilliant mathematician/physicist Henri Poincare came closer than
did Lorentz to beating Einstein to the discovery of relativity. Poincare's
early writings contain many prescient ideas.

1895. Poincare expresses skepticism about the properties of the ether.
He concludes that" it is impossible to measure the absolute movement of
ponderable matter, or, better, the relative movement of ponderable matter

extended it to all orders. If Einstein had known this result he surely would have
referred to it.
19. The letter is reproduced in Born, Physics in My Generation, 104. I have made
a few corrections in Born's translation from the German.
20. These remarks were published in the "Report on the Conference on the
Michelson-Morley Experiment," Astrophysical Journal 68 (1928):341-402.
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with respect to the ether. All that one can provide evidence for is the
motion of ponderable matter with respect to ponderable matter." 21

1898. Poincare suggests that there are serious problems with the classi
cal conception of time and with the simultaneity of separated events. He
asserts, "We have not a direct intuition of simultaneity, nor of the equal
ity of two intervals of time. If we think we have this intuition, it is an
illusion." 22

1899. "I regard it as very probable that optical phenomena depend only
on the relative motion of the material bodies, luminous sources, and opti
cal apparatus present, and that this is true not only for quantities of the
order of the square or the cube of the aberration, but rigorously." 23 (Ab
erration here means the ratio of the earth's velocity to the speed of light.)

1900. Poincare uses the phrase "principle of relative motion" to de
scribe the notions expressed in the preceding quotation. In an address to
an international congress in Paris, he asks the provocative question, "Does
the ether really exist 7"

1902. Poincare publishes his book Science and Hypothesis,24 which at
tracts widespread public attention. Here he first uses the phrase "principle
of relativity" and elaborates on his ideas concerning time and simultane
ity. Incidentally, the book contains a discussion of non-Euclidean geome
try that is quite relevant to general relativity. (See chap. 8.)

1904. In an address to an international congress at St. Louis, he formu-
lates the principle of relativity as follows:

The laws of physical phenomena should be the same for a station
ary observer as for an observer carried along in a uniform motion
of translation; so that we have not and can not have any means of
discerning whether or not we are carried along in such amotion.25

21. H. Poincare, 1/A propos de la theorie de Larmor," L'Eclairage electrique 5
(1895):5-14. In Oeuvres de Henri Poincare (Paris: Gauthier-Villars, 1954),
IX:395-413.
22. "The Measure of Time," published as chapter 2 of The Value of Science (Paris:
E. Flammarion, 1906; English translation, New York: Science Press, 1907).
23. Published in Electricite et optique, 2d ed. (Paris: G. Carre et C. Naud, 1901).
24. H. Poincare, La Science et l'hypothese (Paris: Flammarion, 1902); English
translation first published in 1905, reprinted by Dover Books in 1952.
25. The address was published as chapters 7-9 of The Value of Science.
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This is exactly Einstein's principle of relativity.
In this address, Poincare discusses the synchronization of clocks by ex

change of light signals, in a manner similar to Einstein's. He exhibits
another insight: "Perhaps," he says, "we shall have to construct a new
mechanics ... where, inertia increasing with velocity, the velocity of light
would become an impassable limit." This is just what happens according
to special relativity.

After reading Lorentz's 1904 paper, Poincare wrote two papers (pub
lished in 1905 and 1906) that analyzed the mathematical structure of the
Lorentz transformation and that duplicate several results of Einstein's
1905 paper.26 (Neither author had seen the work of the other.)

There is no denying that Poincare articulated many of the central con
cepts of relativity, some of them before Einstein. His Palermo paper ex
hibits considerable mathematical erudition. In it Poincare derives the rela
tivistic transformation law for velocity and demonstrates the covariance
of Maxwell's equations. He discusses the group property of the Lorentz
transformation and infers the invariance of the relativistic interval ds.

In spite of all that, Poincare's theory is in no way a theory of relativity.
In fact, as Augustin Sesmat perceptively observes, Poincare reveals him
self to be, like Lorentz, "at heart an absolutist," in the sense that he ex
plains the apparent validity of absolute laws in moving inertial systems by
compensation of effects and maintains the privileged status of the ether.27

Poincare never spells out how he interprets the primed coordinates in
the Lorentz transformation, but his discussion of the"contraction of elec
trons" reveals that his interpretation is the same as Lorentz's. He consid
ers a spherical electron moving with constant velocity in the ether and
uses the Lorentz transformation to relate the state of the "real" moving
electron to that of an "ideal" electron at rest. The latter is nothing but
Lorentz's S' system.

Poincare distinguishes between two hypotheses: (a) that of Max Abra
ham, according to which the electron is "indeformable," that is, always
remains spherical; and (b) that of Lorentz, according to which a moving
electron is contracted by the factor 'Y along its direction of motion; the
real moving electron is thus a flattened ellipsoid. In case (a), the Lorentz

26. "Sur la dynamique de l'electron," Comptes Rendus de l'Academie des Sci
ences (Paris) 140 (1905):1504-1508; "Sur la dynamique de l'electron," Rendiconti
del Circolo Matematico di Palermo 21 (1906):129-176. In Oeuvres de Poincare,
IX:489-493, 494-550.
27. A. Sesmat, Systemes de reference et mouvelnents (Physique relativiste)
(Paris: Hermann et Cie, 1937),40.
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transformation shows that the ideal electron is stretched out into a cigar
shaped ellipsoid, whereas in case (b), the transformation restores the elec
tron to a spherical shape. Poincare favors the Lorentz model because it
accounts for the result of Michelson-Morley.

Despite his dedication to the principle of relativity, Poincare fails to
apply it in this problem. The principle demands that the moving electron
be spherical in its own rest frame if it is spherical when at rest in the
ether. If Poincare had interpreted the "ideal electron" as the physical state
of the electron in its rest frame, he would have had a correct relativistic
description. (Abraham's model, with its rigid electron, is inadmissible in
such a treatment.) But, like Lorentz, Poincare failed to take the critical

step.
Poincare considered it necessary to account for the Lorentz contraction

by some physical mechanism. He says,

If one wants to preserve it [the theory of Lorentz] and avoid intol
erable contradictions, one must assume a special force which ex
plains both the contraction and the constancy of two of the axes. I
have tried to detertnine this force, and found that it can be com
pared to a constant external pressure acting on the deformable and
compressible electron, and whose work is proportional to the varia
tions in volume of the electron.28

The special force, which became known as "Poincare stress" or "Poin
care pressure," is a red herring. As Einstein showed, the contraction is
inherently a kinematic effect, a direct consequence of the properties of
space and time expressed through the Lorentz transformation. Whatever
forces are present in matter must transform in a manner consistent with
the contraction; no special force is needed.

As late as 1909, Poincare still had not disabused himself of this funda
mental misunderstanding. In a lecture at Gottingen, he asserted that the
"new mechanics" is based on three hypotheses, of which the third is the
longitudinal deformation of a body in translational motion.29 (The first
two were Einstein's two postulates.)

Like Lorentz, Poincare believed in local time. In the St. Louis address
of 1904, he describes Lorentz's notion of local time as a "most ingenious
idea." In a review article published in 1908, Poincare still invokes the

28. "Sur la dynamique de l'electron," Rendiconti, 129-176. The external pressure
is presumably exerted by the ether.
29. Published in Sechs Vortriige iiber ausgewiihlte Gegenstiinde ans der reinen
Mathernatik und Mathematischen Physik (Leipzig: Teulener, 1910).
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notion of local time to explain the principle of relativity.3o He apparently
never recognized that local time is not a relativistic concept.

Poincare was ambivalent toward the ether. True, he often expressed
doubts about the ether's properties; according to Keswani, he paid only lip
service to it. Yet he continued to assign it an important role in mediating
physical phenomena. In the St. Louis address, he described the interaction
between electrons as being accomplished through the ether as intermedi
ary and invoked the ether to salvage the apparent failure of Newton's law
of action and reaction. In the review article cited above, he says, "The
universe contains electrons, ether, and nothing else." And in 1912, the
year of his death, he published a paper entitled "The Relation between
Ether and Matter." Poincare never recognized what was immediately ob
vious to Einstein: the principle of relativity implies that the ether can be
dispensed with.

For Poincare, the principle of relativity was an experimental fact subject
to disproof. When Walter Kaufmann's early experiment seemed to sup
port Abraham's theory, Poincare commented, "The principle of relativity
may well not have the rigorous value which has been attributed to it." 31
Einstein, however, had absolute faith in the principle. His reaction was to
suspect inaccuracies in Kaufmann's experiment (as turned out to be the
case; see chap. 7).

It is apparent that Poincare was tantalizingly close to a theory of rela
tivity. But he either did not see the all-important final step or was not
bold enough to take it. Many scholars have speculated about the reasons
for his failure. 32

Poincare's work influenced Einstein more than did that of Lorentz.
During Einstein's first years in Bern he met regularly with friends in a

30. H. Poincare, "La Dynamique de l'electron," Revue Generale des Sciences Pure
et Appliques 19 (1908):386-402. In Oeuvres de Poincare, IX:551-586.
31. H. Poincare, "La Mecanique et l'optique," bk. 3, chap. 2 of Science et methode
(Paris: Flammarion, 1908), 248.
32. Pais, Subtle Is the Lord, 163-166; Stanley Goldberg, "Henri Poincare and
Einstein's Theory of Relativity," American Journal of Physics 35 (1967):934-944;
Charles Scribner, Jr., "Henri Poincare and the Principle of Relativity," American
Journal of Physics 32 (1964):672-678; Gerald Holton, "On the Origin of the Spe
cial Theory of Relativity," in his Thematic Origins of Scientific Thought, 191
236, esp. 204-206. See also Rene Dugas, A History of Mechanics (Neuchatel:
Griffon, 1955), 643-650; Rene Taton, Reason and Chance in Scientific Discovery
(New York: Philosophical Library, 1957), 134-135; Theo Kahan, "Sur les origines
de la theorie de la relativite restreinte," Revue d'Histoire des Sciences et de Leurs
Applications 12 (1959):162; and Louis deBroglie, Savants et decouvertes (Paris:
Michel, 1951), 51.
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group called the Akademie Olympia for philosophical reading and discus
sion. Among the works discussed was Poincare's Science and Hypothesis;
in a letter cited by Pais, Einstein says that the book "profoundly impressed
us and kept us breathless for weeks on end." 33 This book contains many

of Poincare's early thoughts related to relativity.
Keswani points to Einstein's use of the key phrase"principle of relativ

ity," precisely the words used by Poincare. He concludes that Einstein
took the phrase from Poincare; the conclusion seems plausible, though not

terribly significant. .
More interesting is the question, Did Einstein get the idea for the prin

ciple of relativity from Poincare? Keswani suggests that he did; I conjec
ture that Poincare's work merely reinforced ideas that Einstein had enter
tained from an early age. More important, he pursued the principle to its
logical conseq,uences, whereas Poincare did not.

In contrast to the relations between Einstein and Lorentz, always cor
dial and marked by mutual expressions of praise, those between Einstein
and Poincare were notably cool. Einstein is not cited in any of Poincare's
writings on relativity. Born tells of attending the Gottingen lectures in
which Poincare explained relativity using just the reasoning found in Ein
stein's paper. Yet he did not mention Einstein and gave the impression
that he was recording Lorentz's work.

Einstein reciprocated in kind. In an interview published in 1920, he
said, "It was found that Galilean invariance would not conform to the
rapid motions in electrodynamics. This led the Dutch professor Lorentz
and myself to develop the theory of special relativity." 34 Perhaps overly
generous toward Lorentz, Einstein omits any mention of Poincare; the
omission must have been deliberate. Pais relates that he once asked Ein
stein how Poincare's Palermo paper had affected his thinking; Einstein
replied that he had never read the paper!

Although Einstein is almost universally acclaimed as the father of rela
tivity, one inexplicable exception must be noted. The mathematician/
historian Sir Edmund Whittaker, in his otherwise excellent treatise, gives
Lorentz and Poincare all the credit for the discovery of relativity and
barely mentions Einstein.35 In a chapter entitled "The Relativity Theory
of Poincare and Lorentz," he dismisses Einstein's contribution in a single

33. A. Einstein, Lettres it Maurice Solovine (Paris: Gauthier-Villars, 1956), VIII.
Cited in Pais, Subtle Is the Lord, 134.
34. New York Times, December 3, 1920. Quoted by Pais, Subtle Is the Lord, 171.
35. E. T. Whittaker, A History of the Theories of Aether and Electricity, vol. 2
(London: T. Nelson and Sons, 1953).
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sentence: "In the autumn of the same year ... Einstein published a paper

which set forth the relativity theory of Poincare and Lorentz with some
amplifications, and which attracted much attention." (I) Whittaker credits

Einstein only with deriving the relativistic expressions for aberration and
for the Doppler effect. That this is a gross injustice to Einstein hardly
requires additional documentation. (A detailed critique is found in Gerald
Holton, "On the Origins of the Special Theory of Relativity," 196-202.)

ApPENDIX: THE Low-VELOCITY ApPROXIMATION

The approximations used in this chapter are based on the binomial theo
rem, which states that

(4.Al)

When n is a positive integer, the series (4.A1) terminates and gives an
identity. With n == 3, for example, it gives

(4.A2)

When n is any number other than a positive integer, (4.A1) is an infi

nite series that converges for x < 1. If x is very small, each term in the
series is much smaller than the preceding one and a small number of
terms gives a good approximation to the left side. If x is small enough,
the first two terms are adequate; the approximation is then just

(l+x)n~l+nx

The relativistic parameter )I, defined as

(4.A3)

1 (V2)_1/2
y= -.../1- V 2/C2 = 1-7

is of the form (1 + x)n, with x == - v21c2 and n == _1/2 . Hence we can use

equation (4.A1) and obtain the series expansion

1 (V)2 3 (V)4)1==1+ 2 ~ +8 ~ + ... (4.A4)

The absence· of a linear term in (4.A4) means that up to terms of the
order Vic, )I is just 1. This is the basis for the discussion of the nonrelativ
istic limit in section 4.2.

In the discussion of Fizeau's experiment in section 4.5, the exact ex
pressions for the speeds of light rays traveling in the direction of the water
and in the opposite direction are given by equation (4.21a,b):
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~+V
v+ =_n__

1+ V
nc

v =

~-V
n

V1--
nc

(4.A5)

Both these expressions are of the form

1
constant· -1

+x

with x= ± Vine. With n = -1, equation (4.A3) reads

1--:=::::l-x
l+x

Hence we can write approximate forms for v + and v - as

(4.A6)

In writing the last form of these equations, we have dropped the V 21nc
terms since our expression is only accurate up to terms of order Vic. The
results are equations (4.22a,b) in the text.

To simplify equation (4.23), one uses (4.Al) again. The result is equa
tion (4.24).

PROBLEMS

4.1. The coordinates of events £1 and £2 in frame S are

£1: x=O, t=O
£2: x = 8 light-seconds, t = 10 sec

(a) Find the coordinates of the two events in a frame Sf that moves at O.Se in
the +x direction relative to S.

(b) In some frame 5", £} and £2 occur at the same place. Find the velocity of
S" relative to S.

(c) Find the time interval between £1 and £2 in S" by using the Lorentz trans
formation.

(d) Find the time interval between £1 and E2 in S" by using the invariance of
the relativistic interval (dS)2. The answer should of course be the same as that
obtained in (c).

(e) Show that there is no physically allowed frame in which £1 and £2 are
simultaneous.
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4.2 Clocks A and B, synchronized in their own rest frame S, are observed in a
frame S' in which their velocity is V. The distance between the clocks, measured
in S', is L. (Clock A is ahead in the direction of motion.) Find the amount by
which the clocks are out of synchronization according to S' observers. That is, find
the difference between the two clock readings at a fixed time in S'. Which clock
reads the later time? Find the numerical value of the difference in readings if L ==

100 km and V= 10 km/sec.

4.3. A person standing at the rear of a railroad car fires a bullet toward the front
of the car. The speed of the bullet, as measured in the frame of the car, is 0.6e and
the proper length of the car is 375 m. The train is moving at O.Be as measured by
observers on the ground.

What do ground observers measure for
(a) the length of the railroad car,
(b) the speed of the bullet,
(c) the time required for the bullet to reach the front of the car, and
(d) the distance traveled by the bullet.

4.4. A railroad car whose proper length is 240 m is moving in the x direction at
speed 0.6c. Let 5' be a reference frame fixed on the car and 5 a frame fixed on the
ground. Let x' = 0 at the rear of the car.

At t' = 0, light pulses are emitted at the rear of the car (event E1) and the front
(event £2)' Some time later the pulses meet (event £3)' In S' it is clear that the
pulses meet at the midpoint of the car at time t~ == 120/c.

The following questions all refer to measurements carried out in frame S.
(a) How long is the car?
(b) Were the light pulses emitted simultaneously? If not, which one was emit

ted first, and how much earlier than the other?
(c) What is the spatial distance between the points at which the pulses were

emitted?
(d) How much time elapsed between the emission of the first pulse and the

meeting of the two pulses?
(e) Did the pulses meet at the midpoint of the car? How could this answer

have been predicted?

4.5. Spaceship A passes earth at earth time t = 0 at speed O.Be in the direction of
the star Xerxes. At the same time (according to earth frame clocks) spaceship B
passes Xerxes at speed 0.625e in the direction of earth. Assume that earth and
Xerxes are at rest relative to one another and the distance between them is 10
light-years (earth frame measurement).

(a) At what rate are the spaceships approaching one another according to earth
frame observers? Does this result violate the principles of relativity? Explain.

(b) Find the time when the spaceships meet according to earth frame measure
ments. How far is the meeting place from earth?

(c) Use the Lorentz transformation to find the time of the meeting according
to clocks on ship A. (Assume the spaceship clocks read zero when it passed earth.)

(d) What is the speed of ship B according to observers on A?
(e) What is the distance between earth and Xerxes in A's frame?
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(f) Consider the following argument. According to observers on A, the initial
distance of B is given by the answer to (e). The time required for the ships to meet
should be given by that distance divided by B's velocity, which was found in (d).
This calculation, however, does not give the right answer. What is the error in the
argument?

4.6. A flare is set off in Lincoln at t = O. A second flare is set off in Pittsburgh,
1,500 km due east, at t = 3 X 10 - 3 sec.

(a) Find the time interval between the two flares in the reference frame of a
spaceship flying east at 105 km/sec.

(b) Find the distance between Lincoln and Pittsburgh according to observers in
the spaceship frame.

(c) Find the spatial separation between the two flares according to spaceship
observers. Why does this result differ from that of (b) ?

(d) How fast would the spaceship be moving if the flares were simultaneous
in the spaceship frame?

4.7. Prove that if a body's speed in some inertial frame is greater than c, its speed
in any other inertial frame exceeds c as well. (The relative velocity between the
two frames is less than c.)

4.8. A particle moving at 0.6c approaches a stationary particle (frame 5 measure
ment). Find the speed of a frame Sf, relative to 5, in which the velocities of the
two particles are equal and opposite. (In Galilean relativity, the answer is 0.3c.)

4.9. A certain radioactive nucleus decays into two fragments of equal mass. When
such a nucleus decays at rest, the fragments are emitted in opposite directions
with equal speeds 0.4c. A sample of this material is carried in a spaceship that
moves in the positive x direction at 0.8c relative to the laboratory.

(a) A nucleus, at rest in the spaceship, decays. The fragments are emitted in
the ±x directions. Find the speed of each fragment, measured by observers in the
laboratory frame.

(b) The fragments are emitted in the ±y directions as measured in the space
ship frame. Find the speed of each fragment and its direction as measured in the
laboratory.

(c) One fragment is emitted in the +y direction as measured in the laboratory.
Find the speed of this fragment. What is its direction in the spaceship frame?

(d) Find the laboratory direction and speed of the fragment that accompanies
the one in (c).

4.10. Two events occur at the same time with a spatial separation 100 m, as mea
sured in some frame s. In another frame Sf, the spatial separation of the events is
200 m. Find the difference between the times of the two events as measured in Sf.
(You do not have to find the relative velocity between 5 and Sf.)

4.11. The frequency of red light is 4.5 X 1014 Hz and that of green light is
5.5 X 1014 Hz. A driver accused of going through a red light claims that the light
looked green to her. How fast was the driver approaching the traffic signal? How
great an error would result from using the nonrelativistic Doppler formula for
this problem?
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4.12. (a) Light of frequency 5 X 1014 Hz is incident perpendicularly on a mirror
moving directly toward the light source at 6 X 107 m/sec. What is the frequency
of the reflected light? (Hint: think of the mirror as a receiver that reemits light of
the same frequency in its own rest frame.)

(b) The mirror is aligned so that the incident light makes a 45° angle with the
perpendicular (as measured in the mirror frame). Find the frequency of the re
flected light and its direction in the laboratory.



5 Space-Time Diagrams

5.1. WORLD LINES

This chapter introduces the space-time diagram, a geometric representa
tion of relativity that illustrates and clarifies several important features of

the theory. Consider first a problem in which events are confined to one

spatial dimension. In a given frame of reference, an event is specified by
two coordinates, x and t. We can therefore represent each event by a point
in a two-dimensional diagram, in which distance is plotted along the verti
cal axis and time along the horizontal. It is convenient to use ct rather
than t as the "time" variable; both scales then have the dimension of
length. Such a plot is called a space-time diagram.

Figure 5.1 illustrates the space-tilue diagram; three events are shown.
In the particular frame of reference to which the diagram refers, events
E1 and E2 are simultaneous. E2 and E3 occur at the same location, E3 later
than E2.

The motion of a body can be described as a succession of events, which
specify its position at every instant of time. On a space-time diagram
those events define a continuous line called the world line of the body in

question.
If a body moves with constant velocity v, its position as a function of

time is given by the equation

x == Xo + vt == Xo+ vlc(ct) (5.1)

where Xo denotes the body's position at t == O.
The graph of equation (5.1) is a straight line whose slope is vic. Motion

with constant velocity is therefore represented by a straight world line.
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Fig. 5.1. A space-time diagram. Three events are
shown. Their coordinates in this frame of reference
are

for E1: x = - 1 m, ct = 1 m
for E2: x=3 m, ct=l m
for £3: x=3 m, ct=4 m.

E1 and £2 are simultaneous, while £2 and £3 occur at
the same location.

x c

F
I---+--,f---+--+----il----+--+-~--+---+~ A ct

o

Fig. 5.2. World lines describing one-dimensional
motion at constant velocity. Line A describes a body
at rest at x = 0; line B describes a body at rest at x =
5 m. Lines C and D describe light rays that pass
through the point x=3 m at t=O. The ray in C is
moving to the right; that in D is moving to the left.
Lines E and F describe bodies moving at constant
speeds less than c; the body in E is moving faster than
the body in F.
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x

-~-..--+---t---+---+--~---;f---+---+-----\ ct

Fig. 5.3. A world line that describes one
dimensional motion with changing velocity.
The body in question starts from x = 0 at
t == 0, with speed 0.6c. It proceeds to the
right with diminishing speed until ct == 3 m
(t = 10- 8 sec), at which time it is momentar
ily stopped. Subsequently, the body moves
to the left with increasing speed. The slope
of the world line is always less than 1.
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The faster a body moves, the steeper its world line.! A body at rest is
described by a world line parallel to the time axis. A world line with nega
tive slope describes a body moving toward lower values of x, that is, from
right to left.

Since the maximum possible speed of a body is c, no world line can
have a slope greater than unity; the angle between a world line and the
time axis is at most 45°. A 45° world line describes the motion of a light
pulse. Figure 5.2 exhibits several world lines that represent motion with
constant velocity.

A general motion, in which velocity changes with time, is described by
a curved world line. The slope of the line tangent to the curve at a given
time measures the instantaneous velocity of the body and cannot exceed
unity. An example is shown in figure 5.3. The motion of the body in

question is described in the figure legend.

1. In many books, space-time diagrams are drawn with the space axis horizontal
and the time axis vertical. In such a plot the slope of a world line is clv rather than
vic and must be greater than unity.
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III
(elsewhere)

III

(elsewhere)

Fig. 5.4. Subdivision of the space-time plane into
three invariant regions relative to some event Eo. Re
gion I consists of events in the future of Eo; region II
consists of events in the past of Eo. Region III, called
the"elsewhere," consists of events that cannot be con
nected to Eo by a world line of slope less than one. The
boundaries between regions are the world lines of light
rays that pass through Eo-

5.2. THE LIGHT CONE

The space-time diagram in figure 5.4 shows an event, E01 and the world
lines of light pulses that pass through Eo in both directions. Those world
lines divide space-time into three distinct regions. Regions I and II consist

of events that can be connected to Eo by straight lines that make angles
less than 45° with the time axis; all these are possible world lines for a
body that is present at Eo. Events in region I occur later than Eo, while
events in region II occur earlier than Eo (in this frame of reference). We
therefore provisionally define region I as the /I future" of Eo and region II
as the /I past" of Eo-2

Region III contains the rest of space-time. A straight line between Eo
and any event in this region has a slope greater than unity and therefore
cannot be the world line of a body. In fact, no curve that connects Eo with

2. We shall soon learn that an event in region I in any frame occurs later than Eo
in all frames. The definitions of past and future are therefore absolute.



Past

Space- Time Diagrams

ElsHwhere

------+-;~ct

Future

ElsE~where

I 143

Fig. 5.5. The light cone in a world with two space dimen
sions. The three invariant regions are indicated.

an event in region III can be a world line, since any such curve must at
SOlne time have a slope greater than one. All world lines that pass through
Eo are confined to regions I and II.

If E is in region III, its space coordinate differs from that of Eo; it hap
pens /I somewhere else." I will prove in the next section that this statement

is true in any frame of reference: there exists no frame in which E and
Eo occur at the same location. For this reason, region III is called the
elsewhere for Eo. It contains events that occur both earlier and later

than Eo.
These ideas are readily extended to the case of two spatial dimensions.

A space-time diagram is now three-dimensional, with two space axes and
a time axis, all mutually perpendicular. The world lines of light pulses still
make 45° angles with the time axis. The set of all such lines that pass
through a particular event, Eo, now defines a pair of cones with their axes
along the time direction and with opening angles of 45°; they are called
light cones. One opens in the direction of increasing time and is called the
future light cone; the other is called the past light cone (fig. 5.5).

The interiors of the light cones constitute the generalization of regions

I and II of figure 5.4. Any world line of a material body that passes

through Eo must lie inside the light cones; the world line of a light pulse
lies on the surface of the light cones. The exterior of the light cones is the
elsewhere, the generalization of region III.

The final generalization, to three spatial dimensions, poses a problem.

A space-time diagram would have to have three space axes and a time
axis, all mutually perpendicular. No such diagram can be constructed in
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our three-dimensional space. We can, however, conceptualize it and

even describe it analytically. The light cones become hypercones, three

dimensional "surfaces" in a four-dimensional space; the world lines of

light pulses are on the surfaces of the hypercones, and those of material

bodies are confined to the interiors of the hypercones. We shall have no

occasion to employ such esoteric concepts.

5.3. RELATIVITY AND CAUSALITY

A space-time diagram refers to a single frame of reference. To describe

events in two frames, we must construct a diagram for each frame. To

each point (event) in one diagram there corresponds a unique point in the

other; the correspondence is given by the Lorentz transformation. In fact,

the Lorentz transformation can be viewed as a mapping from one space

time diagram to another. Every world line in one diagram is mapped into

a unique world line in the other. A straight world line, which describes

motion at constant velocity, is mapped into another straight line; the two

velocities are related by the velocity transformation, equation (4.15).

Figure 5.6 exhibits space-time diagrams for two frames, 5 and 5',
whose relative velocity is 0.6c. The world lines of light rays that pass

through event Eo, which define the light cones for Eo, have been con
structed in each diagram. The same three events, E1 , E2 , and E3 , are plot

ted in each diagram.
Notice that E1 , which is in region I in the 5 diagram, is also in region

I in the 5 I diagram. Likewise, E2 is in region II in both diagrams and E3 is

in region III in both.

These results are not accidental. We shall see that the subdivision of

space-time into three regions is invariant. Events in the future light cone

of Eo (region I) in one frame are in the future light cone in any other

frame; events in the past light cone (region II) in one frame are in the past

light cone in any other frame; and events in the elsewhere (region III) are

in the elsewhere in all frames. This result is an important part of the

logical structure of relativity.

The surfaces of the light cones contain the world lines of all light rays

that pass through Eo. The invariance of the speed of light ensures that

those surfaces are mapped into one another by the transformation. More

over, since any speed less than c in one frame corresponds to a speed less

than c in the other, the interiors of the light cones must be mapped into

one another, and similarly for the exteriors. Region III in 5 is therefore

mapped into region III in 5', and vice versa.
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Fig. 5.6. Space-time diagrams for (a) frame
5 and (b) frame 5'. The relative velocity be
tween 5 and 5' is 0.6c. The three invariant
regions for event Eo (x = 2 m , ct = 4 m) are
shown in each diagram. Three events, Ell E21

and E3 I are shown in each diagram. It is ap
parent that each event is in the same region
in both diagrams.

To complete the proof of invariance, we have only to show that the
sense of past and future inside the light cones is preserved, that is, the
future light cone of Eo in one diagram is mapped into the future light cone
in the other and the past light cone is mapped into the past.

Figure 5.7 exhibits the space and time intervals between Eo and events
in each of the three regions in frame S. For E}, within the future light
cone of Eo, dx and dt satisfy the inequalities
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I
I
I
I

: elsewhere
I

Ax 3:
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AX4' I
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I

elsewhere
~ E4

C~t4

Fig. 5.7. Plot showing the space interval ~x and the time
interval c~t between event Eo and events in each of the
three invariant regions. E1 is inside the future light cone
of EO! E2 is inside the past light cone! and £3 is outside
both light cones. £4 is on the future light cone. The rela
tions between the intervals in each case are given in the
text.

event in
future light cone (5.2a)

E2 ! within the past light cone of EO! is characterized by

event in
past light cone (5.2b)

whereas for E3 , outside the light cones,

cILl t31 < ILlx3\

For E4 , on the light cone itself,

event in elsewhere

event on light cone

(5.3)

(5.4)

To prove that the sense of past and future within the light cones is
invariant, we must show that Llt' and Llt have the same sign whenever E
is inside either light cone of Eo. We make use of equation (4.3), which

gives the general relation between Llt and Llt':
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I1t' = 1'(I1t - ~ I1x)
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(5.5)

where V, as usual, is the velocity of 5' relative to s.
It is clear from equation (5.5) that the signs of Ilt' and Ilt can in general

differ. When E is inside either light cone of Eo, however, the magnitude
of Ilt is greater than that of Ilxlc. (See fig. 5.7 and eqs. [5.2a,b].) Since
VIc is always less than one, it follows that

Il1tl> I~ I1x I (5.6)

and the second term on the right side of equation (5.5) is smaller in mag
nitude than the first. Hence the subtraction cannot lead to a change of
sign: Ilt' must have the same sign as Ilt.

We have shown that if E is within the future light cone of Eo in one
frame, it occurs after Eo in all frames, while if E is within the past light
cone in one frame, it occurs before Eo in all frames. This is the property
we set out to demonstrate; it justifies the use of the terms "absolute fu
ture" and "absolute past" to characterize the two regions.

When E is in region III, the magnitude of Ilx is greater than that of
cllt. In that case, the second term on the right side of equation (5.5) can
be larger in magnitude than the first and Ilt and Ilt' can have opposite
signs. This is the reversal of time ordering that was cited in chapter 1 as
one of the unexpected implications of special relativity. We have proven
that such a reversal can occur only if the events in question are out
side each other's light cones. No single observer can be present at both
events.

These results have direct implications for the important problem of
causality. If Eo is the cause of E, it must precede E by a time interval Ilt
sufficient to enable a signal emitted at Eo to reach E. Since the maximum
speed of any signal is c, Ilt must exceed ~xlc, the time required for light
to travel the distance Ilx from the location of Eo to that of E. This is just
the condition that defines the future light cone: if E is an effect of Eo, it
must be within (or on the surface of) the future light cone of Eo. Likewise,
if E is the cause of Eo, it must be within (or on the surface of) the past

light cone of Eo.
If these relations were not invariant, observers in some frame could see

an effect before its cause. We have demonstrated that such a disaster can
not occur: whenever two events are causally related, their time order is
absolute. Observers in any frame see the cause before the effect. The order
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(a)

Fig. 5.8. A hypothetical motion that illustrates
the difficulties that would arise if signals could
travel faster than light. The world line Eo - £1 - E2

describes a signal emitted at the origin with speed
3c as measured in frame 5 (a). In frame Sf the
same signal propagates backward in time at speed
3c; its world line is shown in (b). At event E2 a
return signal is emitted at speed 7c as measured
in S'. That signal propagates backward in time
in 5 and returns to its starting point (event £4)
before the first signal was emitted. The x and
ct coordinates of each event in both frames are
tabulated; they are related by a Lorentz trans
formation. The relative velocity between 5 and
Sf is 0.6c.

of two events can depend on the observers' motion only if the events are
causally independent (i.e., neither one is the cause of the other). Relativity
is therefore a fully causal theory.

The causal character of relativity depends directly on the premise that
no signal can propagate faster than the speed of light. If /I superluminal"
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signals (with speed greater than e) existed, Eo could be the cause of an
event E outside its light cones. Observers in some frame would detect E
before Eo, in violation of causality.

Einstein commented as follows in a paper published in 1907: "Even
though, in my opinion, this result does not contain a contradiction from
a purely logical point of view, it conflicts so absolutely with the character
of all our experience that the impossibility of the assumption v> e is suffi
ciently proved by this result." 3

An even more bizarre scenario can be constructed with superluminal
signals. Figure 5.8a shows the world line of a hypothetical signal that
leaves the origin at t == 0 (event Eo) at speed 3e, measured in frame s. The

signal reaches the point x == 6 m at et == 2 m (event E2 ).

Sketch (b) shows the world line of the same signal in a frame 5' that
moves at velocity O.6e relative to S. According to equation (4.15), the

velocity of the signal in 5' is - 3c. As the figure shows, in 5' the time of
E2 is less than that of Eo: 5' observers see the signal arrive before it de
parts. The 5' world line seems to be propagating backward in time.

A return signal is emitted at speed 7e, measured in 5'. The return sig
nal propagates forward in time in 5' but backward in time in 5 (at speed
- 2e). The signal arrives at the original point of departure (event E4 ) be
fore the first signal was emitted! By making use of such a combination of
superluminal signals it would be possible to communicate with one's own
past.4 Logical disasters of this kind are avoided only if no signal can exceed
the speed of light.

Finally, we can justify the use of the term"elsewhere" to characterize
region III. We start from the general relation between dx and dx', equa
tion (4.7):

dx' == y(dx - Vdt) (5.7)

Suppose we want to find a frame in which the two events in question
occur at the same location. Setting dx' in equation (5.7) equal to zero, we
obtain for V/ e the following expression:

3. A. Einstein, "On the Inertia of Energy Required by the Relativity Principle,"
Annalen der Physik 23 (1907):371-384. (Collected Papers, doc. 45.)
4. The problem is accurately described by the following limerick, attributed to
Arthur Buller:

There was a young lady named Bright
Whose speed was much faster than light
She set out one day
In a relative way
And returned on the previous night.
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(5.8)

When E is in region I or II, the value of Vie determined by equation
(5.8) is less than one. (See eq. [5.2].) When E is in region III, however, the
magnitude of Llx is greater than that of eLit. In this case the relative veloc
ity V determined by equation (5.8) is greater than c. Hence there exists
no frame in which Llx' is zero. Two events outside each other's light cones
take place at different locations in any frame; each is indeed"elsewhere"

of the other.
A similar argument shows that the condition Lit' == 0 can always be

satisfied if E is in region III but not if it is in region I or II.
To summarize, if two events are inside each other's light cones, there

always exists a frame in which they occur at different times at the same
location but never one in which they occur simultaneously at different
locations. Conversely, if two events are outside each other's light cones,
there always exists a frame in which they are simultaneous but never one
in which they occur at different times at the same location.

If E is on one of the light cones of Eo, Lix and Lit satisfy equation
(5.3). In this case there exists neither a frame in which the events are
simultaneous nor one in which they occur at the same place.

5.4. TIME LIKE AND SPACELIKE INTERVALS

In chapter 4, we defined the relativistic interval

(LiS)2 == e2(Lit)2 - (LiX)2 (5.9)

and showed that it is invariant: if (LiS')2 is defined in terms of Lit' and Llx'
by a relation similar to (5.9), then

(Lis')2 == (LiS)2

for any two inertial frames 5 and 5'.
The inequalities (5.2) through (5.4) that define the three regions of the

space-time diagram can be expressed succinctly in terms of Lis. The condi

tion IeLit I> ILix Ibecomes simply

(LiS)2>O

whereas the opposite condition !cLitI< ILix Ibecomes

(LiS)2 < 0

Hence the three regions of space-time are defined by the invariant con

ditions:
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region I (future light cone): (dS)2 > 0, dt > 0
region II (past light cone): (ds)2 > 0, dt < 0
region III (elsewhere): (dS)2 < 0

On the surface of the light cones
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(5.10a)
(5.10b)
(5.l0c)

ds == 0 (5.10d)
These relations can be used to distinguish in an invariant way among

three types of intervals. Suppose first that (ds)2 is positive; the events in
question are within each other's light cones. In this case there exists a
frame in which dx == 0 and

ds== ± cdt

Such an interval is called timelike. If two events are separated by a time
like interval, there is no frame in which they are simultaneous: if dt == 0,
(dS)2 cannot be positive.s ds for a timelike interval is just the proper time
interval between the events, as defined in chapter 3.

When (dS)2 is negative (the events are outside each others' light cones),
there exists a frame in which dt == 0 and

ds=±ildxl

Such an interval is called spacelike. There is no frame in which the events
occur at the same place: if dx == 0, (dS)2 cannot be negative. For events
separated by a spacelike interval, proper time is not defined.

Finally, if ds == 0, the two events can be connected by the world line of
a light pulse in any frame. Such an interval is called lightlike.

5.5. THE LOEDEL DIAGRAM t

The space-time diagrams constructed up to this point refer to a specific
frame of reference. If a problem involves two frames, a separate diagram
must be constructed for each, as in figure 5.6. Although there is a one-to
one correspondence between points in the two diagrams, that correspon
dence is not apparent from the plots. To determine which point in the S'

5. In some books, (~S)2 is defined with the opposite sign:

(dsf = (dX)2 - c2 (dt)2

With this definition, (ds)2 is positive for spacelike intervals and negative for time
like intervals.
tSections 5.5 through 5.7 and the appendixes can be omitted with no loss of conti
nuity.
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yaxis

" axis x'axis

----------.::~---'~~-------X axis
A

Fig. 5.9. Two rectangular coordinate systems are plotted
with a common origin. The x' and y' axes make an angle
() with the x and y axes. The coordinates of a point P in
both systems are indicated.

diagranl corresponds to a given point in the 5 diagram, one has to use the

Lorentz transformation.
Can anything better be done? Is it possible to include both frames of

reference in a single diagram and thereby display the Lorentz transforma
tion geometrically? The motivation for such a plot is provided by analogy
with ordinary spatial diagrams.

Figure 5.9 shows two rectangular coordinate systems whose axes are
labeled (x, y) and (x', y'). The two sets of axes have a common origin, 0;
one set is rotated relative to the other by the angle e. The coordinates of

an arbitrary point, P, in either system can be found from this single dia
gram, as shown by the dotted lines. The two sets of coordinates are related

by the equations

x' == x cos 0+ y sin e
y'== -x sin e+y cos e

(5.11a)

(5.11b)

Equation (5.11) can be considered a "transformation," mathematically
similar to the Lorentz transformation, equation (4.1). In each case, the
primed coordinates are expressed as linear combinations of the unprimed
ones.

A naive idea would be to try to treat space-time diagrams in precisely
the same way, that is, to plot the x and ct axes of frame 5 and those of 5'
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x' axis x axis

ct' axis

(a)

-------~------------- ct axis

x axis x' axis

ct' axis

(b)

______--3-."..._...... -..-... ct axis
------- ct----... S

Fig. 5.10. (a) Naive attempt to construct a space-time di
agram for two frames of reference, by analogy with fig.
5.9. The primed and unprimed coordinates of an event E
are indicated. These coordinates are not related by a Lo
rentz transformation; hence the construction is useless.
(b) The Loedel diagram. Notice the difference between
this plot and the one in (a): in (b), the et axis is perpendic
ular to the x' axis, and the x axis is perpendicular to the
et' axis. The coordinates of event E in both frames are
constructed according to the prescription described in the
text.
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with a common origin and at some angle to each other, as in figure 5.10a.
This approach fails because the two sets of coordinates thereby assigned
to a given event are not related by a Lorentz transformation.

It is not hard to discern the underlying reason for the failure. Under a
rotation of axes, described by equation (5.11), the quantity x2 + y2 is in
variant (it is the square of the distance between 0 and P), whereas the
corresponding quantity (ct)2 + x2 is not invariant under a Lorentz trans
formation.
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An ingenious alternative approach was discovered by Enrique Loede1.6

Loedel's construction is based on the realization that although (ct)2 + x2 is
not invariant in relativity, the quantity (ct)2 - x2 is invariant. The relation

which expresses that invariance, can be trivially rewritten as

x2 + (et')2 == X,2 + (ct)2

Equation (5.13) is formally analogous to the equation

X2+y2==X,2+ y '2

(5.12)

(5.13)

(5.14)

which expresses the invariance of the distance to point P in figure 5.9.
This analogy led Loedel to construct the diagram shown in figure 5.1Gb,
in which the x axis is perpendicular not to the ct axis but to the et' axis;
the x' and ct axes are likewise perpendicular. (The physical significance of
the angle a between the et and et' axes will become apparent presently.)

Diagrams in which the coordinate axes are not perpendicular are un
familiar to most readers. Accustoming oneself to such a construction
requires some effort, but the reward is that one can see the effects of rela
tivity displayed geometrically. Although the Loedel diagram does not pro
vide any new results, it complements the standard algebraic presentation
of the theory. Many students find it helpful.

The mathematical basis for the Loedel diagram is developed in appen
dix SA. Here I explain how the diagram is constructed and illustrate some
of its applications.

OUf first task is to specify how the coordinates of a given event E in
the diagram are defined. Loedel's prescription is the following. (See fig.
5.10b.) Through point E construct lines parallel to each of the coordinate
axes; two parallelograms, OAEB and OCED, are thereby defined, one for
each frame. The coordinates of E in each frame are by definition the
lengths of the sides of those parallelograms:

x==OA ct == OB

6. E. Loedel, IIAberracion y Relatividad," Anales de la Sociedad Cientifica Argen
tina 145 (1948):3-13. A somewhat similar diagram has been devised by Robert W.
Brehme: IIA Geometric Representation of Galilean and Lorentz Transformations,"
American Journal of Physics 30 (1962):489-496. A space-time diagram for two
frames of reference was first proposed by Hermann Minkowski in 1908. The Min
kowski diagram is awkward to apply because different scales must be used to mea
sure distances in the two frames.
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It is shown in appendix SA that the two sets of coordinates thus defined
are correctly related by a Lorentz transformation. The angle ll' between
the x and x' axes (and between the t and t' axes) is determined by the
relative velocity V between 5 and S':

sin a== Vie

cos ll'==~1- V 2/e2 ==11y

(S.lSa)

(S.15b)

When V == 0, a == 0 and there is no transformation; the primed and un
primed axes coincide. As V approaches e, a approaches 90°.

World Lines

In the Loedel diagram in figure 5.11, line AA is parallel to the et axis.
According to Loedel's prescription, the x coordinate of every point on that
line is the same. A world line parallel to the time axis therefore describes
a body at rest in frame S, just as for a regular space-time diagram. The

x axis x' axis
8

cfaxis

8

________~~-.-..._----.--.-ct axis

A-~~------+---+-----------1~A

Fig. 5.11. World lines of a body at rest in frame 5 (line
AA) and in frame Sf (line BB). The coordinates in S of E,
an event on the ctfaxis, are constructed. As shown in the
text, they satisfy the relation x = Vt, which describes a
body moving with velocity V.
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time axis itself is the world line of a body at rest at x == O. Line BB, which
is parallel to the t' axis, is similarly the world line of a body at rest in
frame 5'.

As an exercise, let us find the 5 equation of the world line x' == 0, which
describes a body at rest at the origin of 5'. The dotted lines in figure 5.11
determine the 5 coordinates of point E on the t' axis. Its x coordinate is
EF and its et coordinate, OG, is equal to EF. Since OEF is a right angle,

sin Q' == EFIOF == xlet

Using equation (5.15a), we obtain

x==Vt

which is the expected result. One can similarly verify that a world line
along the t axis, which describes a body at rest in frame 5, has in 5' the
equation x' == - Vt', which describes a body moving with velocity - V.

One limitation of the Loedel diagram is that only two frames can be
included in a single plot. The angle between axes is fixed by their relative
velocity, according to equation (5.15). We cannot add a third frame by
constructing another pair of axes, as one can do with the rotated axes of
figure 5.10a. To compare measurements in 5 with those in some third
frame S", we must construct an entirely new diagram.

5.6. ApPLICATIONS OF THE LOEDEL DIAGRAM

The Light Cones

Figure 5.12 displays the light cones and the three invariant regions of
space-time in the Loedel diagram. The figure looks quite busy but merits
careful study.

World line POA describes a light pulse that passes through the origin
at t == 0 in the positive x direction. E is an event on that world line. Ac
cording to Loedel's prescription, the 5 coordinates of E, x and et, are the
sides of parallelogram 00EF. Since the 5 equation of the world line is
x == et, all four sides of that parallelogram are equal and POA bisects the
angle between the positive x and the positive t axes. The world line makes
an angle 45° + V2 Q' with each axis.

Parallelogram OMEN similarly defines the coordinates of E in frame
5'. It too has equal sides and corresponds to the equation of motion
x' == et'. POA also bisects the angle between the positive x' and the positive
t' axes.

World line QOB describes a light pulse that passes through the origin
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Fig. 5.12. Invariant division of the Loedel diagram. POA and
QOB are the world lines of light rays that propagate in the for
ward and backward directions. The region AOB is the future
light cone for an event at 0, while QOP is the past light cone.
The remainder is the elsewhere. Notice the angles made by the
world lines of the light rays with the two times axes.

at t == 0 in the negative x direction. Its 5 equation is x == -ct. QOB bisects
the angle between positive t and negative x axes and also the angle be
tween positive t f and negative t'. Notice that the world lines of the two
light rays that pass through the same event in opposite directions are
perpendicular to one another in the Loedel diagram.

