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PREFACE

This book differs radically from all previous attempts
to explain Relativity to the lay audience.

Where previous writers have tried to develop Rela-
tivity in opposition to the ideas of Isaac Newton, Pro-
fessor Bondi derives Relativity from Newtonian ideas.
He pictures Relativity as being neither revolutionary
nor destructive of classical dynamics but rather as being
an organic growth, inevitable when man began to deal
with velocities approaching the speed of light.

Readers whose mathematical backgrounds are lim-
ited should have no trouble following Professor Bondi’s
derivation of the mathematics necessary to understand-
ing of the elementary aspects of Relativity. For fifty
years the practice has been to begin with the Lorentz
Transformation, which involves systems of coordinates
moving relative to each other, and then to use the
Transformation to establish the concepts and charac-
teristic effects of Special Relativity. Professor Bondi has
reversed the process. He first establishes these concepts
and effects and then shows how they lead, by simple
algebra, to the Lorentz Transformation. Beginners thus
will enjoy distinct advantages from Professor Bondi’s
approach to Relativity: He makes use of an under-
standing of Newtonian ideas to develop concepts of
Relativity, and he uses relativistic concepts to derive a
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mathematical treatment, a logical progress in which
one step leads to the next and the reader can advance
with confidence.

Like its predecessor, The Universe at Large (1960),
this book had its beginning in articles written for The
Illustrated London News, but for the present publica-
tion the author has revised and extended the original
material.

Relativity and gravitational theory are Professor
Bondi’s fields of professional concentration, but he is
best known among lay science enthusiasts and students
as one of the three principal originators of the so-called
“Steady-State” theory of cosmology, Fred Hoyle and
Thomas Gold being the other two. A Viennese by birth,
Professor Bondi is a product of Trinity College, Cam-
bridge, England, and is Professor of Applicd Mathe-
matics at King’s College, University of London. He is a
strong believer in the duty of scientists to tell society
what science is about, and his occasional appearances
on BBC educational programs have made him, if not
a star, at least a figure of considerably more than pass-
ing interest to the English television audience.

Professor Bondi is a Fellow of the Cambridge Philo-
sophical Society, a Fellow of the Royal Astronomical
Society, and a Fellow of the Royal Society.

John H. Durston
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CHAPTER 1

“ON THE SHOULDERS OF GIANTS”

When the Theory of Relativity first came out, and for
many years afterward, it was looked on as something
revolutionary. Attention was focused on the most ex-
traordinary aspects of the theory. With the passage of
time, though, the sensational aspects of Albert Ein-
stein’s work have ceased to cause wonderment, at least
among scientists, and now one begins to see the theory
not as a revolution, but as a natural consequence and
outgrowth of all the work that has been going on in
physics since the days of Isaac Newton and Galileo.
Although the theory changed some important notions
very much and quite unexpectedly, we now can see that
perhaps the notions that suffered such changes were the
less important ones and that the basic ideas that were
fully maintained were the more important ones.

The approach th»t will be followed in this book may
therefore be called the traditionist’s approach to rela-
tivity. Since it is the tradition of physical science that
enters, we have to consider many of the basic ideas
of the older physics on which the Theory of Relativity
is built. Science is a continuing process. Newton said
beautifully of his own work, “If I have seen further
than others it is because I stood on the shoulders of
giants.” In a book like this we have to visualize at
every stage what each of the giants from Newton to
Einstein thought and what the evidence for his views
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was. If we seem a little long in coming to relativity
and, particularly, in coming to anything sensational,
then it is only because of our delight in the older, as
well as the newer, parts of physics, and because of the
need to climb a staircase step by step.

THE CONCEPT OF FORCE

One of the most difficult issues in science is to decide
when a particular phenomenon is worth investigating.
It has been said that a fool can ask more questions
than a wise man can answer, but in science the problem
is far more often that a wiser man is needed to ask the
right question than to answer it. One of the oldest prob-
lems is the question of motion. This has puzzled people
for many centuries. Why do things move as they do?
What makes them move? We seem to have a natural
feeling that inanimate matter left to itself will come to
rest. A bouncing ball will bounce less