The past and future light cones of an event at the origin are indicated
by shading in the figure; the exterior of the light cones is the "elsewhere."
The invariance of the three regions is quite apparent in the Loedel dia
gram.

Simultaneity

The Loedel diagram in figure 5.13 exhibits the relativity of simultaneity.

Events E1 and E2 are simultaneous in frame S. We see directly from the
diagram that the two events are not simultaneous in Sf. (In this particular

case, t~ < t~.)
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Fig. 5.13. Loedel diagram to illustrate the relativity
of simultaneity. Events £1 and £2 are simultaneous in
frame 5 (tl = t2 ) but happen at different places
(X2> Xl)' In frame 5' the two events are not simulta
neous: as the diagram shows, t~ < t; .

x x

Fig. 5.14. Time dilation demonstrated by the Loedel
diagram. Events £1 and £2 occur at the same place in
frame 5; the time interval between them is longer in
5' than in 5. Events £1 and £3 occur at the same place
in 5'; the time interval between them is longer in 5
than in 5'.
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Figure 5.14 is a Loedel diagram that demonstrates time dilation. Event £1

takes place at the origin in both frames (x} == xi = 0, t}:=: t-i == 0). Event £2

takes place at the same location as £} in frame S. Hence t2 - t1 is a proper

time interval whereas t~ - ti is improper. The figure shows that

et2 1
-=cos a=-
et~ ')'

Hence

as required by a time dilation argument.

~A.lso shown is event £3' which occurs at the same place as £1 in 5'. In

this case the time interval t~ - t~ is proper whereas t3 - t1 is improper.

The geometry shows that t3 = ')'t~, again consistent with a time dilation

argument.

Length Contraction

Finally, figure 5.15 demonstrates length contraction. A rod of proper

length La is at rest in frame 5, with its left end at x == 0 and its right end

at x == La. AA and BB are the world lines of the two ends of the rod. AA is
along the t axis, while BB is parallel to that axis.

The intersections of AA and BB with a line t = constant show how the
rod appears to 5 observers at that time. The shaded bands indicate the
appearance of the rod in frame 5 at t = 0 and at two later times.

To see how the rod looks to 5' observers, we have to examine the

intersections of the world lines at each of its ends with lines of constant

t'. Such lines are parallel to the x' axis. The dotted bands show the appear

ance of the rod at t' == 0 and at a later t'. It is apparent that the rod looks

contracted in 5'; its length is La cos a == Lol ')', in agreement with what we

learned about length contraction in chapter 3.
Also shown in the figure are the world lines CC and DO that describe

a rod at rest in 5'. Observers in 5 see this rod as contracted, as the figure

clearly shows. The Loedel diagram makes the symmetry between the two

frames quite explicit; this is one of its major attractive features.

In the following chapter, we shall employ the Loedel diagram to help

clarify some of the paradoxes of relativity.
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ct'
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Fig. 5.15. Length contraction demonstrated by the Loedel di
agram. World lines AA and BB represent the two ends of a rod
at rest in frame S; lines CC and DO are those of a rod at rest
in 5'. The shaded bands are snapshots taken in 5; each one
shows the appearance of the rod at a specific time in S. The
dotted bands are similar snapshots taken in 5'. It is apparent
that rod AB looks contracted in 5', whereas rod CD looks con
tracted in S.

5.7. THE DOPPLER EFFECT REVISITED

The Loedel diagram provides a very nice geometric representation of the

relativistic Doppler effect, which was treated analytically in section 4.8.
With a little trigonometry, the formulas for the Doppler effect can be

derived.

Figure 5.16 contains the Loedel diagram for the Doppler problem.

Frame 5 is the rest frame of the source and 5' that of the receiver, with

relative velocity V between them. (Notice I do not specify which of the

two is moving.) The source is located at x == 0; its world line is along the t
axis. The receiver is at x' == 0; its world line is along the t' axis. For t < 0,

the source and receiver approach one another. At t == t' == 0, the world lines
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Fig. 5.16. Loedel diagram for the relativistic Doppler effect.
The source, whose world line is the et axis, emits light flashes
every T seconds (source time). The receiver, whose world line
is the et' axis, at first approaches the source; it passes the
source at t = t' = 0 and thereafter recedes. During the ap
proaching phase, the light rays arrive every T' seconds (re
ceiver time), where T' < T. During the receding phase, the rays
arrive every T" seconds, where T" > T. Formulas for T' and T"
are derived in the text.

cross as the source and receiver pass one another. Thereafter they recede
from one another.

The source emits light of frequency f and period To = 1/f. Once every
To seconds (as measured in S) it emits a wave crest that propagates in both
directions. The world lines of the wave crests are shown as dotted lines in
the figure. The arrivals of the wave crests at the receiver are marked with
solid circles.

Let T' be the interval between arrival of successive crests at the receiver

during the approach phase and let T" be the corresponding interval during
the recession phase, as measured by the receiver's clock. The reciprocals

of T' and T" are the frequencies measured by the receiver during each

phase.
The diagram clearly shows that T' is less than To while T" is greater

than To, as expected. Finding the values of T' and T" requires some trigo
nometry; we have to solve the triangles OAL and OPQ of the figure. Since
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one side and all the angles of each triangle are known, the law of sines
determines the lengths of the other sides. The calculation is carried out in

appendix SB. The results are of course consistent with equations (4.40)

and (4.41), obtained analytically.

ApPENDIX SA: MATHEMATICAL BASIS FOR

THE LOEDEL DIAGRAM

To justify the use of the Loedel diagram we have to show that the primed
and unprimed coordinates of point P in figure S.10b are related by a Lo
rentz transformation.

Notice that line segment AD is the hypotenuse of both right triangle

GAD and right triangle EAD. The legs of the first triangle represent x and
et' / while the legs of the second represent x' and ct. Hence we have from
the Pythagorean theorem

(S.Al)

As noted in the text, equation (S.A1) gave Loedel the idea for his con
struction.

To obtain the Lorentz transformation and determine the significance
of the angle a between axes, we proceed as follows. From right triangle
OAF one has

x cos a== OF== OC + CF== OC + CE sin a
== x' + et' sin a

If we put

sin a==Vle

cos a == ~1 - V 21e2 == II y

equation (S.A2) becomes

x == y(x' + Vt')

which is just equation (4.2a) of the Lorentz transformation.
Similarly, from right triangle OGB one has

et cos a==OO+OG==OO+OE sin a

== et' + x' sin a

Using (S.A3) and (S.A4), this becomes

(S.A2)

(S.A3)

(S.A4)

(S.AS)

(S.A6)

(S.A7)
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which is the other part of the Lorentz transformation. Thus, with a de

fined by equation (S.A3), the Loedel diagram is consistent with the Lo

rentz transformation.

ApPENDIX 5B: THE DOPPLER FORMULA

In this appendix we derive the relativistic Doppler formulas from the

Loedel diagram of figure 5.16.

For the case of source and receiver receding we must find the length of

aL, which represents the time interval T" between arrival of successive

wave crests at the receiver. In triangle OAL, side OA is To. Angle AOL is

a. The exterior angle BAL is the angle between the world line of light ray

AL and the t axis. That angle is 45° + 1/2 a. Angle OAL, its supplement, is

therefore 135° - V2 a. Since the sum of all three angles of the triangle is

180°, angle aLA must be 45° - 1/2 a.

The ratio between T" and To is given by the law of sines:

T" _ OL _ sin (<t OAL) _ sin V2 (270° - a)
To - OA - sin (<tOLA) sin 1/2 (900 -a)

(5.B1)

This expression can be simplified by using the trigonometric identity

. e ,p-cos e
SIn - ==

2 2

Using this formula in both the numerator and the denominator of equa
tion (S.B1), we obtain

T"

To
1-cos(270° - a) = ~1 + sin a
1 - cos(90° - a) 1- sina

Finally, substituting for sin a its value Vic, we get

T"

To

Since To == Ilf and T" == l/F", (5.B2) becomes

(5.B2)

f" ==.f (5.B3)

which is the Doppler formula for the case of source and receiver receding,

equation (4.41a).

The formula for the case of source and receiver approaching is obtained

by solving for side OQ in triangle OPQ. The derivation proceeds exactly

as in the other case, and the result reproduces equation (4.41b).
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PROBLEMS

5.1. Event Eo has the following coordinates in some frame 5:

x=2 m et=4 m

Locate Eo on a space-time diagram for frame S. Draw the lines that define the
three invariant regions of space-time for Eo. On the diagram, locate each of the
following events:

E1 : x=O, et=l m
E2 : x=4 m, et=2 m
E3 : x=4 m, et= 5 m

Specify whether each event is on the light cone of Eo, in the past or the future of
Eo, or in the elsewhere. If E is within one of the light cones, find the speed (relative
to 5) of a frame in which E occurs at the same place as Eo. If E is in the elsewhere
of Eo, find the speed of a frame in which it is simultaneous with Eo.

5.2. Refer to the three events E1 , E2 , and E3 of problem 5.1. For each pair of
events, (1,2), (2,3), and (1,3), find the value of (~S)2 and characterize the interval
between the events as spacelike, timelike, or lightlike. Which pairs of events could
be causally related?

5.3. Consider problem 3.8, in which a light pulse catches up to a spaceship.
(a) Construct the space-time diagram for the earth frame, S. Use the light

minute as the unit of distance. Draw the world lines of the earth, the spaceship,
and the light pulse. Find graphically the time when the light pulse catches up to
the spaceship and the distance at which this happens according to earth frame
observers.

(b) Construct the space-time diagram for 5', the spaceship frame. Draw the
world lines of the earth and the spaceship. Using the result of problem 3.8, locate
the point on the earth's world line at which the light pulse is emitted and draw
the world line of the light pulse. Find the time of E3 in 5'. Check your graphical
results for (a) and (b) with those obtained analytically in problem 3.8.

(c) Construct the Loedel diagram for the problem. Draw the three relevant
world lines and find the time of £3 in each frame. Compare with the results of (a)

and (b).

5.4. Work problem 3.9 using space-time diagrams. Follow the procedure outlined
in problem 5.3. Use the following numerical values: V=O.6e, U=O.8e, T=4 min.

5.5. Frame 5' moves at velocity V = O.5e relative to frame S.
(a) Construct the Loedel diagram for frames 5 and 5'. Label the x, et, x', and

et' axes.
(b) Event Eo has the following coordinates in 5: x = 2 m, et = 3 m. Locate Eo on

the Loedel diagram and find graphically its coordinates in 5'.
(c) Find the coordinates of Eo in 5' using the Lorentz transformation and com

pare with the results of (b).
(d) Draw the world lines of light pulses that pass through Eo in both directions.
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Find graphically the time in S' at which a light pulse emitted at Eo reaches the
point x' = o.

5.6. A spaceship is approaching earth at speed 0.8e. At t = 0 the distance of the
spaceship is 10 light-minutes (earth frame measurements). At this time a radar
signal is emitted from earth in the direction of the spaceship. When the signal
reaches the spaceship, a return signal is immediately emitted toward earth.

Construct the Loedel diagram for this problem, with the earth at x = 0 and the
spaceship at x' = O. Draw the world lines of earth, spaceship, and both radar sig
nals. Find the time when the return signal reaches earth in both the earth frame
and the spaceship frame.



6 Paradoxes of Relativity

6.1. INTRODUCTION

A paradox is an apparent inconsistency or contradiction in a theory or in
any logical system. If the paradox cannot be satisfactorily resolved, the
theory in question fails and must be abandoned or at least modified.

In this chapter we analyze several paradoxes based on special relativity
which have attracted attention over the years. All of them involve length
contraction or time dilation. One, the twin paradox, has generated a great
deal of controversy. Careful study of the paradoxes and of their resolution
helps clarify many subtleties in the theory. The space-time diagram, in
troduced in chapter 5, proves useful in analyzing the paradoxes and identi
fying their resolution.

6.2. THE "POLE AND BARN" PARADOX

Figure 6.1 is a sketch of the pole and barn problem, the prototype for a
number of paradoxes based on the length contraction effect. A barn has

proper length L. A pole, also of proper length L, is carried by a runner
who moves at nearly the speed of light. In the rest frame of the barn,
therefore, the pole is observed as contracted to length L/ l' and should fit
with ease inside the much longer barn.

In the rest frame of the runner, however, the barn is moving and ap
pears contracted. The pole cannot fit in so narrow a barn; both ends must
protrude for a definite interval while the pole is passing through the barn.
By analyzing the situation in two different frames of reference, therefore,
we arrive at apparently contradictory conclusions.

The space-time diagram exhibits clearly the sequence of events seen in
each frame. Figure 6.2 is a space-time diagram for frame S, the rest frame
of the barn. The world lines of the front door (F) and of the rear door (R)

166
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Fig. 6.1. The pole and barn paradox. Does the pole fit inside
the barn, or doesn't it?
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Fig. 6.2. Space-time diagram for the pole and barn problem
constructed in frame S, the rest frame of the barn. Shown are
the world lines of F and R, the front and rear doors of the barn,
and of Q and P, the two ends of the pole. Events PF, QF, PR, and
QR, which denote the passage of the ends of the pole through
each door, are indicated with solid circles. Cross-hatching on the
world line of a door indicates that the door is closed. During the
interval between QF and PR, both doors are shut and the pole is
entirely inside the barn.

of the barn are shown; they describe bodies at rest at x == 0 and x == L,

respectively. Also shown are the world lines of P and Q, the two ends of
the pole; they describe a body of length L/y moving from left to right at
speed V. I

The four events of interest in the problem are those at which P and Q
pass through each door; call those events PF, PR, QF, and QR. On the

1. For the diagram and the calculations, we take V/ c to be --13 /2, which makes
')'=2.
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diagram, PF is found at the intersection of the world lines of P and F and
similarly for the other three events. Event QF is arbitrarily assigned the

time t=O.
The diagram shows that the order of events2 in the barn frame is:

1. PF (P, the leading end of the pole, passes through the front door)
2. QF (Q, the trailing end of the pole, passes through the front door)

3. PR (P passes through the rear door)

4. QR (Q passes through the rear door)

This order is consistent with the barn observers' assertion that the pole

is shorter than the barn. During the interval between event QF, when
the trailing end Q enters through the front door, and event PR, when the

forward end P leaves through the rear, the pole is entirely within the
barn.

Figure 6.3 is the space-time diagram for 5', the rest frame of the run
ner. The same four world lines are shown. In this frame the positions of
Q and of P are constant (x' = 0 and x' = L) while the world lines of F and
R describe a body of length L/y (e.g., the roof beam of the barn) moving

from right to left at speed V.
According to figure 6.3 the order of events 3 in 5' is:

1. PF
2. PR
3. QF

4. QR

The all-important difference between the two sets of observations is

that events PR and QF occur in the opposite order.4 According to 5' ob

servers, the forward end of the pole exits through the rear door (event

PR) before the trailing end enters through the front door (event QF).
During the interval between those events, therefore, the pole protrudes

from both doors. 5' observers maintain that, contrary to the assertion

2. The times of the four events can be found analytically by writing the equa
tions of motion for P, Q, F, and R and solving the appropriate pairs of equations
simultaneously. The result is t(PF) = -LlyV, t(QF) =0, t(PR) = (L/V)(l-lly),
t(QR) =LIV.
3. The times of the four events in S' are t' (PF) = - LIV, t' (PR) = - L(I-11y)IV,
t' (QF) = 0, t' (QR) = LIyV. The times and positions of each event in the two frames
are of course related by a Lorentz transformation.
4. Those two events must be separated by a spacelike interval; the invariant (dS)2
can be calculated in either frame and is negative.
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Fig. 6.3. Space-time diagram for the pole and barn problem con
structed in 5', the rest frame of the runner. See the legend to fig.
6.2.

of the barn observers, the pole is never entirely inside the barn. This
contradiction constitutes the paradox.

The disagreement can be put into even sharper focus by embellishing
the story a little. Suppose the rear door of the barn is initially shut and
the front door is initially open. (Cross-hatching on the world line of a
door indicates that the door is shut.) Immediately after event QF (i.e., just
after the trailing end of the pole has passed through the front door), a
barn observer stationed at that door shuts it. Just before event PR, when
P is about to collide with the closed rear door, another barn observer opens
that door, permitting the pole to pass through.

According to barn frame observers, during the interval between QF
and PR both doors are shut. Figure 6.4 contains a sequence of pictures
that sUlnmarizes the entire history of the problem as seen in the barn
frame. These pictures "prove" that the pole is shorter than the barn; note
particularly figure 6.4c, in which the pole is entirely inside the barn with
both doors shut. What better proof could one ask for?

Observers in the runner's frame remain unconvinced. According to
them, event PR occurred before QF; hence the rear door was opened be
fore the front door was shut. At no time in the space-time diagram of

figure 6.3 are both doors shut. On the contrary, during the interval be
tween events PR and QF both doors are open. Figure 6.5 contains a se
quence of pictures analogous to those of figure 6.4 but showing the story
as it appears in 5'. In figure 6.5c, both ends of the pole are seen protruding
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Fig. 6.4. The pole and barn paradox viewed from the
barn frame. (a) Runner approaching the barn; the front
door is open, the rear door is closed. (b) Leading end of
the pole enters the barn (event PF). (c) Trailing end of the
pole has just entered the barn; the front door is now
closed. The pole is entirely within the barn, with both
doors closed. (d) Leading end of the pole is about to exit
through the rear door, which has just been opened. (e)
Trailing end of the pole leaving the barn (event QR).

from the barn, with both doors open; this picture "proves" that the pole
is longer, in direct contradiction to the assertion of the barn observers.

Which observers are right? The key to the resolution of the paradox is
the realization that the question, Is the pole ever entirely inside the barn?
is, in essence, a question about the simultaneity of separated events. It is
logically equivalent to asking whether there exists a pair of events, E1 and
E2 , such that
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Fig. 6.5. The story as seen by the runner (frame 5'). (a)
Barn approaching the stationary pole; the front door is
open, the rear door is shut. (b) Rear of barn just reaching
end P of the pole (event PRJ. Rear door has just opened. (c)
Pole sticks out of both ends of the barn; both doors are
open. (d) Front of the barn has just passed end Q of the pole
(event FQ). Front door is now shut, rear door is open. (e)
Barn has completely passed the pole (event QR has just oc
curred).

(i) at event £1 end P of the pole is inside the barn;
(ii) at event £2 end Q is inside the barn; and
(iii) £} and £2 are simultaneous.

If the answer to the question is affirmative, the pole is shorter than the
barn. If not, the pole is longer.

In a Galilean world, in which time and simultaneity are absolute, the
question posed above must have a definite answer, independent of any
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frame of reference. A situation such as the one described would be logi
cally unacceptable. In special relativity, however, simultaneity is not abso
lute; hence we should not be surprised to find that observers in the two
frames answer the question differently.

The two sets of observers do agree on one important aspect of the story:
no part of the pole comes in contact with either door. Such an occurrence
would leave detectable aftereffects, about which there can be no disagree
ment. If a theory predicted that observers in one frame see the pole smash
into a closed door while those in the other frame see it pass through the
same door, that would indeed constitute an unacceptable contradiction. As
we have seen, however, special relativity makes no such embarrassing
prediction. 5' observers agree that the pole passes successfully through
the barn, even though it is longer than the barn. It manages to do so,
according to them, because of the delay in closing the front door. But it
does get through.

Within the logical framework of relativity, then, the results are not
contradictory. Two sets of observers disagree about the time order of cer
tain separated events, but such disagreements are nothing new; they are

x axis x'axis

\
ct' axis

R

Q

F

p

~r+HIH+H+I++++++H+i+++i+l-t;er:~-----~~----:~- ct axis

Fig. 6.6. Loedel diagram for the pole and barn probleITI. This fig
ure contains all the information found in both fig. 6.2 and fig. 6.3.
The reversal of the time order of events QF and PR in the two
frames is apparent.
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unavoidable consequences of Einstein's postulates, as we saw in chapter 3.
On all questions that involve physically verifiable effects, the observers
agree. Thus the paradox is resolved.

Is the pole ever "really" completely inside the barn? Tempting though
that question may be, it is simply not a legitimate question in Einsteinian
relativity. The descriptions of the two sets of observers are equally real
and equally valid, each within their own frame of reference. Since no
preferred frame exists, there is no objective basis for ascribing any more
reality to one description than to the other.

For the benefit of readers who have had the courage to follow the deri
vation of the Loedel diagram in chapter 5, figure 6.6 presents the Loedel
diagram for the pole and barn problem. This figure contains all the infor
mation found in both figure 6.2 and figure 6.3. All the salient features of
the story, including the reversal in time order of events QF and PR, are

apparent in the diagram.

6.3. WHAT IF THE POLE STOPS?

Persistent barn observers decide to make one final attempt to demonstrate
that the pole is indeed shorter than the barn: they will bring it to rest
while it is inside. This simple-sounding proposal requires careful analysis.

In fact, any change in the motion of an extended body is a complicated
process from' the point of view of special relativity. In describing such a
process it is essential to specify the timing of the changes in velocity of
each part of the body.

In a Galilean world, changes in velocity present no difficulty. All parts
of a rigid body have the same velocity at any given time. As the velocity
changes, observers in any frame of reference see all parts slow down or
speed up in step. When a moving pole is brought to rest, barn frame
observers see the two ends begin to slow down together and stop at the
same time. Observers for whom the pole was initially at rest see both ends
begin to move simultaneously and reach their final velocity together.

In special relativity, the story is not so simple. Spatially separated
events can be simultaneous in only one frame of reference. If both ends

of the pole begin to slow down at the same time according to barn frame

clocks, then according to S' clocks, the two ends begin to move at different
times. But if one end is moving while the other end remains at rest for a
finite period of time, the length of the pole must change. Conversely, if
the two ends begin to move simultaneously according to 5' clocks, barn

frame observers see them begin to slow down at different times. In that
case, the length of the pole as measured in the barn frame changes.
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These results should not be surprising, since we know that the mea
sured length of any object depends on its velocity in the frame in which
the measurement is being carried out. When that velocity changes, the
measured length should likewise change.

At first glance, the length contraction formula appears to provide a
complete description of the effect: as the velocity of a body measured in
some frame changes from an initial value Vi to a final value vf' the length
of the body measured in that frame should change from LI 'Yi to LI'Yf'

where L is the body's proper length and 'Yi and 'Yf are the relativistic factors
that correspond to the initial and final speeds.

In the present problem, as the pole comes to rest relative to the barn,
barn observers should see it stretch from its contracted length L/2 to its
proper length L; thus their attempt to prove that the pole is truly shorter
than the barn fails. Meanwhile, 5 I observers should see the pole shrink as
it picks up speed relative to them, finally reaching the contracted length
L/2 when its speed is V. Thus 5' observers also change their minds about
the relative length of the pole and the barn.

All of the preceding is true, however, only if the proper length of the
pole remains unchanged as its speed changes. Although that seems a rea
sonable supposition, we cannot assume that it is automatically satisfied.
The simple statement "The velocity of the pole changes from Vi to v/' is
not a sufficiently precise description of a change in the pole's motion. To
determine what happens to the proper length, we have to specify precisely
how the changes in velocity of the various parts of the pole are correlated.
This is another of the unexpected subtleties of special relativity.

To illustrate the phenomenon, we shall analyze three different ways
by which the pole could hypothetically be brought to rest relative to the
barn. Each leads to a different conclusion as to what happens to the proper
length. Although all three stopping procedures are idealized, there is no
reason in principle why they could not be carried out.

Figure 6.7 illustrates the first stopping method. Identical thin but pow
erful clamps are fixed in the barn and spaced along the path of the pole.
At a prearranged time according to barn frame clocks, all the clamps snap
shut and each one grips the portion of the pole immediately adjacent to
it, bringing it quickly to rest. If the clamps are sufficiently strong, the pole
travels only a very short distance before stopping (fig. 6.7a).5

5. Although special relativity sets a strict upper limit on the speed any body may
attain, it imposes no such restriction on acceleration. There is no reason, in princi
ple, why the pole could not stop in an arbitrarily short time.
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Fig. 6.7. One way of bringing the pole to rest. (a) The process
as seen in the barn frame S. In (i), the pole is moving and all
clamps are open. In (ii), all clamps have snapped shut simultane
ously; the pole has stopped with no change in length. (b) The
same process as seen in frame 5'. (i) Pole is initially at rest, open
clamps are moving from right to left. (ii) Clamp E has just
snapped shut, setting end P in motion. Other clamps are still
open. (iii) Clamp B has just snapped shut. Everything to the
right of clamp B is in motion, while everything to the left of B
is still at rest. The pole is considerably shrunken. (iv) The last
clamp, A, has just snapped shut. The pole is now all in motion,
having shrunk to length LIl' 2.

This stopping scheme has been designed so that all parts of the pole
slow down in step, as seen by barn frame observers. The length of the
pole in the barn frame therefore does not change; it remains LIy. But
since the pole is finally at rest in the barn frame, LI y is by definition its
new proper length. In the process of coming to rest, the pole's proper
length has been reduced by a factor of y.
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Let us analyze the same scenario from the point of view of 5' observers,

for whom the pole is initially at rest and the clamps are moving (fig. 6.7b,

sketch [i]). If our analysis is self-consistent, those observers must see the

pole contract as it speeds up, in such a way that the final measured length

is just II y times the new proper length, or LI y2. We shall verify that this
is indeed what S' observers see.

As each moving clamp snaps shut, it sets the corresponding portion of

the pole into motion. The clamps do not, however, engage simultaneously.

As a result, each portion of the pole begins moving at a different time.
Specifically, clamp E snaps shut first and the right end of the pole begins
to move to the left while the remainder of the pole is still at rest (fig. 6.7b,

sketch [ii]). Thus the pole begins to shrink. The other clamps then engage

in sequence; after clamp A, at the extreme left, has engaged, the entire

pole is in motion.
To determine how far the right end of the pole moved while the left

end remained at rest, we need to know the interval between the times

when clamps E and A engage. That time interval can be calculated from

the results of chapter 4. According to equation (4.10), the time interval

Lit' measured in frame 5' between two events that occur simultaneously

in 5 with a spatial separation ~x is given by

(6.1)

For the events in question here, ~x has the value - LI y. Hence the
interval (measured in S') between the times when the two ends of the

pole begin moving is

~t' == LVlc2 (6.2)

From this information it is straightforward to calculate the amount by

which the pole shrank. End P traveled at velocity V for a time interval Llt'
given by equation (6.2), during which the other end remained at rest. The

distance traversed by P during that interval (and hence the amount by
which the pole shrank) 6 is

change in length == VLlt' == LV21c2 (6.3)

6. In this calculation we have ignored the distance traveled by each end of the
pole while its speed is changing. As noted earlier, special relativity imposes no
restriction on acceleration; hence the change in velocity can be assumed to take
place instantaneously and the distance traveled while the velocity changes can be
made arbitrarily small.
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Fig, 6.8. Space-time diagrams showing the world lines of the two
ends of the pole during the stopping procedure of fig. 6.7. (a) In
frame Sf both ends come to rest simultaneously; the length of the
pole relnains L/2. (b) In frame S', end P begins to move first; after
a time interval dt', end Q begins to move, As a result, the length
of the pole diminishes from L to L/4.

The final length of the pole, after all of it is in motion, must be

Lnew == L - LV 2Ic2 == LI1'2

This is the value we inferred earlier from the analysis in the barn frame.
Figure 6.8 contains the space-time diagrams in both frames for the

stopping process we have analyzed, with y== 2. The world lines of P and
Q are shown in each diagram. In frame 5 (diagram [a]), the two ends come
to rest simultaneously and the length of the pole remains unchanged. In
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Fig. 6.9. Loedel diagram for the stopping procedure of
figs. 6.7 and 6.8. This diagram contains the information
found in both parts of fig. 6.8.

5' (diagram [b]), Q begins moving some time after P does; the shrinking
of the pole is apparent.

The Loedel diagram for the process is shown in figure 6.9, which con
tains all the information found in both diagrams shown in figure 6.8. The
change in length of the pole in frame 5' is apparent.

Figure 6.10 illustrates a different stopping procedure, designed so that
all changes in velocity take place simultaneously in 5' instead of in S. An
array of 5' observers is stationed alongside the pole, and each one is in
structed to give the adjacent portion of the pole a sharp backward impulse
at some prearranged time. All the impulses are simultaneous according to
5' clocks and are just strong enough to impart to each part of the pole a
backward velocity V. Since the impulses are synchronized, all parts of the
pole speed up in step; hence its length, as measured in 5', remains L (fig.
6.10a). This, however, is no longer a proper length, inasmuch as the pole
is now in motion in 5'. Since L is a contracted length, the pole's new
proper length must be yL.

Figure 6.10b shows this process from the point of view of barn frame
observers. They see each part of the pole receive an impulse that brings it
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Fig. 6.10. A second procedure for bringing the pole to rest.
In this scheme all changes in velocity take place synchro
nously in the runner's frame,S'. (a) The process as seen in
5'. In the top sketch, pole and 5' observers are at rest and
the barn is approaching. The length of the pole is L, its
proper length; the barn is contracted. In the second sketch,
5' observers have just pushed back on the pole, imparting
to it a backward velocity, V. The impulses were delivered
simultaneously; hence the length of the pole remains L. '(b)
The same process as seen in the barn frame. (i) Pole and 5'
observers are all moving at speed V, the barn is at rest. The
length of the pole is LIy. (ii) An 5' observer has just pushed
on end Q, bringing it to rest; the remainder of the pole is
still moving. (iii) An 5' observer has j~st pushed on end P,
bringing it to rest. During the interval between (ii) and (iii),
the pole has been stretching. In (iii), its length is yL.
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Fig. 6.11. Space-time diagrams for the stopping procedure of fig.
6.10. Again the world lines of both ends of the pole are constructed
in each frame. (b) In S', both ends begin to move simultaneously;
the length of the pole remains L. (a) In S, end Q stops first. After a
time interval dt, end P stops. As a result, the length of the pole
increases froITI L/2 to 2L.

to rest, but the impulses occur at different times. End Q stops first, fol
lowed in turn by adjoining sections until finally end P stops. The interval
between the stopping of the two ends is given by an expression similar to
(6.1). While the pole is corning to rest, therefore,S observers see it stretch.

It is not hard to verify that the final length in frame 5 is yL, the new
proper length, in accord with the conclusion obtained above. (See prob
lem 6.2.)
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Fig. 6.12. Loedel diagram for the stopping procedure of
figs. 6.10 and 6.11. This diagram contains all the informa
tion found in both parts of fig. 6.11.

Figure 6.11 exhibits the space-time diagrams for the second stopping
procedure. The stretching of the pole in frame 5 is apparent. Figure 6.12
contains the Loedel diagram for the process. The reader should compare
these figures with figures 6.8 and 6.9.

In each of the stopping procedures analyzed thus far, the proper length
of the pole changes as it comes to rest relative to the barn. Real physical
changes must have taken place in the structure of the pole. Such an out
come surely cannot be a necessary consequence of the change in the pole's
velocity. It must be possible to change the speed of a body without alter
ing its proper length; indeed, one would expect that to be the normal out

come.
A hypothetical slowing-down procedure that preserves proper length

is the following. Closely spaced retro-rockets are attached to the pole.
The rockets are programmed to fire a sequence of identical tiny bursts of
propellant; each burst provides a small impulse to the portion of the pole
to which the rocket is attached. Each set of bursts takes place simultane
ously according to clocks that move with the pole.
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Fig. 6.13. Space-time diagrams for the retro-rocket stopping
procedure, which preserves the proper length of the pole. The
changes in velocity of the two ends of the pole take place at
different times in each frame. As a result, the pole stretches from
length L/2 to length L in 5 (a) and shrinks from length L to L/2
in 5' (b). The proper length remains L.

Let us follow in detail what happens in this scenario. The first set of
bursts takes place simultaneously in 5', the pole's initial rest frame. As a
result, the pole acquires an infinitesimal velocity, 0, in 5', with no change

in length (in that frame) since all portions changed their velocity together.

The pole is now at rest in a new frame we call 51' which moves at velocity
orelative to Sf. Its proper length is unchanged.

A second set of bursts takes place simultaneously in 51; as a result of
these bursts, the pole acquires a velocity 0 in 51' again with no change in
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Fig. 6.14. Loedel diagram for the retro-rocket stopping
procedure. This diagram contains all the information found
in both parts of fig. 6.13.

length in that frame. It is now at rest in a frame 52 that moves at velocity
8 relative to 51. The process continues until the pole is finally at rest in
frame 5, the barn frame. The proper length remains unchanged through
out the entire procedure.

The distinguishing feature of this scenario is that the pole passes
through a succession of frames 5', 51' 52' ... , 5, in each of which it is
instantaneously at rest and has the same length (its proper length). The

rest frame of the pole coincides in turn with 5', 51' 52' ... , and so on;
all changes in velocity take place simultaneously in this frame. The rest
frame is, however, not an inertial frame; it is undergoing acceleration.

Special relativity is not equipped to describe observations in noninertial
frames. By using a succession of inertial frames, with which the pole's
rest frame coincides in turn, we finesse that problem.

Figure 6.13 displays the space-time diagrams for the retro-rocket stop

ping scheme in frame 5 (diagram [a]) and frame 5' (diagram [b]). Figure
6.14 is the corresponding Loedel ~iagram. As the diagrams show, the in
crements in velocity of the two ends do not take place simultaneously in
either frame. In frame 5, the pole stretches as it slows down; in 5' it
shrinks as it speeds up. The proper length remains constant. Any stopping
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procedure that leaves the proper length unchanged must be logically
equivalent to the one just described.

Rigid Bodies in Relativity

The principal qualitative conclusion of the preceding discussion is that
changes of length are unavoidable, according to special relativity, when
ever the velocity of an extended body changes. The length of the body can
remain unchanged in one frame (or one sequence of frames) at the most.

This result requires us to reexamine the concept of a rigid body. By
definition, a rigid body is one whose dimensions never change. Even in
Newtonian mechanics, that is an idealization. Any real material is de
formable to some extent; no truly rigid body exists. There is, however,
an important conceptual difference between the classical and relativistic
viewpoints. Newtonian physics imposes no inherent limitation on the
elastic properties of materials. One can imagine substances with arbi
trarily low compressibilities and postulate an ideal 1/ rigid" body as the
limiting case of zero compressibility.

In special relativity, however, the concept of a rigid body is unaccept
able even as an idealized limiting case. For even if the dirnensions of an
object were to remain forever fixed in some particular frame, they would
change by arbitrarily large amounts in frames that move rapidly relative
to that one. Such changes in length have nothing to do with the elastic
properties of the material. They are consequences of the properties of
space-time.

In each of the stopping procedures we have described, the change in
speed of every part of the pole was specified independently, through the
action of a clamp or retro-rocket attached directly to the segment in ques

tion. Any other procedure introduces ambiguities from the point of view
of special relativity.

Suppose, for example, I simply push on one end of a block. This is,
after all, the most common way to change the motion of an object. How
should the subsequent motion of the block be described?

If the block were rigid, all portions would begin moving at once and
the block would maintain a constant length. But how does the far end of
the block "know" that it is supposed to move? According to Newton's
second law, changes in motion are brought about only by forces. By push
ing on one end, I exerted a force only on the atoms there. The atoms in
the rest of the block cannot move until the force is somehow transmitted
to them.
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We can visualize the process in terms of a simple model of matter, in
which the interatomic forces are represented by springs. Pushing on one
end of the pole causes the atoms there to move a little and thus compresses
the first row of springs. The compressed springs push against the second
row of atoms, setting them into motion and compressing the next row of
springs. The process continues until the impulse finally reaches the far
end of the pole. But all this takes time. How long it takes depends on the
detailed structure of the block-in our model, on the masses of the atoms
and the stiffness of the springs--and is not easily determined.

We can be certain of one thing, however: the transmission of the force
down the block constitutes a signal (actually an elastic wave). This signal,
like any other, can travel no faster than the speed of light. If the length of
the block is L, the far end cannot possibly begin to move until at least a
time interval Lie after the near end was pushed.? During that interval, the
block is being compressed.

If the block were rigid, a force exerted on one end would cause the
other end to change its velocity immediately. The signal that transmits
the force would have to propagate at infinite speed. That, of course, is
forbidden by special relativity.

We conclude from this analysis that the concept of a rigid body is in
consistent with the postulates of relativity. An even more dramatic exam
ple of relativistic nonrigidity is given in the next section.

6.4. OTHER LENGT!! PARADOXES

In this section we analyze briefly two other paradoxes based on the con
traction effect. Each one presents some points of interest.

Paradox of the Fast Walker 8

A man walks very fast over a rectangular grid, of the type used in some
bridge roadways. The rest length of the walker's foot is equal to the spac
ing between grid elements. In the rest frame of the grid, his Lorentz con
traction makes him narrower than the grid spacing; observers in that
frame expect him to fall in. In the rest frame of the walker, in contrast,

7. Until that time, the far end is outside the light cone of the event that initiated
the motion. Real elastic waves travel much more slowly than light; hence the
actual time delay before the far end begins to move would be considerably longer
than the ideal lower limit L/c.
8. This paradox was invented by Wolfgang Rindler: "Length Contraction Para
dox," Alnerican Journal of Physics 29 (1961):365-366.



186 / Paradoxes of Relativity

the grid spacing is contracted and he should pass over the grid without

any difficulty. The two predictions are contradictory.

Although this paradox bears some similarity to that of the pole and

barn, the two differ in one important respect. In the pole and barn prob

lem, we concluded, the analyses in both frames are correct and there is in
fact no paradox. Such a conclusion is not acceptable in the present prob
lem. The two predictions are definitely incompatible: the question of
whether or not the walker falls into the gridwork is subject to direct obser
vation and must have an unambiguous answer. Either he falls in or he
does not. If special relativity is self-consistent, one of the analyses must
be wrong. Which is the right one, and why?

For ease of discussion we replace the walker with a rectangular block

that moves along a tabletop containing a rectangular hole. Both the block
and the hole have proper length L. V is the velocity of the block in frame
S, the rest frame of the table, and l' is the corresponding Lorentz factor.
Figure 6.15 shows the story as it appears in frame S, where the block's
length is only L/y.

One additional modification simplifies the analysis without altering the

essential features of the paradox. In the problem as originally stated, the
block would topple over the edge of the hole and would then rotate as it
falls, in a rather complicated motion. To avoid this complication, we as
sume that the block is suspended from vertical threads that move along at
the same speed as the block (sketches [a] and [b]). As soon as the block is
entirely over the hole (sketch [c]), all the threads are cut simultaneously
(in frame 5) and the block begins to fall, remaining horizontal as it does
so. £1 and £2 denote the events at which the threads that support the two
ends of the block, Q and P, are cut.

Sketch (d) shows the block falling, and entirely within the hole. A short
while later the forward end of the block, Q, collides with the far side of

the hole (event E3 , sketch [e]).
The resolution of the paradox becomes apparent when we translate the

pictures of figure 6.15 to frame 5" in which the block was originally at
rest and the (narrow) hole moves from right to left at speed V (fig. 6.16).
Once again simultaneity plays a critical role.

The key to the argument is that in 5', the threads are not all cut simul
taneously. The first one to be cut is the one that supports end Q (event

£1' sketch [b]). At the time of E1 , part of the block protrudes into the hole
but is still suspended. The remainder still rests on the tabletop.

Immediately after the thread that supports end Q has been cut, that
end begins to fall while the rest of the block remains stationary. We are
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Fig. 6.15. View from table rest frame. (a) Narrow block ap
proaching, suspended from strings. (b) Block entirely over the
edge; strings prevent it from toppling. (c) When the block is
entirely over the hole, the strings are cut simultaneously
(events 1 and 2). (d) Block is inside the hole and falling. (e) Q,
the leading end of the block, is about to smash into the side of
the hole (event 3).

led to a surprising conclusion: as seen in 5', the block cannot maintain its
rectangular shape but must become deformed.

Sketch (c) shows the situation a short time later. The thread at point X
is just being cut. The part of the block to the left of X is still stationary,
while everything to the right of X is falling. End Q, which was the first
to begin falling, has fallen the greatest distance. Detailed analysis shows
that the shape of the curved portion is a parabola.

This result is a striking manifestation of the fact that rigid bodies are
inconsistent with relativity. Not only can the length of a body change
when it is in motion but its shape is liable to change as well when viewed
in different frames.
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Fig. 6.16. View from the rest frame of the block. (a) Narrow
hole is approaching stationary block. (b) String at Q is being
cut (event 1); Q begins to fall. (c) String at X is being cut.
Everything to the right of X is falling, while everything to the
left of X is still stationary. (d) Far side of the hole is about to
smash into end Q (event 3). Notice that the hole has not yet
reached end P. (e) String at P is being cut (event 2) just as the
hole reaches it. The right side of the block is mangled as a
result of its earlier collision with the hole.

Sketch (d) shows the situation seen by Sf observers at the time of E3 ,

when end Q is about to collide with the far side of the hole. The moving

hole has still not reached the left end of the block, and event E2 has not

yet occurred. (In frame 5, E2 occurs before E3 .) By the time the last thread
is cut (sketch Ie]), the right-hand portion of the block has already been

mangled.

The pictures in figures 6.15 and 6.16 are consistent with one another

and provide the resolution of the paradox. The walker does indeed fall into

the grid!
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Fig. 6.17. Incorrect sequence of pictures of the experiment as
viewed from the original rest frame of the block. The narrow
hole passes under the block, which remains stationary. The
error in this scenario is explained in the text.

Our explanation is still incomplete in one respect. We obtained figure
6.16 by translating everything from frame 5 (fig. 6.1.5), in which the
block is always horizontal. But suppose we had analyzed the problem from
the beginning in the block's original rest frame, S'. How would we have
been led to conclude that the sketches in figure 6.16 give the correct de
scription of the story 7And what is wrong with the argument that predicts
that the moving narrow hole should simply pass under the stationary
block, as in figure 6.177

To answer these questions, let us picture the block as being composed
of many small vertical segments, each attached to one thread. Before any
threads have been cut (fig. 6.17b), every segment is in equilibrium. For
each segment that is over the hole, the force of gravity is balanced by the
upward pull of a thread.

Figure 6.17c shows the thread that holds up the end segment Q being
cut. That segment is no longer in equilibrium because there is nothing to
balance the downward pull of gravity. Therefore figure 6.17c cannot be
right. The end segment must begin to fall, initially with the acceleration of
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gravity. The rest of the block is still suspended and momentarily remains
horizontal.

If no additional threads were cut, the fall of the end segment would be
quickly arrested by upward forces, called shear forces, exerted by the adja
cent segment. The block would resemble a cantilevered beam set into a
wall. Each part of such a beam is held up by shear forces exerted by the
adjoining parts; the beam does not remain strictly horizontal but"droops"
a little.

In the present problem, however, the second segment itself begins to
fall shortly after the first. Moreover, the information that the first thread
has been cut and the end segment is falling is not communicated instanta
neously to the rest of the block. The news can propagate no faster than
the speed of light and cannot reach the adjacent segment before a time
interval 01c has passed, where D is the distance between the two seg
ments. Until then the shear forces cannot act. For at least a time interval
01c, therefore, the end segment is in free fall.

Before the interval DIc has passed, the next thread has been cut and
the next segment of the block has begun to fall. This must be true because
the interval between the cutting of the two threads is spacelike. (Remem
ber the two events are simultaneous in frame 5.) The process continues
until all the threads have been cut and the entire block is falling freely.

Under these circumstances, the shear forces never get a chance to act.
Each segment of the block is in free fall and never "knows" that the adja
cent segments are at different heights. The shape of the block in frame 5'
is determined solely by how long each segment has been falling and has
nothing to do with the elastic properties of the material of which it is
composed. A rubber block and a steel block would have precisely the same

shape.

How Does the Plate Pass through the Hole?

Our final length paradox is due to R. Shaw.9 A thin plate of proper length
L moves in the x direction at a relativistic speed V, as seen in some frame
S. A tabletop with a hole of proper width L is parallel to the plate and
moves in the y direction at speed u. (See fig. 6.18.) The motions are ar
ranged so that the plate and the hole in the tabletop arrive at the origin at
the same time. Since the plate is contracted to length LI/" it slips easily
through the hole in the tabletop (fig. 6.18a).

9. R. Shaw, "Length Contraction Paradox," Arnerican Journal of Physics 30
(1961):72.
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Fig. 6.18. Paradox of the plate and the tabletop. (a) In frame
S, the plate moves in the x direction at velocity V while the
tabletop moves in the y direction at velocity u. The plate is
Lorentz-contracted, hence narrow; the hole in the tabletop is
wide. The plate passes easily through the hole. (b) View in
frame S', in which the plate is at rest and wide. The hole is
moving and narrow. The velocity components of the tabletop
are indicated in the figure. How does the plate get through?
The answer is found in fig. 6.19.

Now consider the situation as seen in frame 5', in which the plate is at
rest. In that frame the tabletop has both x and y components of velocity;
these are given by (see eq. 4.19)

v~== - V v~ == uly (6.4)

In the plate's frame the hole is contracted; its width is only LI 'Y. The

plate, however, has its proper length L. Figure 6.18b purports to show the
situation in 5'. How can the plate pass through such a narrow hole?

The resolution of this paradox is that figure 6.18b is in fact incorrect.
If the tabletop is parallel to the x axis and is moving in the y direction in
frame 5, then in Sf it is no longer parallel to the x axis. One can use the

Lorentz transformation to show that the tabletop makes an angle () with
the x axis, where () is given by the equation

u
tan ()== - 'Y

c
(6.5)
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Fig. 6.19. Correct picture of the plate and tabletop as
seen in frame 5'. The tabletop is inclined to the x axis;
this makes it possible for the long plate to slip though
the narrow hole.

The actual picture in Sf is given not by figure 6.18b but by figure 6.19; Sf
observers agree that the plate passes through the hole without difficulty.

Alternatively, we could work in the frame in which the tabletop is at
rest. In that frame the plate moves in a diagonal direction and is inclined
at the angle O. The conclusion is the same.

6.5. THE PARADOX OF TIlE TWINS

The twin paradox (also known as the clock paradox) is the most famous
and most vigorously debated of the paradoxes of relativity. Arthur and
Barbara are twins. Arthur stays at home while Barbara sets out on a space
ship that travels at a uniform fast speed V relative to earth. After some
time the ship quickly turns around and returns to earth at the same speed
V. The twins get together and examine each other's appearance.

We analyze the problem first in the frame of reference of Arthur, the

stay-at-home twin. While Barbara is on the outward leg of her journey,
her clock (like all moving clocks) runs slow. During the return trip, Barba
ra's clock likewise runs slow. Hence when Barbara arrives home her clock
should read less than Arthur's, which has been at rest through the entire
episode. Assuming that biological clocks behave like all others (i.e., that
the aging process is governed by the time elapsed on a clock that follows
the individual in question), we conclude that Barbara has aged less than
Arthur: she should look younger than her twin when they are reunited.

From Barbara's point of view, however, it is Arthur who has been mov
ing all the time and whose clock has therefore been consistently slow.
Hence an identical argument leads to the conclusion that Arthur's clock
ought to read less than Barbara's and Arthur ought to look younger when
the twins are reunited. This contradiction constitutes the paradox.
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A third argument leads to still another conclusion. Since there is no
such thing as absolute motion, so this argument goes, all results must be

symmetrical between the two twins. Hence they should be the same age
when they are reunited. Thus there are three possible outcomes, of which

only one can be right.
When we first investigated time dilation in chapter 3, we analyzed in

detail the logical problem associated with the fact that two sets of observ
ers each think the others' clocks are running slow. That result is self

consistent, we concluded, because the judgments of the two sets of observ
ers are based on different sets of measurements; in each case, the reading

of a single"moving" clock is compared on two occasions with the reading

of an adjacent "stationary" clock. The same two clocks cannot be directly

compared more than once if they are moving uniformly relative to one

another.

That argument does not apply to the present problem because here the

san1e two clocks are together at the beginning and at the end of Barbara's

trip. The comparison of their readings can be made directly; there is no

need to exchange information with distant observers.
Under these circumstances, the question of which clock has the greater

reading must have a definite answer, about which all observers must

agree. When the twins are reunited, either Arthur looks younger or Bar
bara looks younger or both look the same age. These are the only logical
possibilities. Thus we are confronted by a true paradox.

The astute reader will object that our analysis has ignored several im
portant parts of the problem: the startup period during which the space
ship gets up to full speed, the turnaround at the midpoint of the trip, and
the slowdown at the end. Perhaps the times recorded by the twins' clocks
during those intervals differ in just such a way as to make the total times
equal.

This speculation cannot be right, for even if the times recorded by the

twins' clocks during the three acceleration periods were to differ substan

tially, the difference would be a fixed amount independent of the duration

of the trip. By contrast, the difference in elapsed times attributable to time

dilation during the constant-speed legs of Barbara's trip is proportional to

the duration of those legs; if the trip were made twice as long, the differ

ence in aging due to time dilation would be doubled. An effect that is

independent of the duration of the trip cannot cancel another that is pro
portional to the duration. If the trip is long enough, in fact, the time
elapsed during the startup, turnaround, and slowdown periods is an arbi
trarily small fraction of the total travel time.
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The turnaround nonetheless holds the key to the resolution of the par
adox because it establishes an asymmetry in the problem. While the
spaceship is reversing its direction, Barbara is accelerating and is fully
conscious of that fact. The engines on the spaceship must be fired. During
the turnaround period, Newton's laws do not hold in the spaceship; ficti
tious inertial forces appear to act. If Barbara looks through a telescope, she
sees the positions of all the stars shift because of the change in stellar
aberration.

Although Barbara sees Arthur receding during the first portion of her
trip and approaching her during the second portion, she infers from all
these observations that her velocity (and not Arthur's) has changed. Thus
the problem is not symmetric after all, and we can dismiss the argument
that the reunited twins ought to be the same age because of symmetry
considerations.

Special relativity is restricted to the description of measurements made
in inertial frames. In the present problem Arthur's rest frame,S, is inertial
but Barbara shifts from one inertial frame,S', to another,S", at the turn
around. lO The interval between the start and the turnaround is a proper
time interval in 5', while the interval between the turnaround and Barba
ra's arrival home is proper in 5".

Let T be the duration of the complete trip as measured in frame 5; each
leg lasts T/2. A standard time dilation argument shows that the duration
of the outward leg is T/2y according to clocks in 5', while that of the
return leg is T/2y according to clocks in 5". For Barbara, who changes
from frame 5' to 5" at the turnaround, the total elapsed time must be
TI y. The traveling twin is indeed younger on her return. This conclusion
was already stated, in somewhat different form, by Einstein in his 1905

paper; it is nearly universally accepted today. Some experimental evidence
to support it will be presented below.

It is important to distinguish what the twins can actually see from what
they learn by exchanging information with other observers in their own
frame of reference. Suppose each twin trains a powerful telescope on the
other throughout the duration of the trip. What do they see?

10. Strictly speaking, Barbara changes frames three times: first as the spaceship is
getting up to speed at the beginning of the trip, then at the turnaround, and again
as the spaceship slows down at the end. The problems associated with the first and
last changes can be circumvented by making the initial age comparison just after
the ship has reached full speed and the final one just before deceleration begins.
The problem of the turnaround, however, cannot be evaded in such fashion.
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Fig. 6.20. Space-time diagram for the twin paradox,
constructed in Arthur's rest frame. OB is Arthur's
world line and OCB is Barbara's world line. Barbara's
time is indicated along her world line. The dashed lines
are the world lines of light signals emitted by Arthur
once a year. Between a and C, those signals reach Bar
bara at the rate of one every two years; between C and
B, they reach her at the rate of two a year.
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For concreteness, let T == 20 years and let the speed of the spaceship
be 0.6c; 'Y is then 1.25 and all the numerical results come out to be simple
numbers. Each leg of Barbara's journey lasts 10 years according to Ar
thur's clock and 10/'Y== 8 years according to Barbara's.

Figure 6.20 displays the space-time diagram for the problem, con
structed in Arthur's rest frame. He is located at x == 0; his world line is
along the time axis. Barbara's world line is DCB; it starts out at t == 0 and
rejoins Arthur's world line at t == 20 years.

The 5 coordinates of event C, the turnaround, are t == 10 years, x == 6
light-years; its coordinates in 5' are t' =: 8 years, x' == O. Armed with that
knowledge, we divide each half of Barbara's world line into 8 equal parts
and mark her time along the world line at intervals of one year.

Also shown in the diagralTI, as dashed lines, are the world lines of light

signals emitted from earth at intervals of 1 year. Each signal carries a
picture of Arthur at the time the signal is emitted. (More prosaically,
each signal SiIllply carries the reading of Arthur's clock at the time it is
emitted.)

The diagram shows that during the outward leg of Barbara's trip, a
signal arrives every 2 years according to her clock. She therefore /I sees"



196 I Paradoxes of Relativity

Arthur age at the rate of half a year per year. The picture that arrives just
as she is turning around, when 8 years have elapsed according to her clock,
shows Arthur as having aged by 4 years.

While Barbara is on her homeward journey, Arthur's signals reach her
at the much faster rate of two per year. Altogether, then, she sees Arthur
age at half a year per year for 8 years and at 2 years per year for another
8 years. His total aging is 4 + 16 == 20 years, consistent with the conclu
sion that she finds him older than she is at her return.

Barbara realizes, of course, that each picture shows Arthur's appear
ance not when it arrives but at an earlier time, when the signal was emit
ted. The rate of aging that she observes represents the combination of two
effects: (a) relativistic time dilation and (b) the changing travel times of
the signals. During the outward leg, both factors slow down Arthur's ap
parent rate of aging, while during the return leg, the decreasing light
travel time speeds up his apparent rate of aging. Time dilation slows it
down during both legs.

The apparent rates of aging can be interpreted in terms of the Doppler
effect, which was discussed in section 4.8. The 1/ source, // Arthur, emits

signals at a frequency fo == 1/yr. With Vlc==0.6, equation (4.40a) shows
that the frequency at which the signals are detected during the out

ward leg is f' == -V(1- 0.6)/(1 + 0.6) == 0.5/yr. For the return trip, equation

(4.40b) gives f' == ~(1 + 0.6)1 (1 - 0.6) == 2/yr. These are precisely the fre
quencies we have inferred from the space-time diagram.

Arthur's observations can be similarly analyzed. To avoid cluttering
the figure, we have redrawn the space-tilue diagram for the problem in
figure 6.21, this time showing the world lines of light signals emitted by
Barbara. At first Arthur receives signals at the rate of 0.5 per year, and at
the end he receives them at the rate of 2 per year, just as Barbara does.

There is, however, an important difference between their observations.
As figure 6.20 shows, Barbara begins to receive signals at the fast rate as
soon as her ship turns around; hence she sees Arthur age at the fast and
slow rates for equal periods. Arthur, however, continues to receive signals
at the slow rate until the signal emitted by Barbara at the turnaround
reaches him (fig. 6.21). That signal arrives at t == 16 years. Hence Arthur
sees Barbara age at the slow rate, O.S/yr, for 16 years, and at the fast rate,
2/yr, for only 4 years. He sees her age by a total of 8 + 8 == 16 years, in
accord with the earlier analysis. The asymmetry in the twins' observa
tions is apparent in the two figures.

One puzzling aspect of the story remains to be cleared up. According
to Barbara, Arthur's clock runs slow throughout her trip. During the out-
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Fig. 6.21. The space-time diagram of fig. 6.20 is re
peated to show the world lines of light signals emitted
by Barbara once a year according to her clock. Those
signals reach Arthur at the slow rate (O.5/yr) for the
first 16 years. Only for the last four years do signals
arrive at the fast rate (2/yr). Figs. 6.20 and 6.21 demon
strate the asymmetry in the problem: Arthur receives
only 16 of Barbara's signals while she receives 20 of his.
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ward leg, which lasts 8 years according to her clock, only 6.4 years (8/,,)
elapse on his clock. During the return leg, another 6.4 years elapse
on Arthur's clock, for a total of 12.8. Yet his clock reads 20 years
when she arrives home; 7.2 years of Arthur's life seem to be unaccounted
for.

We learned in chapter 3 that moving clocks not only run slow but they
are also out of synchronization. The one that is ahead in its direction of
motion is behind in its reading. When Barbara reaches the turnaround,
event C, her clock reads 8 years. Observers in every frame agree that an
S clock at the same location reads 10 years. But the answer to the question,
What does Arthur's clock read when Barbara turns around? is frame

dependent.
In frame 5 the answer is, of course, 10 years. (5 clocks are synchronized

in their own frame.) According to 5' observers, 5 clocks are out of syn
chronization. Because Arthur's clock is ahead of the one at C in the direc

tion of motion, it is behind in its reading. (It in fact reads 6.4 years.)
When Barbara's ship turns around, she changes from frame 5' to frame

S". Observers in 5" agree with those in 5' that 5 clocks are out of synchro
nization, but they disagree as to which 5 clock is ahead. (The two sets of
observers see frame 5 moving in opposite directions.) According to 5'
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Fig. 6.22. The space-time diagram of fig. 6.20 has been
redrawn once more. Shown here are the lines of simul
taneity for each of the three frames of reference in the
problem: frame 5 (Arthur's rest frame), 5' (Barbara's
rest frame during the outward leg of her trip), and 5"
(Barbara's rest frame during the return leg). At the
turnaround point C, Barbara's definition of simultaneity
changes abruptly. Her answer to the question, What
does Arthur's clock read now? changes abruptly from
6.4 years to 13.6 years.

observers, Arthur's clock is 3.6 years behind the S clock at C; it reads
only 6.4 years when that clock reads 10 years. According to S" observers,
Arthur's clock is 3.6 years ahead of the one at C; it reads 13.6 years when

the one at C reads 10 years.
The question, What does Arthur's clock read when Barbara is turning

around? means precisely, What does Arthur's clock read at an event that

takes place at his location simultaneously with the turnaround? When

Barbara changes frames she acquires a new set of fellow-observers with

whom to consult concerning distant events; we should not be surprised

that her answer to the question changes abruptly (from 6.4 years to 13.6

years).
The preceding is a purely formal statement; nothing strange happens

either to Barbara's clock or to Arthur's when she changes frames. When

looking through her telescope, she does not see Arthur age abruptly by
7.2 years as she turns around. Barbara's direct observations were analyzed
earlier; they include nothing startling at the turnaround. We have, how
ever, accounted for the "lost" 7.2 years of Arthur's life. With these re

marks, the paradox is fully resolved.
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In figure 6.22 we have redrawn once more the space-time diagranl for
the problem and constructed lines of simultaneity through event C for
each of the three frames. The one for frame S is shown in long dashes; it
intersects Arthur's world line at t = 10 years. The one for frame S' is

shown as dotted; it intersects Arthur's world line at t = 6.4 years. Finally,
the line of simultaneity for frame S" has been drawn with short dashes. It
intersects Arthur's world line at t = 13.6 years.

During the 1950s and 1960s, a lively controversy raged over the twin

paradox. Herbert Dingle published a paper in which he claimed that Ein
stein had made a "regrettable erroL"ll Dingle argued that the twin para

dox could not be resolved and that therefore special relativity is logically
inconsistent. Dingle's argument was challenged by W. H. McCrea, Frank
Crawford, and others, and a long series of rebuttals and counterrebuttals

followed. In the opinion of practically everyone except Dingle, the contro

versy was settled in favor of Einstein.12

An experiment to test the prediction of asymmetric aging was proposed
by J. C. Hafele in 197013 and carried out by him in collaboration with
Richard Keating in 1971.14 Hafele pointed out that if the earth were not

rotating, a jet plane that traveled around the world would play the part of
the traveling twin; a clock carried on the plane should, on its return, have
lost time compared to one that had remained fixed at the starting point. IS

11. Herbert Dingle, "Relativity and Space Travel," Nature 177 (1956):782-784;
followed by a reply by W. H. McCrea and a rebuttal by Dingle.
12. "Crackpot" papers claiming to disprove Einstein's theory are circulated to this
day; they are generally not published. Dingle was a serious scientist and not a
crackpot; nonetheless, he was wrong. For details on the controversy, see the papers
cited in note 11; also H. Dingle, "Relativity and Space Travel," Nature 178
(1956):680-681; W. H. McCrea, "Relativity and Space Travel," Nature 178 (1956):
681-682; H. Dingle, "The 'Clock' Paradox of Relativity, " Nature 179 (1957):865
866, 1242-1243; Frank Crawford, "The 'Clock Paradox' of Relativity," Nature 179
(1957):1071-1072; J. H. Fremlin, "Relativity and Space Travel," Nature 180
(1957): 499-500, with a reply by Dingle; Edwin McMillan, "The 'Clock' Paradox
and Space Travel," Science 126 (1957):381-384; H. Dingle, "The Case against Spe
cial Relativity," Nature 216 (1967):119-122; W. H. McCrea, "Why the Special
Theory of Relativity Is Right," Nature 216 (1967):122-124, and other references
cited therein.
13. J. C. Hafele, "Relativistic Behaviour of Moving Terrestrial Clocks," Nature
227 (1970):270-271; "Relativistic Time for Terrestrial Circumnavigation," Ameri
can Journal of Physics 40 (1971):81-85.
14. J. C. Hafele and Richard Keating, "Around-the-World Atomic Clocks: Pre
dicted Relativistic Time Gains," Science 177 (1971):166-167; "Around-the-World
Atomic Clocks: Observed Relativistic Time Gains," Science 177 (1971):168-170.
15. The change in velocity of the traveling clock takes place continuously instead
of just at the midpoint of the trip, as in the standard version of the twin paradox;
that, however, does not affect the argument.
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The rotation of the earth complicates matters; even the "stay-at-home"
twin is not in an inertial frame. The desired test can still be accomplished,
however, by sending two planes around the world in opposite directions
and comparing their clock readings at the end of the trip with that of a
clock that remained fixed on earth. All three clocks are accelerated and
should run slow compared to a hypothetical clock in an inertial frame that
does not take part in the earth's rotation. The amount of time lost by each
clock depends on its speed in the inertial frame. For the stay-at-home
clock, the speed is just the earth's rotational speed (about 0.5 km/sec at
the equator); for the clock that travels from west to east the plane's ground
speed must be added to the earth's rotational speed, whereas for the clock
that travels from east to west the plane's ground speed must be subtracted
from the earth's rotational speed. Special relativity therefore makes a defi
nite prediction for the relative readings of the three clocks at the conclu
sion of the experiment.16

Because both the earth's speed and the speeds of jet planes are small
fractions of the speed of light, the magnitude of the predicted effect is very
small. The predicted differences in clock readings after one trip around the
earth are only about 10-7 sec. However, atomic clocks are sufficiently
accurate (and stable) to permit the detection of so small a time difference.
When the experiment was carried out, the results were in excellent
agreement with the predictions based on relativity.

PROBLEMS

6.1. In the pole and barn problem, let the speed of the runner as measured in the
barn frame be 0.866c (" = 2). Let the origin of frame S be the front door and the
origin of frame S' be end Q of the pole. The proper length of both pole and barn
is 5 m. At event QF, t= t' = O.

(a) Write the equation that describes the position of end P in barn frame coor
dinates as a function of time. Find the time of event PR in the barn frame.

(b) Find the time of PR in the runner frame. Verify that PR occurs before QF
in the runner's frame and after QF in the barn frame, as needed to resolve the
paradox.

(c) Is the interval between PRand QF spacelike, timelike, or lightlike? Explain.

6.2. In the pole and barn paradox, the pole is brought to rest by the method
illustrated in figures 6.10 and 6.11. In the runner's frame, the length of the pole

16. Another effect must be taken into account, namely, the influence of the
earth's gravity on the rate at which a clock keeps time. This effect, called gravita
tional time dilation, is discussed in chapter 8. It causes both plane clocks to run
fast relative to the stay-at-home clock; its magnitude is comparable to that of
special relativity.
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does not change. Analyze the motion of the two ends of the pole in the barn
frame. Which end of the pole stops first? How long does the other end continue
to move after the first end has stopped? Verify that after the pole has come to rest
in the barn fran1e, its proper length is 2L.

6.3. Refer to the paradox of figures 6.15 and 6.16. Let the proper length of the
block and the hole be 0.1 m, and suppose the velocity of the block in the table
frame is 0.6c. Events 1 and 2, the cutting of the two end strings, occur at t = 0 in
the table frame.

(a) Find the interval between events 1 and 2 in 5', the block's original rest
frame. Where is end P at the time of event 1 in 5'?

(b) Where is end P at the time of event 3 in 5'?
(c) How far does end Q fall before it strikes the far end of the hole at event 3?

6.4. The Apollo X spacecraft took about 1 day to reach the moon. How much
younger than his twin would an Apollo astronaut have been at the end of the
mission? Assume uniform velocity. (The earth-moon distance is about 400,000
km.)



7 Relativistic Mechanics

(7.1)

7.1. THE EQUIVALENCE OF MASS AND ENERGY

We conclude our study of special relativity by examining its implications
for energy, momentum, and mass. It is in this area that most of the appli
cations of the theory are found. Several fundamental ideas of classical
mechanics must be modified.

The famous relation between mass and energy, which for many people
epitomizes relativity, appeared first in a short paper published by Einstein
in September 1905,1 just three months after his first paper on relativity.
Einstein's argument was based on the transformation properties of elec
tromagnetic radiation. In the first paper, he had shown that if an electro
magnetic plane wave of energy E travels at an angle l/J with the x axis in
some frame of reference S, its energy in frame S' is

e(1 - ~ cos </»

€.' == C == ')I€.(1 - ~ cos l/J)
~1-V2/c2 c

where V, as usual, is the velocity of S' relative to 5, assumed to be in the
x direction. We will see in section 7.7 that equation (7.1) can be derived
also from the photon model of light, together with the formula for the

relativistic Doppler effect.
Einstein analyzed the following thought experiment. A body at rest in

some inertial frame S simultaneously emits a light wave of energy L/2 at
an angle l/J with the x axis and another wave of equal energy in the oppo-

1. A. Einstein, "Does the Inertia of a Body Depend upon Its Energy Content 7"
Annalen der Physik 18 (1905):639-641. English translations appear in The Prin
ciple of Relativity and in Collected Papers (doc. 24).

202
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Before

After

•

?---
(a) 5 (b) 5'

Fig. 7.1. Thought experiment used by Einstein to derive
the equivalence between mass and energy. (a) Body at rest
emits light waves of equal energy in opposite directions; the
body remains at rest. (b) The same experiment is viewed in
frame S', in which the body has velocity V both before and
after the emission. The light waves do not travel in opposite
directions in this frame. The energies of the light waves in
the two frames are related by eq. (7.1).

site direction (fig. 7.1a). Since the emissions are symmetrical, the body
remains at rest. Let Eo and E1 denote its energy before and after the emis
sion; conservation of energy gives

(7.2)

Figure 7.1b shows the same process in a frame 5' that moves to the left
at speed V relative to 5. In 5', the body's velocity is V both before and

after the emission. Applying equation (7.1) to each of the light waves, we
find that their total energy in 5' is yL. (The terms proportional to cos 4>
cancel.) Conservation of energy in 5' therefore gives

E~=E~ + yL

where E~ and E~ denote the body's initial and final energies in 5'.
Taking the difference between equations (7.2) and (7.3) gives

Eb- Eo= Ei - E1 + ('y-1)L

(7.3)

(7.4)

According to Einstein, the difference E' - E is the body's kinetic energy
in 5'.2 That is to say,

2. This is not entirely obvious. Kinetic energy is the energy attributable to a
body's motion. It is the difference between the body's energies when moving and
when at rest, measured in the same frame. In the present problem, the energies
E' and E are measured in different frames. The principle of relativity demands,
however, that the energy of a body at rest (in a given internal state) be the same
in any frame. Einstein's conclusion follows.
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E~- Ea=Ka
E~ - E1 = K1

(7.5a)

(7.5b)

where Ka and KI denote the kinetic energies before and after the emission,

measured in S'.3 Substituting these expressions in (7.4), we obtain

In Newtonian mechanics, kinetic energy is defined as

K=V2 mV2

(7.6)

(7.7)

We cannot assume that relation (7.7) is valid in special relativity, and

indeed ~t is not. (The relativistic definition of kinetic energy is given by

eq. [7.12] below.) Equation (7.7) must, however, apply in the low-velocity

limit. We therefore assume that Vic is very small and expand'}' using the

binominal theorem as we have done on several prior occasions (see the

appendix to chap. 4):

(7.8)

With K given by (7.7) and'}' by (7.8), the factor V2V 2 appears on both

sides of equation (7.6) and cancels. We thus obtain

ma- m 1 =Llc2 (7.9)

where ma and m l are the masses of the body before and after the emission.

As a result of the emission, the body's mass has decreased. The decrease,

rna - m l , is IIc2 times the energy radiated, measured in the body's rest

frame. A similar effect must occur even when the emission results in a

change in the body's velocity.

Equation (7.9) contradicts one of the basic tenets of classical physics

that mass is a conserved quantity. (It can be neither created nor de

stroyed.) Einstein has demonstrated with a simple example that in special

relativity, mass need not be conserved. This result has far-reaching impli

cations.

Einstein comments boldly that "since obviously here it is inessential

that the energy withdrawn from the body happens to turn into energy of

radiation rather than into some other kind of energy, we are led to the

more general conclusion: the mass of a body is a measure of its energy

content; if the energy changes by L, the mass changes in the same sense

3. Because these quantities are measured in 5', they strictly ought to be labeled
Kb and K~. But since the body's kinetic energy in frame 5 is always zero, no
confusion can result from the use of the simpler notation.
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by L/C
2

.,,4 This is the first statement of the relation between mass and
energy, the most famous result of relativity. Several other derivations
were subsequently published, both by Einstein and by others.

The mass-energy relation applies to any kind of energy. When a spring
is compressed or stretched from its equilibrium configuration, it acquires
elastic energy; as a result, its mass increases. Similarly, the mass of a
capacitor increases when the capacitor is charged (electrostatic energy).
Whenever a body is heated or cooled (thermal energy), its mass changes.
In all these cases, however, the effect is too small to measure.

It would be wrong to conclude that because Einstein assumed V to be
small, his result is in any way approximate. All the quantities in equation
(7.9) are measured in the body's rest frame. The relation between them
cannot depend on the velocity of the auxiliary frame Sf in which the ki
netic energy is expressed. We are free to assign to Sf any velocity we
please. Hence the result is rigorously true.

In his first paper, Einstein had derived the relativistic expression for
kinetic energy, equation (7.12) of section 7.2. If one employs that expres
sion for K in equation (7.6), the desired result follows directly for any
value of V. Einstein did not use that argument because his derivation of
the kinetic energy formula applied only to a pointlike structureless parti
cle. The kinetic energy of a massive body might depend on its internal
state as well as on its velocity. Einstein remarked in passing that the dif
ference Ko - K1 depends on velocity exactly like the kinetic energy of an
electron, but he pointedly did not assume that each K has that form.

Einstein was at first uncertain as to the significance of his result. He
wrote to his friend Conrad Habicht, "The line of thought is amusing and
fascinating, but I cannot know whether the dear Lord doesn't laugh about
this and has played a trick on me." 5

Because of the factor c2 in the denominator of equation (7.9), the mass
loss associated with the emission of a moderate amount of energy is very
small. Einstein noted, however, that radioactive decay is accompanied by
the release of "enormous" amounts of energy. "Is the reduction of mass

4. Collected Papers, doc. 24, 174. In 1952, Herbert Ives published a paper claiming
that Einstein's derivation was fallacious because he had implicitly assumed the
very result he was trying to prove. H. E. Ives, "Derivation of the Mass-Energy
Relation" Journal of the Optical Society of America 42 (1952):540-543. In fact,
however, Ives's criticism is fallacious; Einstein's argument is perfectly sound. See
John Stachel and Roberto Torretti, "Einstein's First Derivation of Mass-Energy
Equivalence," American Journal of Physics 50 (1982):760-763, for a thorough
discussion.
5. Quoted in Pais, Subtle Is the Lord, 148.
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in such a process not large enough to be detectable 7" he inquired in his
1907 review.6

Einstein suggested that the mass-energy relation could be tested by

comparing the atomic weight of a radioactive atom with the sum of the
atomic weights of the end products of the decay. The difference should be
equal to IIc2 times the energy released in the disintegration of one mole
of the radioactive material. The latter can be calculated from the measured
rate of energy release and the radioactive lifetime? Einstein estimated that
for radium the fractional loss in mass would be .00012. He concluded that
the predicted effect could be verified if the atomic weights were known to
an accuracy of five decimal places. "This, of course, is impossible," he said.
"However," he added, "it is possible that radioactive processes will be

detected in which a significantly higher percentage of the original mass
will be converted into energy than in the case of radium." This remark
proved to be prescient, as we shall soon see.

Rest Energy

The energy content of a body, measured in a frame in which the body is
at rest, is called the rest energy and is labeled Eo. It of course depends on
the body's internal state-its temperature, physical and chemical struc
ture, and so on.

Einstein has shown that the rest energy contributes an amount Eolc2

to a body's mass. Presumably, a body would have some mass even if it
gave up all its internal energy; that quantity might be called "intrinsic"
mass and labeled JL. We can write the total mass m as

m == JL + Eolc2

Einstein commented as follows in the 1907 review:

(7.10)

6. Collected Papers, doc. 47, 287.
7. Einstein's idea is sound, but it must be applied to the masses of the particular
isotopes involved in the decay and not to the atomic weights, which are averages
over isotopic masses. Einstein did not know about isotopes, whose existence was
discovered only in 1913. Isotopic masses can be measured with high precision by
mass spectroscopy.

The isotope of radium isolated by Marie and Pierre Curie was 226Ra, which
decays by alpha emission to 222Rn with a half-life of 1,620 years. The radon is
itself radioactive; several other alpha and beta decays follow in rapid succession
until finally the stable isotope 206Pb is reached. Five alpha particles and four betas
are emitted during the chain of decays. When one adds the masses of all the decay
products and compares the sum to the mass of 226Ra, the fractional mass loss is
.00014, in good agreement with Einstein's estimate.
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This result [eq. (7.10)] is of extraordinary theoretical importance
because the inertial mass and the energy of a physical system ap
pear in it as things of the same kind. With respect to inertia, a
mass Mis equivalent to an energy content of magnitude MC2

. Since
we can arbitrarily assign the zero-point of Eo, we are not even able
to distinguish between a system's 1/ actual" mass and its 1/apparent"
mass without arbitrariness. It seems far more natural to consider
any inertial mass as a reserve of energy.8 (Emphasis added)

Einstein is saying that since the zero-point of energy is arbitrary, we

can include the term JLC
2 in the rest energy and write simply

(7.11)

The values of Eo defined by equations (7.11) and (7.10) differ by a

constant, MC2
. When a body changes its internal state, the relevant quan

tity is the change in energy. Adding the same constant to the energy of

each state can have no measurable consequences. Unless the actual value

of the rest energy can be measured, we cannot discriminate between equa

tions (7.10) and (7.11). Writing Eo in the form (7.11) appears to be just a

matter of convenience.

There is, however, one potential way to obtain an absolute measure of

rest energy. If, as Einstein suggests, all inertial mass is truly a reserve of

energy, the intrinsic mass M must be zero. This implies that all the mass
of a system could disappear as the result of some process, its entire rest

energy being converted to other forms. The energy release in that process,
which can be measured, would determine the value of Eo.

Disappearance of matter is routinely observed today in elementary

particle physics. For example, the neutral pion, discussed in chapter 2,
decays into two gamma rays (high-frequency radiation).~7Todecay consti

tutes a realization of Einstein's thought experiment; after the decay the

pion no longer exists and no other massive particle has been created. The

change in mass in the process is therefore the entire pion mass: m 1 in

equation (7.9) is zero.

According to equation (7.11), when a 7TO decays at rest the total energy

of the gamma rays should be m Tr c
2, where m

Tr
is the mass of the pion.9

Measurements confirm the prediction. Einstein must have been gratified

8. Collected Papers, doc. 47, 286.
9. If the pion decays in flight, as generally happens, the gamma ray energy in
cludes the pion's kinetic energy as well.
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(7.12)

to learn about 7To decay; in a sense, he had anticipated such a possibility

already in 1907.
One way to describe what happens in radioactive decay is to say that

some mass is converted to energy. A better statement is that mass and

energy are equivalent: all mass carries energy and all energy contributes
to mass. When a 7T

O decays, one form of energy (the rest energy of the
pion) is converted into another form (radiant energy).

According to equation (7.11), the rest energy associated with even a

small amount of mass is enormous: for m == 1 gram, the rtst energy is

nearly 1014 joules, comparable to the output of a typical power plant in
one day. The possibility of converting that huge energy into other forms

has obvious implications of a practical nature. Although all of a neutral

pion's rest energy is converted into radiant energy when it decays, on a

macroscopic scale only a very small fraction of mass energy can be con

verted into useful energy. That small fraction forms the basis for nuclear
power generation, as we shall see in section 7.4.

7.2. KINETIC ENERGY AND TOTAL ENERGY

Relativistic Kinetic Energy

In his first paper on relativity, Einstein derived an expression for the ki
netic energy of a charged point particle by calculating the work done by
electric forces in accelerating the particle from rest to velocity v. The re
sult 10 was

K==( 1 -1)mc2 ==(Y-1)mc2

~1-v2/c2

In the nonrelativistic limit, with l' given by the approximate form (7.8),

equation (7.12) reduces to the Newtonian form V2 mv2, as it must.

Einstein argued that formula (7.12) should apply also to a "ponderable

material point," since such a body can be considered to have an infinitesi

mal electric charge. (The kinetic energy does not depend on the particle's

charge.) In fact, the result (7.12) turns out to apply to any material body.
The validity of equation (7.12) is confirmed by a vast body of experi

mental evidence from nuclear and elementary-particle physics. In an ex-

10. The quantity l/V(l - V
2

/C
2

), which appears in eq. (7.12), depends on the
body's velocity in the same way the parameter y, defined in chapter 3, depends on
the relative velocity V between frames. Following standard usage, we employ the
same symbol for both. The reader should bear in mind, however, that the two
quantities are quite different. At times I shall use the notation y(v) to identify the
velocity to which a particular y refers.
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Fig. 7.2. Experiment that directly tested Einstein's formula for kinetic energy.
Plotted is v2 as a function of kinetic energy for electrons. The solid line is the
Newtonian relation v2 = 2Ekln1; the dashed line is Einstein's fonnula, eq. (7.12).
The data points clearly confirm the validity of Einstein's equation.

periment designed specifically for this purpose,ll electrons accelerated to
nearly the speed of light in a linear accelerator were brought to rest in a
container of water. The increase in temperature of the water measured
how much kinetic energy the electrons had lost. The energy loss per elec
tron is plotted in figure 7.2 as a function of v 2

.

If kinetic energy were given by the Newtonian expression 1/2 mv2
, the

data points would lie on a straight line; Einstein's formula, equation
(7.12), coincides with that line for small v but departs from it more and
more as v increases. The data clearly confirm Einstein's formula.

According to equation (7.12), the kinetic energy of a body approaches
infinity when its speed approaches c. This important prediction is con

firmed by the experimental data. Notice that in figure 7.2 the electrons'
velocity increases very little between the last two data points even though
their kinetic energy is more than doubled.

11. William Bertozzi, "Speed and Kinetic Energy of Relativistic Electrons,"
An1erican Journal of Physics 32 (1964):551-555.
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This result provides us, finally, with a physical understanding of the
role of c as a limiting speed, at least for a material body. To accelerate a

material body to the speed of light, one would have to transfer an infinite

amount of energy to it. Since that is impossible, the body's speed must

always remain less than c.
For any speed greater than c, the kinetic energy according to equation

(7.12) is imaginary. This is another indication that speeds greater than c

are incompatible with special relativity. (See, however, the discussion of

tachyons in sec. 7.8.)

A General Expression for Energy

A body's total energy is the sum of its rest energy and its kinetic energy.
Since we have identified mc2 as the rest energy, equation (7.12) leads
directly to an expression for total energy:12

(7.13)

When v == 0, equation (7.13) reduces to the rest energy.

For the thought experiment of the preceding section, equation (7.13)
gives the energies in 5' as Eb == ymoc2

, E~ == ym 1c2
. Equation (7.3), the

conservation of energy in frame 5', is then consistent with the result (7.9).
Equation (7.13) plays a central role in relativistic mechanics.

Units

All the applications of relativistic dynamics are microscopic; they deal
with elementary particles such as electrons and protons and with atomic
nuclei. Ordinary Mks units of mass and energy, kilograms and joules, are
not well suited to the description of processes that involve such particles;

all the numbers are very small. The mass of a proton, for example, is
1.7X10- 27 kg.

It is standard practice to measure energy in nuclear physics in units of

million electron volts, written MeV. 13 The energy acquired by a particle
of electronic charge when it passes through a potential difference of

12. Eq. (7.13) appears first in a paper by Max Planck, "The Principle of Relativity
and the Fundamental Equations of Mechanics, ff Verhandlungen der Deutschen
Physikalischen Gesellschaft 4 (1906):136-141, the first paper on relativity pub
lished by anyone other than Einstein. Einstein's first use of the equation was in
"On the Inertia of Energy Required by the Relativity Principle," Annalen der
Physik 23 (1907):371-384; also Collected Papers, doc. 45.
13. In high-energy physics, the unit GeV (for giga-electron volt) is also used.
1 GeV = 1,000 MeV.
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one million volts is 1 MeV. The conversion factor between MeV and
joules is

1 MeV == 1.602 X 10-- 13 J

Dividing by c2, we obtain a unit of mass:

1 MeV/ c2 == 1.783 X 10- 30 kg

(7.14)

(7.15)

A more commonly used unit of mass is the atomic mass unit, written

as u. By definition, an atomic mass unit is one-twelfth the mass of the
neutral atom 12C; the conversion factor between atomic mass units and

kilograms is

1 u == 1.660565 X 10- 27 kg

Another useful relation is

(1 u)c2 ==931.5 MeV

(7.16)

(7.17)

The mass of a proton is 1.007276 u; 14 its rest energy is (1.007276)

(931.5) == 938.28 MeV.

Relativistic Mass

Einstein's expressions for rest energy (7.11) and for total energy (7.13)

may be rephrased by postulating that when a body is moving with veloc
ity v its mass increases by the factor y(v). If we call m the rest mass and
define a velocity-dependent quantity

M(v) == y(v) m

as (relativistic) mass, we can write the energy 15 simply as

E== Mc2

(7.18)

(7.19)

Equations (7.18) and (7.19) contain no new information; they are
merely an alternative way of expressing equation (7.13). The idea of a
velocity-dependent mass does have a certain appeal, however. Mass is as
sociated with inertia, which measures a body's resistance to a change in

its motion. The electrons' inertia in the experiment shown in figure 7.2

14. The reason that the proton mass was not selected as the unit is that with the
12C scale, the masses of most isotopes are close to whole numbers.
15. We shall see in section 7.3 that relativistic momentum can be written in an
analogous manner as p = Mv. The kinetic energy, however, cannot be written as
1/2 Mv2.
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clearly increases as their speed increases; when the speed is close to c, a
large increment of energy brings about almost no change in speed.

The increase in mass implied by equation (7.18) is M - m =: (y-l)m,
which is just l/c2 times the kinetic energy, equation (7.12). Thus by

adopting the concept of velocity-dependent mass, we can include kinetic
energy in the general statement that any energy E contributes an amount
E/c2 to a body's mass. This is another attractive feature of that interpreta

tion.

Whether or not to speak of velocity-dependent mass is largely a matter
of taste. Although it is currently unfashionable to do so, Einstein did and
we shall as well. Whenever there is a possibility of confusion, we shall
refer explicitly to rest mass or relativistic mass.

The possibility of a velocity-dependent mass had been discussed long
before Einstein. Theories proposed by Lorentz and by Abraham had pre
dicted that mass increases with velocity.16 An experiment performed by
Walter Kaufmann in 1901 gave qualitative support to the idea.

Kaufmann measured the deflection of beta rays (high-speed electrons
emitted in beta decay) by magnetic fields. According to standard theory,
the magnetic deflection depends on the ratio of a particle's charge to its
mass. Although Kaufmann's experiment was not very accurate, it sug
gested that the electron's mass does increase with velocity.

In 1906, Kaufmann published a paper containing new results, which
he claimed disproved Einstein's theory; Kaufmann's data were in better
agreement with Abraham's theory, which predicted a dependence of mass
on velocity different from (7.18).

Einstein ignored Kaufmann's criticism because he was convinced that
Kaufmann's experimental work was wrong. In 1908, a much more accu

rate experiment performed by Alfred Bucherer confirmed Einstein's sus
picion. Not only did the dependence of beta ray mass on velocity measured
by Bucherer agree with Einstein's relation (7.18) but the value of the rest

mass agreed closely with that measured by J. J. Thomson for low-velocity
electrons (cathode rays). Bucherer had thus demonstrated that beta rays
and cathode rays are the same particles. His results were influential in
gaining acceptance for Einstein's theory. I?

16. In these theories the electron has a "longitudinal" mass and a "transverse"
mass, which differ. Einstein's first paper also employed two masses. Planck
showed in 1906 that if force is defined as the rate of change of momentum instead
of as mass times acceleration, the need for two masses disappears.
17. Many years later, C. T. Zahn and A. H. Spees called attention to problems
with the velocity filter employed by Bucherer and concluded that Bucherer's re-



7.3. RELATIVISTIC MOMENTUM

Relativistic Mechanics / 213

We saw in chapter 1 that conservation of momentum is covariant under a
Galilean transformation. If momentum is conserved in one inertial frame
it is conserved in any other, subject to the condition that mass is con
served.

By repeating the analysis of section 1.7, we can easily demonstrate that
the conservation law is not covariant in special relativity if momentum is
defined in the same way as in classical mechanics-as the product of (rest)
mass and velocity.

Equation (1.22) describes conservation of momentum for a general
two-body collision in frame S:

(7.20)

Transforming all the velocities in this equation to frame S' using the
relativistic velocity transformation, equation (4.15), we obtain

If the conservation law were covariant, a relation identical to (7.20)
would hold in S', that is,

(7.22)

Since equation (7.21) does not reduce to the form (7.22), the conserva
tion law is not covariant.

The simple collision shown in figure 7.3a illustrates the result. The
colliding bodies, A and B, have equal masses. As seen in frame 5, they
move in opposite directions with the same speed, v. After the collision
both bodies are at rest. Since the total initial and total final momenta are
both zero, momentum is conserved.

Figure 7.3b shows the same collision in a frame S' that moves at veloc
ity - v relative to S; in S', body B is initially at rest. According to Galilean
relativity, the initial velocity of A is 2v and the initial momentum of the
system is 2mv. After the collision both bodies have velocity v; the total
final momentum is again 2mv and momentum is conserved in S' as it is
in S.

suIts actually proved little, if anything, more than Kaufmann's. C. T. Zahn and
A. H. Spees, II A Critical Analysis of the Classical Experiments on the Relativistic
Variation of Electron Mass," Physical Review 53 (1938):511-521.



214 / Relativistic Mechanics

v

Before

.. ,---oS
v

Pi= 0

(a)

After

AS
eo

both at rest
Pf= 0

OB
at rest

ASeo ...
v

Pf= 2mv
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p. = 2mv

I 1 + -5 (b)

Fig. 7.3. Collision used to demonstrate that conservation of mo
mentum is not covariant in special relativity if momentum is still
defined as the product of mass and velocity. (a) Bodies A and B,
of equal mass and moving in opposite directions with the same
speed v, collide head-on. After the collision, both bodies are at
rest. The total momentum is zero both before and after the colli
sion; momentum is conserved. (b) The same collision is viewed in
frame 5', which moves from right to left at speed v relative to 5.
In 5', B is initially at rest while the velocity of A is 2v/(1 + V

2
/C2).

The final velocity of both bodies is v. Momentum is not con
served.

According to special relativity, the initial velocity of body A in S' is
not 2v; using equation (4.15), we find instead

, 2v
vA==---

1 + v2/c2

With momentum defined as mass times velocity, A's initial momentum
in S' is

, 2mv
PA == 1 + v2/c2

Since the initial momentum of B is zero, (7.24) is also the total initial
momentum of the system.

The final velocity of both A and B in S' is v, just as in Galilean relativ
ity. Hence the final momentum of the system is 2mv, which differs from
the initial momentum, given by (7.24). Thus momentum is not conserved
in S',
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The principle of relativity demands that all physical laws be covariant.
We can draw one of two conclusions:

(i) Momentum conservation is not a general law of nature. It is only

an approximate law, valid when all velocities are small compared to c; or

(ii) Momentum conservation is a strictly valid law, but momentum is

not the product of mass and velocity. It takes that form only for small
values of vic.

Alternative (i) is unattractive; the conservation law has great appeal

because of its simplicity and generality. We therefore pursue alternative

(ii) and look for a new definition of momentum, one that makes the con

servation law fully covariant under a Lorentz transformation. The new

definition should reduce to the Newtonian form mv when vic is very

small.

A note of caution must be sounded at the outset. Although all laws of

nature must be relativistically covariant, a covariant relation is not neces
sarily a law of nature. Covariance implies that if a certain relation holds
in one inertial frame, it holds also in any other. But the relation might

not hold in any frame. One can construct many "pseudo-laws" that are

mathematically covariant but are not satisfied in nature. Even after we

exhibit a definition of momentum that leads to a covariant conservation
law, therefore, we cannot be sure that the new conservation law is actually
valid. Only experimental evidence can provide that assurance.

A simple way to derive the expression for relativistic momentum is to
return to the thought experiment of section 7.1, in which a body emits
light waves of equal energies in opposite directions. This is the experiment
that Einstein used to deduce the mass-energy relation. Let us examine the

special case cP == 0: the light waves are emitted in the ± x direction.
It is well known in electromagnetic theory that the momentum carried

by an electromagnetic wave is IIc times the energy flux. With the ener
gies given by equation (7.1), the momenta of the two waves in frame S'

are

y(LI2c) (1 +vic) and y(LI2c) (1- vic) (7.25)

where LI2 is the energy of each wave in frame 5, and v is the velocity of

the radiating body in S'.
Since the two waves are emitted in opposite directions, their total Ino

mentum Prad is the difference between the two expressions in (7.25):

Prad == 'Y Lvic2
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Let Po and PI denote the momentum of the radiating body in S' before

and after the emission, respectively. Conservation of momentum gives

the relation

(7.26)

According to equation (7.9), LIc2 is equal to the body's decrease in mass

as a result of the decay, mo - mI. Substituting in equation (7.26), we can

rewrite the equation in the form

(7.27)

Equation (7.27) shows that the expression p - "mv is independent of

the body's mass. It can, however, depend on velocity. The general solution

of equation (7.27) is

p == ymv + f(v) (7.28)

where f(v) is an arbitrary function of velocity.

We can easily show that f(v) must be identically zero. Imagine a system

consisting of two noninteracting pieces of mass m l and m 2 , each moving

with velocity v. The momentum of each piece is given by equation (7.28):

P2 == "m2v + f(v)

and their total momentum is

(7.29)

The system can also be considered a single body whose mass is m l + m2;

equation (7.28) gives for the momentum of that body

p == ,,(mI + In2)V+ f(v )

Equations (7.29) and (7.29') imply that

2 f(v) == f(v)

which in turn implies that f( v) == 0; hence

p == 1'mv

(7.29')

(7.30)

Equation (7.30) is the desired definition of relativistic momentum. If

energy is measured in MeV, a convenient unit for momentum is MeVI c.
Notice that relativistic momentum can be expressed as the product of

relativistic mass and velocity:

p=Mv

where M is defined by equation (7.19).

(7.31)
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We still have to verify that our new definition of momentum satisfies
the stated requirements. It is clear that the nonrelativistic limit is correct:
for small v, y approaches unity and equation (7.30) reduces to the New
tonian definition p == mv. To verify that momentum conservation is rela
tivistically covariant, we rewrite the conservation equation (7.20) using

our new definition of momentum:

(7.32)

Since momentum is a vector quantity, equation (7.32) stands for three
equations, one for each component. We assume that these relations hold

in inertial frame 5, transform everything to another frame 5', and check

whether the same relations hold in 5'.
The transformation properties of yand of yv are derived in the appen

dix to this chapter. For the transverse components, the result is very sim

ple: the product YV y has the same value in both frames, as does YV z . (The
relative velocity between 5' and 5 is, as usual, taken to be in the x direc
tion.) Hence the transverse components of momentum are necessarily
conserved in 5' if they are conserved in s.

The x-momentum transforms in a more complicated way; we show in
the appendix that it too is conserved in 5' if it is conserved in 5, provided

the auxiliary condition

(7.33)

is satisfied. Equation (7.33) is the relativistic counterpart of the conserva
tion of mass, to which it reduces in the low-velocity limit ('Y -4 1).

In Galilean relativity, conservation of mass is a necessary condition if
momentum conservation is to be covariant. In special relativity, rest mass
is not in general conserved; instead, the sum of ym for all the bodies
present is conserved. We recognize this condition as the conservation of
relativistic mass or (on multiplication by c2

) of total energy.
It is interesting that conservation of energy emerges as a necessary

condition to make conservation of momentum covariant. The converse is

also true: momentum must be conserved if energy conservation is to

be covariant. Momentum and energy, which in classical mechanics are

independent quantities, are closely linked in special relativity. We will

show in section 7.6 that they can be considered a single entity, energy
momentum, analogous to space-time.

The validity of the relativistic momentum conservation law, with mo

mentum defined by equation (7.30), is confirmed by experimental data
from high -energy physics. As in the nonrelativistic case, conservation of
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momentum alone does not determine the outcome of a collision. In a two

body scattering problem, for example, if the masses and the initial veloci

ties are given, there are six unknowns (the three components of each of

the final velocities) and only three equations. Hence the equations have

an infinite number of solutions. But if one of the final velocities is mea-
I

sured, the other is determined by the conservation law. In every instance,
the measured velocity agrees with the value calculated from equation

(7.32).

Finally, we return to the collision of figure 7.3 to tie up one loose end in
the argument. We found in the earlier discussion that with the Newtonian
definition p::::: mv, momentum is not conserved in this collision in frame

S'. Let us now recalculate the initial and final momenta using the relativ
istic formula p =:: ymv.

In frame S, the total momentum is still zero both before and after the
collision, so momentum is conserved. In S', the initial velocity of A is
given by equation (7.23); the corresponding momentum is

After some algebra this reduces to the form

, 2mv
PA == 1 2/ 2-v C

(7.34)

which is also the total initial momentum of the system, since P~ =:: O.
After the collision, bodies A and B are both moving at velocity v; their

total momentum is therefore

(7.35)

which differs from the initial momentum (7.34). Momentum still appears
not to be conserved, even when the correct formula for relativistic mo

mentum is employed. What is wrong?
The clue to the resolution of the puzzle comes from the realization that

kinetic energy is not conserved in this collision. (This is most readily seen
in frame S, in which the final kinetic energy is zero.) A collision in which
kinetic energy is not conserved is called inelastic. Since total energy is
always conserved, the lost kinetic energy in an inelastic collison must have
been converted into some other form of energy-heat or internal excita

tion or perhaps sound or radiation. Our description of the collision is in
complete unless that other energy is taken into account.
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Whatever form the lost kinetic energy takes, it contributes to the mass
of the system. Hence our implicit assumption that the final state consists
of two bodies of rest mass m (or a single body of mass 2m) cannot be
right.

Let /.L denote the rest mass of the combined body AB. If all the energy
remains within AB, we can calculate /.L from the conservation of energy
in frame s. The energy of each of the colliding bodies was ymc2

, so the
total initial energy is 2ymc2. After the collision AB is at rest; its entire
energy is rest energy. Conservation of energy gives

/.LC
2 == 2ymc2 or /.L == 2ym

With this value for the mass, the final momentum in 5' is

which is the same as (7.33). Momentum is (at last!) conserved.
If any energy leaves the scene, for example, in the form of radiation,

the energy and momentum of the radiation must be included in the con
servation equations; the rest mass of AB in that case would be less than
2ym.

7.4. RELATIVITY IN NUCLEAR AND PARTICLE PIIYSICS

Expressions (7.13) and (7.30) for relativistic energy and momentum pro
vide the basis for relativistic dynamics. They must be used whenever
a body travels at close to the speed of light, as happens routinely in
elementary-particle physics. In most nuclear reactions, however, the
bodies involved travel fairly slowly; in that sense low-energy nuclear
physics is not relativistic. Relativity nonetheless plays an important role
because it accounts for the energy balance through Einstein's mass-energy
relation. Nuclear reactions in fact provided the first convincing proof of
mass-energy equivalence.

Consider once again the general two-body reaction

A+B ~ C+O

We define a parameter

(7.36)

which measures the difference between the total rest mass of the reacting
bodies, A and B, and that of the bodies in the final state, C and o. (Positive
dm corresponds to an increase in rest mass.) We also define an energy
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(7.37)

called the Q value for the reaction.

Equation (7.33), when multiplied by c2
, represents the conservation of

energy for the reaction. Expressing each energy as the sum of rest energy

and kinetic energy, we can rewrite the equation as

(7.38)

where Ki and Kf are the total kinetic energies of the initial and final states,

respectively.

If ~m and Q are zero, kinetic energy is conserved. Such a collision is

said to be elastic. If Q is negative (~m is positive), the kinetic energy is

diminished by IQI; such a reaction is called endoergic. Since kinetic energy

cannot be negative, the reaction cannot take place at all unless Ki exceeds

IQI·
If Q is positive (~m is negative), the kinetic energy increases by Q;

such a reaction is called exoergic. (A decay process can be considered an

exoergic reaction in which the initial state consists of only one body.)

An example of an exoergic nuclear reaction is

(7.39)

The rest masses of the isotopes involved have the following values:18

p CH): In == 1.007825 u

7Li: m == 7.016004 u

4He: m == 4.002603 u

The total mass of the colliding bodies is 8.02383 u, whereas that of the

emergent ones is only 8.00521 u. The difference, ~m = - .01862 u, is

about 0.2 percent of the total mass of the reactants. This is typical of

nuclear reactions: only a very small fraction of the rest energy is con

verted to kinetic energy. The Q value for the reaction is 17.34 MeV.

Reaction (7.39) was studied by J. D. Cockroft and E. T. S. Walton in

1932 in one of the first experiments carried out with an accelerator they

had invented. The measured increase in kinetic energy was 16.95 MeV, in

good agreement with the value of Q.

18. The isotopic masses given in tables are generally those of neutral atoms, not
of the bare nuclei. For an isotope with atomic number Z, this includes the mass of
Z electrons. Since the total number of electrons is the same on both sides of the
reaction, we can use atomic masses in calculating t1m and Q; the electron masses
cancel.
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In principle, any reaction with a positive Q value constitutes a potential
source of usable energy. The kinetic energy of the reaction products can
be used to boil water and run a turbine. The practical problems involved
in doing this on a commercial scale are, however, immense.

For a long time there was widespread skepticism that nuclear energy
could actually be harnessed as a practical source of power. In 1933, Ernest
Rutherford, the discoverer of the nucleus, remarked in a public lecture
that anyone looking to nuclear reactions for useful energy was /I talking

moonshine." Less than ten years after that pessimistic assessment, the

first nuclear reactor became operational.

Nuclear reactors employ a particular reaction called a fission reaction;

the most commonly used fuel is uranium. When a slow neutron strikes a

uranium nucleus, it occasionally causes it to split into two large frag
ments; two or three neutrons are emitted as well. A typical fission reac

tion is

n+ 235U ~ 141Ba+92Kr+3 n (7.40)

The Q value for this reaction is 175 MeV; a great deal of energy is
released. Moreover, the emitted neutrons can strike other uranium nuclei
and cause thein to react in turn. The result, called a chain reaction, is the
basis for the operation of reactors.

With the help of control rods that absorb some of the neutrons, the
reaction can be made to proceed at a steady rate. If the chain reaction is
not controlled, it can run away, releasing energy too rapidly. If all the
energy is released over a very short time, an explosion results; this is what
happens in a nuclear weapon.

Another reaction that is a potential source of power is the fusion reac
tion, of which an example is

(7.41)

The Q value for reaction (7.41) is 17.6 MeV. Although this is much

less than the Q value for reaction (7.40), the energy release per gram of
fuel in fusion reactions is more than three times greater than in fission.
Moreover, the fuel is plentiful and readily available and the reactions leave

no long-lived radioactive waste products, as fission reactions do.

Unfortunately, the technical problems involved in achieving a con
trolled fusion reaction have not yet been solved. The major difficulty is
that the reactants must get very close to one another if the reaction is to
proceed. (The nuclear force responsible for the reaction has a very short
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range.) Since the reactants in fusion reactions are charged, their electrical

repulsion keeps them apart unless they have a fairly high velocity. By

contrast, neutrons have no charge and encounter no difficulty in entering

a uranium nucleus to initiate fission.

At very high temperatures, the thermal motion of the particles is suffi

cient to initiate fusion reactions. (For this reason the reactions are called

thermonuclear.) Temperatures of hundreds of millions of degrees are re

quired if the reactions are to proceed in sufficient number to make a reac

tor work; the problems of achieving such temperatures and keeping the

reacting material confined within a small volume for sufficient time are
daunting. Other methods, such as laser-initiated fusion, are under investi

gation.
Temperatures high enough to initiate thermonuclear reactions are

known to occur in stellar interiors. This is the principal mechanism for

the generation of the energy radiated by the sun.19

Binding Energies

All nuclei are composed of neutrons and protons: an isotope of atomic

number Z and mass number A contains Z protons and (A - Z) neutrons.

One might therefore expect its rest mass to be Z times the proton mass
plus (A-Z) times the neutron mass. The measured mass of every isotope
is, however, smaller than the value given by that prescription. The mass
M(A, Z) can be written in the form

(7.42)

where 8 is a positive number called the mass defect.
For example, the deuteron (nucleus of heavy hydrogen) is composed of

one neutron and one proton: Z == 1, A == 2. The relevant masses are

p (lH): m == 1.007825 u

n: m == 1.008665 u

P+ n: m == 2.016490 u
deuteron (2H): m == 2.014102 u

The mass defect of the deuteron is 0.00239 u. When a proton and a

neutron are brought together to form a deuteron, their combined mass

decreases by about one part in a thousand.

19. Before the discovery of nuclear energy, the sun's energy was believed to come
from gravitational potential energy released as the sun contracts. According to
that model, the sun could emit at its present rate for only a few million years
before collapsing.
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Mass-energy equivalence accounts in a natural way for the mass defect.
The deuteron, like any bound system, is held together by an attractive
force between its constituents. The energy of the neutron and proton
when bound in a deuteron is less than their energy when they are far
apart and at rest; the latter energy is just the sum of the rest energies.

The difference between the energy of the separated particles and that
of the bound state is called the binding energy, Eb:

E(bound state) == E(separated particles) - Eb (7.43)

The value of Eb can be determined experimentally by measuring how

much energy must be provided to dissociate the nucleus.

According to equation (7.9), the negative contribution to the energy,

- Eb, should result in a mass defect 8 given by

(7.44)

Experimental data on nuclear masses and binding energies are in com
plete agreement with the relation (7.44). The binding energy of the deu
teron, for example, is 2.22 MeV, exactly the predicted value.

Equation (7.44) should apply to any bound system, including atoms
and molecules and even the solar system. In each case the mass of the
bound system should be slightly smaller than the sum of the masses of
the constituents. Typical chemical binding energies are, however, much
smaller than those of nuclei; the associated mass defects are correspond
ingly small. In 1907, Planck estimated the decrease in mass of a mole of
water due to its chemical binding. The result, about 10 - 8 g, is too small
to be detected.

Elementary Particle Reactions

Although relativity accounts for the energy balance in nuclear reactions
through equation (7.38), it has only a minor effect on the kinematics be
cause dm is generally much smaller than the masses of all the nuclei
involved. Unless one of the reactants has a very high kinetic energy to
begin with, the kinetic energies of all the particles involved are much

smaller than their rest energies. All velocities are then small compared to

c and the kinematics is essentially nonrelativistic. In writing the conserva

tion of energy and momentum for reaction (7.39) at low energies, for
example, it is unnecessary to use the relativistic forms ymv for momen
tum and (y - 1)111C

2 for kinetic energy; the Newtonian expressions mv

and 1/2 mv2 give practically the same answers.
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Dramatic manifestation of relativistic kinematics is found in the study

of the unstable particles discovered during the past half century in high

energy physics. In reactions involving such particles, am is frequently

greater than the rest masses of some of the particles involved. Wholesale

conversion of rest energy to kinetic energy can take place. We have al

ready encountered an extreme example of this in the decay of the 7TO.

As an example of relativistic kinematics, consider the decay of an un

stable particle called the K + . Its decay scheme is the following:

(7.45)

The rest masses of the particles involved are as follows:

K+: m==0.530 u

7T+: m ==0.150 u

7T
o: m==0.145 u

(call this mass M)

(call this m 1)

(call this m 2 )

Llrn is -0.235 u, more than the pion rest mass. The Q value is 219 MeV.

Suppose a K+ at rest decays. Momentum conservation demands that

the two decay products travel in opposite directions, so the problem is

essentially one-dimensional. The conservation equations are

m 1v1Yl +m2v2Y2== 0

m 1YIc2 + m2'Y2 c2 == Mc2

conservation of momentum

conservation of energy
(7.46)

(7.47)

(7.48a)

(7.48b)

Since each 1 involves the corresponding velocity through a square root,

the algebra involved in solving equations (7.46) and (7.47) is quite labori

ous. This is typical of relativistic kinematics. The result is

M m 2 -1n 2
m 111 ==_+ 1 2

2 2M
M m 2_ m 2

n1212 == - + 2 1
2 2M

For K+ decay, these equations give 'Y1 == 1.818, 12 1.776. (The ki-

netic energies differ by very little because m 1 and m2 are nearly equal.)

If the K + that decays is moving, the easiest approach is to analyze the

problem first in the rest frame of the K +, in which the solution is given

by equations (7.48a,b). A Lorentz transformation gives the solution in the

laboratory frame. In this case the results depend on the direction in which

the decay products are emitted.
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Production of Particles

Thus far we have discussed only cases in which mass-energy is converted
into kinetic energy. The reverse process can occur as well: in a collision
between energetic particles, new particles can be created at the expense of
kinetic energy.

For example, pions are produced in high energy proton-proton colli
sions. One possible reaction is

p +p~ p + n + rro (7.49)

In a typical experiment an energetic proton from an accelerator strikes
a target proton at rest. The kinetic energy of the incident proton must of
course exceed the rest energy of the pion, m'1Tc2, if reaction (7.49) is to
proceed.20 Conservation of energy and momentum is described by equa
tions like (7.48a,b). One has to write a separate equation for each compo
nent of momentum; there are four simultaneous equations, each con
taining square roots. The algebra is cumbersome, but it is straightforward
to obtain numerical solutions with the help of a computer.

Special relativity accounts for the kinematics of particle production and
decay. This is only the first step toward an understanding of the complex
phenomena. Special relativity does not explain, for example, why only
about 20 percent of K+ decays proceed via the reaction (7.45), or why the
half-life for the decay has the particular value 1.2 X 10 -- 8 seconds. Our
understanding of elementary particle phenomena is still very rudimen
tary. But at least the kinematics is understood.

7.5. BETA DECAY AND THE NEUTRINO

An interesting application of relativistic kinematics and of the conserva
tion laws is provided by the phenomenon of beta decay. Many radioactive
nuclei decay by emitting a beta particle, either a positive or a negative
electron. A typical example is the isotope 14C, which emits a negative
electron; its decay scheme is (or so it was at first believed)

(7.50)

This decay appears to be analogous to that of the K+, equation (7.45);
in each case one particle decays into two. Conservation of momentum and

20. The threshold energy for reaction (7.49) is somewhat greater than m
1T

c2 be
cause momentum conservation does not allow all the final-state particles to be at
rest.
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energy should therefore be described by equations (7.46) and (7.47), and
the energies of the decay products should be given by equations (7.48a,b).
Those equations imply that if one of the decay products is much lighter
than the other, say, m 1 < < m 2, its kinetic energy (1'1 - 1)m1c2 is much
greater than that of the other. In the present case the electron is much
lighter than the nitrogen nucleus; hence it should receive practically all
the available energy.

The experimental data on beta decays were perplexing. According to
equation (7.46), all the emitted electrons should have the same energy.
Instead, electrons were detected with a continuous spectrum of energies,
ranging from nearly zero to a maximum value Em' Since the kinetic en
ergy carried off by the 14N is very small, energy appeared not to be con
served in the decay.

The electron energy spectrum was not the only puzzling feature of the
results. The electron and the daughter nucleus were not always observed
to be emitted in opposite directions, as they should be if their total mo
mentum is zero. Thus momentum appeared not to be conserved. Finally,
angular momentum appeared also not to be conserved.

Wolfgang Pauli came up with an ingenious idea that accounted for all
the experimental findings. Pauli postulated that an additional neutral par
ticle, which acquired the name neutrino, is emitted in every beta decay.
Instead of (7.50) the decay reaction is

(7.51)

where v stands for the (anti)neutrino.
Having no charge, the neutrino could easily escape detection; it would

not, for example, leave a track in an emulsion or in a cloud chamber pho

tograph.
Pauli's neutrino hypothesis salvaged the conservation laws; the neu

trino carries off the "missing" momentum and energy. When three parti
cles are emitted in a decay, the energy that anyone particle receives is not
uniquely determined by the conservation laws. A spectrUlTI of electron
energies is therefore to be expected.

The neutrino hypothesis also explains why the decay products are not
collinear. When a body at rest decays into three or more, conservation of
momentum does not demand that any two of them be collinear. (Three
vectors can add up to zero even if they are all in different directions.)

Physicists' confidence in the conservation laws was so strong that the
existence of the neutrino was accepted for many years just on the basis of
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Pauli's argument, without any direct evidence. Frederick Reines and Clyde
Cowan finally confirmed the existence of the neutrino in 19S6 by de
tecting inverse beta decay reactions initiated by neutrinos.

The neutrino story has one other interesting aspect. The value of Em
in every known beta decay is (within the experimental uncertainty) equal
to the available energy (dm)c2

. The neutrino that accompanies an electron
with the maximum energy Em therefore carries off little or no energy.
But the energy of any particle must be at least its rest energy mc2; it
follows that the rest mass of the neutrino must be extremely small, even
compared to that of the electron, the lightest known particle. It might
even be zero.21

Our formalism at this stage is not prepared to deal with a particle
whose rest mass is zero; equations (7.13) and (7.30) imply that both the
energy and the momentum of such a particle are zero, no matter what its
velocity. As we shall see in a later section, however, special relativity does
admit the possibility of zero-mass particles, provided they travel at the
speed of light. The photon is one such particle; if the neutrino indeed has
zero rest mass, it is another.

7.6. THE TRANSFORMATION LAW FOR ENERGY AND

MOMENTUM; FOUR-VECTORS

In this section, we examine the transformation properties of relativistic
energy and momentum under a Lorentz transformation. The results dem
onstrate the close relation between the two quantities, of which we have
already seen some hint.

The necessary transformation relations are found in the appendix.
Equations (7.AS) and (7.A7) express y(v') and v' y(v') in terms of y(v) and
vy(v). On multiplying (7.AS) by mc2 we can identify each term as either
an energy or momentum and write the equation as

E' = y(V)(E - Vpx)

Similarly, multiplying (7.A7) by m gives

P~ = 'Y(V)(Px - ~~)

(7.52a)

(7.S2b)

According to (7.A9), the transverse components of momentum are
invariant:

21. Experiment can only set an upper limit on the rest mass of the neutrino. The
upper limit is very low (::;18 eV).
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(7.52c)
(7.52d)

Equations (7.52a-d) constitute the desired transformation law. These
equations have a familiar appearance: they have the same form as do the
Lorentz transformations. If in equation (4.1) we replace x, y, z, and t by

Px' Py' Pz' and E/c2
, respecti~ely, we obtain precisely equation (7.52).

From the point of view of special relativity, space and time are parts of
a single entity called space-time. An interval that is purely spatial in one
frame appears as a combination of space and time intervals in another
frame. In the same sense, relativistic energy and momentum are parts of
a single four-dimensional entity that we may call energy-momentum. A
Lorentz transformation turns energy and momentum into linear combi
nations of one another.

Four-vectors

According to equation (7.52) the three components of momentum, to
gether with (1/c) times the energy, obey the same transformation law as
do the three components of position together with the time. Any set of
four quantities that displays that transformation property is called a four
vector. In a particular frame of reference the first three (spatial) compo
nents of a four-vector form an ordinary three-vector; the fourth compo
nent is the temporal component.

Many quantities of physical interest turn out to be expressible as four
vectors. In electricity, for example, the three components of current den
sity form the spatial part of a four-vector whose temporal component is
the charge density. If a physical law can be expressed as a relation between
four-vectors, its relativistic covariance is automatically assured.

We showed in chapter 4 that the combination x2
- c2t2 (in one spatial

dimension) or x2 + y2 + Z2 - c2 t2 (in three dimensions) is a relativistic
invariant: it has the same value in all inertial frames. An analogous invari
ant must exist for any four-vector: if (VI' V2 , V3 , V4 ) are the components
of a four-vector, the quantity

(7.53)

is invariant. Its square root can be viewed as a generalized "length" of the
four-vector. 22

22. In some formal treatments a four-vector is defined as a set of four quantities
(Va' VI' V2 , V3 ), where Va = i V4 . In this notation the space-time four-vector is
written as (ict, x, y, z). The invariant (7.53) is then V0

2 + V1
2 + V2

2 + V3
2

, which is
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The invariant associated with the energy-momentum four-vector is

px
2 +Py

2 +Pz
2

- C
2 (E/C2)2 == p2 - E2

/ C
2 (7.54)

If a quantity is invariant, its value can be calculated in any convenient

frame. We know that in the rest frame of a body, p == 0 and E== mc2
. Hence

the value of the invariant must be - m2c2
. We have derived the very

useful relation

or equivalently,

(7.55)

Equation (7.55) is often useful in carrying out relativistic calculations.

By using it, one can avoid tedious application of the transformation laws.

The relation can of course be derived directly from the definitions of E
and p, equations (7.13) and (7.30).

Since the Lorentz transformations are linear, the sum of two four

vectors is another four-vector. Thus the quantity p2 - (E/C)2 is invariant

even when p and E represent the total momentum and energy of a system

of particles. For applications of this technique, see the problems.

Another useful relation can be derived directly from the defining rela

tions (7.13) and (7.30) for momentum and energy. Dividing one equation
by the other, one gets

pc==~

E c
(7.56)

Equation (7.56) shows that in the ultrarelativistic limit, when the velocity

of a body is nearly c, its energy and momentum become directly propor

tional to one another. When v == c, (7.56) gives the energy-momentum

relation for a photon, discussed in the next section.

7.7. PfIOTONS

As we noted in chapter 2, the long-standing debate over the nature of light

appeared by the middle of the nineteenth century to have been settled in

consistent with the usual geolnetric definition of the length of a vector as the
square root of the sum of the squares of its components. However, the "zeroth"
component of any four-vector is imaginary. The Lorentz transformation can be
viewed formally as a rotation through an imaginary angle in four-dimensional
space.
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favor of the wave picture. After Maxwell's work, it was universally ac

cepted that light is an electromagnetic wave.

At the end of the century, however, the issue was reopened with the

discovery of phenomena that could not be explained on the basis of the

wave theory. In 1900, Planck, to explain certain features of the so-called

blackbody radiation spectrum, proposed the idea that electromagnetic en

ergy is emitted and absorbed in the form of discrete bundles or /I quanta."

The energy of each quantum depends only on the frequency of the radia

tion and is given by the simple formula

E=hf (7.57)

The constant of proportionality h in this equation is called Planck's

constant. Its numerical value in Mks units is 6.7 X 10- 34
. The quanta,

which came to be known as photons, behave like particles. The intensity

of a beam measures the number of photons that pass through a unit area

in unit time.

A single photon of visible light carries a very small amount of energy,

a couple of electron volts. Ordinary light beams contain so many photons

that for the description of many phenomena the energy can be regarded

as being continuously distributed, as in the wave picture.
In one of his three great papers of 1905, Einstein employed the photon

model to provide a full explanation of the photoelectric effect, which had

been discovered by Heinrich Hertz in 1887 and studied in detail by Philipp

Lenard and others.

When ultraviolet light strikes the surface of a metal, electrons are

sometimes emitted. A surprising feature of the phenomenon was the exis

tence of a /I frequency threshold": unless the frequency of the light exceeds

a certain minimum, no photoelectrons are emitted, no matter how intense

the beam. The threshold frequency is different for different metals.

Although the wave theory does provide a mechanism for transferring

energy from light to an electron, it cannot account for the frequency

threshold. Several other features of the effect are very hard to understand

according to the wave picture.

Einstein's explanation of the photoeffect was based on the premise that

an electron receives the energy it needs to leave the metal by absorbing a

single photon. Unless the photon's energy exceeds the required amount

(called the work function of the metal, 4') the electron cannot leave. Equa

tion (7.57) therefore implies that no photoelectrons can be liberated un

less the frequency of the light is greater than 4J/h. With the photon
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model Einstein was able to account for every feature of the experimental
results.

Our concern here is not with the photoeffect but with how the concept
of the photon as a relativistic particle fits in with the results of this chap
ter. The photon's speed must be c in every inertial frame of reference. As
has been noted on several occasions here, serious difficulties arise in reia
tivity if the velocity of a particle is set equal to c. The parameter y is
infinite and the energy defined by equation (7.13) is likewise infinite. That
conclusion follows, however, only if the particle's rest mass is finite.

The key to the description of the photon as a relativistic particle is that
it has zero rest mass. According to equation (7.11), the rest energy of a
particle with zero rest mass is zero. Thus a photon at rest would have zero

energy. This causes no problems because a photon is never at rest in any

frame.
Although the photon has no rest mass, we can use equation (7.19) to

assign it a relativistic mass based on its energy:

(7.58)

With m == 0, v == c, and y == 00, the expression ymc2 for particle energy
is mathematically undefined. (The product of zero and infinity can have
any value.) Notice, however, that y does not appear in equation (7.55),
which relates a particle's energy and its momentum. In that expression
we can sensibly set m equal to zero, obtaining the simple relation

E==pc (7.59)

The energy and momentum of a photon are directly proportional to
one another. The same result (7.59) is obtained by putting v == c in equa
tion (7.56).23

Combining equations (7.57) and (7.59), we find that the momentum of
a photon of frequency f is

p==hf/c (7.60)

Equation (7.59) provides a bridge between the photon picture and the
wave description of light. Although the energy and momentum in an

23. Eq. (7.56) was obtained by dividing (7.30) by (7.13). One could object that
when we put m = 0 the result contains the factor 0/0, which is undefined. We can,
however, consider a limiting process in which m ~O. At every step the mass can
cels; hence in the limit, we obtain the result (7.59).
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electromagnetic wave are not localized but are continuously distributed,

the energy and momentum densities are related by equation (7.59). We

have already made use of this property in deriving the relativistic expres

sion for momentum, equation (7.30).

According to equation (7.59)/ the x momentum of a photon is

Px == P cos (J== (E cos (J)I c (7.61)

where (J is the angle between the direction of the photon and the x axis.

The general energy transformation (7.52a) takes the form

E' = l'(V) E(1- ~ cos e) (7.62)

Since the frequency of a photon is proportional to its energy, it must

obey the same transformation law:

f'=l'(V) f(l-~ cos e)
When (J== 0, equation (7.63) reduces to the simpler form

(7.63)

f' == f
1- Vic
1+ Vic

(7.64)

Equations (7.63) and (7.64) are nothing but the Doppler effect formulas,
equations (4.41) and (4.38).24

Equation (7.62) is the same as equation (7.1), which Einstein had de

rived in his first paper from the wave theory of light. The energy transfor

mation law for light is the same whether the light is treated as a classical

wave or a collection of photons.

In the 1905 paper, Einstein derived the Doppler effect formula (7.63)

independently and remarked that /lit is noteworthy that the energy and

the frequency of a light complex vary with the observer's state of motion

according to the same law." Strangely enough, Einstein did not refer to

his own paper on the photoeffect/ written only three months earlier,

which provides a natural explanation for that result. He apparently did

not have complete confidence in the photon picture at the time. 25

The photon hypothesis leads to a consistent kinematic picture of the

photon as a relativistic particle that always moves at speed c along a well-

24. Eq. (7.63) looks different from eq. (4.41) because the angle 0 in (7.63) is mea
sured in the source frame S, whereas in (4.41) the angle () is measured in the
observer's frame. The two expressions are in fact equivalent.
25. See Pais, Subtle Is the Lord, 462, for additional comments on this point.
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defined path. In phenomena such as interference and diffraction, in con
trast, light definitely behaves as a wave. Young's two-slit experiment, for
exanlple, is readily explained by the wave picture: the part of the wave
that passes through one slit interferes with the part that passes through
the other and forms the familiar interference pattern. A classical particle,
following a well-defined path, cannot pass through both slits simultane
ously.

A complete description of light is provided only by quantum field the
ory, in which the particle and wave aspects are synthesized and account
for all phenomena. For the analysis of many phenomena, the particle as
pect dominates. This is particularly true at high frequencies, when one is
dealing not with visible light but with X rays or gamma rays. In elemen
tary particle reactions, photons are emitted and absorbed and can be
treated just like any other particle; their energies and momenta, given by
equations (7.57) and (7.60), must be included in the conservation equa
tions.

Since a photon has no rest mass and no rest energy, its energy is en
tirely kinetic. The ultimate in mass-energy conversion takes place in reac
tions in which the only end products are photons. We have already en
countered one such reaction, the decay of the neutral pion. Another
example is a collision between an electron and a positron, in which both
particles are annihilated and two gamma rays are produced: 26

(7.65)

In reaction (7.65) the right side has no rest mass; the entire mass en
ergy of both electron and positron has been converted into radiant energy.
Such a result would be unintelligible without relativity.

The energies of the gamma rays in reaction (7.65) are easily calculated.
Suppose first that the electron and positron approach one another head
on with equal speeds. The total momentum of the system is zero; conser
vation of momentum requires that the two photons be emitted in opposite
directions with equal momenta, hence with equal frequencies. The direc
tion of the photons is arbitrary.

Conservation of energy gives us the energy of each photon:

E; == 2ymc2 == Ef == 2 hf

26. The positron is the antiparticle of the electron; it has the same mass and a
positive charge equal numerically to that of the electron. The symbol 'Y in reaction
(7.65) stands for a gamma ray and is not to be confused with the relativistic pa
rameter 'Y.
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where ymc2 is the energy of each of the annihilating electrons. The pho
ton frequencies are therefore given by

(7.66)

In the most common experimental arrangement, a positron in a beam
collides with an electron which is essentially at rest. To find the energies

of the photons in that case, we argue as follows. There must exist a frame
of reference in which the electron and positron have equal and opposite
speeds. Such a frame is sometimes called the center-of-mass frame; zero
momentum frame is a better name for it.

In the zero-momentum frame, the energy and frequency of each pho
ton are given by equation (7.66). The zero-momentum frame is related to
the laboratory frame by a Lorentz transformation, in which the velocity
V is just the velocity of the electron in the zero-momentum frame. The
frequencies of the gamma rays in the laboratory are obtained from equa
tion (7.63.)

Incidentally, conservation of momentum explains why a positron
electron pair cannot annihilate into just one photon. In the zero-momen
tum frame, the total final momentum must be zero. But a single photon
cannot have zero momentum. Hence there must be at least two. Argu
ments of this type, based on momentum conservation, are often useful in
the analysis of complicated experiments. They cannot specify what will
happen, but they can sometimes imply that certain reactions are impos
sible.

In reaction (7.65), rest mass is converted entirely into photon energy.
The opposite type of reaction, in which photons materialize into electron
pairs, also occurs. In principle, the reaction inverse to (7.65) could take
place; this, however, would entail aiming two photon beams directly at
each other and is too difficult to carry out in practice.

The momentum argument presented above implies that the reaction

(7.67)

cannot take place in free space. (This is best seen by viewing the reaction
in the zero-momentum frame of the two electrons.) If, however, a gamma
ray photon passes near an atom, the atom can recoil, absorbing some mo
mentum, and reaction (7.67) can proceed. Because the mass of the atom is
so much greater than that of the electrons, the atom receives practically
no energy. The reaction, called pair production, is routinely observed in
experiments.
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As noted in section 7.5, the data on beta decay indicate that the mass
of the neutrino is very small, perhaps zero. If the mass is indeed zero, it
follows that neutrinos must travel at the speed of light; otherwise, their
energy and momentum would be zero. The energy and momentum of a
neutrino would, in that case, be related by equation (7.58); from a kine
matic point of view, there would be nothing to distinguish a neutrino
from a photon.

We have already noted that in the extreme relativistic limit, when the

energy of a particle is very large compared to its rest mass, the energy
momentum relation, (7.55), approaches (7.58). The photon is always in
the extreme relativistic limit. The same is true of the neutrino, if its mass

is truly zero.
One final example of the role of photons in elementary particle reac

tions may be mentioned. Suppose we want to make deuterons by firing
neutrons at protons. According to the data on page 222, the reaction

(7.68)

would be exoergic. (The total mass of neutron + proton exceeds that of
the deuteron.) However, an analysis similar to the one we applied to elec
tron annihilation shows that (7.68) is inconsistent with momentum con
servation. (Once again, the easiest way to see that is to look in the zero
momentum frame.) If, however, we add a photon to the right side, making

the reaction

n+p-7d+y (7.69)

the conservation laws can be satisfied and the reaction can proceed. This
process is called radiative capture. Its inverse, called photo-disintegration,
is also observed.

7.8. TACHYONS

I referred briefly in section 4.4 to the possible existence of tachyons, parti

cles that move faster than light. I noted that this property is invariant: if

a particle's speed is greater than c in one inertial frame of reference, it is
greater than c in any other (provided the relative velocity between frames

is less than c).
There is an immediate problem with energy and momentum, since the

parameter ~1 - (v / C)2 that appears in their definition is imaginary when
v is greater than c. Energy and momentum, being measurable quantities,
must be real.
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(7.71)

(7.72)

The key to the theory of tachyons is to assign them imaginary rest

masses.27 If we put

m == iJ..L (7.70)

with i == -{=1 and J..L a real number, the expressions for momentum and

energy (7.30) and (7.13), become

p= J..Lv
~(V/C)2 -1

J..LC2
E== --;:::========

~(V/C)2 -1

both of which are real. The energy-momentum relation, equation (7.55),
becomes

(7.73)

(7.74)

What sense does it make for a particle to have an imaginary rest mass?
The rest energy of such a particle, mc2

, is imaginary. This is not a disaster
for a tachyon, however, because it is never observed to be at rest. Its rest

mass is therefore not a measurable quantity. Just as we can assign zero

rest mass to the photon because it is never at rest, so we can formally
assign an imaginary rest mass to the tachyon.

Equations (7.71) and (7.72) have an intriguing property: the energy
and momentum are decreasing functions of v. As a tachyon gains energy,
its velocity decreases! Infinite energy would be required to slow it down
to the speed of light, just as infinite energy is required to accelerate an
ordinary particle to speed c. A particle produced at a speed greater than c
is therefore destined to spend its entire life in that state. The realms of

tachyons and of ordinary particles are entirely disjoint, with the speed of

light forming an impassable barrier between them.

As noted in chapter 5, the existence of tachyons poses a problem for

causality. Suppose a tachyon is emitted at time t1 at position Xl (event E1)

and absorbed at time t2 at position x2 (event £2). Equation (4.9) specifies
the time interval Llt' between the two events in a frame S' in terms of Llx
and Llt. If v is the tachyon's velocity in frame S, we can put Llx == vLlt and

the equation becomes

M' = y(Llt-~LlX) = YLlt(1-~n

27. O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan, " 'Meta' -Rela
tivity," American Journal of Physics 30 (1967):718-723. G. Feinberg, "Possibility
of Faster-than-Light Particles," Physical Review 159 (1967):1089-1105.
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If the relative velocity V between 5' and 5 satisfies
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(7.75)

which is possible when v > c, equation (7.74) shows that ~t' is negative:

an observer in 5' sees the tachyon absorbed before it is emitted. Causality
seems to be violated.

The situation is saved by another interesting property of tachyons.
Equation (7.52a) gives the energy of the tachyon in 5':

E' = y(V) (E - Vp) (7.76)

For ordinary particles, the value of E' determined by equation (7.76) is
necessarily positive since the magnitude of pV is less than that of E. For a
tachyon, however, equation (7.73) shows that the magnitude of pc is

greater than that of E. It is not hard to show that if V is in the range
specified by equation (7.75), £' is negative.

If a particle absorbs a negative-energy tachyon, its energy decreases.
The process can be viewed sensibly as the emission of a positive-energy

tachyon in the opposite direction. This idea is used in quantum field the

ory. S' observers see the tachyon emitted at event £2 and absorbed at E1 ,

which according to them occurs later. By means of this interpretation,
causality is salvaged.

Several attempts to find evidence of tachyon production in high-energy
particle interactions are described in an article by Feinberg.28 The results
of all the searches were negative: no candidates have been identified. In
all probability, tachyons are destined to remain an amusing footnote in
relativity theory.

ApPENDIX: TRANSFORMATION OF MOMENTUM AND ENERGY

In this appendix, we derive several mathematical results needed in sec
tions 7.1 and 7.6.

First, we require the transformation property of the parameter

1
(7.Al)

which appears in the definition of relativistic energy and momentum.

28. G. Feinberg, "Particles that Go Faster than Light," Scientific American, Febru
ary 1970, 69-72.
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The transformation law for the components of v was derived in chapter

4. Equation (4.19) read

v' == v_z __

z y(V)(1 _ V;;)

(7.A2a)

(7.A2b)

(7.A2c)

V, the velocity of frame 5' relative to frame 5, is as usual assumed to
be in the x direction, and

(7.A3)

Using equation (7.A2) we can express y(v') as

1

(7.A4) is a formidable-looking expression, but after some algebra it re

duces to the much simpler form

y(v') = y(V)y(v) (1- V;2V )

The analogous expression for y(v) in terms of y(v') is

( V'V)y(v) == y(V) y(v') 1 +7-

(7.A5)

(7.A6)

Consider next the transformation properties of the products YV x ' yV y '

and YV z• Multiplying equation (7.A5) by (7.A2) we obtain

v.~y(v') == y(V)y(v)(vx - V) (7.A7a)
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v~y(v') == vy y(v)
v~y(v') == V z y(v)

The inverse form of equation (7.A7a) is

vx y(v) == y( V) y(v' )(v~ + V)
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(7.A7b)
(7.A7c)

(7.A8)

Notice that although the transverse components of velocity, vy and V z '

transform in a complicated way, the products YVy and YV z transform
much more simply: they are invariant. Multiplying equations (7.A7b,c)
by m gives directly:

p~ == pz (7.A9)

The transverse components of momentum are invariant. If they are
conserved in one frame, they are automatically conserved in any other.

Multiplying equation (7.A8) by m gives the transformation law for the
x component of momentum:

Px == y(V) [p~ + mVy(v')] (7.AIO)

We are now prepared to investigate the covariance of the momentum
conservation law. In the collision discussed in section 7.3, assume that x

momentum is conserved in fran1e 5:

(7.A11)

(7.A12)

and transform each term to Sf using equation (7.AIO). The result is

y(V) {p~ + p~ + V[mA Y(v~) +mBY(v~)] }
== y(V){p~ + p~ + V[mcY(v~) + mDY(v~)]}

The factor y(V) appears on each side in equation (7.A12) and cancels.
The equation now represents conservation of x momentum in S', provided
the terms that multiply V cancel, that is, provided that

m A y(v~) + mBY(v~) == mcY(v~) + mDY(v~) (7.A13)

(7.A13) is the auxiliary condition that must be satisfied if conservation

of momentum is to be a covariant law. It asserts that the quantity ym is

conserved in 5'. Since the designation of 5 and 5' is arbitrary, the same
relation must hold in frame 5, that is

m A y(vA) + mBy(vB) == mcy(vc) + m0 y(vD)

PROBLEMS

7.1. The rest mass of the proton is 1.007277 u.
(a) What is the rest energy of a proton in MeV?

(7.A14)
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(b) A proton moves with velocity O.1c. What is its (total) energy in MeV?
What is its relativistic mass? What is its kinetic energy in MeV? What is its
momentum in MeV/e?

(c) Calculate the kinetic energy and momentum using the Newtonian relations
K = 1/2 mv2 and p = mv; compare with the results of (b).

(d) A proton has kinetic energy of 2,000 MeV. What is its relativistic mass?
What is its velocity? Calculate the Newtonian velocity and compare with the rela
tivistic result.

7.2. The nucleus 7Be contains 4 protons and 3 neutrons. The mass of the neutral
7Be atom is 7.016928 u.

(a) Find the binding energy of 7Be in MeV.
(b) Consider the reaction n + 7Be ---7 4He + 4He. If the incident neutron has

negligible kinetic energy, what will be the total kinetic energy of the two alpha
particles? (The rest mass of the neutron is 1.008665 u.)

7.3. A hypothetical particle, the Q meson, has a rest energy 7.5 GeV (which
equals 7,500 MeV). It decays into two Y particles; the rest energy of a Y is 3.0
GeV. Suppose a Q meson decays at rest.

(a) Find the (total) energy of each Y.
(b) Find the kinetic energy of each Y.
(c) Find the momentum of each Y.
(d) Find the velocity of each Y.

7.4. A Q meson moving at 0.8e in the x direction decays. (See problem 7.3.) The
decay products are emitted along the x axis. Find the energy, momentum, and
velocity of each Y.

7.5. Particle A (rest mass n1A) decays into particle B (rest mass m a) and a photon.
(a) An A particle decays at rest. Write the equations for conservation of energy

and momentum in this process.
(b) Solve the equations. Find the energies of the B and the photon in terms of

m A e2 and m ae2
. Compare your results with eq. (7.48).

(c) The ~o hyperon decays into a A hyperon and a photon. The rest energies
of ~o and A are

mle2 =1,139 MeV rni\e2 =1,116 MeV

Find the energies of the A and the photon when a ~o decays at rest.
(d) A ~o moving at 0.6c in the x direction decays. The A is emitted in the + x

direction. Find the energy and momentum of the A and the photon. Verify that
energy and momentum are conserved.

7.6. A photon of energy 3 GeV moving in the + x direction collides with a particle
B at rest. The rest energy of B is 2 GeV. After the collision a new particle, 0,
moves with speed v. (Conservation of momentum demands that the direction of
o must be along the x axis.) Let m denote the rest mass of D.

(a) Write the equations that describe conservation of energy and momentum
for this reaction.

(b) Solve the equations for vic and me2
. (You should find it easier to solve for

vic first.)
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(c) Find the energy and momentum of particle D.
(d) Suppose this reaction is observed in a frame S' that moves in the - x

direction at 0.4e relative to the laboratory. Find the energy of the incident photon
and the energy and momentum of Band D in S'. Verify that energy and momen
tum are conserved.

7.7. A useful concept for the analysis of particle reactions is the frame of reference
in which the total momentum is zero. This is generally called the center-of-mass
(CM) frame because the center of mass of the system is at rest. For a two-particle
system, the momenta of the particles in the CM frame are equal and opposite.

The relation between the laboratory frame and CM frame is most easily estab
lished by exploiting the invariance of the quantity E2 - p2e2, discussed in section
7.6. E and p can be the energy and momentum of a single particle or of any system
of particles.

Consider a reaction in which a particle of rest mass m and energy Eo collides
with another particle, of equal mass, at rest. Let E>f denote the energy of each
particle in the CM frame. (For the case of equal masses, the CM energies must be
equal.)

(a) Express the total energy and momentum of the system in the laboratory
in tenns of mc2 and Eo and in the CM frame in terms of me2 and E>f.

(b) Using the invariance argument, solve for E>f in terms of me2 and Eo. (The
total energy in the eM frame is of course 2E>f.)

(c) A proton of kinetic energy 100 MeV collides with a proton at rest. Find the
total kinetic energy of the system in the CM frame.

(d) Analyze the problem using Galilean relativity. Show that for equal-mass
particles, the total CM kinetic energy is Eo/2. Compare with the result of (c).

(e) Repeat (c) for a proton with kinetic energy 5 GeV.

7.8. When an energetic proton collides with a proton at rest, an X particle (rest
energy = 2 GeV) can be created via the reaction

p+p~p+p+X

The threshold energy for a reaction is defined as the minimum kinetic energy
that allows the reaction to proceed. Obviously the threshold energy for the above
reaction must be at least equal to the rest energy of the created particle, 2 GeV.

(a) Give a qualitative argument that explains why the threshold energy must
in fact be higher than 2 GeV. (Hint: If all the kinetic energy of the incident proton
is converted into rest energy, the particles in the final state must all be at rest.
Why is this impossible?)

(b) The threshold energy measured in the CM frame is 2 GeV. Why? Using
the result of problem 7.7, find the threshold energy in the laboratory.

(c) High-energy physicists nowadays often perform colliding-beam experi
ments. In such an experiment, instead of the target being at rest, the colliding
protons (or protons and antiprotons) have equal energies. What advantage does
this arrangement provide?

7.9. Energy from the sun arrives at the earth's atmosphere at the rate of 1.36 X

103 joule/m2/sec. The (mean) distance between earth and sun is 1.5 X 1011 m.
The sun's lTIaSS is 2 X 1030 kg.
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(a) Calculate the rate at which energy is radiated by the sun in joule/sec.
(b) At what rate is the sun's mass decreasing as a result of its radiation?
(c) The radiated energy is produced by nuclear reactions in the interior of the

sun. Assuming that one-third of 1 percent of the reactant rest energy is converted
to radiant energy in the reactions, estimate how long the sun can continue to
radiate at its present rate.



8 General Relativity

8.1. INTRODUCTION

In special relativity, as in Newtonian mechanics, inertial frames enjoy a

preferential status. The principle of relativity applies only to them. The
laws of nature are the same in all inertial frames and no experiment can
distinguish between one and another. An inertial frame is one in which
Newton's law of inertia holds: a body subject to no net external force
remains at rest or moves in a straight line with uniform velocity.

All inertial frames move uniformly relative to one another. If K is an
inertial frame and K' is accelerated relative to K, then K' is noninertial.
The laws of nature are more complicated in K' than in K. As noted in
chapter I, in a noninertial frame bodies experience pseudo-forces, called
inertial forces, for which no agent can be identified; in a rotating frame,
for example, every body is pushed away from the axis of rotation by a
1/centrifugal" force.

Einstein was dissatisfied with this state of affairs. In his popular book
he posed his objection as follows:

How does it come that certain reference systems (or their states of
motion) are given priority over other reference systems (or their
states of motion)? What is the reason for this preference? ... I
seek in vain for a real something in classical mechanics (or in the
special theory of relativity) to which I can attribute the different be
havior of bodies considered with respect to the reference systems K
and K'.l

For Newton, absolute space was the "something" that provides a defi

nition of absolute acceleration and distinguishes between inertial and non-

1. Einstein, Relativity, 71.
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inertial frames. In support of this view Newton described an experiment

in which a bucket half-filled with water hangs from a long rope. If the

rope is twisted many times and 'then released, the bucket begins to rotate.

The surface of the water at first remains level. Gradually, however, as

the rotation of the bucket is transmitted to the water, the water becomes
depressed in the middle and rises on the sides of the bucket, forming a

concave figure. If the bucket is suddenly stopped, the water continues to

rotate for a while and retains its concave form.

According to Newton, the bucket experiment (which he actually per
formed) demonstrates the existence of absolute space and of absolute ac

celeration. Inertial forces act on the water when it accelerates relative to

absolute space; its motion relative to the bucket is irrelevant. A similar

argument accounts for the equatorial bulge in the rotating earth.
The nineteenth-century physicist/philosopher Ernst Mach rejected

Newton's conception of absolute space. In Mach's view, space without
matter has no properties; the mean velocity of all the matter in the uni
verse (the "celestial bodies") establishes the standard with respect to

which acceleration may be defined. 2

Mach attributed the inertia of every body to the rest of the matter in

the universe. According to this view, the water in Newton's experiment
experiences centrifugal forces when it rotates relative to the distant mat
ter. If the bucket and the water were the only objects in the universe, the
outcome of the experiment would be different: the water would remain
level at all times. This hypothesis is obviously difficult to test.

Mach's ideas had a profound influence on Einstein's early thinking;
he coined the term "Mach's principle" to describe these ideas. Although
Einstein eventually abandoned Mach's principle, he retained its central

premise-that absolute acceleration has no meaning.
Elsewhere, Einstein pointed out that the law of inertia involves a circu

lar argument. 3 A body moves without acceleration if no forces act on it,

but how do we know that no forces are acting? Contact forces can be

excluded by inspection, but what about forces that act at a distance? In

particular, what about gravity? We infer that such forces are absent (or

negligibly small) only from the fact that the body is observed to move

without acceleration. This line of reasoning leads to the principle of equiv

alence, discussed in the next section.

2. Similar ideas had been expressed in 1721 by Bishop Berkeley.
3. Einstein, The Meaning of Relativity, 58.
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(a)

(b)

acceleration of spacecraft

Fig. 8.1. Testing a reference fralne for accelera
tion by releasing an apple. (a) The apple remains
stationary when released. The laboratory must be
nloving with constant velocity. (b) The apple
"falls" when released. The laboratory must be ac
celerating in a direction opposite to that of the
apple's fall.

"Every intellect which strives after generalization," said Einstein,

"must feel the temptation to venture the step towards a general principle

of relativity." 4 Guided by that conviction, he sought to extend the princi

ple of relativity to encompass all frames of reference.

At first sight such a quest seems doomed to fail, for the very reasons

we have been discussing. Our everyday experience indicates that the laws

of physics are not the same in all frames. f-Iow then can a general principle

of relativity possibly hold?

Suppose a spacecraft is cruising in outer space, far from any astronomi

cal body. According to the principle of relativity, no experiment per

formed inside the spacecraft can distinguish between a state of rest and a

state of uniform motion. It is easy enough, however, for an astronaut to

4. Einstein, Relativity, 61.
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determine whether or not the spacecraft is accelerating. All he has to do
is hold out an apple and release it. If the apple "floats" (fig. 8.1a), the
spacecraft is moving with constant velocity and its rest frame is inertial;

if the apple "falls" in some direction (fig. 8.1b), the craft must be accelerat

ing in the opposite direction.
In the reference frame of an accelerating spacecraft, the ordinary laws

of mechanics do not hold. In particular, the law of inertia is not satisfied:
the apple's velocity changes even though no IJreal" forces act on it. How

then can one hope to express the laws of physics in a way that does not
distinguish between inertial and accelerated frames?

After grappling with this problem for several years, Einstein finally
arrived at the general theory of relativity, an intellectual tour de force
that accomplished the apparently impossible task of putting all frames of
reference on an equal footing. The solution is a formal one; it involves the
introduction of abstract coordinates called Gaussian coordinates, in terms
of which the laws of physics can be expressed in fully covariant fashion.

As we shall see, Einstein's quest led him along unexpected paths. In
pursuing a general theory of relativity he arrived at a theory of gravita
tion. The mathematical formulation of general relativity, unlike that of
the special theory, is quite complicated, employing the techniques of ten
sor calculus and differential geometry. A fully quantitative treatment is
not possible here. We can, however, describe the basic concepts of the
theory and its most important implications.

8.2. THE PRINCIPLE OF EQUIVALENCE

The last section of Einstein's 1907 review article on special relativity is
entitled IJPrinciple of Relativity and Gravitation." 5 It was here that Ein

stein put forward the idea that later came to be known as the principle of

equivalence and that constitutes the first step toward a general theory
of relativity. He developed the idea more fully in a paper published in

1911.6

To introduce the principle of equivalence, we return to the problem of

the spacecraft discussed above. Suppose the spacecraft is not accelerating
but happens to be parked on the surface of a planet. (See fig. 8.2.) The

5. A. Einstein, "On the Relativity Principle and the Conclusions Drawn from
It," ]ahrbuch der Radioaktivitat und Elektronik 4 (1907):411-462; also Collected
Papers, doc. 47.
6. A. Einstein, "On the Influence of Gravitation on the Propagation of Light,"
Annalen der Physik 35 (1911):898-908. An English translation appears in The
Principle of Relativity, 99-108. This paper is quite readable.
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surface of planet

Fig. 8.2. A spacecraft parked on the surface of a planet. A
released apple falls under the influence of the planet's grav
ity. This situation cannot be distinguished from that of fig.
8.1.
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gravitational pull of the planet attracts a released apple and causes it to

fall, just as it does when the spacecraft is accelerating. If the direction of
the gravitational force in figure 8.2 is opposite to that of the acceleration
of the spacecraft in figure 8.1b, the apple falls in the same direction in
both cases.

The magnitude of the apple's acceleration in figure 8.2 depends on the
strength of the planet's gravity, which is determined by its mass and its
radius. By assigning appropriate values to those quantities, we can make
the apple's acceleration in the planet's gravitational field equal to that in
the accelerating spacecraft in figure 8.1. All other mechanical effects are
likewise the same. If, for example, the astronaut is standing on a scale, the
reading of the scale is the same in either case.

In this problem, then, an acceleration of the frame of reference in a
particular direction and a gravitational force field acting in the opposite
direction produce identical effects. Observers within the spacecraft cannot
distinguish between the two alternative explanations for their observa
tions.

Figure 8.3 shows another example. A passenger in a freely falling ele

vator releases a tennis ball. As viewed from an inertial frame fixed on the

ground, both the elevator and the tennis ball are acted upon by the earth's
gravity and both fall with the same acceleration (fig. 8.3a). The ball re
mains at a constant height above the elevator's floor.

Figure 8.3b shows the situation as seen in an accelerated frame of refer

ence that moves with the elevator. Here the ball floats without falling. In
the falling elevator, as in the accelerated spacecraft of figure 8.1b, the laws
of Newtonian mechanics do not hold. In this case the tennis ball is subject
to an unbalanced force (the earth's gravity), yet it does not accelerate.



248 / General Relativity

elevator(a)

•

(b)

;
g

gravitational
pull of earth

earth Earth frame Accelerating frame earth

(c) fictitious body

9

earth

gravitational
pull of fictitious
body

gravitational
pull of earth

(d)

•

Fig. 8.3. Another example of the principle of equivalence. The ele
vator is in free fall in the earth's gravity. (a) As seen in an inertial
frame fixed on earth, the elevator, passenger, and tennis ball are all
falling with the same acceleration. Their relative position does not
change. (b) As seen in an accelerating frame fixed on the elevator,
the tennis ball is subject to the earth's gravity but does not fall. New
ton's laws of motion do not apply in this accelerated frame. (c) Here
the acceleration of the elevator has been replaced by a massive object
above it. That object produces a gravitational upward pull that cancels
the earth's downward pull. The tennis ball remains at rest. (d) Here
the earth's gravity has been replaced by an upward acceleration of
the frame. The net acceleration is zero: the elevator frame is inertial.
The tennis ball remains at rest because no forces act on it.

In figure 8.3c, the downward acceleration of the elevator frame has

been replaced by a massive body, located above the elevator, whose grav

ity is such that the upward force it exerts on the tennis ball equals the

downward pull of the earth. The elevator frame in this case is inertial.

Since the net force on the ball is zero, it remains at rest after being re
leased, just as in fig. 8.3b.

Instead of replacing the downward acceleration of the elevator frame

with a gravitating body, we could have substituted for the earth's gravity
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an upward acceleration of the elevator frame. When this is added to the
1/ actual" downward acceleration, the net acceleration is zero: the elevator
moves with constant velocity. l~he elevator fralne is again an inertial
frame, this time with no gravitating bodies whatever in its vicinity. A

released ball floats freely because no forces act on it (fig. 8.3d).
Observers inside the elevator cannot distinguish among the last three

pictures in figure 8.3. No mechanical experiment can determine whether
their laboratory is in free fall under the influence of the earth's gravity

(fig. 8.3b), is at rest and sandwiched between the earth and another mas

sive body (fig. 8.3c), or is coasting in outer space, far from any gravitating

lnatter (fig. 8.3d).
The principle of equivalence is a bold generalization of these findings.

Einstein posited that an accelerated frame of reference and a gravitational

force field that points in the direction opposite to the acceleration are

equivalent in every respect. Einstein's hypothesis goes far beyond the ob

servations described thus far. The equivalence principle identifies gravity

as a unique force in nature; it asserts that by studying motion in acceler

ated frames, one is also studying the effects of gravity, and vice versa. The

equivalence principle leads to several predictions that can be tested by

experiment; they are discussed in the following sections. In each case, an
effect calculated in an accelerated frame is used to predict the outcome of
an experiment involving gravitation.

Just as special relativity forbids us to speak of absolute velocity, the
principle of equivalence makes it impossible to speak of the absolute accel
eration of a frame of reference. No experiment of any kind can distinguish
between acceleration and a (uniform) gravitational field.

Gravitational and Inertial Mass

An ilnportant assumption is implicit in the very statement of the principle
of equivalence. In a noninertial frame any body placed at a given point
and subject to no real forces is observed to accelerate at precisely the same

rate (which is just equal to the acceleration of the fralne and points in

the opposite direction). If an acceleration of the reference frame is indeed

equivalent to a gravitational force field, the effect of gravity must likewise

be the same on all bodies, irrespective of their composition or their mass.

This property of gravity is subject to experimental test.

Early evidence was provided by Galileo, who noted that in a fall of 100
braccia (about 46 m) in air, 1/ a ball of gold will not have outrun one of
copper by four fingers," a difference of about one part in a thousand.
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"This seen," Galileo added, "I came to the opinion that if one were to
remove entirely the resistance of the medium, all materials would descend
with equal speed." 7

The principle of equivalence demands that the rate of acceleration un
der gravity be exactly the same for all bodies. Even a tiny difference would
distinguish between the effects of gravity and of acceleration and thereby
invalidate the principle.

The requirement can be expressed in a different way by noting that
mass plays two distinct roles in mechanics. The mass that appears in New
ton's law of motion, F == rna, is a measure of a body's inertia-its resis

tance to a change in its motion. We call it inertial mass, mI' and write
Newton's law as

(8.1)

Mass appears also in the equation W mg, which relates a body's
weight, W (the force of gravity on the body), to its mass. (The constant
of proportionality g has the dimensions of acceleration.) The mass in this
equation has nothing to do with inertia; it is a measure of the /I quantity
of matter" contained in the body. We therefore call it gravitational mass,

me, and write

(8.2)

There is no reason a priori why a body's gravitational mass need be
related to its inertial mass.

Consider a freely falling body, that is, one subject only to the earth's
gravity. We put F == W in equation (8.1) and obtain

a == W/m I

Substituting for W from equation (8.2) gives

a==(me/mI)g

(8.3)

(8.4)

Equation (8.4) implies that the acceleration due to gravity has the same
value for all objects, provided that the ratio of gravitational mass to iner
tial mass is the same for every object. (By an appropriate choice of units,
the two masses can be made numerically equal.) This requirement must
be strictly satisfied if the principle of equivalence is valid.

7. Galileo Galilei, Two New Sciences, translated by Stillman Drake (Madison:
University of Wisconsin Press, 1974), 75.



General Relativity / 251

Newton recognized the distinction between the two types of mass and
carried out experiments to investigate whether their ratio is indeed the
same for all materials. He measured the periods of pendulums of equal
length, made of a variety of materials, and found them to be the same
within one part in a thousand. He thus proved that the ratio mG/m[ is the
same for all the materials he tested, within the accuracy of his experi
ment.8 In 1827, Friedrich Bessel carried out an improved version of the
same experiment and verified the equality of inertial and gravitational
mass to within two parts in 105

.

Much more accurate confirmation was provided by a series of experi
ments carried out over many years by Roland Eotvos, who employed a
sensitive torsion balance from whose ends he suspended bars made of
different materials. Eotvos's experimental arrangement was such that the
rotation of the earth would cause the balance to twist if the ratio of gravi
tational to inertial mass for the two materials was different. In 1890,
Eotvos was able to show that the ratios for a variety of materials are equal
to within a few parts in 109

.
9

In 1964, R. H. Dicke improved the precision of the result still further
and confirmed the equality of mG/m[ for aluminum and gold to within
one part in 1011, one of the most precise experimental results ever ob
tained. Dicke's result placed Einstein's principle of equivalence on a very
firm experimental foundation. 1o The equality of inertial and gravitational
mass is sometimes called the weak principle of equivalence; it is a neces
sary but not a sufficient condition for the validity of Einstein's postulate,
which is called the strong principle.

One important aspect of the equivalence principle remains to be dis
cussed. In a uniformly accelerated frame, every force-free body has the
same acceleration. The equivalent gravity field is likewise uniform: it has
the same strength and points in the same direction everywhere. But no
such gravity field exists in nature; real gravitational forces point toward
the bodies that create them and are stronger at points near the source than
at points farther away. Hence the accelerated spacecraft frame in figure

8. The force that acts on a pendulum is produced by gravity and is proportional
to the pendulum's gravitational mass. The acceleration this force produces is in
versely proportional to the inertial mass. A standard calculation shows that the
period of oscillation is proportional to the square root of the ratio m / mG.
9. A good description of the Eotvos and the Dicke experiments is found in Hans
Ohanian, Gravitation and Spacetime (New York: W. W. Norton, 1976).
10. In 1971, V. B. Braginsky improved the precision by another order of magni
tude.
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Fig. 8.4. Departure from the principle of equivalence caused by
nonuniformity of the earth's gravity field. (a) Two balls are re
leased at equal heights at the same time. As viewed from a refer
ence frame fixed on the ground, the balls draw closer together as
they fall. (b) As viewed in the (accelerated) reference frame that
falls with the elevator, the balls stay at the same height but draw
closer together as time passes.

8.1b and the gravitational field of the planet in figure 8.2 are not strictly

equivalent. For the same reason, the uniform gravitational field that re

places the acceleration of the elevator frame in figure 8.3d does not quite

cancel the nonuniform field of the earth.

These differences give rise to effects that are in principle detectable.

Suppose two tennis balls are released simultaneously at the same height

in a falling elevator. Ground-based observers see the balls draw gradually

closer as they fall (fig. 8.4a) because the force of gravity, which points

toward the center of the earth, acts in a slightly different direction on each

ball. Observers in an accelerated frame that falls with the elevator see the

balls move slowly toward each other (fig. 8.4b). In the fralne of figure

8.3d, obtained by replacing the earth's gravity by an upward acceleration

of the elevator frame, the balls remain at rest and their separation remains

constant.

A similar effect occurs if two balls are released simultaneously at differ

ent heights. The balls fall at slightly different rates because the lower one,

being closer to the center of the earth, experiences a slightly stronger

gravitational force and therefore accelerates more rapidly. Observers in

the accelerated elevator frame find that the distance between the balls
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increases gradually with time, whereas in the fraine of figure 8.3d their

separation remains constant.

These remarks do not invalidate the principle of equivalence, but they

do restrict its applicability. A real gravitational field is equivalent to an

accelerated reference frame only locally; that is, over a region small

enough that the gravity within it can be considered approximately uni

form. If experiments are performed in an elevator of normal size that falls

only a short distance, the effects of the earth's nonuniform gravity are

extremely small. (But see the remarks below concerning tidal effects.)

Freely Falling Frames

A freely falling laboratory accelerates in the direction of the gravity field

at its location. According to the equivalence principle, we can replace that

acceleration with a gravitational force field that (locally) cancels the one

that produced the acceleration. ~rhe freely falling frame is therefore equiv

alent to a frame that moves without acceleration and with no gravity; it

plays in general relativity the same role as the inertial frame does in spe

cial relativity. The (local) laws of physics are the same in all freely falling

frames. An observer in any freely falling frame experiences weight

lessness.

The frames in figures 8.3b and 8.3c are both freely falling; so is a frame

fixed in a space vehicle in orbit. Unlike the inertial frames of special rela

tivity, which extend throughout all space, a freely falling frame is defined

only locally.

Dicke has phrased the strong principle of equivalence as follows:

In a freely falling, nonrotating laboratory the local laws of physics
take on some standard form, including a standard numerical con
tent, independent of the position of the laboratory in space and
time. II

This statement implies that by going into a freely falling frame, one

"transforms away" any gravitational field that exists in a small region.

(But see the remarks below.)

A frame of reference fixed on earth is fre~ly falling in the gravitational

field of the sun (and the moon).12 In an earth-based frame the sun's grav

ity has been transformed away, but only locally, of course. It would be

11. R. H. IJicke, The Theoretical Significance of Experimental Relativity (New
York: Gordon and Breach, 1964), 4.
12. The earth-based fralne is not freely falling with respect to the earth's own
gravity.
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absurd to claim that the sun's gravity is not detectable from earth; the

observed motion of the planets is its most obvious manifestation. But in

first approximation the sun's gravity does not affect the motion of a body

near the earth's surface, as viewed in a reference frame fixed on earth.

Tidal Forces. Even in a freely falling frame, the nonuniforrnity of grav

itational fields gives rise to detectable effects. The best known of these is

the phenomenon of ocean tides, caused by the difference in the strength

of the moon's gravitational field on opposite sides of the earth. I3 For this

reason the variation in the strength of a gravitational field is called a tidal
force.

By detecting tidal forces, an observer can determine that he is in a real

gravitational field even though his frame is freely falling. This conclusion

seems inconsistent with the assertion that the local laws of physics are the

same in all freely falling frames. If tidal forces are included, the assertion

is false.

Dicke's version of the principle of equivalence, quoted above, contains

the disclaimer, "It is of course implicit in this statement that the effects

of gradients in the gravitational field strength are negligibly small, i.e.,

tidal interaction effects are negligible." Hans Ohanian has shown, how
ever, that tidal effects persist even when the object in question is arbi

trarily small. I4 If the radius of the earth were to shrink to zero, its density

remaining constant, the shape of the tidal bulges would remain un

changed. In view of this result, it is hard to argue that tidal effects are

nonloca!. In principle, an observer in a freely falling elevator could deduce

that he is in a gravitational field by detecting tidal bulges in a liquid drop.

Many subtleties are associated with the principle of equivalence. A re

cent review article by John Norton contains a useful discussion. ls

The Genesis of the Principle of Equivalence

Einstein referred to his discovery of the principle of equivalence as "the

happiest thought of my life" .16 In an address given in Japan in 1922, he

13. The sun also contributes to tide formation. Although the moon's gravity is
much weaker than that of the sun at the position of earth, its fractional variation
is greater because the moon is so much closer than the sun. Hence tides on earth
are due primarily to the influence of the moon.
14. H. C. Ohanian, "What Is the Principle of Equivalence?" American Journal of
Physics 45 (1977):903-909.
15. John Norton, "What Was Einstein's Principle of Equivalence?" in Einstein
and the History of General Relativity, ed. Don Howard and John Stachel (Boston:
Birkhauser, 1989), 5-47.
16. Unpublished manuscript by Einstein, quoted in Pais, Subtle Is the Lord, 178.
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described the circumstances under which the happy thought occurred to
him.

I was sitting in a chair in the patent office at Bern when all of a sud
den a thought occurred to me: "If a person falls freely he will not
feel his own weight." I was startled. This simple thought made a
deep impression on me. It impelled me toward a theory of gravita
tion.17

The episode must have occurred sometime in 1907.
There can be no doubt that the equality of gravitational and inertial

mass was the principal experimental fact on which the principle of equiva
lence (and ultimately the general theory of relativity) was based. In an
article written in 1934, Einstein says:

The equality of inertial and gravitational mass was now brought
home to me in all its significance. I was in the highest degree
amazed at its existence and guessed that in it must lie the key to a
deeper understanding of inertia and gravitation. I had no serious
doubts about its strict validity even without knowing the results of
the admirable experiment of Eotvos, which-if my memory is
right-I only came to know later.18

The remark about the Eotvos experiment is fascinating. According to
Pais, Einstein learned about the experiment only in 1912 and first referred
to it in a paper written in 1913. (Eotvos's paper had been published in
1890.) As in the case of special relativity and the Michelson-Morley ex
periment, Einstein apparently had no need to know the up-to-date experi
mental situation. His intuition stood him in good stead.

8.3. THE GRAVITATIONAL RED SHIFT

In his 1911 paper, Einstein derived two consequences of the principle of
equivalence that are subject to experimental test. Both predictions have
been confirmed, providing strong support for the principle. In this section
we calculate the change in the frequency of light 111easured in an acceler
ated frame and apply the principle of equivalence to infer that a similar
effect takes place in a gravitational field. The second effect, the deflection
of light in a gravitational field, is treated in section 8.4.

Consider the following thought experiment. Light of frequency f is
emitted at the bottom of an elevator of height L that is moving in free

17. J. Ishiwara, Einstein Koen-Ruku (Tokyo: Tokyo-Tosho, 1977). Cited in Pais,
Subtle Is the Lord, 179.
18. Albert Einstein, "Notes on the Origin of the General Theory of Relativity,"
reprinted in Albert Einstein, Ideas and Opinions (New York: Dell, 1954), 279.
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Fig. 8.5. Thought experiment used by Einstein to de
rive the gravitational red shift. Light is emitted at the
bottom of an accelerating elevator and detected at the
top. (a) The experiment is shown in frame 5, in which
the elevator is at rest when the light is emitted. When
the light arrives at the top the elevator is moving with
speed V. (b) The same experiment is shown in frame
5', in which the elevator is at rest when the light ar
rives. The source was moving downward when the
light was emitted. In either case, a Doppler shift is de
tected.

space with a constant "upward" acceleration g. The light is detected by an
observer 0 stationed at the top of the elevator. What frequency does 0
measure?

We face a serious problem at the outset. 0 is clearly not an inertial
observer. How can we say anything about his measurements?

Einstein assumed that the result of every measurement made by accel
erated observer 0 is the same as that obtained by a co-moving inertial

observer, that is, an inertial observer, at the same location, who has the
same velocity as 0 at the time the measurement is made. This assumption
may not be rigorously valid but it should be satisfactory, at least as a first
approximation, for moderate accelerations.
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(a)

iii
gravity

treceiver

(b)

Fig. 8.6. The gravitational red shift. Light emitted
by source (a) travels against a gravitational field
and is detected by a receiver at a higher elevation
(b). By the principle of equivalence, this experiment
is equivalent to that of fig. 8.5; hence the detected
light is red-shifted.

Let S be the inertial frame in which the source is (momentarily) at rest

when the light is emitted and Sf the inertial frame in which the receiver

is at rest when the light is detected. Figures 8.5a and 8.5h show the experi

ment as it looks in each of those frames.
FrOill either figure it is clear that the source and receiver are receding

from one another. Hence, according to the theory of the Doppler effect
discussed in section 4.8, the frequency ff measured at the receiver is lower

than f: observer 0 detects the light as red-shifted.
According to the principle of equivalence, the same effect must be ob

served if the elevator is not accelerating but is instead subject to a gravita
tional force field directed downward (fig. 8.6). Since 0 in this case is al
ways at rest relative to the source, he cannot attribute the red shift to the

Doppler effect but must interpret it as an effect of gravity. We conclude
that light is red-shifted when it moves opposite to the direction of a gravi
tational field. Light that moves in the direction of a gravitational field is

similarly blue-shifted. Because the most interesting astronomical applica

tions involve red shifts, the effect is known as the gravitational red shift.

An exact calculation of the frequency shift is quite complicated. In ei
ther frame S or Sf, the velocity of the top of the elevator at any given time

differs from that of the bottom, and the height of the elevator changes as

it accelerates. (Recall the discussion of the accelerated pole in sec. 6.3.) We

can greatly simplify the problem by considering only the case in which
the relative velocity V between source and receiver is much less than c,

neglecting all but the lowest power of V/c in every expression.
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In this approximation, the distance traveled by the light in either 5 or
5 f is just L. 19 The transit time of the light in either frame is t == LIc, and
the relative velocity between 5 and S' is

V=gt=gL
c

In view of our approximation, the results are valid only when

(8.5)

(8.6)

The fractional frequency shift is given by the first-order Doppler for
mula

~f _ V _ gLy- -c--2

By virtue of condition (8.5), the result applies only when the fractional
frequency shift is very small. This condition is satisfied in all the applica
tions to be discussed.

According to the principle of equivalence, the frequency shift of light

when it moves a distance L away from a gravitating body is also given by
equation (8.6), in which g now denotes the acceleration due to the gravity
of the body. If light moves toward a massive body, the minus sign in
equation (8.6) is replaced by a plus sign: the light is blue-shifted.

In a freely falling elevator there are two effects, a Doppler shift due to
the acceleration and a gravitational shift of equal magnitude and opposite
sign. The two effects cancel, and no frequency shift should be detected.

Equation (8.6) applies only if g, the strength of the gravitational field,

can be regarded as constant in the region through which the light moves.

If that condition is not satisfied, we can subdivide the path of the light
into short segments. In each segment equation (8.6) applies, with g the
strength of the gravity in that segment. The total shift is the sum of the

contributions from all the segments.
The quantity gL represents the difference in gravitational potential

(potential energy per unit mass) between the two ends of the segment.
The total frequency shift is therefore determined by the difference in po
tential between the end points of the light path. Instead of equation (8.6),

we have (to first order)

19. The actual distance traveled by the light, as measured in frame S, is greater
than L; in 5' the distance traveled is less than L. (See figs. 8.Sa and 8.Sh.) This
correction would change the calculated frequency shift hut only in second order.
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(8.7)

where <1>1 is the potential at the point of emission and <1>2 the potential

where the light is measured. Positive d<l> implies a red shift.

An alternative derivation of the gravitational red shift makes use of the

photon model of light. Suppose a photon is emitted by an atom at point 1
in figure 8.6 and absorbed by another atom at point 2. As we learned in

chapter 7, the mass of the emitting atom changes by the amount

while that of the absorbing atom changes by

dm2 == + hf'lc2

(8.8a)

(8.8b)

where f and f' are the frequencies of the emitted and the absorbed pho

tons.

If the process takes place in a gravitational field, the changes in mass

are accornpanied by changes in gravitational potential energy:

dP£1 == <I>1d m1 == - h!<I>11c2

dPE2== <l>2dm2 == + h!'<1>21c2

The total changes in energy for the two atoms are:

dEl == - hf+ dPE1 == - hf(l + $11c2
)

dE2== hf' + dPE2== + hf' (1 + <1>21c2
)

(8.9a)
(8.9b)

(8.lDa)
(8.10b)

Conservation of energy requires that the change in the total energy of

the system, dEl + dE2, be zero. Equations (8.l0a,b) give

(8.11)

If the fractional change in frequency is small, we can approximate I' by

I on the right side of equation (8.11). (The error will be of second order.)

In this approximation we recover the result (8.7).

The principle of equivalence appears implicitly in this derivation be

cause we have used the same expressions for dm in equations (8.8a,b),

which involve the atom's inertial mass, and in equations (8.9a,b), which

involve its gravitational mass. (Notice, however, that only the weak prin

ciple is required.) The equivalence principle assigns to a photon a gravita

tional mass equal to its effective inertial mass hllc2
. As a result, the pho

ton can be viewed as having a potential energy when it is in a gravitational
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field. Its "kinetic" energy hf changes when it moves in a gravitational

field, just as the kinetic energy of any other particle does.

Observational Tests

The principal applications of the gravitational red shift are in astronomy.

Light emitted at the surface of a star moves against the gravitational at
traction of the star and should therefore be detected on earth as red

shifted. Equation (8.7) applies. The gravitational potential outside a spher

ical star of mass M is

<1>(1') == - GMlr (8.12)

where G is the universal gravitational constant, 6.67 X 10-11 N m 2/kg2,

and l' is the distance from the center of the star. For this problem 1'1 is R,
the radius of the star, and 1'2 is the earth-star distance, which is much

greater than R. Hence we can set <1>2 == aand obtain

GM
Rc2

(8.13)

In his 1911 paper, Einstein derived equation (8.13) and applied it to the

sun. The theory predicts that each line in the solar spectrum should be
red-shifted by about two parts in a million. So small a shift is hard to
detect because the solar lines are subject to a number of other effects,
including Doppler broadening due to the thermal motion of the atoms

that emit the light.
At the surface temperature of the sun, the Doppler width is about ten

times the predicted gravitational red shift. In addition, convection currents
in the solar atmosphere give rise to shifts whose magnitude and direction

are unpredictable. Electric fields can also cause the lines to shift. Nonethe

less, in 1962, James Brault was able to confirm the presence of the gravita

tional shift in a strong sodium line in the solar spectrum.

More convincing evidence is provided by observations on white dwarfs,

dense stars whose masses are about equal to that of the sun but whose

radii are about a hundred times smaller. The red shifts predicted by equa

tion (8.13) are therefore about one hundred times greater, or about one

part in ten thousand. The best candidates to study are white dwarfs that

are members of binary systems, which orbit about one another; the mass
of such a star can be accurately calculated from its observed orbital period.
In 1971, Jesse Greenstein measured a fractional red shift of 2.7 X 10- 4

for the spectrum of the white dwarf Sirius B, in excellent agreement with

the value predicted by equation (8.13).
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For light confined to the neighborhood of the earth, equation (8.6) ap
plies. The earth's gravity is so weak that the predicted frequency shift is
minute. The effect was nonetheless detected in a brilliant experiment car
ried out by Robert Pound and G. A. Rebka, who sent a beam of gamma

rays down a 20-meter shaft.2° According to equation (8.6), the radiation
should be detected as blue-shifted, but by only two parts in 1015

. By ex
ploiting the newly discovered Mossbauer effect, which makes it possible
to measure frequencies with extremely high precision, Pound and Rebka
were able to detect the tiny blue shift. The result was in full agreement
with the prediction based on the equivalence principle.

In the 1960s, astronomers identified very large red shifts in the spectra
of faint sources called quasars. Those red shifts are generally interpreted
as being cosmological in origin, associated with the expansion of the uni
verse. (See the discussion in chap. 9.) If that explanation is correct, quasars
are the most distant as well as the most luminous objects yet observed.

An alternative interpretation is that quasars are extremely dense objects

with very high surface gravity and the observed red shifts are in fact
gravitational in origin. In such a model, the quasars could be relatively
nearby and not nearly so luminous.21 That interpretation is currently not
in favor among astronomers.

Gravitational Time Dilation

As Einstein himself pointed out, the change in frequency caused by gravi
tation seems on superficial consideration to be absurd. Consider the exper
iment in figure 8.6. If the source emits a given number of waves each
second, how can a different number per second arrive at a receiver at rest
with respect to the source?

The result makes sense only if the source clock and the receiver's clock
keep time at different rates. The source emits N waves during a time
interval ilt, as measured by a clock stationed there. (Since f is the number
of waves per second emitted, N == filt.) According to a clock at the location

of the receiver, those same N waves arrive over a time interval ilt', where

f'ilt' = N == filt. Since f' is smaller than f, ilt' must be greater than ilt.
Because the source and receiver are at rest relative to one another, all the

wave fronts travel the same distance at the same speed. Hence an observer

20. R. V. Pound and G. A. Rebka, II Apparent Weight of Photons," Physical Re
vie'w Letters 4 (1960):337-341.
21. The first-order result (8.13) is not applicable when the red shift is large; a
more accurate expression is required.
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at 0 concludes that the N wave fronts, which arrived over the time inter
val I1t', must have been emitted over an equal time interval.

Inasmuch as the source clock recorded the shorter interval I1t, it must
be running slow relative to the clock at O. In our example, the source is
close to the gravitating body and the receiver is farther away. The general
result can be expressed as follows: clocks close to a massive body run
slow compared to ones that are farther away. The effect is known as
gravitational time dilation.

Clocks at different points in an accelerating elevator also keep time at
different rates. In any inertial frame the top and the bottom move with
different velocities at a given time. Hence the ordinary time dilation of

special relativity implies that clocks at the top and bottom must run at
different rates. If the acceleration is upward, a clock at the bottom of the
elevator runs slow relative to one at the top. (In a freely falling frame,
however, all clocks keep time at the same rate.)

In section 6.5, we described an experiment in which atomic clocks were
carried around the world on jet planes to test the time dilation predicted
by special relativity. In analyzing their results, the experimenters had to
take into account the effect of gravitational time dilation as well as that of
special relativity. Because the plane clocks were at a higher elevation than
the ground clocks, gravitational time dilation caused the plane clocks to
gain a little on the ground clocks.

The magnitude of the gravitational effect can be calculated from equa
tion (8.6). The time difference is very small but is comparable in magni
tude to that of special relativity. For an altitude of 10,000 meters the the
ory predicts that plane clocks should gain about 1.6 X 10-7 sec relative
to earth clocks in one trip around the world; this gain must be combined

with the time difference due to special relativity. The measured differ
ences between clock readings agreed, within the experimental errors, with
the calculated values, which took into account both special relativity and

gravitational time dilation.
Gravitational time dilation complicates the task of assigning time coor

dinates to events in the presence of gravitational fields. In special relativity
the time of an event in a particular inertial frame is defined by the reading
of a clock that is at rest in that frame and is present at the event. Because

all clocks in a given inertial frame can be synchronized, this prescription
assigns a unique time to each event for the frame in question. But if clocks
at different locations in a gravitational field keep time at different rates,
they cannot be synchronized. How, then, can the times of events that
occur at different places be compared?
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In his 1911 paper, Einstein proposed a rather awkward solution to this

problem. If we measure time at some reference point with a standard clock

U, he suggested, then at any other point we should use a clock that runs

at a rate different from that of U when the two are at the same location.

In other words, at every point of space we must station a clock of different

construction. Although such a procedure is in principle possible, the idea

is not an attractive one. Alternatively, we could use identically constructed

clocks at all points but correct all clock readings 'for gravitational time

dilation. That solution is not very satisfying either.

As Einstein pointed out, the difference in clock rates has another im

portant implication: observers at two different points in a gravitational

field measure different values for the speed of light. When gravity is taken

into account, c is no longer a universal constant. It follows that special

relativity is strictly valid only in the absence of gravity. Only be

cause gravity is such a weak force has special relativity proven to be suc

cessful.

8.4. BENDING OF LIGHT IN A GRAVITATIONAL FIELD

For the second application of the principle of equivalence, we again refer

to the accelerating elevator of the preceding section. Suppose a pulse of

light enters the elevator at point P, in a direction perpendicular to the

motion of the elevator, as seen in an inertial frame 5 (fig. 8.7a). Let 5 be

the frame in which the elevator is at rest when the light enters.
By the time the light reaches the far wall, the elevator has "risen" some

distance. The light strikes the far wall at point Q, which is lower than the
entry point P. The difference in elevation between P and Q is just the

distance the elevator has traveled while the light was in transit.

Figure 8.7b shows how the same experiment looks in the (noninertial)

elevator frame. Here the light 1/ falls" in a direction opposite to that of the

elevator's acceleration; its path is a parabola. To first order, the distance

through which the light falls in the elevator frame is the same as the

vertical distance between P and Q in frame S.

According to the equivalence principle, the upward acceleration of the

elevator is equivalent to a gravitational field directed downward. If a hori

zontal light beam enters an elevator at rest on the surface of the earth,

the light must strike the far wall at a lower elevation than it entered (fig.

8.7c). The light "falls" in the gravitational field of the earth, just as any

material particle would.

In our hypothetical elevator experiment, the light falls only a minute

distance because it takes a very short time to cross the elevator and the
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9
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(a)

(b)

Elevator Frame

(c)

earth

Fig. 8.7. Hypothetical experiment to demonstrate the
bending of light in a gravitational field. (a) An elevator
accelerates upward, as seen in an inertial frame. Light
travels in a straight horizontal line. (b) As seen in the
(accelerated) elevator frame, the light follows a parabolic
path. (c) The elevator is at rest in a gravitational field. By
the principle of equivalence, the path must look the same

as in (b).

gravitational pull of the earth is very weak. The deflection of light caused

by the earth's gravity is much too small to be detected. A stronger gravity

field is needed to bring about a measurable deflection.

The strongest gravitational field in our neighborhood is that in the

vicinity of the sun. Einstein pointed out that if the line of sight to a star

happens to pass close to the sun, light coming from the star should be
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Fig. 8.8. The deflection of starlight
by the gravitational pull of the sun,
predicted by the principle of equiva
lence. The effect is much exaggerated.

deflected by the sun's gravitational pull, as shown in figure 8.8.22 The
apparent position of the star in the sky is determined by the direction of
the light when it enters our telescope. Hence when the line of sight to a
star passes close to the sun, the star's apparent position relative to all the
other stars in the sky should shift.

Einstein calculated the deflection and found it to be about 0.83 seconds

of angle when the line of sight to the star just grazes the surface of the
sun. If the line of sight passes farther from the sun, the deflection is cor

respondingly less. Although the predicted deflection is small, its detection

is within the capability of modern telescopes. The full theory of general

relativity, which Einstein published in 1916, predicts a deflection just

22. In 1801, Johann Soldner had predicted that light should be deflected toward
the sun, on the basis of a particle theory of light. His result was the same as that
obtained by Einstein froln the principle of equivalence. The"orbit" of a light beam
would be the same as that of a Coolet traveling at speed c.



266 / General Relativity

twice the value obtained from the principle of equivalence; the additional
deflection is due to the curvature of space. (See sec. 8.6.)

A practical problem complicated the task of testing the prediction: a
star whose position in the sky is near the sun has to compete with very
intense sunlight. At the time, astronomers were unable to observe stars
in the daytime. Einstein suggested, however, that the deflection should be
observable during a solar eclipse, when the light of the sun is blocked out
by the moon.

Efforts to test Einstein's prediction were beset by bad luck. An attempt
during the solar eclipse of 1912 was foiled by cloudy weather at the obser
vation site. The outbreak of World War I caused the next attempt to be
abandoned.

A group of astronomers led by Sir Arthur Eddington planned a new
attempt for the total solar eclipse of May 29, 1919. Because the region of
totality did not pass over any major observatory, the astronomers had to
transport all their equipment to the observation site. As a hedge against
possible bad weather, two separate expeditions were mounted, one to Bra
zil and the other to an island off the coast of West Africa. Both teams
observed the deflection just as Einstein had predicted, although the uncer
tainties in the measured results were sizable.23 The expeditions were
highly publicized and attracted a great deal of attention worldwide; their
success made Einstein an overnight celebrity.24

More precise results have recently been obtained using radio waves
instead of optical light; the predicted deflection is the same. With radio
sources the observer does not have to wait for an eclipse; even though the
sun is a copious source of radio waves, the radiation from a strong source
is readily distinguished from the solar radio emission.

A single radio receiver cannot determine the direction of a source with
the required precision, but the directional sensitivity can be greatly im
proved by employing two or more separated receivers and using interfer
ometry. Observations have been carried out on the quasar 3C279, which
is occulted by the sun once a year; the data are in full accord with the
prediction of general relativity. In 1974, C. C. Counselman et al. found a
deflection of 1.73 ± 0.05 angular seconds.

23. One team measured a deflection of 1.98 ± 0.96 sec, the other 1.61 ± 0.40.
Subsequent measurements yielded similar results.
24. For an interesting account of the expeditions and the problems they encoun
tered, see Sir Arthur Eddington, Space, Time, and Gravitation (Cambridge: Cam
bridge University Press, 1920), 114-122.
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The key to general relativity is Einstein's revolutionary idea that space
becomes curved in the presence of gravitating matter. This is a difficult
concept to grasp. We are accustomed to thinking of space as a shapeless
matrix within which material objects are located. Anyone can visualize a
curved object, but the notion that space itself can be curved is a foreign

one.
Our intuitive picture of curvature is two-dimensional: a surface can he

either flat or curved.25 The curvature of a surface is apparent, however,

only when it is viewed from the perspective of the three-dimensional

space in which it is embedded. Early thinkers deduced that the earth is

round froITI observations such as the following: (i) when a ship sails away,

the top of the mast remains visible for some time after the bottom has
disappeared below the horizon; (ii) as one travels westward, sunrise occurs

later and later; (iii) during a lunar eclipse, the earth casts a round shadow
on the moon. Today, the view from a space vehicle constitutes a direct
demonstration that the earth is round. All these observations are intrinsi
cally three-dimensional.

If two-dimensional curvature is visible only from a third dimension, we

cannot visualize curved three-dimensional space because no fourth spatial
dimension from which to view it is available. We can, however, character
ize the properties of a curved surface in terms of measurements that can
be carried out entirely on the surface, with no reference to a third dimen
sion. Curvature in three (or more) dimensions is defined by generalizing
those properties.

Imagine a two-dimensional surveyor, whose observations are confined
to a surface. She is not aware that a third dimension even exists. For her,
space has two dimensions; objects have length and width but not height.
She is equipped with instruments to Ineasure lengths, areas, and angles
on the surface, but the term "volume" has no meaning for her. Can any
measurements enable the surveyor to determine whether her "space" is
flat or curved?

A straightforward way to verify that a sphere is curved is to take a trip

along a fixed heading. Eventually one will return to the starting point;

that could not happen on a flat surface. Magellan's journey was convinc
ing proof that the earth is not flat. This method, however, works only for

25. Curvature in one dimension is also familiar. A line can be straight or curved.
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curved surfaces that are closed and sufficiently symmetric. On the saddle
shaped surface of figure 8.11, for example, one would never return to the

starting point even though the surface is, by any reasonable standard,

curved.

Another disadvantage of the circumnavigation method is that it re
quires exploration of the entire surface. A test that requires us to travel

across the entire universe to discover whether space is curved is obviously

impractical. We seek a test that involves only local measurements, that is,
measurements confined to a small neighborhood. .

The solution is to investigate the geometry of the surface. The familiar

geometry of Euclid, which is taught in high school, is the geometry of a

flat plane. On a curved surface, many of Euclid's postulates and theorems

do not hold. 26 By testing whether or not geometry is Euclidian, therefore,
our two-dimensional surveyor can determine whether the space she in
habits is flat or curved. Non-Euclidian geometry is interesting in its own
right and was studied by several mathematicians during the nineteenth

century.

Geodesics

On a curved surface there are no straight lines, but one can define a curve
that shares their principal property: it is the shortest curve that connects
two given points. A curve with this property is called a geodesic; it is the
/I straightest" possible line. On a sphere, for example, a geodesic is a great
circle (a circle whose plane contains the center of the sphere; see fig. 8.9).27

The strict definition of a geodesic is a curve whose length is an extre
mum, which can be either a minimum or a maximum. In ordinary Euclid
ian space the extremum is a minimum. In some spaces, however, a geode

sic is the longest curve that joins two given points; length in such a case
has a generalized definition. An exalnple is discussed in the next section.

Geometric figures on curved surfaces are generally defined in terms of

geodesics. A polygon is a figure whose boundaries are geodesics; a circle

is the locus of points connected to a fixed point by geodesics of equal

length; and so on.

26. There are two exceptions: on a cylinder and on a cone, Euclidian geon1etry is
valid. Either of those surfaces can be flattened into a plane; for our purposes they
can be considered flat. A sphere, however, is intrinsically curved: it cannot be
rolled flat without leaving any bulges.
27. Sometimes, more than one geodesic exists between two points. On a sphere,
infinitely many great circles connect two opposite poles; all have the same length.
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Fig. 8.9. A great circle is a geodesic
on a spherical surface. It is the shortest
line joining points A and B.

Table 8.1. Contrast between properties of flat and curved surfaces

Flat
Euclidian Geometry Holds

1. Lines perpendicular to the same
line are parallel.

2. Sum of the angles of a triangle
= 180°.

3. Pythagorean theorem holds:
a2 + b2 = (2

where a and b are the sides of a
right triangle and ( is the hypote
nuse.

4. Circumference of a circle = 21Tr.

5. A finite area must have a
boundary.

Curved
Non-Euclidian Geometry Holds

1. Lines perpendicular to the same
line can intersect. (For example,
meridians on a sphere.)

2. Sum of the angles of a triangle
=1= 180° (on a sphere, the sum is
more than 180°).

3. Pythagorean theorem does not
hold.

4. On a sphere, C < 21Tr.

5. A surface can have a finite area
without any boundary (e.g., a
sphere). But a saddle-shaped sur
face is infinite.

Table 8.1 lists some properties of a flat surface that are not true on a

curved one. We focus our attention on two:

(i) the sum of the angles of a triangle is 180°; and

(ii) the circumference of a circle is 2Tr times its radius.



(a)

center

(b)

R = radius of sphere

Fig. 8.10. Geometry on a sphere is non-Euclidian.
(a) A triangle with three right angles. (b) The radius
of a circle along the equator is V21TR and its circum
ference is 21TR, where R is the radius of the sphere;
C = 4r in this case. Also shown is a circle in the
Southern Hemisphere; its radius is greater than that
of the equatorial circle, but its circumference is less.

Fig. 8.11. A surface of negative curvature (saddle
shaped). The sum of the angles of a triangle on this
surface is less than 180°, while the circumference of
a circle is more than 21Tr.
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On a spherical surface, the sum of the angles of a triangle is more than
180°, and the circumference of a circle is less than 2'TT times its radius (fig.
8.10). The equator, for example, is a circle whose circumference is only
four times its radius. 28 On the saddle-shaped surface of figure 8.11, the
angles of a triangle add up to less than 180° and the circumference of a
circle is more than 2'TT times its radius.

The departure from flatness of a surface can be measured by a quantity
called the Gaussian curvature, defined as follows. Construct circles of vari
0us radii centered at a given point on the surface, and measure their cir
cumferences. For each value of the radius, calculate the quantity

K == 3(2 'TTr - (1')

l' 'TTr 3
(8.14)

(8.15)

where C
1'

is the circumference of a circle with radius r.

Now let the circles become smaller and smaller. If Kr approaches some

limit K as r approaches zero, that limiting value is defined to be the curva

ture of the surface at the point in question. K can be positive or negative
and in general varies from one point to another on the surface.

On a plane, the circumference of any circle is 2 'TTr; hence K1' is zero for
all values of r and its limit is zero: a plane is a surface of zero curvature.

On a spherical surface, K must have the same value at every point
because of symmetry. We show in the appendix to this chapter that the
circumference of a small circle on the surface of a sphere is approximately

C ~ 21Tr(1-~)
r 6R2

where R is the radius of the sphere and r < < R. Substituting this expres
sion in equation (8.14) gives K == 1/R2

: a spherical surface has constant
positive curvature. A small sphere has greater curvature than a large one,
in accord with our intuitive notion of curvature. The saddle-shaped sur
face of figure 8.11 has constant negative curvature.

The preceding paragraph refers to the radius of the sphere, R. From
our three-dimensional perspective, we can actually see the sphere and lo
cate its center; for us, R is the distance between the center and the surface.
That statement has no meaning for the two-dimensional surveyor. Al
though she can deduce from her measurements that space is curved and
can calculate the value of R, she cannot identify any point in her two-

28. Circles on a sphere have other unusual properties. For radii greater than a
quarter of a great circle, the circumference decreases as the radius increases. As
the radius approaches half of a great circle, the circumference shrinks to zero.
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dimensional space as the II center" of the sphere; for her, R is just a param
eter that characterizes the (non-Euclidean) geometry of space.

Locally Flat Space

An important property of curved surfaces can be inferred by examining
the behavior of equation (8.14) as r goes to zero. The left side approaches
the curvature K. Since the denominator on the right side goes to zero, the

numerator must also go to zero (provided K is finite). Hence the circum

ference of a small circle on any surface of finite curvature approaches the
Euclidian form 21Tr as r approaches zero.

The sum of the angles of a small triangle can similarly be expressed in
terms of the curvature of the surface. The following relation holds for a
snlall triangle: 29

(
K (Area of fl))

sum of angles == 1800 1 + 1T (8.16)

Equation (8.16) implies that for any finite K, the sum of the angles
approaches 1800 as the area of the triangle goes to zero.

These results illustrate a general property: any surface with finite cur
vature is locally flat: the geometry in a small enough region is very nearly
Euclidian.3o This conclusion should come as no surprise, for we know that
Euclidean geometry works quite well on our spherical earth in a suffi
ciently small region.

A simple test for curvature requires only the measurement of the dis
tances between any four points on a surface. If the surface is flat, the six
distances are not independent; given any five, one can calculate the value

of the sixth.
We illustrate the method using cities on the earth. The following are

airline distances in miles between the designated cities:

Melbourne-Chicago

Melbourne-Rio de Janeiro
Melbourne-Moscow

Chicago-Rio de Janeiro
Chicago-Moscow

Rio de Janeiro-Moscow

9,673

8,226

8,950
5,282

4,987

7,170

29. On a uniformly curved surface, eg. (8.16) holds for a triangle of any size.
30. One can construct mathematical spaces that are not locally flat; such spaces
have singular points or II cusps." At a singularity the curvature is either infinite
or is undefined.
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Melbourne Rio

Fig. 8.12. Proof that the earth is not flat. The tri
angle Melbourne-Chicago-Rio is constructed from
the known intercity distances. Two possible loca
tions for Moscow are determined by the distances
Rio- Moscow and Chicago-Moscow. The distance
Moscow-Melbourne for either of those locations does
not agree with the measured distance. Hence the
geometry cannot be Euclidian.

In figure 8.12, the triangle Melbourne-Chicago-Rio has been drawn to

scale. (The shape of a triangle on a plane is completely determined by the

lengths of its sides.) Arcs whose radii are the distances Rio- Moscow and

Chicago-Moscow have been drawn with their centers at Rio and Chicago.

Moscow must lie at an intersection of those arcs. There are two intersec

tions, marked Mal and Mo 2; on our flat map their distances from Mel

bourne are 14,100 and 5,700 miles, respectively. Since neither of these
values is close to the actual Melbourne-Moscow distance, we conclude that
the earth is not flat. Its radius can in fact be calculated from the six inter

city distances.

Another property of curved surfaces will prove useful in the discussion

of coslTIology in chapter 9: a curved surface can have a finite area even

though it has no boundary. A sphere has that property. A flat surface
without boundaries n1ust be infinite in extent.

The preceding discussion can be generalized to spaces of three or lTIOre

dimensions. By definition, a curved space in any nurnber of dimensions
is one whose geolnetry is not Euclidian. Three-dimensional Euclidian

space is the space of ordinary solid geometry, in which the surface area of

a sphere of radius r is 41Tr2 and the volume of a cube of side h is h3
. In a

curved three-dimensional space those relations do not hold.

The simplest example of curved three-dimensional space is a region of

constant positive curvature. Such a region can be regarded as the "sur

face" of a hypersphere, the four-dimensional analogue of a sphere. It is

the locus of points equidistant (in four dimensions) from a given point.
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That common distance is the "radius" of the hypersphere. A formula anal
ogous to equation (8.15) gives the surface area of a small sphere of radius
r in a hypersphere of radius R.

Three-dimensional curvature is an abstraction. We cannot visualize a
hypersphere any more than the two-dimensional surveyor can visualize
an ordinary sphere. That does not prevent us from defining the mathe
matical properties of curved three-dimensional space and (at least in prin
ciple) testing our space for curvature by carrying out measurements anal
ogous to the ones described above for two dimensions. For example, we
could measure the surface areas of small spheres. If the area of every
sphere is 47Tr2

, space is Euclidean or "flat"; if not, it is curved. Three
dimensional curvature can be defined by a procedure analogous to the one
based on equation (8.12).31 The curvature of a hypersphere is 1/R2

.

The procedure illustrated in figure 8.12 can also be generalized to pro
vide a test for three-dimensional curvature. Five cities are required in this
case, with ten intercity distances. If space is Euclidian, those distances are
not independent.

Legend has it that the great mathematician Karl Gauss tried to deter
mine whether space is curved, long before Einstein had proposed general
relativity, by measuring the angles of the triangle formed by three moun
taintops in Germany. That story has been refuted by Arthur Miller,32 but
a similar test was in fact carried out in 1900 by Karl Schwarzschild, using
the triangle defined by the position of a star and that of the earth at two
points in its orbit.33 Schwarzschild did not succeed in demonstrating any
curvature; he was able to show only that if space is curved, its "radius" in
our neighborhood is greater than 1,600 light-years. That lower bound is
many orders of magnitude less than the value suggested by general rela

tivity. As we shall see, the curvature of space is very small except in the
vicinity of extremely dense objects like black holes.

31. In two dimensions, a single number, the curvature, suffices to fix the proper
ties of a curved surface at a given point. Spaces of greater dimensionality are
more complicated. The curvature becomes a tensor (a mathematical quantity with
several components). Six numbers are needed to describe fully the curvature of a
three-dimensional space, 20 in four dimensions. In a space of n dimensions, the
curvature tensor has n2(n2 - 1)/12 independent components. In Euclidian space,
all components of the curvature tensor vanish.
32. A. Miller, "The Myth of Gauss' Experiment in the Euclidean Nature of Physi
cal Space," Isis 63 (1972):345-348. Gauss did measure the three mountaintops but
for a different purpose.
33. Schwarzschild's"experiment" is described by Robertson in Einstein, Philoso
pher-Scientist, 323.
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Fig. 8.13. Distance in a two-dimensional Euclid
ian space. The dependence of distance on ~x and
~y is given by eq. (8.17).
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The Geometry of Space-Time

An additional complication arises when curvature is introduced in relativ

ity theory. We already know from special relativity that space and time

are intermixed: a space coordinate in one frame of reference corresponds
to a combination of space and time coordinates in another frame. Curva
ture therefore cannot be confined to spatial dimensions. It is not three

dimensional space but rather four-dimensional space-time that is curved

according to general relativity.

Curved space-time is an even more abstruse concept than is curved
space. On the basis of the earlier discussion, one may surmise that the
geometry of flat space-time is Euclidian, whereas that of curved space
time is non-Euclidian. But what is the meaning of that statement? The
term "geometry" has a purely spatial connotation; how does geometry
apply to time?

In addressing these questions, it is helpful to introduce a new concept,

the metric of a space. The metric specifies how the distance between two

neighboring points depends on the differences in their coordinates. If we

know the metric at every point, we know everything about the space,

including its curvature.

We illustrate with the familiar case of plane geometry. In rectangular

coordinates, the distance between the points (x, y) and (x + ~x, y + ~y)

(see fig. 8.13) is given by

(distance)2 == (LX)2 + (6y)2 (8.17)
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Equation (8.17) is the metric for rectangular coordinates in two dimen
sions.34

The form of the metric for a given space is not unique. When we trans
form to a different coordinate system, the metric relation in general
changes. In polar coordinates, for example, the distance between the

points (r, 0) and (r + ~r, 0+ ~O) is

(distance)2 == (~r)2 + r2 (~0)2 (8.18)

which is not of the simple form (8.17). The numerical distance between
two given points is, however, the same in any coordinate system.

The quadratic form (8.17) is characteristic of Euclidian (flat) space. On
a curved surface, the metric never takes that simple form, no matter what
coordinate system one chooses.

These ideas can be extended to abstract vector spaces in any number of
dimensions. A "point" in an n-dimensional vector space is simply a collec

tion of n numbers Xl' X2' .•. I X n called the coordinates; the"distance"

between the points (Xl' X21 ... I x n ) and (Xl + ~Xl' X2 + ~X2' ... I

X n + Lx,J is some scalar function of the infinitesimal differences Lx l ,

~X21 ... I ~x11' This is a generalization of the concept of distance; it is
not the sort of distance that can be read on a tape measure.

The form of the metric determines the properties of the space. If in
some set of coordinates the metric has the form

(8.19)

the space in question is said to be Euclidian. Equation (8.19) is the obvious
generalization of (8.17).

The space-time of relativity is a four-dimensional vector space in which

the "points" are events; can a "distance" be defined in this space?

We are guided by the fact that the subspace of space-time that corres
ponds to a fixed value of t is ordinary three-dimensional space. Hence the

four-dimensional" distance" between two events that occur at the same

time should be just the three-dimensional spatial distance between them.
Furthermore, the distance between two specified events should be inde

pendent of the frame of reference in which their coordinates are measured.
These are the only conditions we can impose.

In special relativity a quantity with the desired properties is the invari
ant interval (~s)2, discussed in chapters 4 and 5. Accordingly, we define

34. Eq. (8.17) happens to be valid for any value of 6x and 6y. In general, how
ever, the metric relation gives only the distance between points whose coordinates
differ by infinitesimal amounts.
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the distance between the events whose coordinates are (x, y, z, ct) and

(x + ~x, y + ~y, z + ~z, ct + c~t) by the relation

(distance)2 == (C~t)2 - (~X)2 - (~y)2 - (~Z)2 (8.20)

The metric (8.20) is almost, but not quite, of the form (8.19). The dif
ference is the presence of the minus signs in (8.20). Because of those mi
nus signs, the space-time of special relativity is not quite Euclidian; it is
sometimes called pseudo-Euclidian. The minus signs have an important

consequence, as we shall see.
I showed in section 5.3 that if the interval between two events is

timelike, ~5 is just (c times) the proper time interval between them.

(There must exist a frame in which the events occur at the same place; ~5

in that frame is just c6t and 6t is by definition a proper time interval.)
Since the world line of any material particle consists of a succession of
events separated by timelike intervals, the length of a world line as defined

by equation (8.20) is the total proper time for a body that follows that
world line, that is, the elapsed time shown by a clock that nloves with the

body.
If two events occur at the same time (~t == 0), 65 is, except for a

multiplicative constant i == v'=l, the ordinary spatial separation
V(~x)2+ (6y)2 + (6Z)2 between the events.35 If two events are separated

by a spacelike interval, we can always find a frame in which they occur
simultaneously and calculate the metric distance in that frame. With the
metric defined by equation (8.20), the distance between any two events
separated by a spacelike interval is imaginary.

8.6 GENERAL RELATIVITY: GRAVITY AS GEOMETRY

By 1912, Einstein had realized that the principle of equivalence implies
that space cannot remain flat in the presence of matter. He was apparently
led to this conclusion by thinking about measurements carried out in a
rotating frame. 36

35. The metric for special relativity is sometimes defined as

(distance)2 = (6X)2 + (6yf + (6Z)2 - (c6tf

instead of as in (8.20). With this definition the distance between two events with
the same time coordinate is real and is exactly equal to their spatial separation.
Multiplying the metric by a constant does not change the properties of a space;
the form (8.20) has the advantage that it makes the lengths of all world lines real.
36. For a detailed discussion, see J. Stachel, "The Rigidly Rotating Disk as the
'Missing Link' in the History of General Relativity," in Einstein and the History
of General Relativity, 48-62.
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Fig. 8.14. Geometry on a rotating
turntable. Observers in the inertial
frame find the length of the short
segment of the rim to be shorter
than the length tneasured by observ
ers on the turntable. Since this is
true for every piece of the rim, the
circumference according to the iner
tial observers is less. The two sets of
observers agree as to the length of
the radius, which is transverse to the
relative motion. Hence if C = 21Tr ac
cording to inertial observers, it must
be greater than 21Tr according to ob
servers in the rotating frame. The
geometry is non-Euclidia r •.

A horizontal platform rotates uniformly about a vertical axis through

its center (fig. 8.14). Each point on the platform moves in a circular path
and therefore accelerates toward the center; a frame of reference fixed on
the platform is an accelerated frame in which both the magnitude and the
direction of the acceleration vary from point to point. In this respect it

differs from the uniformly accelerated frames considered earlier, in which
every point has the same acceleration.37

We want to compare length measurements carried out by observers
riding on the platform with those of observers in an inertial frame fixed

on the ground. We assume as before that the result of every measurement

37. Notice that a uniformly rotating disk must be limited in size. Since the tan
gential velocity is proportional to the radius, for a large enough radius the velocity
would exceed c.
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carried out by a platform observer is the same as that obtained by a co
moving inertial observer, that is, an observer at the same point who moves
in a tangential direction with a constant speed equal to the platform's
rotational velocity.

A platform observer located on the rim measures the length of the
small segment marked with cross-hatching in figure 8.14. Since the seg
ment is at rest relative to that observer, the value she obtains is a proper
length. Ground-based observers who measure the length of the same seg

ment obtain a Lorentz-contracted result, since for them the segment is
moving and is aligned in the direction of its motion.

The same argument applies to each segment of the rim. Platform ob

servers therefore measure a greater value for the circumference of the rim

than do ground-based observers; the ratio of the two lengths is just the

value of yappropriate to the tangential velocity of the rim.
When the two sets of observers measure the radius of the platform,

they obtain equal results because the radius is transverse to the relative
motion. Hence if ground observers find the circumference to be 27T times
the radius (as they must, since their frame is inertial), platform observers
must find it to be more than 21t times the radius. Geometry on the rotat
ing platform is not Euclidian!

According to the equivalence principle, the accelerating platform frame
is equivalent to a gravitational field. It follows that geometry in the pres
ence of a gravitational field must likewise be non-Euclidian.

Another thought experiment that illustrates the intimate connection
between gravity and geometry has been described by Edwin Taylor and
John Wheeler; they call it lithe parable of the two travelers." 38 Two trav

elers start out from the equator, 20 kIn apart. (See fig. 8.15) Each heads
due north, along a line of constant longitude, at the same speed. After the
travelers have gone 200 km, their separation is only 19.99 km. As they
proceed on their journeys, they continue to draw closer together, at an
ever-increasing rate; they are accelerating toward one another.

From a geometric point of view, the travelers are simply force-free
bodies following geodesic paths on a curved earth; their apparent accelera
tion is a consequence of the geometry. An alternative explanation is avail
able, however. The travelers are not conscious of being on a curved sur

face. Believing in Newton's laws, they attribute their relative acceleration

38. E. F. Taylor and J. A. Wheeler, Spacetirne Physics, 2d ed. (New York: W. H.
Freeman, 1992), 184.
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Fig. 8.15. Two particles on a
spherical surface at points A and
A I move off in parallel direc
tions. Some time later they are
at Band B' and are found to be
closer together than at the start.
The curved geometry simulates
the effect of an attractive force.

to some mysterious force that acts on them. Since the acceleration is inde

pendent of the travelers' composition or mass, the force can be identified

as being gravitational in nature. It is similar to the tidal force responsible

for the decreasing separation of the falling tennis balls in figure 8.4b.

The two descriptions (in terms of gravity and in terms of geometry)

must be equivalent. The lesson of the parable is that gravitational effects

can be represented by changes in the geometry of space. This is the basic

idea of general relativity.

Having recognized that gravity and geometry are related, Einstein pur

sued the daring hypothesis that the entire effect of gravitating matter is

manifested as a distortion of the space-time in its vicinity. The problem is

then to find the relation between the distribution of mass and the geome

try. After several false starts, Einstein finally arrived at a satisfactory so

lution, which he presented to the Prussian Academy of Sciences in late

1915.39 This was the general theory of relativity.

General relativity is based on two hypotheses:

39. A. Einstein, Proceedings of the Prussian Academy of Sciences (Nov. 11,
1915):778-786; (Nov. 18, 1915):799-801, 831-839; (Nov. 25, 1915):831-839; and
(Dec. 2, 1915):844-847. A comprehensive paper describing the entire theory was
published under the title, "The Foundation of the General Theory of Relativity,"
Annalen der Physik 49 (1916):769-822. An English translation of this paper ap
pears in The Principle of Relativity, 111-164.
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(i) Gravitating matter distorts the space-time in its vicinity, causing
it to become curved. The curvature depends on the distribution of mass;
far from any matter, special relativity is valid and space-time is (pseudo-)
Euclidian: the metric approaches the form (8.20).

(ii) The world lines of all freely falling bodies (including light rays)
are geodesics in space-time.

It can be shown that hypothesis (ii) is not independent but is actually
a consequence of (i).

The Geodesic Law

I illustrate Einstein's geodesic law by applying it to the simplest possible

problem-the motion of a body on which no forces act. The solution is
well known: the body moves with constant velocity. I will show that the
geodesic law reproduces this solution.

In the absence of gravity the space-time is that of special relativity,
with a metric given by equation (8.20). Let event A denote the position of
the body at a given time and event B its position at some later time.
According to the geodesic law, the body's world line is the curve that
connects ,events A and B whose length is an extremum. Since motion with
constant velocity is described by a straight world line, we have to prove
that of all possible world lines that connect A and B, the straight line is
either the shortest or the longest.

If space-time were strictly Euclidian, the proof would be trivial; a
straight line is the shortest distance between two points in Euclidian space.
With distance defined by the pseudo-Euclidian metric (8.20), however, the
nature of the geodesic path is not at all obvious.

If events A and B can be connected by a world line, the interval between
them must be timelike. We have seen that in such a case there must exist
a frame in which the events occur at the same location. It is simplest to
carry out the calculation in that frame. (Since 6s is invariant, we are free
to calculate its value in any frame.)

Figure 8.16 shows the two events and the straight world line AB that

joins theln. The coordinates of the events in this frame are:

event A: x=a, t=O

event B: x=a, t=T

World line AB describes a body at rest at the point x = a. Applying
equation (8.20) with 6x = 0, 6t = T, we find for the length of AB:

length of world line AB = cT (8.21)
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Fig. 8.16. This diagram illustrates the peculiar geometry
of space-time. The "length" of world line ACB is less than
that of AB. If d= cT/2, the length of ACB is zero.

Also shown in the figure is another world line, ACB, that connects the
same two events. AC, the first segment of that world line, describes a
body that moves to the right at constant velocity, arriving at the point
x == a + d at time T12. The body then reverses its direction (segment CB)
and returns to the starting point x == a at time T.

The length of world line A CB is the sum of the lengths of the segments
A C and CB. Those lengths are equal; each one has the value

Hence we find

length of world line ACB = 2~G erf-d2

== ~(cT)2 - 4d 2 (8.22)

Clearly, (8.22) is less than (8.21) for any value of d.
Many other world lines connect events A and B; it can be verified,

however, that their lengths are all less than cT. The straight world line
AB is therefore a geodesic, but its four-dimensional length is a maximum,
not a minimum. This surprising result is a consequence of the minus signs
in the metric (8.20).

If d== cT12, the speed of the body along paths AC and CB is c: the
"body" in this case must be a light ray. The length of its world line,
according to equation (8.22), is zero. For this reason the path followed by
a light ray is called a null geodesic.
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When d is greater than cT12, the metric distance given by equation
(8.22) becomes imaginary. Such a path cannot be the world line of any
material body, however, since it corresponds to a speed greater than c.

The lengths of all physically permitted world lines are real.
As noted in the preceding section, the length of any world line repre

sents proper time for a body whose motion is described by that world line.
A body follows the world line that maximizes the proper time between
its end points. Although this result has been demonstrated only for a body
free of any forces, it in fact applies even when gravitational forces are
present.

The Field Equations of General Relativity

In the presence of matter, the metric is no longer the simple one of special
relativity. The central problem of general relativity is to find the metric
that corresponds to a given distribution of mass. In 1916, Einstein derived
his famous field equations, which specify the relation between the metric
and the mass distribution. The equations employ the language of tensor
calculus; I shall not attempt to write them out.

Symbolically, the Einstein field equations are of the form 40

(a tensor related to the curvature of space-time) =

constant X (a tensor related to the mass-energy distribution) (8.23)

The curvature is a geometric quantity; it depends on the spatial varia
tion of the lnetric. The right side of equation (8.23) is gravitational.

Once the metric has been determined for a given mass distribution, the
motion of a body can be found from the geodesic law. In curved space
time, geodesics are not straight lines. A curved world line describes accel
erated motion, caused by gravitational forces.

Tests of General Relativity

In his 1916 paper, Einstein proposed three observational tests of general
relativity, all of which involve gravitational effects of the sun. Because
gravity is such a weak force, all three effects are very small and their
calculation does not require exact solution of the field equations; an ap
proximate solution suffices.

The first of Einstein's proposed tests was the deflection of starlight,
already discussed in section 8.4 in connection with the principle of equiva-

40. The curvature is not simply proportional to matter density; that would imply
that space-time is curved only at points where mass is located. The actual curva
ture extends to the surrounding region.



284 / General Relativity

t
I
I
I

Fig. 8.17. The deflection of starlight caused by the curvature of space in
the vicinity of the sun. Light rays from the two stars follow the solid
curves. The apparent positions of the stars are shown in the upper rectan
gle. The lower rectangle shows their positions when the sun is not near
the line of sight. From Gravitation by Misner, Thorne, and Wheeler.
Copyright © 1973 by W. H. Freeman and Company. Used with permis
sion.

lence. General relativity predicts an additional deflection caused by the

curvature of space-time. A light ray, like anything else with inertia, fol

lows a geodesic path through the curved space-time in the neighborhood

of the sun.

Figure 8.17 is an artist's attempt to depict the curved world line of a

light ray that passes close to the sun. Since the actual geodesic is in four

dimensional space-timet it cannot be drawn on a two-dimensional graph.

The figure is intended to be suggestive only.

The magnitude of the deflection calculated by Einstein turned out to

be exactly twice the value he had earlier obtained from the equivalence

principle alone. The predicted deflection is still very small: 1.75 angular

seconds for a light ray that just grazes the edge of the sun. The observa

tions that confirmed this prediction have been described in section 8.4.

A second observational test of general relativity involves planetary or

bits. According to Newtonian mechanics, the orbit of a planet under the

influence of the sun/s gravitational attraction alone is an ellipse. As a re

sult of the perturbations caused by the other planets, the ellipse does not
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Fig. 8.18. Precession of the orbit of -Mercury (sche
matic). Most of the precession is due to perturbations
caused by the gravitational attraction of Jupiter and the
other planets. The last 43 seconds of arc per century is
accounted for by general relativity.

quite close on itself after each revolution; the orbit precesses very slowly.
(See fig. 8.18.)

The precession of planetary orbits has been observed. The magnitude
of the effect is greatest for Mercury, the planet whose orbit is the most
eccentric. When the precession was calculated using Newtonian mechan
ics, there remained a difference of 43 seconds of angle per century between
theory and observation. Although the difference is minute, it is greater
than the uncertainty in the observations. The discrepancy puzzled astron
omers for many years. Several unsatisfying explanations were proposed,
including the presence of an unseen small planet near Mercury as well as
a slight departure from the inverse-square dependence in Newton's law
of gravity.41

Einstein pointed out that the curvature of space causes an additional
precession. He calculated the effect and found that it had just the right
magnitude to account for the missing 43 seconds. This result gave Einstein
great satisfaction. He later wrote, "For a few days I was beside myself
with excitement," and told a colleague that the discovery had given him
palpitations of the heart.

In recent years, the same effect has been detected in a case in which its
magnitude is n1uch greater-in a pulsar. Pulsars, discovered in the 1960s,
emit radio pulses at very regular intervals. A pulsar is believed to be a
rotating neutron star, a collapsed object of stellar mass and radius about

41. Simon Newcomb showed that the discrepancy could be accounted for if grav
ity, instead of being an inverse square force, depended on the distance to the
inverse power 2.0000001574. This was not an attractive solution to the problem.
Besides, it led to a discrepancy in the calculated orbit of the moon.
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10 km which is the relic of a supernova explosion. The measured pulsar

period represents the period of rotation of the neutron star.
In 1974, John H. Taylor and R. A. Hulse discovered a pulsar, designated

PSR 1913 + 16, which exhibits anomalous behavior. Its period (about 59
milliseconds) is not constant but oscillates in a regular manner. The am
plitude of the variation in arrival times of the pulses is about 4 minutes.

These data indicate that PSR 1913 + 16 is a member of a binary system.
The regular oscillation in its period is due to the changing travel time for
pulses as the pulsar traverses its orbit. Detailed analysis indicates that the
companion is also a compact object, probably another neutron star.

After observing the pulsar for nearly twenty years, Taylor has been
able to establish its orbit with great precision. The orbit is very small and
highly eccentric: the semimajor axis is only about 1 solar radius and the
eccentricity is .617. The period of the orbit is about 8 hours.

This combination of circumstances makes the binary pulsar an ideal
laboratory for testing general relativity. The precession of the orbit pre
dicted by general relativity is about 4° of arc per year, some 30,000 times
greater than for Mercury. The observations confirm that the orbit pre
cesses at just the predicted rate. The orbit is also small enough to make

the gravitational red shift detectable. Finally, the secular decrease in the
pulsar's rotation period due to the emission of gravitational radiation is
also observed as predicted by general relativity.

The third prediction of general relativity, the gravitational red shift, is
not really a test of the theory because it can be calculated from the equiva
lence principle alone, as we saw in section 8.2. Unlike the case of the
deflection of light, the curvature of space causes no additional shift.

A fourth test was proposed by Irwin Shapiro in 1964 and carried out

by him in 1968 and 1971. Shapiro, a radio astronomer, was one of the

pioneers in the technique of radar ranging, determining the orbits of the

planets Mercury, Venus, and Mars by reflecting radar pulses from them.
The reflected signal is extremely weak but is detectable. By measuring the
round-trip time of the pulse, which can be done with great precision, one
can measure the distance of the planets from earth to within 1 km, much

more precise than any previous determination.
Since radar waves are electromagnetic radiation, they are affected by

gravity in the same way light is. In particular, their speed is diminished
when they pass through a strong gravitational field. Shapiro realized that
this relativistic effect should cause an additional time delay in the radar
pulse whenever the line of sight to the planet passes close to the sun. The
predicted extra time delay for Venus is about 200 microseconds.
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Shapiro's data for Venus agreed with the prediction of general relativ
ity to better than 5 percent. As in the case of the light deflection effect,
some time delay can be inferred from the principle of equivalence alone,
but there is an additional contribution due to the curvature of space-time.

Similar time-delay observations were carried out using the spacecrafts
Mariner 6 and Mariner 7, which were part of the Mars landing expedi
tions. The spacecrafts passed close to the sun on several occasions; the

measured delays in the return of radio signals reflected from them were

again in agreement with general relativity.
Because the classic tests described above require only approxitnate so

lution of the field equations, the agreement with observation does not

prove that general relativity is correct. In recent years several alternative

theories of gravitation have been put forward, the most noteworthy being
the one proposed by R. H. Dicke and Carl Brans. All the theories involve
curved space-time, but the field equations differ from Einstein's; the
Brans-Dicke theory, for example, is a scalar-tensor theory.

The predictions of the alternative theories for the classic tests differ

froIn those of general relativity, but not by very much. Within the obser
vational uncertainties, they too agree with observation. Some observa

tional tests are possible which will discriminate among the various candi
date theories, but these tests are very difficult and have not yet been
carried out with the accuracy required to make a definite choice. At pres
ent, general relativity remains the favored theory.

Exact solutions of Einstein's field equations have been found for only
a few problems. In 1916, a few months after Einstein had published his
paper, Schwarzschild found the solution for the metric in the presence of
a point mass. Shortly afterward he solved the more interesting problenl
of a spherically symmetric star. The Schwarzschild solution is the basis
for a number of applications.

Black Holes

Even without looking at the detailed mathematical solution,we can predict
that unusual effects should take place in the vicinity of an extremely dense
body. The gravity near the surface of such a body is very strong, and the

deflection of light it causes is correspondingly large. If the gravity is

strong enough, a light ray moving tangentially to the body will be bent
into a circular II orbit," similar to that of a planet.

Figure 8.19 shows a still denser body. The circular light orbit is now

outside the body. Consider light rays that leave the surface of the body.

Those that leave in an approximately radial direction are deflected as
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Fig. 8.19. Paths of light rays emanating
from the surface of a very dense body that
is nearly a black hole. Only the rays whose
directions lie within the exit cone escape; the
others are attracted back by the gravity of the
source. If the body is dense enough to be a
black hole, the exit cone disappears and no
light can escape. From Harrison, Cosmology:
The Science of the Universe, copyright ©
1981 by Cambridge University Press. Re
printed with the permission of Cambridge
University Press.

shown. At some angle the deflection is so great that the light ray II falls"

back into the source. Only rays emitted in a cone around the radial direc

tion escape; this is known as the exit cone.
As the density increases, the size of the exit cone decreases. At some

critical density the exit cone entirely disappears: gravity is so strong that
no light whatever can escape. An object with this property is called a black
hole; the term was coined by Wheeler.

All the properties that we have inferred heuristically are confirmed by
exact solutions of the field equations. The possible existence of black holes
is a definite prediction of general relativity.

If an object of mass M and uniform density is to be a black hole, its
radius must be less than

R==2GM/c2 (8.23)
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This quantity is called the Schwarzschild radius, Rs' It is obtained from
the Schwarzschild solution mentioned above.

The value of Rs for M == 1 solar mass is about 3 km; the sun would have
to have a radius of 3 km to be a black hole. For a typical galaxy (M = 1011
solar masses), Rs is about .01 light-year.

The gravitational red shift for light emitted at the surface of a body
that is nearly a black hole is very large. As the radius approaches Rs , the
red shift" goes to infinity.

If a black holes exist, can they be observed? By definition, we cannot
see a black hole inasmuch as no light can escape from its surface. The
presence of a black hole is manifested by its very strong gravitational field,
which acts on the surrounding matter; external electromagnetic fields
could also exist.

The most plausible mechanism for the creation of a black hole is gravi
tational collapse. According to conventional theories of stellar evolution,
stars contract as they burn their fuel, becoming more dense. The contrac
tion generally comes to an end long before the star reaches black hole
density, but under the right conditions the contraction can continue and
can eventually lead to the formation of a black hole.

Another possibility is the gravitational collapse of an object of quasi
galactic mass, for example, a large star cluster. It has been speculated that
such objects exist at the centers of active galaxies or quasars, perhaps even
at the center of our own galaxy. According to equation (8.23), the radius
of a black hole is proportional to its mass. The density, proportional to
M/R 3

, therefore decreases with increasing mass. A black hole of galactic
mass is much less dense than one of stellar mass.

The search for black holes is one of the most active areas of current
astrophysical research. The most promising candidates are members of
binary systems. If one star in a binary is a black hole, it will accrete matter
from its companion. The matter will radiate copiously as it falls in; much
of the radiation is in the form of X rays. Several possible black holes have
been identified among strong X-ray sources; the strongest candidate is the
source Cygnus X-I.

ApPENDIX: CURVATURE OF A SPHERICAL SPACE

We give here a proof that the curvature of a sphere defined by equation
(8.8) is 1/R2 where R is the radius. The figure below shows a circle of
radius r on a sphere of radius R. (r is measured on the surface of the
sphere, of course.)
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Let () be the angle subtended at the center of the sphere by the length
r. The relation between rand () is

r==R() (8.Al)

where () is measured in radians. If we construct the plane of the circle, we
see that its radius in the plane is

x == R sin ()

and the circumference is

. sin ()
C == 27TX == 27TR SIn ()== 27Tr --

r ()

(8.A2)

(8.A3)

where (8.Al) has been used to obtain the last equality.

For small 8, we can use the power series expansion for the sine func
tion:

(8.A4)

and keep only the first two terms. Substituting this for sin () in equation
(8.A3), we get

(8.AS)



Hence

and

as claimed.

PROBLEMS
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8.1. A pendulum bob hangs vertically from the roof of a railroad car that is at
rest.

(a) Use the principle of equivalence to deduce what happens to the pendulum
when the car accelerates in the + x direction. Draw a sketch.

(b) What happens to the pendulum when the car moves at uniform velocity?
What law did you use to answer this question?

8.2. Suppose the ratio of inertial mass to gravitational mass were greater for lead
than for iron. Would the period of a pendulum with a lead bob be longer or shorter
than that of a pendulum of equal length with an iron bob? Explain.

8.3. Identical clocks are carried on airliners that circle the globe in easterly and
westerly directions at the equator. The airliners fly at an altitude of 12 km at a
speed of 0.25 km/sec. On their return the readings of the airliner clocks are com
pared with one another and with the reading of a clock that remained at the start
ing point. The rotational speed of the earth at the equator is about 0.5 km/sec.

(a) Find the differences between the readings of the airliner clocks and the
ground clock at the end of the journey, attributable to special relativity. (Hints:
All three clocks are traveling on circular paths, at different velocities relative to a
hypothetical clock that remains stationary at the starting point. We can neglect
the orbital motion of the earth around the sun.) Imagine the circular paths as
being straightened out, and calculate the clock readings in the rest fralne of the
"stationary" clock.

(b) Find the differences in clock readings attributable to gravitational time dila
tion. Combine with the results of (a) to obtain the net differences in clock readings.

8.4. The lTIaSS of the sun is 2 X 1030 kg and its radius is 7 X 108 m. Calculate the
fractional gravitational red shift of a spectral line from the sun detected on earth.

8.5. Consider the following three possible motions:
(a) body starts at x == 0 and moves with constant speed 0.2c for 10 sec;
(b) body starts at x == 0, moves with constant speed 0.4c for 5 sec and remains

stopped for the next 5 sec;
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(c) body starts at x = 0, moves with constant speed 0.6c for 5 sec and then
moves in the opposite direction at 0.2c for the next 5 sec.

In each motion the body's position at t = 10 sec is x = 2 light-seconds.
Show all three motions on a space-time diagram. Using the space-time metric

(8.20), calculate the four-dimensional "distance" in light-seconds between the
body's initial and final positions for each path. Verify that the distance for the
geodesic path (a) is the longest.



9 Cosmology

9.1. BASIC FACTS: THE COSMOLOGICAL PRINCIPLE

Cosmology is concerned with the nature and the history of the universe.

Although men and women have pondered these questions for millennia,
early cosmologies were little more than myths. Scientific cosmology be
gan with the Greeks some 2,500 years ago but was for a long time largely
speculative. Only in the present century have observational data become
available that bear directly on the questions posed by cosmology. The
evidence points strongly toward the world picture currently in favor-the
"big bang" and expanding universe. Einstein's conception of curved space
time, described in chapter 8, provides the framework for all lTIodern cos
mological models.

Stars and Galaxies

One of the oldest cosmological problems is the nature of the stars. The
notion that they are distant suns goes back to antiquity. If that is so, their
small apparent size and low apparent brightness indicate that they must be
very far away. Newton estimated that the stars must be at least a hundred
thousand times as distant as the sun. His estimate turned out to be quite
accurate: the nearest star, Alpha Centauri, is 4.3 light-years away, about
270,000 times the earth-sun distance.

A prominent feature of the night sky is the Milky Way, or Galaxy,
long recognized as being a densely packed collection of stars. It contains
some hundred billion stars, a few thousand of which are visible to the

naked eye. The Galaxy has the form of a disk, about 100,000 light-years
in diameter and 5,000 light-years in thickness. Our sun sits toward the
outside of the disk, some 30,000 light-years from the galactic center.

293
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The key to modern cosmology lies in the identity of the "nebulae,"
fuzzy patches of light a few of which are visible to the naked eye. Others

are so faint that they can be seen only through the most powerful tele
scopes. By 1780, over one hundred nebulae had been cataloged by Charles
Messier. Many exhibited a characteristic spiral structure and were called
"spiral nebulae."

A nebula might be a diffuse cloud of weakly shining gas within the
Galaxy; some of them turned out to be just that. In 1755, however, Im
manuel Kant suggested that most of the nebulae are in fact "island uni
verses" of stars-galaxies similar to the Milky Way but so distant that
the star images merge into a continuum (at least when viewed through
the low-resolution telescopes available at the time).

The island-universe I hypothesis gained increasing acceptance during
the nineteenth century. It was finally confirmed in 1923 when Edwin P.

Hubble, using the recently completed lOa-inch telescope on Mount Wil
son, resolved the outer regions of M31 (the Andromeda nebula) and of
M33 into what he described as "dense swarms of images which in no way
differ from those of ordinary stars" (except for being much fainter).1

The mean distance between galaxies is large compared to their dimen
sions: galaxies occupy a very small fraction of the universe. They are not
uniformly distributed; most are found in clusters that consist of as few as
ten galaxies or as many as a thousand. The Milky Way belongs to a small
cluster of about twenty called the "local group." Each cluster is held to
gether by the gravitational attraction of its members.

Most clusters of galaxies are themselves grouped into larger aggrega
tions called superclusters; the local group is part of a supercluster centered
in the constellation Virgo. Some cosmologists have speculated that this

process continues without end, that is, there exist clusters of superclusters,
and so on ad infinitum. Such an arrangement, called a hierarchical uni
verse, would have interesting implications; for one, the average density of

matter would decrease with each level of clustering and could ultimately
approach zero. However, no evidence of clustering beyond the scale of
superclusters has been found.

Distance Indicators

The distances of nearby stars are determined by the method of trigono
metric parallax, which is based on the change in a star's apparent direction

1. E. P. Hubble, "Cepheids in Spiral Nebulae," Observatory 48 (1925):140. The
notation M31 refers to the number in Messier's catalog.
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as the earth traverses its orbit around the sun. The parallax angle mea
sures the ratio between the radius of the earth's orbit and the distance to
the star. This method can be applied only to stars within about 100 light
years of earth; at that distance the parallax angle is 0.03 seconds, about
the smallest that can be reliably measured with existing telescopes.

For more distant objects astronomers have to resort to less direct meth
ods, which make use of so-called standard candles or distance indicators.

The intensity of the light from a given source falls off with the square of
the distance from the source. Hence one can calculate the ratio of the
distances of two identical sources by comparing their apparent bright
nesses. Suppose, for example, we observe two stars whose characteristics
are identical and find that one looks a hundred times brighter than the
other. The dimmer one must be ten times as distant. If we know
the distance of the brighter one, we can infer the distance of the dimmer
one.2

A key role in the determination of the extragalactic distance scale was

played by Cepheid variables, stars whose brightness oscillates regularly
with a period typically between three and fifty days. Study of Cepheids

in the Small Magellanic Cloud by Henrietta Leavitt disclosed a strong
correlation between their periods and their apparent brightnesses: the

longer the period, the brighter the star looks.
Since all the stars in the Magellanic Cloud are at (nearly) the same

distance, the apparent brightness of any star in the Cloud is a measure of
its absolute luminosity. Hence the measured period of a Cepheid variable
determines its absolute luminosity; they make excellent standard candles.3

Hubble identified some of the stars he had observed in M31 and M33
as being Cepheid variables. Using the Cepheids as distance indicators, he
concluded that M31 and M33 are nearly a million light-years away. The
discovery of external galaxies thus extended the distance scale of the ob
servable universe by more than an order of magnitude.

2. The inverse-square dependence of light intensity on distance holds only in
static Euclidian space; the argument must be modified when applied to very distant
sources in an expanding universe. (See the discussion in sees. 9.2 and 9.7.) Absorp
tion of light by interstellar gas or dust can also modify the variation of intensity
with distance.
3. To calibrate the period-luminosity relation for Cepheids, one has to know the
absolute luminosity of at least one; this requires knowing its distance. Unfortu
nately, no Cepheid is close enough to earth to allow a reliable distance determina
tion by means of trigonometric parallax. The calibration was first carried out by
Ejnar Hertzsprung in 1913, using thirteen galactic Cepheids. Although each one
has a barely detectable parallax, by averaging the data Hertzsprung was able to
obtain a fairly good calibration.
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To be useful as a distance indicator, an object must be recognizable as
belonging to a class whose members all have nearly the same absolute
luminosity. Cepheids make the most reliable indicators, but they have
been identified only in galaxies within about 20 million light-years of
earth. For more distant galaxies, astronomers must fall back on indicators
that are intrinsically more luminous and can therefore be identified at
greater distances. H II regions (clouds of ionized hydrogen surrounding a
bright 0 or B star), globular clusters of stars, supernovas, and the bright
est star in a galaxy are all used as indicators.

At distances greater than about 80 million light-years, no distinct fea
tures within a galaxy can be resolved and the determination of distance
becomes even more problematic. The best one can do is to use the bright
est galaxy in a cluster as a standard candle. (Studies of nearby clusters
show that although individual galaxies vary in brightness a great deal, the
brightest galaxy in a cluster generally has the same absolute luminosity
within a factor of about two.) With this technique, distances up to 3 billion
light-years have been assigned. Such estimates are subject to considerable
uncertainty, but no better way of estimating such great distances is avail
able.

For cosmological purposes, the more distant an object, the more inter
esting it is; by observing a very faraway source we are probing the uni
verse deeply not only in space but also in time: the light we receive from
the source today was emitted a very long time ago. If the universe evolves,
the very distant sources provide direct information about conditions dur
ing its early history.

Cosmological Principle

In ancient cosmologies the earth was the center of the universe. That no
tion was challenged by some Greek thinkers and was finally abandoned
with the acceptance of the Copernican system, which relegates the earth
to an inconspicuous spot in the solar system. The logical extension of
Copernicus's idea is that neither the sun nor our galaxy nor any other
object occupies a preferred place in the universe: apart from local irregu
1arities' the universe is homogeneous and isotropic.4 To observers in an
other galaxy, the heavens look about the same as they do to us; the aver
age density of matter is the same everywhere, and the sky looks more or
less the same in all directions. This set of assumptions, which underlies
nearly all modern cosmologies, is called the cosmological principle.

4. It can be shown that isotropy about every point implies homogeneity.
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The cosmological principle seems plausible and is weakly supported by
observational evidence such as number counts of galaxies; the portion of
the universe we can observe appears to be roughly homogeneous and iso
tropic. Most cosmologists adopt the cosmological principle as a working
hypothesis, not necessarily because they are convinced it is correct but
because it restricts the range of possible models to a manageable number.
The observational data are quite limited; even with a cosmological princi
ple, as we shall see, it is difficult to discriminate among the models. If
nonhomogeneous or nonisotropic universes were included, the number of
possible models would be vastly increased and the task of choosing among
them would become even more daunting.

On a local scale the cosmological principle is obviously not valid. The
sky looks very different in the direction of the Milky Way than in other
directions. The principle applies only on the cosmological scale, that is, to
regions large enough to contain many clusters of galaxies. Two such re
gions, of equal size, should contain approximately equal numbers of gal
axies no matter where they are located. The diameter of the region must
be of the order of 108 to 109 light-years.

A stronger statement is the perfect cosmological principle (PCP), which
asserts that the universe is homogeneous not only in space but in time as
well. According to the PCP, the universe has always looked the same as it
does today. This assumption leads to the steady-state cosmology, which
was in favor for some time; as we shall see, there is now strong evidence
against it.

9.2. HUBBLE'S LAW AND THE EXPANSION OF THE UNIVERSE

The light from a star or a galaxy contains spectral lines of common ele
ments-hydrogen, calcium, and so on-with the wavelength of every line
shifted by the same fraction from the value measured in the laboratory.
Astronomers use the symbol z to denote the fractional change in wave
length:

or (9.1)

Here "- is the measured wavelength and "-0 is the laboratory wavelength
of the same line (f and fo are the corresponding frequencies). z is called
the red shift because for positive z a line in the visible part of the spectrum
is shifted toward the red. When z is negative, the spectrum is said to be
blue-shifted.
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(9.2)

In section 4.8 we discussed the Doppler effect, the change in frequency

measured by an observer in motion relative to the source of radiation.

When vic is small, the fractional shift in wavelength is the same as the

fractional shift in frequency and is given by equation (4.40): 5

6"'-== +~
Ao - c

where v is the radial velocity of the source relative to the observer. A
receding source gives rise to a red shift, and an approaching source gives

rise to a blue shift.

The observed wavelength shifts in stellar spectra are routinely inter
preted as being Doppler shifts. According to equations (9.1) and (9.2), the

value of z gives the radial velocity of the star through the relation

v == cz (9.3)

A typical value of z for a star is 0.001, which corresponds to a radial

velocity 300 kmlsec.
By 1923, the spectra of 41 galaxies had been analyzed. Surprisingly, in

36 cases the spectrum was found to be red-shifted while only five galaxies

exhibited blue shifts (all of them very small). According to the Doppler
interpretation, the preponderance of red shifts implies that most of the
galaxies are moving away from us. If the motions were random one would
expect to observe approximately equal numbers of red and blue shifts, as
is the case for stars within our galaxy.

In 1929, Hubble plotted red shift versus distance for 18 galaxies and
discovered the law that bears his name and that is the key to modern
cosmology: the red shift is proportional to distance. All the galaxies in

Hubble's original plot are fairly close by and have small red shifts; the

most distant ones are members of the Virgo cluster, with z about 0.03.

From the data, which exhibited considerable scatter, Hubble optimistically

inferred a linear relation between red shift and distance. Later measure

ments extended the sample to more distant galaxies and confirmed that

the relation is indeed linear up to z around 0.2.
According to equation (9.3), the recession velocity is also proportional

to distance, provided the velocity is low enough to justify the use of the

first-order Doppler formula (9.2).

5. The signs are of course opposite. If the frequency decreases, the wavelength
increases.
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Fig. 9.1. Modern version of the Hubble plot. The gal
axies used by Hubble in his original plot are all in the
box at the lower left. There are two vertical scales, one
labeled by red shift and the other by recession velocity.
The red shift is what is actually measured. The reces
sion velocity is inferred from the Doppler formula.
(See discussion in the text.) From Harrison, Cosmol
ogy: The Science of the Universe, copyright © 1981 by
Cambridge University Press. Reprinted with the per
mission of Cambridge University Press.
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Figure 9.1 is a modern version of the Hubble diagram; the sample on
which Hubble based his original conclusion is all found in the box at the
lower left corner of the diagram. The ordinate axis is marked in units both
of z and of v; keep in mind, however, that the red shift is the measured

quantity.
The slope of the Hubble diagram. (with velocity as ordinate) is known

as Hubble's constant and is assigned the symbol H. Hubble's law thus

takes the form either of

or, using relation (9.3),

v==Hd (9.4)
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z == (H/c)d (9.5)

I emphasize that equation (9.5), not (9.4), is the true statement of Hub
ble's law.

H has the dimensions of velocity divided by distance, or reciprocal
time. From his original data, Hubble found the value of the constant to be
about 150 km per second per million light-years. Subsequent study
showed, however, that the galactic Cepheid variables used by Hubble as
distance indicators are actually farther away than had at first been be
lieved; as a result, the extragalactic distance scale had to be recalibrated
and the value of H changed. The new value was substantially lower than
the one first deduced by Hubble.

There remains some controversy among the experts as to the correct
value of H; the suggested values range between 15 and 30 km/sec/million
light-years.6 For this discussion, I adopt a nominal value of 20.

Figure 9.2a shows the recession of distant galaxies implied by Hubble's
law.? The picture seems to violate the cosmological principle since it is
symmetric about point A, the location of the earth. We appear to be in a
special position. This, however, is only an illusion; it is easy to show that
if one plots the velocities relative to any other point, say, B, the picture
looks exactly the same.

In Figure 9.2a, I have indicated the positions of point B and of an arbi
trary galaxy G, and their velocities VB and v. According to equation (9.4),

and

v==Hd

(9.6a)

(9.6b)

(Vector notation is used to emphasize that each velocity points in the
same direction as the corresponding displacement.)

6. The constant is generally quoted in these unusual units because it allows im
mediate conversion of distance to recession velocity. For example, a source 100
million light-years away is receding at 2,000 km/sec. In more conventional units,
the value of H is 2 X 10 -18 sec -lor 6 X 10 -11 yr -1. See Michael Rowan-
Robinson, The Cosmological Distance Ladder (New York: W. H. Freeman, 1985)
for detailed discussion of the determination of Hubble's constant.
7. In the Doppler picture, the value of z determines only the radial component of
velocity; each galaxy has, in addition, an unknown velocity perpendicular to the
line of sight. Fig. 9.2a is based on the assumption that the transverse velocities are
negligible. In the expanding universe model, the recession is in fact purely radial.
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Fig. 9.2. Recession of galaxies inferred from Hubble's
Law. (a) Galaxies are all receding from earth (point A) at
speeds proportional to their distances. (b) When the mo
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wise represents a recession proportional to the distance
from B. Thus the model is consistent with the cosmologi
cal principle. (G is an arbitrary galaxy.)

I 301

Figure 9.2b shows the motions of all the galaxies as they look to an
observer at B. The displacement of G relative to B, labeled d', is

d' ==d-dB

while the velocity of G relative to B, labeled v', is

v' ==v-vB

From equations (9.6) and (9.7), we obtain

v' == H(d.:- dB) == Hd'

(9.7a)

(9.7b)

(9.8)

which is the same as equation (9.4) referred to an origin at B. Figures 9.2a
and 9.2b look the same. The radial recession picture is thus fully consis
tent with the cosmological principle.

The Expanding Universe. Hubble's law was originally interpreted as

implying that all the galaxies are rushing away from us. An alternative

interpretation, first proposed by Georges Lemaitre and Howard Robertson
and now universally accepted, is that space itself is expanding. Hubble's
law is a direct consequence of the expansion, as I shall show.
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Fig. 9.3. An expanding two-dimensional
universe. A, B, and C represent galaxies.
Each one remains fixed on the surface of
the sphere. No matter which galaxy is
taken as a center, all the others appear to
recede at velocities proportional to their
distances. This model accounts for Hub
ble's Law.

To elucidate the idea of the expanding universe, let us return to the
two-dimensional analogy discussed in chapter 8, in which space is a sur
face. The expansion of a surface is readily visualized; for concreteness let

the surface be a sphere.

Figure 9.3a shows a spherical universe with several galaxies on its sur

face. Suppose the sphere expands but the position of each galaxy on the

sphere remains unchanged. Figure 9.3b shows the situation a short time

afterward. It is apparent that the distance between any two galaxies has

increased by an amount proportional to their initial separation. If we in
terpret the rate of increase of the separation as a recessional velocity, that

velocity is proportional to the separation, precisely as in equation (9.4).

When generalized to three-dimensional space, figure 9.3 is the model

for the expanding universe. According to this picture the galaxies are not

actually moving; their measured separation increases because of the
expansion of space. If that is the case the red shifts cannot be true Doppler
shifts, although they were so interpreted at first and continue to be
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(9.9)

so described in many textbooks.8 How then are the red shifts accounted
for?

It is convenient to define a "co-moving" coordinate system, which fol
lows the expansion of space; on an expanding sphere, for example, latitude
and longitude are a satisfactory set of co-moving coordinates. The co
moving coordinates of each galaxy remain constant as space expands.

We further define a time-dependent dimensionless parameter R(t)
called the scale factor. R increases as the universe expands but at any
given time has the same value everywhere in space.9 Its present value is
denoted by R(ta) or simply Ra (ta is the present time). Each cosmological
model specifies how R varies with time.

As space expands, all rneasured distances between co-nl0ving points
(points that are stationary with respect to co-moving coordinates) in
crease in direct proportion to R. This fundamental relation can be written

in the form

d(t) _ R(t)
J;;- Ra

where d(t) is the measured distance at time t and do is the present mea
sured distance.

Quantities such as the radius of an atom or of a galaxy, which are
determined by local physical laws, do not increase as the universe expands.
(If all lengths, including those of metersticks, increased in the same pro
portion, there would be no observable consequences.) In figure 9.3 the
galaxies can be represented by small stickers of constant size, affixed to
the surface of the expanding sphere. This property plays an important
role in the early history of the universe, as we shall see in section 9.8.

To illustrate what happens to the wavelength of a light wave in ex
panding space, imagine two athletes running at the same speed in the
same lane of a track. If the track expands, the separation between the
runners increases by the same fraction as the length of the track. Replac

ing the runners by two successive crests of a light wave, whose separation

8. For small values of 2, the expansion picture and the Doppler picture turn out
to be equivalent, but the distinction between them is crucial for cosmology. See
Edward R. Harrison, Cosmology: The Science of the Universe (Cambridge: Cam
bridge University Press, 1981), 236-240, for a clear discussion.
9. R is sometimes referred to as the II radius of the universe." This nomenclature
is somewhat misleading, however. In a spherical universe, the radius is indeed
proportional to the scale factor, but a scale factor can be defined as well in a flat
universe, which has no radius.
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is one wavelength, we conclude that the wavelength increases in propor
tion to the scale factor. This argument is somewhat heuristic, but the

result, equation 9.10 below, follows rigorously from the mathematical
models.

If a light wave was emitted at time t e , when the scale factor had the
value R(te), and is received now when it has the value Ro, the wavelength
is multiplied by the factor Ro/R(te ). (In an expanding universe R(te) is less
than Ro.) Hence the formula for the cosmological (expansion) red shift is

(9.10)

(9.11)

The red shift of a galaxy is a measure of how much the universe has
expanded between the time light was emitted by the galaxy and the time
the light reaches us. IO The shape of the Hubble plot therefore implicitly
determines how the universe has been expanding ever since the light from
the most distant galaxy was emitted.

Although the galaxies are not moving, one can nonetheless define a
recession velocity V r for a galaxy as the rate of change of its measured
distance d; call that quantity d, and let R similarly denote the rate of

change of the scale factor R. The ratio R/R is then the fractional rate of
expansion of space. Since by hypothesis, d is proportional to R, the frac
tional rate of change of d must be the same as that of R; that is to say,

d R
d-R

Equation (9.11) implies that the recession velocity is

(9.12)

which is the same as equation (9.4) if we identify the Hubble constant as

H == R/R (9.13)

According to equation (9.13), H measures the fractional rate of expan
sion of the universe. As this relation indicates, the Hubble"constant" is
really not constant but varies with time, depending on how the expansion

10. Any true relative motion contributes a Doppler shift that should be subtracted
to obtain the expansion red shift. The Doppler shift can be in either direction but
is small compared to the expansion red shift except for very close galaxies. One
source of proper motion is known: because of galactic rotation, the solar system
has a velocity about 300 km/sec relative to the galactic center. After this velocity
has been subtracted, only one nearby galaxy (NGe 253) exhibits a blue shift.
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proceeds. Even if Rwere constant, H would decrease as R increases. I1 (In
most models, as we shall see, the expansion slows down, which makes H
decrease even faster.) We use Ho to denote the present value of H. The
measured value of Ho implies that the universe is now expanding by about

one part in 15 billion each year.
The expansion of the universe is described by specifying how the scale

factor R varies with time. Over a short enough time period, the curve of
R vs. t can be approximated by a straight line. The slope of that line is the
rate of change R, which according to equation (9.13) is equal to HR. A
straight line fitted to the present rate of expansion has the slope HoRo. Its
equation can be written in the form

(9.14)

Equation (9.14) applies only for times close to to.
We can now show that the expanding universe picture leads to Hub

ble's law, provided the emission time te is close enough to to to justify
the use of the linear approximation (9.14). Putting t== t e in (9.14) and
substituting in equation (9.10), we obtain .

1
l+z==-----

1+ HO(te - to)

~1 + Ho(to- tJ (9.15)

To get the last form of the equation, we used the approximation
1/(1 + x) ~1- x, which is justified when x is small.

The quantity to - te is the look-back time-the time required for light
to travel from the source to us. A rigorous calculation of that time must
take into account the expansion of space while the light is in transit, as
well as the curvature of space. The result is model-dependent. In first
approximation, however, we can simply put

(9.16)

where d is the distance of the source. (To first order, it is unnecessary to

distinguish between the present distance and the distance at the time of
emission.)

With the substitution (9.16), equation (9.15) becomes Hubble's law,

equation (9.5). As our derivation indicates, the linear relation between red

shift and distance is valid only for small z.

11. If Ris proportional to R, H is a true constant. This occurs only in the steady
state universe, described in section 9.6.
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I emphasize again that the Doppler and expansion interpretations are

not equivalent ways of explaining the observed red shifts but are funda

mentally different. The difference has consequences that are in principle
observable (though not for small values of z).

In the Doppler picture, velocity and red shift are directly related. The

observed linear dependence of red shift on distance, equation (9.5), trans

lates into a relation between velocity and distance, but that relation is

linear only in first approximation. The exact relativistic Doppler formula
(4.38), written in terms of z, is

(
1 +vic) 1/

2

l+z== --
I-vic

Combining equation (9.17) with (9.5), we obtain

(
l+vlc)V2_ 1 =H d
1- vic c

(9.17)

(9.18)

If the red shifts were due to Doppler effect, the precise velocity-distance

relation would be given by equation (9.18). For small values of vic this

reduces to the linear relation (9.4), but a plot of velocity vs. distance would
depart noticeably from linearity for vic more than about 0.1. In figure 9.1
the velocity scale would have to be revised at the high end. For z == 0.2, for
example, the exact relation (9.17) gives vic == 0.18; the approximate form
(9.3) is more than 10 percent high.

In the expansion picture, in contrast, the linear velocity-qistance rela
tion (9.12) is valid for all values of v r : it simply expresses the fact that at
any given time the entire universe is expanding at the same fractional

rate, as required by the cosmological principle. A plot of recession velocity

against distance is therefore necessarily linear. The observed dependence

of red shift on distance leads to a derived relation between recession veloc

ity and red shift.
Notice that although the Doppler velocity defined by equation (9.18) is

always less than c, the expansion velocity defined by equation (9.12)

clearly exceeds c at great enough distances. Special relativity is not vio

lated because no object is actually traveling at that speed; the apparent
recession "velocity" is simply a manifestation of the expansion of space.

One other conceptual difference between the two pictures should be

noted. In an expanding universe, the red shift of a given source depends

on the entire history of the expansion between the emission of the light

and its arrival at the observer. The Doppler effect depends only on the
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Fig. 9.4. "Dachshund" universe used to illus
trate the difference between the expansion and
the Doppler interpretations of cosmological red
shifts.
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relative velocity between the source at the time of emission and the ob
server at the time of reception. The motion of the source after it has emit
ted the light is irrelevant.

Figure 9.4 illustrates how this difference can affect observations. The
expansion of this hypothetical universe halts at time t1 and resumes at t2;

between t1 and t2 the scale factor has the constant value R1.
12 Light emit

ted by a source during the resting stage and received on Earth after t2 is
detected as red-shifted by the factor RoIR J • If, instead, the same curve

represented the position of a moving galaxy, the source would be at rest
between t1 and t2 . Light emitted during that period would be detected with
no Doppler shift at all.

Cosmological Distances. When discussing a distant source, we must
distinguish between the source's present distance, do, and its distance
when it emitted the light we receive now, de. The relation between the
two distances is

(9.19)

In any expanding universe do is greater than de; the difference is critical
for the discussion of high-z sources. Observation provides information
only on de; we know nothing about the motion of the source after it emit
ted the light that is now reaching us. do is just a convenient theoretical

12. A model with such behavior is the Lemaitre universe, sometimes whimsically
referred to as the"dachshund" universe.
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number that tells us the present distance of the source if it has continued
to follow the expansion of the universe. That assumption could be wrong;

the source might have exploded a minute after teo
One can similarly define two recession velocities for each source: its

present velocity, vo, and its velocity at time t e , when it emitted the light
we now detect. Call the latter V e• Each velocity is related to the cor
responding distance by equation (9.4), evaluated at the appropriate time.
That is,

(9.20a)

and

(9.20b)

Both velocities are model-dependent.

LU111inosity Distance. Both do and de are so-called proper distances;
they are distances that would be measured on metersticks held by a chain
of observers at the same instant of cosmic time. This, of course, is not a
practical method of measuring the distance of a galaxy. Astronomers

therefore define still another distance, called the luminosity distance.
As noted earlier, the distance of a faraway cluster of galaxies is deduced

from the apparent brightness of its brightest member, under the assump
tions that (i) the absolute luminosity of the brightest galaxy is the same
for all clusters and (ii) the apparent brightness of a source diminishes as
the square of the distance between source and observer. If proper distance
is used, the second assumption is valid only in a static universe with Eu
clidian geometry. The luminosity distance dL is defined by postulating an

inverse-square variation. It differs from both do and de.
The effect of expansion is not hard to calculate for Euclidian space. The

luminosity of a source, L, is the radiant energy per unit time it emits. If

the source were at rest at a distance d in a nonexpanding universe, the
energy would be distributed over a sphere whose area is 41Td2

. Hence the
flux density (energy/unit area/unit time) reaching the observer's tele

scope would be

(in static Euclidian space) (9.21)

The expansion of space affects the intensity in two ways. The effect is
more easily described in terms of the photon picture of light, although a
wave description must lead to the same result. First, each photon is red

shifted. Since the energy of a photon is hi == he/A., the red shift reduces
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the energy by the factor 1 + z. In addition, the number of photons per
second that reach the observer is reduced by the same factor 1 + Z.13 Hence
the flux density at the telescope is smaller by a factor (1 + z) 2 than it
would be if the source were at the same distance in a nonexpanding space.
We have instead of (9.21):

(in expanding Euclidian space) (9.22)

The luminosity distance dL, is defined as the distance at which the flux

density would have the value given by equation (9.22) if the apparent
brightness obeyed an inverse-square law. That is,

F== L/41TdL,2

Equations (9.22) and (9.23) yield the desired result:

dL, == do(l + z) == de(l + Z)2

(9.23)

(9.24)

The red shift makes the source look dimmer and therefore appear to be
more distant than it actually is. In curved space, the relation between dL

and do contains the saIne factor 1 + z caused by expansion, multiplied by
another z-dependent factor due to the non-Euclidian geometry.

The Distances of High-z Objects. The Hubble relation (9.5) can be used

to assign a distance to any source for which a red shift has been measured
and no other distance determination is possible, for example, a distant
galaxy that cannot be identified with any cluster.

The nature of quasars-compact objects with faint starlike images and
with high red shifts (some as high as 3)-is of great interest. If their red
shifts are cosmological, high-z quasars are the most distant objects yet
observed as well as the most luminous. To calculate a cosmological dis
tance for such a source, one has to extend the red shift-distance relation
far beyond the range in which it has been established observationally. As
we shall see, each cosmological model predicts a unique form for the rela

tion. For high values of z, the relations are quite different. Distance esti
mates for high-z quasars are therefore model-dependent. 14

13. Imagine that N photons per second are emitted by the source at a steady rate.
The spacing between successive photons is then ciN. The expansion of space
causes the spacing to increase by the factor 1 + z by the time the photons reach
the observer. The arrival rate is correspondingly less.
14. Straightforward linear extrapolation of eg. (9.5) would yield a distance of 45
billion light-years for a quasar with z = 3. The distances given by most models are
substantially lower.
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To be sure, quasar red shifts might not be cosmological. They might be
gravitational, as noted in chapter 8, or they might even be Doppler shifts
caused by true motion. In the latter case, the velocity would be very close

to c. A quasar might be the result of a massive explosion that sends matter

hurtling off at relativistic speeds.
If either of the alternative interpretations is correct, the red shifts of

quasars tell us nothing about their distances. They could even be rela
tively nearby. Most experts, however, favor a cosmological origin. Several
cases of quasars associated with clusters of galaxies have been discovered
recently. In each case, the quasar has nearly the same red shift as the
galaxies; these observations provide strong support for the cosmological
interpretation.

9.3. THE BIG BANG

The Hubble constant tells us the rate at which the universe is expanding
today. It is natural to inquire what happened in the past and what will
happen in the future. Cosmological models provide answers to these ques
tions; each model specifies how the scale factor R varies with time. Some
model universes are discussed in section 9.5.

A feature common to many of the models is that the scale factor was
zero at some time in the past. Since the measured distance between any
two galaxies is proportional to R, all such distances must have been zero
when R was zero; the density of the universe was infinite at that instant.
This highly singular state is called the "big bang"; the term was coined
by Fred Hoyle. In any big bang cosmology, the time since the big bang
can be considered the age of the universe.

Our two-dimensional spherical analogy is helpful in picturing the big

bang. As one looks back in time, the universe consists of smaller and

smaller spheres, approaching a single point at the time of the big bang.
The same thing happens in a three-dimensional universe whose space is

spherical, although it cannot be visualized.
We must resist the temptation to picture all the matter in the early

stages of a big bang spherical universe as being concentrated in a tiny
sphere surrounded by vacuum. Matter always fills all of space, but space
itself consists of a tiny sphere at the beginning. In a sense the term "big
bang" is misleading because it suggests an explosive event. An explosion

is driven by a strong outward pressure gradient, whereas in any model
universe the pressure is always the same everywhere, in accord with the
cosmological principle. The, big bang was not an explosion.
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Another common misconception is that the volume of the universe was

necessarily zero at the time of the big bang. That is true only for" closed"

universes. A universe whose space is Euclidian, for example, always has

infinite volume even though the distance between any two galaxies ap

proaches zero and the density approaches infinity as we approach the big

bang.

Figure 9.5 shows the scale factor as a function of time for several ge

neric universes; curves (a), (b), and (c) describe big bang universes.

In model (a) the expansion has always proceeded at the same rate as

today: the curve of R versus time is a straight line. From equation (9.14)
we find that R == 0 at t == to -l/Ho. The age of a uniformly expanding uni

verse is therefore IIHo, which is called the Hubble time and is denoted by

tHo With the currently accepted value of Ho' the Hubble time is about

15 billion years. The age of any big bang universe is of this order of

magnitude.

Curve (b) illustrates a universe with a decreasing rate of expansion

(deceleration). Most cosmological models are of this type; the expansion

is slowed by the gravitational attraction of matter. Any decelerating uni

verse must originate from a big bang; its age is less than the Hubble time,

as the figure shows.

Curve (c) illustrates a big bang universe with accelerating expansion;

its age is more than the Hubble time.

A universe in which the expansion accelerates need not have evolved
from a big bang. As one looks back in time, the curve of R versus t could

approach zero asymptotically, as in curve (d), or could even turn up, as in

curve (e). The steady-state universe, discussed in section 9.6, is of type

(d). A universe of either type (d) or type (e) is infinitely old.

With the original value of the Hubble constant, the age of the universe

predicted by most of the big bang cosmologies was only a couple of billion

years. That value was embarrassingly small because it is considerably less

than the ages of some earth rocks and meteorites, determined by radioac

tive dating. There is clearly something wrong with a model in which the

earth is older than the universe. When the value of Ho was revised down

ward after the recalibration of the distance scale, the age of the universe

increased by a factor between five and ten and the problem disappeared.

Cosmologists define a "deceleration parameter" q, which Ineasures the

rate of change of the expansion. Positive q implies deceleration, negative

q implies acceleration, and q == 0 implies uniform expansion. The decelera

tion parameter could itself vary with time and could even change its sign;
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Fig. 9.5. Possible histories of an expanding universe. (a), (b), and (c)
are big bang universes. The measured value of Ho gives the present
slope of the curve of the scale factor R as a function of time. This is
shown as the solid segment in graph (a). The dashed line in this graph
is a linear extrapolation in which the rate of expansion is assumed to
be constant. In this model the age of the universe (time since the big
bang) is 1/Ho. Graph (b) shows a decelerating expansion; the age of the
universe is less than 1/Ho. Graph (c) shows an accelerating expansion;
in this case the age of the universe is greater than 1/Ho. The favored
models are of type (b). Graphs (d) and (e) show expanding universes
without a big bang. In (d) the scale factor increases exponentially with
time; in (e) the universe was actually contracting a long time ago,
reached a minimum size, and then began to expand. In each case the
rate of expansion is increasing (q is negative). Graph (d) is the behavior
according to the steady-state theory. The time t = a in these graphs has
no significance.
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proaches infinity. In (c) and (d), the expansion de
creases; in (c), R approaches a constant, and in (d),
it goes to zero.
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its present value is called qo. The value of qo is one of the parameters

whose values cosmologists are trying to determine from observations. Is

Figure 9.6 illustrates possible future courses of the universe. If the rate

of expansion remains constant (q ==0, curve [a]) or increases (positive q,
curve [b]), the scale factor goes to infinity as time increases. If q is nega
tive, the expansion slows down. The rate of expansion either approaches

zero asymptotically or becomes negative. In the former case, the scale

factor approaches a constant (curve [c]). In the latter case, the expansion

turns around and the universe hegins to contract, perhaps collapsing to

another big bang (curve [d]).

9.4. THE HUBBLE SPHERE AND HORIZONS

The product of the Hubble time and the speed of light is a distance called

the Hubble length:

L[-{ == Hubble length == clH

15. The matheluatical definition of q is

q=-RR/R2

(9.26)

(9.25)

where Rstands for the time rate of change of R. If Ris constant (uniform expan
sion), q is zero. The minus sign is included in the definition to make q positive for
a universe with slowing expansion.



314 / Cosmology

Since H varies with time in most models, so does LH; its present value
is about 15 billion light-years. A sphere of radius LH is called the Hubble
sphere. In models with slowing expansion, LH increases with time and the
Hubble sphere expands steadily.

Equations (9.12) and (9.26) imply that the recession velocity of a galaxy
located on the Hubble sphere is exactly c. Light emitted from such a gal
axy remains at a constant distance from earth: the expansion of space just
compensates for the velocity of the light moving toward US. I6 A galaxy
outside the Hubble sphere is receding at a speed greater than c; light that
it emits toward us is losing ground to the expansion of space. I7 If that
continues to hold true, the light will never reach us and we will never
observe the galaxy in question; such a source is said to be beyond our
event horizon.

A galaxy outside the Hubble sphere at a given moment is not necessar
ily beyond our event horizon. If the expansion of the universe were to
slow down sufficiently, at some time in the future the recession velocity
at the location of the light wave could become less than c. In that case the
distance between the light wave and earth would begin to diminish and
the light could eventually reach us. That is precisely what happens in the
Einstein-de Sitter universe, described in the next section.

An event horizon can arise in another way. If the expansion reverses
and the universe eventually collapses to another singularity, light from a
particular event may not have enough time to reach us before the collapse
has been completed. In that case the event would not be visible to us; it
would be outside our event horizon. I8

A different type of horizon is applicable only to big bang universes.
Consider light emitted from earth just after the big bang. That light has

now traveled a finite distance, say, do, determined by the rate of expansion
during its transit time. (As discussed above, do is not just c times the
elapsed time.) Observers on a galaxy at a distance greater than do have
never seen earth; light emitted from here at the very first instant of time

16. As the Red Queen told Alice in Through the Looking Glass, "Here, you see,
it takes all the running you can do to keep in the same place."
17. Observers in the vicinity of the galaxy see light traveling at its normal speed
c in all directions. But the proper distance of a light wave emitted in the direction
of earth increases with time.
18. In a collapsing universe the distance between the earth and an approaching
light wave decreases at a rate faster than c. A lot of ground can be covered during
the last moments of the collapse. In some models the speed of approach becomes
infinite. The rate at which R approaches zero determines whether or not an event
horizon exists.
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has not yet reached them. By a symmetry argument, it follows that we
likewise have never seen that galaxy (nor one at any greater distance).
Wolfgang Rindler calls this a particle horizon. The particle horizon ex
pands with time, as the light emitted at the earliest times continues to
propagate away from each source.

The two types of horizons are quite distinct. The particle horizon de
pends on how the universe has expanded up to now, while the event hori
zon depends on the future course of its expansion. A specific model uni
verse can exhibit one type of horizon or the other, or both, or neither. 19

Specific examples of both types of horizons will be analyzed in the follow
ing section.

The preceding discussion of horizons tacitly assumes that galaxies live
and continue to radiate forever: a galaxy is considered observable if it is
kinematically possible for light emitted by the galaxy to reach us. In the
real world, galaxies have finite lifetimes; hence a galaxy might be unob
servable even if it is not outside our horizon, simply because it has stopped
radiating (or has not yet begun to radiate). In any big bang universe, as
we shall see, no galaxy with a red shift greater than about 25 can be
observed. Light reaching us from such a source would have to have been
emitted during a very early epoch, when the density of the universe was
so high that galaxies could not yet have formed.

9.5. COSMOLOGICAL MODELS: FRIEDMANN UNIVERSES t

Numerous cosmological models have been advanced over the years. In
all these models the matter in the universe is assumed to be distributed
uniformly, as demanded by the cosmological principle. The mean density
of matter is a parameter that can be varied. In nearly all the models the

19. For the reader familiar with the calculus, I give the conditions for the existence
of the two types of horizons. An event horizon exists if the integral

r dt/R(t)Jto

is finite, where to is the present time and the upper limit is either the time of
collapse or +00 if there is no collapse. A particle horizon exists if the integral

fto

dt/R(t)

is finite, where the lower limit is either the time of the big bang or --00 if the
universe is infinitely old.
t Section 9.5 is fairly technical. It may be skimmed without losing the main thread
of the exposition.



316 / Cosmology

geometry of space-time is assumed to be governed by general relativity.
The available observational evidence eliminates some candidates and sets
some constraints but is not sufficient to select a specific model from all

the candidates.
The first cosmological model was proposed by Einstein himself in 1917,

soon after his paper on general relativity had been published; it is known
as the Einstein universe. Since the expansion of the universe had not yet
been discovered, Einstein took it for granted that the universe is static; he

further assumed that the spatial part of space-time has positive curvature
(spherical geometry).

To his dismay, Einstein found that the field equations of general rela
tivity for this model have no static solutions. The Einstein universe in its

original form first expands and ultimately collapses; the collapse is due to
the gravitational self-attraction of matter.

To salvage the situation, Einstein arbitrarily introduced a "cosmologi
cal" term into the field equations. The new term, which is effectively a
repulsive interaction, contained a constant A, which Einstein named the

cosmological constant. If A is assigned an appropriate value, a static solu
tion of the equations exists. The solution is, however, unstable: any small
perturbation will cause it either to blow up or to collapse.

After the discovery of the expanding universe, a cosmological term was
no longer needed; Einstein later told the physicist George Gamow that
introducing the A term was his "greatest blunder." Models that include
such a term nonetheless continue to be studied.

In 1922, Alexander Friedmann investigated the class of homogeneous
universes governed by general relativity, without any A term. The cosmo
logical principle demands that the curvature be everywhere the same.

Hence there are in essence only three possibilities, characterized by a con

stant, k, that specifies the curvature of the spatial part of space-time:

(i) k == + 1: positive curvature (spherical space)

(ii) k == 0: zero curvature (flat space)
(iii) k == -1: negative curvature (hyperbolic space)

All three Friedn1ann models turn out to be big bang universes: the scale
factor goes to zero at a finite time in the past. In case (i) the universe is
closed and finite in extent; in the other two cases the universe is open and

infinite.
Case (ii) is particularly simple; it is called the Einstein-de Sitter uni

verse. Although it is almost surely not right in every detail, it illustrates
many features common to other models.
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R(t)

Fig. 9.7. Scale factor R(t) as a function of time
for the Einstein-de Sitter universe. R(t) is propor
tional to the two-thirds power of time. t = 0 is the
time of the big bang.
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The reader may wonder how a universe described by general relativity
can be flat. In the neighborhood of any galaxy, to be sure, space must be
curved. But cosmology is not concerned with the geometry of small re
gions. In any cosmological model, all the matter in the universe is spread
out uniformly. With this distribution of matter, the field equations admit
a solution in which the space at any fixed time is Euclidian. Because space
expands, the full space-time metric is not the Lorentzian one of special
relativity. Thus the Einstein-de Sitter universe is in fact curved even
though its spatial part is flat.

Solution of the Einstein field equations gives the scale factor as a func
tion of time. In the Einstein-de Sitter universe R(t) is proportional to the
two-thirds power of the time:

(in Einstein-de Sitter universe) (9.27)

Equation (9.27) is plotted in figure 9.7. The model is a big bang uni

verse; t == 0 is the time of the big bang and to, the present time, is also the

age of the universe.
An elementary application of differential calculus shows that when a

variable R is proportional to el
, its rate of change R is proportional to

ntn -1. In the present case n has the value 2/1. Hence the rate of expansion
Ris given by
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. 2(RO) ( t ) - v,R(t) ==- - -
3 to to

(9.28)

Ris always positive but approaches zero as t increases; the Einstein

de Sitter universe continues to expand, but at an ever-decreasing rate. It

begins with a bang and ends with a whimper. 2o The deceleration parame

ter q, defined by equation (9.25), has the constant value +1/2 .

Since the measured distance of any galaxy is proportional to R, it too

increases as t 2/~ and the recession velocity decreases as t- V3.

From equations (9.27) and (9.28), we find that Hubble's constant in the

Einstein-de Sitter model decreases as II t: 21

H( t) == 2/(3 t) (9.29)

At early times H was much greater than it is today. The present value

Ho is 2/3 to' From the measured value of Ho we can deduce the age of the

Einstein-de Sitter universe:

to == 2/3 tH ~1010 Y

The Hubble length, L[f == clH( t), increases linearly with time:

LH == 3/2 et

(9.30)

(9.31)

The present radius of the Hubble sphere is 22.5 billion light-years; it

expands at the constant speed 1.5e. Since the recession velocities of the

galaxies decrease to zero, the Hubble sphere eventually overtakes every

galaxy. This implies that the Einstein-de Sitter universe has no event

horizon: every galaxy will eventually be observed.

We next calculate the look-back times for the model. According to

equations (9.10) and (9.27), light emitted at time t e is detected as red

shifted by the amount

1 + z == RolR( te) == (tol t e)2!l

Solving this equation for t e as a function of z, we obtain

te == t()(1 + z) ~- Y2 == 2/3 tH (1 + z) - 312

(9.32)

(9.33)

As expected, te approaches zero as z -7 00: sources with large red shifts

are seen as they looked at very early times. The look-back time to a source

with red shift z (the age at which we are seeing it today) is

20. As T. S. Eliot put it in The Wasteland, "This is the way the world ends / Not
with a bang but with a whimper."
21. This is true of any universe in which R varies as a power of t.
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Fig. 9.8. Distance of galaxies as a function of red shift
for the Einstein-de Sitter universe. The curve labeled "re
ception distance" gives the present distance of a galaxy
whose red shift is z. The "emission distance" is the dis
tance at the time the light now reaching us was emitted.
In the text these are referred to as do and de' respectively.
For a discussion of luminosity distance, see the text.
Adapted fronl Harrison, Cosmology: The Science of the
Universe, copyright © 1981 by Cambridge University
Press. Reprinted with the permission of Cambridge Uni
versity Press.

to - te == 2/~ tH[I- (1 + z) -'12]

For small z, we can approximate

(9.34)

(9.35)

and the look-back time is just ztH. All models give this result for small z.
In section 9.2 we defined three different cosmological distances-the

present distance do, the distance at the tirne of emission, de' and the lumi
nosity distance, dL. A calculation too complicated to reproduce here yields
the following expression for do(z):

do(z) == 2 LH [I- (1 + z) .~- 1/
2

] (9.36a)
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Equation (9.19) then gives de(z):

d (z)= 2LH [1-(1+z)-v2]
e 1 +z

and equation (9.24) gives dL(z):

dL(z):=: 2LH(1 + z)[1- (1 + z) - V2]

(9.36b)

(9.36c)

The three distances are plotted in figure 9.8.
According to equation (9.36a), as z approaches infinity the present dis

tance of the source approaches 2LH , or 30 billion light-years. Any galaxy
now at a greater distance cannot be seen and has never been seen; 2LH is
therefore the particle horizon for the Einstein-de Sitter universe. 22 The
particle horizon is twice as distant as the Hubble sphere and expands twice
as fast, at velocity 3c.

The behavior of the emission distance de(z) reveals an interesting fea
ture of the model. For small z, de is nearly identical to do, but as the
figure shows, de reaches a maximum at z == 1.25 and then turns down. Its
maximum value is (8/27)LH; this is the greatest emission distance of any
galaxy we can see today. The present distance of such a galaxy is 2/3 LH .

Its look-back time is 0.47 tH , about 7 billion years.
Of two sources with z greater than 1.25, the one with the greater red

shift was closer to us than the other when it emitted the light we detect.
As z~ 00, de in fact approaches zero. For each emission distance there are
two values of z, one less than 1.25 and the other greater than 1.25.

To make sense of all this, consider light emitted at some early time t1

by a source outside the Hubble sphere, where the expansion velocity is
greater than c (fig. 9.9a). That light at first receded from us, at a speed
v - c, but at a later time, t2 , the Hubble sphere caught up to it and its
proper distance began to diminish (fig. 9.9b). At a still later time, t3 , the
proper distance of the light was back to its original value (fig. 9.9c). Light
emitted at t3 by another galaxy at that proper distance reaches us simulta
neously with the first wave but with a much smaller red shift because it
was emitted much later (fig. 9.9d). The red shifts for the two galaxies are
quite different even though their emission distances are equal. The behav
ior illustrated in figure 9.9 is not confined to the Einstein-de Sitter uni
verse but is characteristic of all models in which the expansion decelerates
without reversing.

22. The existence of a particle horizon but not of an event horizon is consistent
with the conditions stated in footnote 19 of this chapter. With R(t) proportional
to t

2

/" the integral Po dt/R(t) is finite but Jeo dt/R(t) is infinite.Jo to
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Fig. 9.9. This sketch explains why two galaxies with different
red shifts can have the same emission distance in an Einstein-de
Sitter universe. (a) At time t1 galaxy A emitted a light ray to
ward earth. The expansion velocity at the point of emission was
greater than c; hence the distance between earth and the light at
first increased. (b) At time t2 the expansion had slowed enough
that the light from galaxy A began to approach earth. (c) At time
t3 its distance from earth was the saIne as when it was first emit
ted. (d) Light from a second galaxy, B, at this distance at t3

reaches earth at t4 , together with the light from A. The red shift
of the light from B is much smaller than that of the light from
A, since it was elnitted when the scale factor of the universe was
much greater.

One may be tempted to conclude from the plot of de ( z) in figure 9.8

that a galaxy with a very large red shift could appear brighter than one

with a smaller red shift, because its emission distance is smaller. As argued

in section 9.2, however, dL is the distance that is related to apparent

brightness by an inverse-square law, and dL(z) increases monotonically
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with z. Hence the sources in fact grow progressively dimmer with increas

ing z.
The angular size of a galaxy is the ratio of its diameter to the emission

distance. In the Einstein-de Sitter universe the angular size at first de

creases with increasing z, reaches a minimum at z == 1.25, which corres
ponds to the maximum emission distance, and thereafter increases gradu

ally.
In section 9.2 we defined two recession velocities for every source: the

present recession velocity, Va, and the velocity when it emitted the light
we now detect, V e. Equations (9.20a,b) give the relation between each ve
locity and the corresponding distance:

(9.20a)

and

(9.20b)

The relation between H(te) and Ha is given by equations (9.29) and

(9.32):

(9.37)

The two recession velocities in the Einstein-de Sitter universe are
therefore

(9.38a)

and

(9.38b)

Both velocities are plotted in figure 9.10. As expected, Va is less than V e

for all z. For small z, each velocity is approximately ez, in accord with
the relation (9.2). As z approaches infinity, however, V e becomes infinite
whereas Va approaches the finite value 2e. Infinite z represents the particle
horizon, which is at twice the Hubble length.

As shown above, the particle horizon is receding at three times the
speed of light, faster than the recession velocity of a galaxy located there,
which is only 2c. The particle horizon therefore eventually overtakes ev
ery galaxy; this confirms our earlier conclusion that the model has no

event horizon.
Figure 9.11 shows the history (measured distance as a function of time)

of several typical galaxies in an Einstein-de Sitter universe. According to
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Fig. 9.10. Recession velocity as a function of red shift
for the Einstein-de Sitter universe. "Recession then"
refers to the velocity when the light was emitted; "re
cession now" refers to the present velocity. (See fig.
9.8.) From Harrison, Cosmology: The Science of the
Universe, copyright © 1981 by Cambridge University
Press. Reprinted with the permission of Cambridge
University Press.

equation (9.9), the time dependence of d is the same as that of R; each
curve therefore has a t 2/1 variation. The solid circles mark the emission
time and emission distance for each galaxy.

Figure 9.12 presents the same information in a different format. Shown

are the Hubble sphere, the particle horizon, and the galaxies from figure
9.11. Each observable galaxy is labeled with its red shift, present distance,
and present recession velocity; a dotted line leads back to the point of
emission.

The behavior described in the preceding discussion is apparent in this

figure. For very small z, do and de are nearly the same; for larger z, de is
substantially smaller. G3 (z == 1.25) has the largest emission distance,
0.29 LH . G2 (z == 0.53) and G4 (z == 3.0) have the same emission distance,
even though te is much smaller for G4. G4 is on the Hubble sphere; its
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Fig. 9.11. Distance as a function of time for representative gal
axies in an Einstein-de Sitter universe. The emission time for
light received from each galaxy is indicated by a filled circle. The
look-back time and emission distance are indicated for one gal
axy (G3). G4 is on the Hubble sphere; G6 is on the particle ho
rizon.

present recession velocity is c. G6 is on the particle horizon; its recession
velocity is 2c and its red shift is infinite. Finally, G7 is beyond the particle
horizon; it is not visible to us today.

A short time afterward, the galaxies, the Hubble sphere, and the parti
cle horizon will all have receded, at the velocities indicated. G4 will be
inside the Hubble sphere and G7 inside the particle horizon. No matter
how distant a galaxy is today it will eventually be overtaken, first by the
particle horizon and later by the Hubble sphere.

The other two Friedmann universes (with k == ± 1) can be similarly
analyzed; we summarize the results here. The time dependence of the
scale factor for all three Friedmann models is shown in figure 9.13. In
each case, R is proportional to t 2/

3 for small t.

In the case k == + 1 (spherical geometry, closed universe), the decelera
tion parameter q starts with the value + 1/2 and increases with time. The
deceleration is sufficient to make the expansion turn around, as the figure
shows: the universe reaches a maximum size and then collapses, ending
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Fig. 9.12. Another picture of the Einstein-de Sitter universe. Shown
are the Hubble sphere, at a distance LH = c/Ho, and the particle horizon
at a distance 2LH . Several galaxies are shown, each labeled by its red
shift and its present expansion velocity. G4 , on the Hubble sphere, has
expansion velocity c. The dashed line from each galaxy leads back to its
emission distance (the position of the galaxy when it emitted the light
we now detect). Note that the maximum emission distance is for G3 ,

with z = 1.25. Galaxies with greater red shifts have smaller emission dis
tances, as explained in the text.

its life with a second big bang. The dependence of R on time is a cycloid

(the curve generated by a fixed point on the circumference of a circle that
rolls on a flat surface). The maximum value of the scale factor, Rm I and
the time at which the maximum is reached, tml can both be expressed in

terms of ROl HOI and qo. The relations are

(9.39)

(9.40)
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Fig. 9.13. Scale factor as a function of time for the
three types of Friedmann universe. k = + 1 is the
closed (cycloidal) universe, k = 0 is the Einstein-de Sit
ter universe, and k = -1 is the hyperboloidal universe.
The last two are both open. At short times all three
models are identical, with R proportional to the square
root of t.

Since the curve is symmetric, R returns to zero at t == 2tm , which is the

total lifetime of the universe in this model. If qo == 1, for example, equation

(9.39) gives tm == 71"/Ho, or about 50 billion years. The lifetime of the uni

verse is 100 billion years. to, the present age of the universe, can also be

expressed in terms of Ho and qo. With qo == 1 the present age is about 8.5
billion years; the universe is still young. Nonetheless, according to equa

tion (9.40), the scale factor has already reached half its maximum value.

The cycloidal universe has both an event horizon and a particle hori

zon. Light from a galaxy now at the event horizon will reach us at the

completion of the collapse, just before the second big bang. During the

contracting phase the spectra of some galaxies will be detected as blue

shifted, since Ro/R in equation (9.8) will be less than unity. The largest

blue shift is associated with the galaxy whose light was emitted when R
had its maximum value. (Under a conventional Doppler interpretation,

that source would exhibit no frequency shift at all, since it would have

been at rest with respect to us at the moment the light was emitted.)

The closed Friedmann model is typical of universes that begin and end

with a bang. Some have speculated that if such a model is correct, the

universe could "bounce" after the second bang and begin expanding again.

The history of the universe could consist of a succession of expansions
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and contractions, with a big bang at the end of each cycle. Because of the
singular nature of the conditions at the time of a big bang, there is no way
to predict whether such bounces would actually occur.

In the case k == -1, the deceleration parameter begins at + V2 and di

lninishes steadily to zero. For large t, the rate of expansion is constant; R
is proportional to t and H is proportional to 1/t. The present age depends
on the value of qo. If qo == 0.014, for example, to == 0.96 tH ~ 14.5 billion
years. As figure 9.13 indicates, the general behavior is quite similar to

that for k == O. The hyperbolic universe is open; the model has a particle
horizon but no event horizon.

9.6. THE STEADY-STATE UNIVERSE

A model that enjoyed great popularity for some time was the steady-state

universe, proposed by Hermann Bondi, Thomas Gold, and Fred Hoyle in
1948. The steady-state universe obeys the perfect cosmological principle:

all observable properties are independent of time, a feature that appealed
to many. The characteristics of this model are in marked contrast with

those of Einstein-de Sitter and of other big bang universes.

The appearance of a given galaxy does not remain unchanged in a
steady-state universe. Galaxies can be formed, evolve, and die. Only the
appearance of the sky as a whole remains unchanged.

The expansion of the universe poses a serious problem for any steady
state cosInology. As space expands, the distance between any two galaxies
increases; concurrently, the mean density of the universe decreases. These
changes, which are observable, would seem to rule out a steady-state
model.

To overcome this difficulty, the proponents of the steady-state uni
verse postulated that matter is continuously being created, thus compen
sating for the expansion. The newly created matter eventually forms new
galaxies that fill the "holes" left by the expansion and Inaintain a constant

density.

Continuous creation is a radical hypothesis. It violates the conservation
of energy: the new matter is being created out of nothing. However, the

required rate of mass creation is only about one hydrogen atom per 6
cubic kilometers per year. No experiment could detect (or exclude) so

minute an effect. To advocates of the steady-state universe, continuous
creation is a less bizarre proposal than is the creation of the entire universe
in one cataclysmic event.

The steady-state ITIodel does not fit into the conventional framework
of general relativity; a term must be added to the field equations to obtain
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a steady-state solution. This is not the same as the A term of the Einstein
universe. A steady-state universe is not to be confused with a static uni

verse; the latter cannot expand.

In a steady-state universe, Hubble's constant is a true constant and we

have from equation (9.13):

H(t) == R/R == Ho (9.41)

The Hubble length is likewise constant; the Hubble sphere has a fixed

radius c/Ho, about 15 billion light-years.

The solution of equation (9.41) is

(9.42)

where to, as before, denotes the present time. The scale factor increases

exponentially with time, as in figure 9.5d. Space is flat and the decelera
tion parameter has the constant value -1.

In the steady-state model, R was never zero; there was no big bang and
the universe is infinitely old. The measured distance of each galaxy and
its recession velocity both increase exponentially with time.

The steady-state model had particular appeal before the distance scale
had been recalibrated, when the Hubble time was believed to be less than
the estimated age of the earth. Since in the steady-state model the Hubble
time has nothing to do with the age of the universe, the discrepancy posed

no problem for the model.
The relation between red shift and time of emission for the steady

state universe is

(9.43)

and the look-back time for a source with red shift z is

(9.44)

where In stands for the natural logarithm. For small z,

In(l + z)~z

and the look-back time is approximately z/HO=ztH , just as in the Ein

stein-de Sitter model. For large z, however, the two models give quite

different results: in the steady-state universe the look-back time ap

proaches infinity as z increases.
Once again we distinguish between the three types of distance defined

in section 9.2. The results for the steady-state universe are
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Fig. 9.14. Distance as a function of red shift for the
steady-state universe. Plotted are the present distance
(dnow) and the distance at the time of emission. (Cf. fig.
9.8, which shows the same quantities in an Einstein-de Sit
ter universe). With a change of scale, the same curves
give the velocities (present and emission) as functions of z.

de(z) == LHz/l + z

do(z) == LHz
dL(z) == LHz(l + z)

(9.45a)
(9.45b)
(9.45c)

The recession velocities V e and Vo are related to the corresponding dis
tances by equations (9.20a,b). Since H(t) is constant, each velocity is just
Ho times the corresponding distance:

Ve(z) == cz/1 + z
vo(z)==cz

(9.46a)

(9.46b)

A galaxy with z == 1 is now on the Hubble sphere; its present recession

velocity is c and its velocity at the time of emission was c/2.
Relations (9.45) and (9.46) are plotted in figure 9.14, which may be

compared to figures 9.8 and 9.9. For the steady-state model a single plot
suffices; the ordinate measures both distance and (with a change of scale)
recession velocity.
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Fig. 9.15. Distance as a function of time for representative
galaxies in the steady-state universe. (See the caption for fig.
9.11.)

In the steady-state universe, va is greater than V e for every galaxy be
cause the expansion is accelerating. The present recession velocity in
creases without bound as z increases; V e ' however is always less than c
(eq. 9.46a). There is no particle horizon, as was to be expected inasmuch
as the universe is infinitely old.

Unlike the case of Einstein-de Sitter, the curve of de vs. z, equation
(9.45a), does not turn over but continues to increase, approaching LH

asymptotically as z~oo. The emission distances of high-z sources are all

clustered around the Hubble sphere.
Since the Hubble sphere is fixed in the steady-state universe, every

galaxy must eventually cross it. (In the Einstein-de Sitter universe, the
opposite happens: the Hubble sphere overtakes the galaxies.) According to
equation (9.46b), once a galaxy has crossed the Hubble sphere its reces~ion

velocity exceeds c and thereafter continues to increase. Hence light emit
ted from a source outside the Hubble sphere can never reach us and the
Hubble sphere is also an event horizon. 23

23. The integrals in footnote 19 above confirm that the model has an event hori
zon but not a particle horizon: with R(t) given by eq. (9.42), Joo dtIR(t) is finite

to

but r~oo dtIR(t) is infinite.
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Fig. 9.16. A picture of the steady-state universe. The Hubble sphere b
stationary and constitutes the event horizon for this model. The dashed
lines lead back to the emission distance of each galaxy, as in fig. 9.12.
Notice that for any value of 2, the emission distance is less than the
Hubble radius and the galaxy is visible even though its present position
may be far outside the Hubble sphere. The galaxy with z = 9 is outside
the range of the picture.

Figures 9.15 and 9.16 show the histories of typical galaxies in the
steady-state universe. They are to be compared to figures 9.10 and 9.11/
which describe Einstein-de Sitter; the contrast between the two universes
is apparent.

One property of the steady-state model seems paradoxical. As we have
just seen, every galaxy eventually crosses the Hubble sphere/event hori
zon. Light emitted from anywhere outside the horizon will never reach

us. One might expect, therefore, that as we follow a particular galaxy we

should see it cross the event horizon and disappear from view, never to be

seen again. That is not at all what happens, however. On the contrary, we

continue to see every galaxy forever, in spite of the fact that they spend

most of their lives outside our event horizon.

Figure 9.16 explains this paradoxical behavior. All galaxies with z

greater than 1 are outside the Hubble sphere; we shall never see them

as they look now. Yet we see them all, each at an emission distance less
than LH .
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After some time, each galaxy has receded; concurrently, its red shift
has increased. High-z sources recede a long way. Suppose Gs recedes to
the current distance of G6 ; its red shift increases from 2 to 3. Its new
emission distance will be the old emission distance of G6 , only a small
increase. The emission distance increases but only very slowly. As time
passes, therefore, we 1/see" each galaxy slowly approach the horizon as its

red shift approaches infinity, but we never see it actually reach the hori
zon. This behavior is characteristic of models with event horizons.

A somewhat different argument leads to the same conclusion. As a
galaxy nears the event horizon and its red shift increases, the wavelength

of every light wave increases and so does its period T= IIf = 'AIc. A single
cycle of the wave takes longer and longer to pass us. In effect, the red shift
stretches out time, by a factor that approaches infinity as z does; the light
that records the small fraction of a galaxy's history spent in the vicinity
of the Hubble spherelevent horizon takes an infinite amount of time to
pass us. The portion of the galaxy's life spent outside the Hubble sphere
is not accessible to us.

The steady-state model has been pretty much demolished by observa
tional evidence discussed in the following sections. Its demise has been a

disappointment to its proponents, many of whom had great affection for
the theory. In the words of Dennis Sciama, "For me the loss of the steady
state theory has been a cause of great sadness. The theory has a sweep
and beauty that for some unaccountable reason the architect of the uni
verse appears to have overlooked. The universe in fact is a botched job,
but I suppose we shall have to make the best of it." 24

9.7. OBSERVATIONAL TESTS

The measured value of Ho tells us the present rate of expansion of the
universe. Cosmologists are interested in its entire history: What happened

in the past? Did it all begin with a big bang? What will happen in the

future? Will the universe continue to expand or will it eventually turn

around and collapse?
In section 9.8, I present the evidence that supports the big bang hy

pothesis and reconstruct the past history of the universe. Here I address
the question of the future.

24. Dennis Sciama, "Cosmology before and after Quasars," in Cosmology + One
(San Francisco: W. H. Freeman, 1977), 31-33. (Originally published in Scientific
American, September 1967.)
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On the theoretical side, if the universe is governed by general relativity
and the cosmological principle is valid, the choice is among the three
Friedmann models described in section 9.5. 25 Each model makes a definite
prediction concerning the future course of the expansion.

Let us review the properties of the Friedmann models. With k == +1,
the deceleration parameter q is always greater than V2; the universe is
closed (spherical space, finite volume) and ultimately collapses. With k == 0

(Einstein-de Sitter universe), q is always exactly 1/2 . The universe is open

(flat space, infinite volume) and continues to expand but ever more
slowly; the expansion velocity approaches zero. Finally, with k == -1, q is
always less than 1/2 . The universe is again open (hyperbolic space) and

expands forever; the expansion velocity approaches a constant.

If the universe is of the Friedmann type, then, determination of the
value of qo would decide whether the expansion will continue forever or
whether it will eventually turn around. Several types of observations can
provide information concerning the value of qo. The available data are
meager and somewhat contradictory; the jury is still out on whether the
universe is open or closed and on the future of the expansion.

The Density of the Universe

One approach to the determination of the deceleration parameter is
through the mean density of matter in the universe. The mutu~l at
traction between every bit of matter and every other bit slows down the
expansion. The more densely packed the matter, the greater the decelera
tion. If the density is high enough, the expansion will eventually turn
around and the universe will begin to collapse.

Although the argument of the preceding paragraph has been couched
in old-fashioned Newtonian language, general relativity leads to the same
conclusion. In Friedmann cosmology, the future course of the expansion
is determined by the ratio of the mean density of matter Po, to a critical

density, PC' defined as

(9.47)

where G is the gravitational constant. The dimensionless ratio polPc is
assigned the symbol n.

25. Inclusion of Einstein's A term extends the range of possibilities but does not
change the qualitative conclusions we shall draw concerning the course of the
expansion.
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It was shown by Friedmann and later by Lemaitre that in a Friedmann
universe the deceleration parameter is directly related to the value of !1:

(9.48)

According to equation (9.48), if the mean density is equal to or less

than Pc (0 ~ 1) the universe is open and will continue to expand. If Po is
greater than Pc (0) 1), the universe is closed and will ultimately collapse.
With the currently accepted value of Ho, the critical density is about
10- 29 g/cm3

, which corresponds to about five hydrogen atoms per cubic
meter.

A lower bound on the value of Po can be obtained by estimating the
amount of mass contained in galaxies. The average mass of a galaxy and
the number of galaxies per unit volume are known with fairly high confi
dence. The mass contained in galaxies, spread uniformly throughout the
universe, corresponds to a mean density about 3 X 10- 31 g/cm3, only

about one-thirtieth of Pc

If galaxies account for nearly all the mass in the universe, then, k must
be negative and, according to equation (9.48), qo is about 0.015. Space is
hyperbolic and will continue to expand forever. As we shall see, the red
shift data are not consistent with this estimate; they suggest a consider
ably larger value of qo.

A closed universe would have to contain at least 30 times as much mass
as the amount accounted for in galaxies. Many possible sources for the
"missing" mass have been suggested. They include intergalactic lnatter
(in the form of stars or tenuous gas), dwarf galaxies too dim to be ob
served, black holes, and relativistic particles such as cosmic rays, neutri
nos, gravitons, or even more exotic particles. Although the existence of

such matter cannot be excluded, there is no evidence to suggest that it is

present in the large amount required to close the universe. The cosmic
abundance of deuteriulTI, discussed in the following section, supports the

conclusion that Po is substantially less than Pc
A cosmological term would not help to close the universe if the value

of A is positive, as is generally assumed in models that contain such a

term. Any positive A would make qo even smaller and would cause an
even more rapid expansion.

Detern1ination of qo from Red Shift Data

In principle, one could determine the value of the deceleration parameter
by measuring how the slope of the Hubble diagram varies with time.
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However, the predicted fractional change in H is only about one part in
15 billion per year, far too small to be detectable.26

A more promising approach is to examine the departure from linearity
at the high-z end of the Hubble diagram. Each cosmological model predicts
a specific relation between red shift and distance; the results for the
Einstein-de Sitter and steady-state universes are shown in figures 9.8 and
9.14.27

The departure from linearity in the Hubble diagram can be attributed
to two causes. First, the slope of the high-z end of the curve reflects the
value of the Hubble constant a long time ago, when the light from those
sources was emitted. A decrease with time in the value of H, predicted by

most models, causes the diagram to steepen at the high-z end.
The curvature of space also affects the shape of the Hubble plot for

distant sources, by modifying the look-back times. Even if H were con

stant, a plot of do vs. z in a universe with curved space would depart from
linearity at the high-z end. Only in the steady-state universe is the rela
tion linear for all values of z (eg. [9.45b]).

Comparison of the predicted red shift-distance relations with observa
tional data could provide a sensitive test of the models. Unfortunately,
distance estimates are available only for galaxies with red shifts up to
about 0.5,; within this range, the predictions of the models differ very little
and it is hard to discriminate among them.

What the observers actually plot is red shift against visual magnitude
for the brightest galaxy in a cluster.28 The red shift-distance relation pre
dicted by a model translates into a relation between red shift and visual
magnitude if one assumes that the brightest galaxy in a cluster can be
used as a standard candle, that is, its absolute luminosity is the same for
all clusters.

In addition to random fluctuations, two other effects make that as
sumption questionable for very distant galaxies. First, the luminosity of a

26. Eq. (9.12) states that H = R/R. On differentiating this equation with respect
to tinle, one finds directly that

H= -(1 + q)H2 (9.49)

where H~s the rate of change of Hand q is defined by eq. (9.25). Thus measure
ment of H would determine the value of qo. If Ii decreases with time, qo must be
greater than - 1.
27. Notice that in those figures the ordinate and abscissa are reversed as compared
to the conventional Hubble plot, fig. 9.1.
28. The visual magnitude is a measure of the energy that reaches the telescope in
the particular spectral band to which the photographic plate is sensitive.
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galaxy varies over its lifetime because young stars are generally brighter
than old ones. Hence it is to be expected that after an early period during
which stars are being formed, the luminosity of a typical galaxy should
diminish with time. Since galaxies with high z are being observed as they
looked a long time ago, the stars in such galaxies are on the average
younger than those in galaxies with smaller red shifts. This effect tends
to make the high-z galaxies more luminous.

The /I galactic evolution" effect has been studied by Beatrice Tinsley,
who concluded that for the models she examined, the true v:tlue of qo is
higher by between 0.6 and 1.5 than the estimates obtained by ignoring
the effect. Galactic evolution can evidently be an important effect.

Another correction arises from the possibility that a massive galaxy
can capture matter from a smaller neighbor and perhaps even swallow it
entirely. This "galactic cannibalism" effect, which has been studied by
James Gunn and Tinsley, tends to make older galaxies more luminous
and therefore works in the opposite direction from galactic evolution. The
magnitude of the change in qo is hard to estimate quantitatively but could
be comparable to that of galactic evolution.

Yet another problem faced by the observer is caused by the fact that
the red shift brings a different part of a galaxy's spectrum into the visible
band. In comparing the luminosities of galaxies with different red shifts,
a correction must be made. This is called the K correction.

Estimates of the value of qo based on analysis of red shift data have
been made by Gunn and J. B. Oke, by J. Kristian, A. Sandage, and J. A.
Westphal, and by others. The results vary over a wide range, depending
on the method of analysis employed, the sample galaxies included, and
the corrections applied to the raw data.

Kristian et a1. concluded that the best fit is obtained with qo == 1.6 ± 0.4.
(They made no correction for the effect of galactic evolution or cannibal
ism.) This value for qo is substantially greater than the one based on mass
density; it suggests a closed universe. Gunn and Oke, however, obtained
much smaller values of qo; with galactic evolution included, their analysis
suggested that qo is probably negative.

Still another way to estimate qo is to compare the angular sizes of
distant galaxies with their red shifts, assuming that all galaxies of a given
type have about the same linear diameter. In Euclidean geometry, the
angle (J (in radians) subtended by an object of diameter D at a distance d
is just (J == D/d. (In an expanding universe, de is the distance that must be
used in this formula.)
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As we saw in section 9.5, the Einstein-de Sitter universe, with qo == 0.5,
predicts that the angular size should reach a minimum at z == 1.25 and
then turn up. Similar behavior is predicted by models with higher values
of q. A plot of angular size vs. z, made by W. A. Baum, is inconclusive
but suggests a value of qo lower than those inferred from the luminosity
data. According to Baum, the value of qo that best matches his data is 0.15;
this value again implies an open universe.

Finally, indirect information on the deceleration is provided by esti
mates of the ages of very old objects in the universe. As we saw in section
9.3, the age of the universe in any big bang model depends on qo. The
greater the value of qo, the younger the universe. According to fairly re
liable estimates, some stars in globular clusters are at least 8 billion years
old. This then constitutes a lower bound on the age of the universe. The
Einstein-de Sitter universe, with qo == 0.5, is only some 10 billion years

old. Hence the age data suggest that qo cannot be much greater than 0.5.
The principal conclusion that emerges from this analysis is that the

deceleration parameter is quite sensitive to effects whose magnitude is
hard to estimate. We are still far from having a reliable estimate of qo,
and the question of whether the universe is open or closed is far from
settled. The data are compatible with any value between 0 and 2; values
greater than 2 are probably (though not definitely) excluded, as is the
value -1 predicted by the steady-state n10del.

9.8 THE HISTORY OF THE UNIVERSE

I conclude my survey of cosmology by reconstructing the history of the
universe from the point of view of big bang cosmology, working backward
in time from the present toward the singularity. The qualitative features
of the picture that emerges do not depend on any specific cosmological
model.

The major piece of evidence that lends credence to the entire picture is
the microwave background radiation, discovered serendipitously in 1965.
Using a horn antenna designed for satellite communication, Arno Penzias
and Robert Wilson detected a weak radio-frequency noise, at a wavelength
of 7 cm, whose intensity was independent of the direction in which their

antenna was pointed.
The isotropy of the radiation, now confirmed to better than one part in

a thousand, rules out any possible source within the solar system or the
galaxy and strongly suggests a cosmic origin. Dicke and his coworkers
immediately identified the radiation as the "thermal background," whose
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Fig. 9.17. Blackbody spectra at a number of temperatures. The scales are
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existence had been predicted nearly twenty years earlier by Gamow on
the basis of big bang cosmology.

I digress briefly to summarize the properties of thermal radiation. Ev
ery body at a given temperature emits a continuous spectrum of radiation,
called the thermal or blackbody spectrum. The curve of intensity vs. wave
length, called a Planck curve, is plotted in figure 9.17 for several different
temperatures.

The shape of the thermal spectrum is the same at all temperatures, but
as the temperature increases, two things happen: the amount of energy
radiated increases sharply (note that the scale is logarithmic), and the
emission shifts toward lower wavelengths. Theory predicts (and experi
ments verify) that the total energy radiated is proportional to the fourth
power of the absolute temperature,29 T, and the maximum emission is at
a wavelength A.m which is inversely proportional to T:

A.m = biT (9.50)

The constantb has the value 0.3 em (deg). The distribution of intensity
drops off steeply on the short-wavelength side of the peak; very little
energy is emitted at wavelengths below about A.m /4. Since the energy of
a photon is he/A., we see that thermal photons become more and more

energetic as the temperature increases.
Gamow had predicted that the universe should now be filled with ther

mal radiation at a very low temperature, emitted when the universe was
young and hot but cooled enormously as a result of the subsequent expan
sion. He estimated that the present temperature of the radiation should
be roughly 10 K; a later calculation by Ralph Alpher and Robert Herman
gave T~5 K.

Penzias and Wilson concluded that if the radiation they had detected is
part of a thermal spectrum, its temperature is 3.5 ± 1 K. A measurement
at a single wavelength says nothing, of course, about the shape of a spec
trum. However, subsequent measurements detected the radiation at other
wavelengths and confirmed that the spectrum indeed has a thermal shape.
Figure 9.18 shows the data; the solid line is a Planck curve with T =

2.7 K.30 The fit is excellent. The peak of the spectrum is at a wavelength

29. Absolute temperature (denoted by the symbol K) is 273 + the Celsius tem
perature.
30. The point labeled CN in fig. 9.18 is based not on microwave data but on the
absorption spectrum of the cyanogen molecule, found in interstellar space. This
independent measurement supports the interpretation of the microwave data.
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Fig. 9.18. Blackbody curve fitted to the observations of the
microwave background. The temperature is 2.7 K. The point
labeled eN comes from the relative intensities of interstellar
cyanogen, as explained in the text.

about 1 mm, in the microwave band. Penzias and Wilson's point is far

below the peak; the intensity at their wavelength, 'A == 7 em, is only about

a millionth of the peak intensity.

Figure 9.18 is convincing proof that the universe is now filled with

thermal radiation at a very low temperature. According to the generally

accepted interpretation, this radiation is a relic of the "primeval fireball"

and constitutes our only direct link to the early universe.
The energy density of the thermal background can be converted to a

mass density by dividing by (2; the result,

Prad ~ 10 -- 33 g/cm3 (9.51)
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is at least a thousand times less than the mean density of matter, discussed
in the preceding section. At present, then, matter dominates radiation.
During the very early universe, as we shall see, the opposite was true.

If the matter in the universe were in thermal equilibrium with the
radiation, it too would be at 3 K. That however is not the case; the 3 K
temperature is characteristic only of the radiation. When matter and radi

ation are in thermal equilibrium, photons are being copiously emitted and

absorbed at equal rates. At present the universe is largely transparent to

the thermal background. The microwave photons roam freely in space;
their "mean free path" between collisions is very long. Radiation and mat

ter are said to be decoupled.

We are now prepared to embark on our journey backward in time. I
take 1010 years as the age of the universe and 10 - 30 g/cm3 as the present

density of matter.31 The value of z can be used to specify the scale factor:
the two are related by equation (9.10). For example, "z == 20" refers to the

epoch when R was 1/21 of its present value. In any specific cosmological

model, the time is also deterlnined by the value of z. For illustrative pur
poses I use the Einstein-de Sitter model, in which the relation between z

and t is given by equation (9.32). Other models give similar results.

As we go back in time we see the universe contract; the density of

matter, the density of the thermal radiation, and its temperature all in
crease, each at a different rate. Consider first the radiation. As the scale

factor diminishes, both the energy of each photon and the density of pho
tons increase. When the scale factor was R, the energy of a photon whose
present energy is Eo was

(9.52)

Equation (9.52) is simply the red shift expressed in terms of photon en
ergy.

The number of photons in the cosmic background remains unchanged

as the size of the universe changes; hence the number per unit volume
varies inversely as the volume, which is proportional to R3 or to (1 + z) -3.

The energy density (the product of the number density and the energy of
each photon) varies as R -4 or as (1 + z)4:

31. As noted in the preceding section, this nUlnber represents the mass in galaxies
and is only a lower bound on the mass density. The actual density might be higher
because of unseen /I dark" matter. If there is enough mass to close the universe,
some of the numerical estimates that follow are altered, but not a great deal. The
general nature of the history is unchanged.



342 I Cosmology

(9.53)

The dependence of Prad on Rand z is the same for all models. However,
the time dependence, in this and all subsequent relations, applies only to
the Einstein-de Sitter model.

Since the energy density of thermal radiation varies as T4
, we may

infer from equation (9.53) that the temperature of the radiation varies as
llR or, equivalently, as 1 + z:

(
R ) ( t )-21,T=To RO =To(l+z)=To 4; (9.54)

where To is the present temperature, 2.7 K. The result depends on the
assumption that the radiation does not undergo any interactions; the
change in the spectrum is due entirely to the expansion of space. That
assumption is justified today and for some time in the past. However, the
11R dependence of temperature turns out to be valid even when radiation
and matter interacted strongly. (See eq. [9.57c].)

I turn next to the matter. Since the total amount of matter remains
constant, its density varies inversely as the volume, that is, as 1/R3

:

Table 9.1. Temperature and density of the universe as a function of red
shift (z) and of time since the big bang. The time dependence is based on the
Einstein-de Sitter universe; the other quantities are model-independent.

R Pmatter Prad
l+z==~ T (K) (g/cm3

) (g/cm3
) Remarks

R

Present 3 10- 30 10- 33 1010 years
100 300 10- 24 10-- 25 107 years galaxy formation

1000 3000 10- 21 10- 21 3 X 105 years decoupling; radiation
era ends

104 3x 104 10- 18 10-- 17 3000 years
105 3X105 10- 15 10--- 13 30 years
106 3 X 106 10- 12 10-- 9 100 days radiation era
107 3X 107 10- 9 10-- 5 1 day
108 3X108 10- 6 10- 1 15 min
109 3X109 10-- 3 103 10 sec cosmic nucleosynthesis

3 X109 1010 10- 1 105 1 sec lepton era ends;
neutrinos decouple

3 X 1010 1011 109 0.01 sec
3 X 1011 1012 1013 10- 4 sec
3 X 1012 1013 10- 6 sec hadron era ends

----~----
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(9.55)

The mass density decreases with R more slowly than does the radiation
density, which contains one additional factor IIR because of the red shift.

As we go back in time, therefore, the ratio PradlPmatter increases steadily.
Table 9.1 lists the relevant quantities Prad' Pmatter' T, and t, starting

with the present and going back toward the big bang; all quantities except
the titne are model-independent. The same quantities are plotted in figure
9.19, on logarithmic scales.

Galaxy Formation

At z == 100, when the universe was about 10 million years old, the den

sity of matter was 10- 24 g/cm3, a million times greater than today. That
density corresponds to about one hydrogen atom per cubic centimeter,

roughly the mean density in a galaxy. (The sizes and densities of galaxies
are determined by local physical laws and do not change as the universe
expands.) The temperature of the radiation at this epoch was 300 K, ap-
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proximately room temperature. The thermal background was mostly in
the far infrared (A ---10- 3 em).

A galaxy must be denser than the surrounding space. When the entire

universe was as dense as a typical galaxy, therefore, distinct galaxies could
not have existed. Galaxies could not have come into existence until some
time after t == 107 years, as concentrations of matter formed out of the
previously existing 1/ soup" and condensed into stars and galaxies, drawn

together by gravity. Detailed calculations indicate that the most plausible

epoch for galaxy formation was between t == 108 and t == 109 years. The
period since then defines the modern era, during which matter has been
the dominant form of energy and the universe has closely resembled its

present form.

The time of galaxy formation determines the largest galactic red shift
that can possibly be observed. Light emitted at t"-' 108 years would be
detected today with a red shift about 25. Any source with a larger red
shift could not be a galaxy.

Decoupling

Continuing our journey backward in time, we find in table 9.1 that at
z == 1,000 (t == 300,000 years), the radiation temperature was 3,000 K. At
that temperature the thermal spectrum extends into the visible range; the
universe was bathed by a sea of visible and infrared light.

This epoch marks a significant change in the universe. At temperatures
above 3,000 K, an appreciable fraction of thermal photons have enough
energy to ionize a hydrogen atom; the fraction increases rapidly with in
creasing temperature. The density of photons also increases. As a result,
the hydrogen atoms in space become ionized. The transition between the

two regimes is fairly abrupt: at 3,000 K the ionized fraction is near zero,
whereas at 5,000 K it is nearly 100 percent. At somewhat higher tempera

tures, helium also becomes ionized.

Ionization is important because when an atom is ionized, an electron is
released; free electrons are more effective in scattering radiation than are
bound ones. At temperatures above 5,000 K, when all the hydrogen is
ionized and free electrons abound, the background radiation interacts
strongly with matter and the two quickly reach thermal equilibrium; the
universe is opaque to the background radiation instead of being transpar
ent as it is later on.

According to this picture, matter and radiation became decoupled when
the universe was about 300,000 years old; that epoch can be regarded as
the end of the big bang. The thermal radiation detected today was emitted
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then at a temperature between 3,000 and 5,000 K and has been roaming

freely ever since, influenced only by the expansion of space, which has

cooled it by a factor of a thousand. During the first 300,000 years, radia

tion and matter were strongly coupled and had the same temperature.

The Radiation Era

By coincidence, the time of decoupling, t == 300,000 years, is also the time

when the densities of radiation and of matter became equal; each was

about 10 - 21 glcm3. At earlier times the density of radiation exceeded that

of matter. That era, which began a few seconds after the big bang, is called

the radiation-dominant era.

The densities of matter and of radiation during the radiation era vary

as R -3 and R --4, respectively, just as they do afterward; the temperature

therefore varies as IIR. The time dependence ofR, however, is different

from that during the matter-dominated era. When the density of radia

tion is much greater than that of matter, all three Friedmann n10dels

have the same solution: R is proportional to the square root of the time.

The time dependence of density and temperature during the radiation

dominant era are therefore given by

and

Pmatter""""" R -3 ,......... t- Y2

Prad ,......... R - 4 ,......... t - 2

(9.56a)

(9.56b)

(9.56c)

Both Prad and Pmatter fall off more slowly with time than they do during
the matter-dominated era, as shown in figure 9.19.

Cosmic Nucleosynthesis

During most of the radiation era, nothing very exciting happens. The uni

verse simply gets denser and hotter as we go back in time. Near the begin

ning of this era, however, an important sequence of events took place.

According to generally accepted theory, fusion reactions in stellar inte

riors result in the formation of all the elements up to iron, starting from

hydrogen. This process, which requires a temperature of around 108 K, is

called nucleosynthesis.

During the early part of the radiation era, the density and temperature

of the universe resembled those in stellar interiors; conditions were there

fore conducive to the occurrence of fusion reactions. Gamow realized this

and suggested that most of the elements were in fact formed in the first
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few minutes after the big bang. His idea turned out to be only partially
right.

How could the early universe accomplish in only a few minutes what
stars take hundreds of millions of years to do? Neutrons provide the key
to the answer: they are major players in cosmic nucleosynthesis, whereas
they contribute almost nothing to element formation in stars. Stellar nu
cleosynthesis begins with the fusion of two protons to form a deuteron:

p+p~d+e++v (9.57)

Reaction (9.57), like any in which a neutrino is involved, proceeds very
slowly because it proceeds via the so-called weak interaction. Only a tiny
fraction of proton-proton collisions results in the formation of a deuteron.
That explains why stellar nucleosynthesis is so slow. In the early universe,
however, deuterons can be formed as well by the fusion of a proton and a
neutron:

n+p~d+l' (9.58)

Reaction (9.58), which is mediated by strong and electromagnetic inter
actions, is much more probable than is (9.57). Neutron-proton fusion does
not occur in stellar interiors because practically no neutrons are present
there; the cores of young stars consist almost entirely of protons and elec
trons. But during the early universe, neutrons were present in abundance,
having been produced during an earlier era when the temperature was
still higher. (See below.)

The binding energy of the deuteron is about 2.2 MeV. A photon with
energy greater than that can dissociate a deuteron by initiating reaction
(9.58) in the reverse direction. At temperatures above 1010 K, photons

with the required energy are abundant; hence any deuteron formed is
promptly dissociated. Under such conditions very little deuterium is
formed and nucleosynthesis cannot proceed. When the temperature falls
below 1010 K, however, the rate of dissociation drops and deuterium be
gins to be created at a rapid rate. This change marks the onset of cosmic
nucleosynthesis; it occurred when the universe was between 1 and 10 sec
onds old.

The synthesis of deuterium, reaction (9.58), is quickly followed by sev
eral other fusion reactions that ultimately lead to the formation of 4He,
as well as a small amount of 3He. The relevant reactions are the following:

d+d ~ 3I-I+p
d+d ~ 3He+n

(9.59a)
(9.59b)



d+ 3H ~ 4He+n
3He+ 3He ~ 4He+p+p
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(9.59c)
(9.59d)

All these reactions involve only strong interactions and proceed very
rapidly at temperatures above 109 K. The radiative reactions

d+n ~ 3H + l'

d+ P ~ 3He+ l'

d+d ~ 4He+ l'

3H + P~ 4He + l'

3He + n -7 4He + y

(9.60a)
(9.60b)
(9.60c)
(9.60d)
(9.60e)

also contribute to the formation of helium.
Calculations show that within a few minutes, about a quarter of the

mass in the universe is transformed into helium as the result of reactions
(9.58) through (9.60). The outcome is insensitive to the details of the cos
mological model. Because reactions (9.59a-d) are so fast, the process con
tinues until virtually all the available neutrons have been exhausted. The
limiting factor is the neutron/proton ratio at the onset of nucleosynthesis;
for a broad range of values of the relevant parameters, that ratio is about
1:6. (See below.)

Consider a group of twelve protons and two neutrons. After the fusion
reactions have run their course, one 4He nucleus will have been formed
and ten protons will be left over. (The amounts of deuterium, 3H, and 3He
formed are very small.) Hence the helium fraction at the conclusion of
nucleosynthesis is about 9 percent by number or 28 percent by mass. This
is just about the measured abundance of helium; the agreement consti
tutes important evidence in support of the big bang picture. Moreover,
the abundance of helium (unlike that of heavy elements) is nearly the
same in different parts of galaxies, as well as in intergalactic space; this
observation further supports the hypothesis that most of the helium in
the universe is of primordial origin.

To be sure, some helium is generated also in stellar nucleosynthesis, as
reaction (9.57) is followed by (9.59) and (9.60). However, the amount of
hydrogen converted to helium in the core of a typical star is only 1 or 2
percent of a stellar mass, not nearly enough to account for the measured
abundance of helium.

Cosmic nucleosynthesis must also produce deuterium. Most of the
deuterons formed, however, are quickly reprocessed and end up as helium.
The theory predicts that very little deuterium should be left over. Unlike
the case of helium, the amount of deuterium produced is quite sensitive
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Fig. 9.20. Fractional abundances of isotopes of light nuclei
produced in cosmic nucleosynthesis, as functions of the present
density of matter. Calculated by Wagoner, Fowler, and Hoyle.
Note that the abundance of 4He is practically independent of
the assumed present density, whereas the abundance of deute
rium eH) is very sensitive to the present density.

to the density of matter while nucleosynthesis is taking place. The higher
the density, the more frequently a deuteron collides with a neutron or
with another deuteron and the less deuterium survives.

The mass density during nucleosynthesis is a known multiple of the

present density. Hence if the deuterium in the universe is of primordial
origin, its measured abundance provides indirect evidence concerning the
present density of matter. Robert Wagoner, William Fowler, and Fred

Hoyle have calculated the abundance of various isotopes produced in the

early universe as a function of the present mass density; their results are
shown in figure 9.20. Notice that the calculated abundance of 4He in
creases very little as Po varies between 4xl0- 32 and 4Xl0- 28 g/cm3,

whereas the abundance of deuterium falls steeply with increasing Po.
The measured cosmic abundance of deuterium is about one part in 105

by mass. According to the figure, the value of Po which gives that abun-
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dance is 10 - 30 g/cm3 or a little less. This is close to the lower limit on the
present mass density and is substantially less than the amount needed to
close the universe. The data on deuterium therefore support the hypothe
sis that the universe is open. The argument is not conclusive because some
deuterium might have been produced in other ways.32

Tiny amounts of lithium, beryllium, and boron are also formed in cos
mic nucleosynthesis, as shown in figure 9.20. The measured cosmic abun
dances of these elements are all very low.

Gamow thought that all the elements could be synthesized during the
early universe, but his hope was not fulfilled. The absence of any stable
isotope with mass number 5 or 8 acts as an effective barrier to the produc
tion of heavier elements. If 4He captures a neutron or a proton it forms
SHe or 9Li, both of which are unstable. The fusion of two alpha particles
would produce 8Be, but that isotope is unstable too. Cosmic nucleosynthe
sis was therefore a dud: it came to an end with helium.33

The Lepton Era

At t~ 1 sec, the beginning of the radiation era, the temperature of the
universe stood at 1010 K. At this temperature, the mean energy of thermal
photons is more than enough to create electron-positron pairs. Prior to 1
second, the universe was therefore filled with such pairs, which outnum
bered the protons by nearly a hundred million to one. Earlier still, when
the temperature was even higher, muon-antimuon pairs were similarly
created. (The rest mass of a muon is about 200 times that of an electron,
so a correspondingly higher temperature is required.) The period between
about 10 - 4 seconds and 1 second is called the lepton era. (Leptons are
light particles that interact only through weak and electromagnetic inter
actions; they comprise electrons, muons, and neutrinos.)

During the lepton era, the creation of particle-antiparticle pairs made
the density of matter much higher than the estimate (9.57a); in fact, with
pair production and annihilation taking place in rapid succession, the den
sity of matter and radiation must be about equal. This is shown schemati
cally in figure 9.19.

32. Stellar nucleosynthesis produces almost no deuterium. Hence the small
amount measured is either a product of the early universe or has some other
(unknown) origin.
33. The stars manage to break through the barrier at mass number 8 by means of
a very rare reaction-the fusion of three alpha particles to form 12C. Although a
three-body collision is highly improbable, over time enough 12C is formed to en
able nucleosynthesis to proceed. In the early universe, both density and tempera-
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The lepton era is an important link in the chain of events leading to
cosmic nucleosynthesis because it provides the required neutrons. A colli
sion between a proton and an electron can produce a neutron through the
reaction

p+eHn+v (9.61a)

The two-headed arrow indicates that the reaction can occur in either direc
tion.

In a single collision between an electron and a proton, the formation of
a neutron is highly improbable because reaction (9.61a), like (9.58), pro
ceeds via the weak interaction. During the lepton era, however, the elec
tron density was so high that collisions took place at a prodigious rate.
Note from table 9.1 that at t = 1 sec, the density was 105 g/cm3, a hundred
thousand times the density of water and much greater than the density in
the cores of stars. At 10- 4 seconds, the density was 1013 g/cm3, about 1
percent of nuclear density. Consequently, a large number of neutrons
were produced in a very short time, enabling nucleosynthesis to proceed.

Two other reactions compete with (9.61a) to establish the balance be
tween neutrons and protons during the lepton era:

and the neutron beta decay

p+VHn+e+ (9.61b)

(9.61c)

where v stands for the antineutrino.
The neutron is heavier than the proton by 1.29 MeV/ c2

; hence reac
tions (9.61a,b) are endoergic when proceeding from left to right: the col

liding particles must have enough kinetic energy to provide the difference
in rest mass. At temperatures well above 1010 K, which are characteristic
of the early part of the lepton era, the thermal energies of neutrons, pro
tons, and electrons are much greater than 1.29 MeV; 34 hence the neutron
proton mass difference has a negligible effect. Under those conditions the
numbers of neutrons and protons are about equal.

ture are falling rapidly. By the time helium has been formed, the three-alpha
reaction cannot occur to any appreciable extent.
34. The energy distribution of protons and neutrons at a given temperature dif
fers from that of photons. Particles are described by the Maxwell-Boltzmann dis
tribution. Their mean energy at absolute temperature T is (3/2)kT, only slightly
smaller than the mean photon energy at the same temperature.
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At lower temperature, the colliding particles have less kinetic energy
and the neutron-proton mass difference becomes more important. The
reactions that change a proton to a neutron take place at a slower rate
than those that do the reverse, and the neutron fraction drops. Finally,
when the temperature reaches a few times 109 K, the electrons and posi
trons have almost entirely recombined and reactions (9.59a,b) can no
longer take place. The lepton era has come to an end. Thereafter, the neu
tron fraction diminishes slowly as neutrons decay.35 Nucleosynthesis be
gins at about this time. James Peebles has done the calculations and found
that the neutron fraction at the onset of nucleosynthesis is about V6.
As we have noted, this fraction determines the amount of helium pro
duced.

A very large number of neutrinos is left over at the end of the lepton
era. These cosmic neutrinos, degraded in energy by the expansion of
space, should still be around, forming a thermal background similar to the
microwave background. Their density is nearly as great as that of the
photons. Detection of such a neutrino background would provide addi
tional evidence in support of the big bang hypothesis. Because low-energy
neutrinos interact so weakly, however, there is no way to confirm their
presence.

The First Ten Thousandth of a Second

We have traced the history of the universe back to 10-4 seconds. If we
are daring enough to push still farther back in time, we enter a truly
uncharted domain. According to the models, both the density and the
temperature of the universe during this epoch were higher than anything
of which physicists have any experience; no experimental evidence is
available to compare with theoretical predictions. This has not discouraged
theorists from carrying out elaborate calculations. The study of the first
ten thousandth of a second is particularly interesting because it involves
an interplay between astrophysics and high-energy particle physics. But
the results must be viewed with a healthy dose of skepticism.

Above 1012 K, thermal photons are energetic enough to create pions,

strongly interacting particles whose rest energy is 140 MeV; above
1013 K, proton-antiproton pairs can be created. At still higher tempera
tures, pairs of heavier strongly interacting particles known collectively as

hadrons can be created; these particles are currently being intensively

35. The lifetime of the neutron, about 12 minutes, is long on the time scale of the
early universe.
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studied by high-energy physicists. The universe during that fleeting

"hadron era" was a maelstrom of particles, antiparticles, neutrinos, and

photons, all in thermal equilibrium at immense density and temperature.

At some earlier time free quarks might have made an appearance.
At t == 10 - 23 sec, whimsically referred to as a jiffy, the Hubble radius

was 10 --13 cm: the entire observable universe was the size of one proton!

The density was some 1055 times that of water. Undaunted, cosmologists

have carried the history back still farther, to the incredibly short age of
10- 43 seconds, known as the Planck time. Before that time, quantum

gravity governed.

Most theorists believe that general relativity is valid as far back as the

Planck time and that the laws of physics as we know them still apply

under the extreme conditions that then prevailed. This, however, is an
article of faith. The assumption of isotropy and homogeneity might also
not be justified. Small anisotropies could have profound effects when ex
trapolated back to such infinitesimal times.

9.9. DID THE BIG BANG REALLY HAPPEN?

I recapitulate here the evidence in support of the big bang hypothesis.

1. The microwave background. This is the most persuasive single
piece of evidence. As we have seen, the existence of a thermal background
is an unambiguous consequence of big bang cosmology, independent of
the details of the model adopted. The temperature at the time of decou

pIing (3,000-5,000 K) is fixed by accepted physical laws. After decoupling,
the radiation must cool as a result of the expansion of space. The radiation

has been detected just as the theory predicts, and no alternative origin for

this radiation has been suggested.

2. The age of the universe. According to the most plausible cosmolog

ical models, the time elapsed since the big bang is somewhat less than the

Hubble time-10 billion years or so. Before the distance scale had been

recalibrated, the cosmological age of the universe was shorter by a factor
of about ten; this created a serious problem for the big bang theory, as it

would have made the universe younger than some of its constituents.

After the recalibration, however, the geological and cosmological age esti
mates mesh together quite comfortably. The oldest earth rocks, as well as
lunar rocks and meteorite fragments, are estimated on the basis of radioac
tive dating to be some 4 to 6 billion years old. This is quite consistent

with the age of 10 billion years for the universe inferred from the cosmo

logical models and the measured value of the Hubble constant. It seems a
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priori unlikely that the agreement between the ages should be fortuitous.
One should keep in mind, however, that the value of the Hubble constant
depends on distance determinations that are not totally reliable. The
"measured" value of H has changed before; it could change again.

3. The abundance of helium. As we have seen, big bang cosmology
accounts quite naturally for the high cosmic abundance of helium, inde
pendently of the details of the cosmological model adopted. There are no
free parameters whose value can be adjusted to give the measured abun

dance. (The result does, however, depend on the cross sections for reac
tions like [9.59] and [9.60], which have not been directly measured.)
Without cosmic nucleosynthesis, one would be hard put to understand

where all the helium in the universe comes from.

4. The abundance of deuterium. This supports the helium data. In
this case, the data do discriminate among the models. Matching the mea
sured abundance of deuterium requires a specific choice of the present
mass density. The density required is low, suggesting that the universe is

open.
5. Counts of radio sources. During the 1950s, many powerful extra

galactic radio sources were discovered, some of them associated with gal
axies whose red shifts could be measured. Study of the distribution of
these sources in intensity and in red shift provides some evidence of evo
lution in the universe. If the sources were uniformly distributed in space
and their intrinsic luminosity were independent of time, the number of
sources at a distance less than R should vary as R3

. Since the apparent
brightness decreases as 1/R2

, the number of sources with flux greater than
F should vary as F- Y

2. A number of surveys have shown that the actual
distribution is different: there are many more weak sources than would
be expected according to the - 3/2 power law. Since the weak sources are,
on the average, the most distant and therefore the youngest, the result
implies that radio sources are brighter when they are young. This is evi
dence of evolution on a cosmological time scale and therefore weakly sup
ports the big bang picture, although it says nothing about the big bang
itself. An oscillatory universe without singularities would be consistent
with the data.

The evidence is strong, but is it convincing? The reader must make up

his or her own mind on that. One should surely be skeptical about the
very early part of the picture drawn by the theory. The microwave back

ground supports only the portion of the story since the age of 300,000

years or so, and the age evidence has nothing to say about the very early
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period. The helium data go back farther and are the strongest evidence for
the early part of the history. If the predicted neutrino background could
be detected (see the discussion on p. 351), we would have direct evidence

supporting the big bang picture back to the age of about 1 second. The
required measurements, unfortunately, are far beyond the capabilities of
present-day technology.

Finally, we address a question that must intrigue anyone who thinks at
all about cosmology: what was there before the big bang? One possibility,
already mentioned, is the oscillating universe model according to which
the universe has undergone an endless sequence of expansions and con
tractions, separated by big bangs. In this case, there is no conceptual prob
lem, although we can say nothing about conditions before the last big

bang.
Another possibility is that there was nothing before the big bang-that

time began with the singularity some 10 billion years ago. This notion
depends on Einstein's conception of curved space-time. If space-time were
flat, time would have to extend infinitely in both directions. In curved
space-time, however, the total extent of time can be finite, just as the
area of a sphere is finite. If the geometry of space-time is of this kind,
the question, What was there before the big bang? is equivalent to ask
ing, What is north of the north pole? It is not a scientifically meaningful
question.

PROBLEMS

9.1. (a) Using the data found in section 9.1, estimate the mean distance between
a star in our galaxy and its nearest neighbor. If the radius of a typical star is
109 m, what fraction of the volume of the galaxy is occupied by stars?

(b) Assume the universe is a Euclidean sphere of radius 1010 light-years. If the
universe contains 1011 galaxies, what is the mean distance between a galaxy and
its nearest neighbor? Using the dimensions of our galaxy as typical, what fraction
of the volume of the universe is occupied by galaxies?

9.2. A good telescope can resolve two point sources whose lines of sight form an
angle of about 1 sec. Estimate the largest distance at which individual stars in a
galaxy identical to ours can be resolved. Compare your answer to the distance of
the Magellanic Clouds.

9.3. A galaxy has a red shift of 0.05.
(a) How long ago was light from this galaxy emitted if it is now reaching

earth?
(b) If the expansion of the universe has been uniform, what was the distance

of this galaxy when it emitted the light now reaching us? What is the present
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distance of the galaxy? What is its present recession velocity? Assume Euclidian
geometry.

9.4. A galaxy has a red shift of 1. Answer the questions posed in problem 9.3,
assuming (a) an Einstein-de Sitter universe and (b) a steady-state universe.

9.5. Consider a model universe that is static (no expansion) and infinite. Suppose
all the galaxies were created simultaneously T years ago. What is the distance of
the farthest galaxy we can observe? Does this constitute an event horizon or a
particle horizon? Explain.
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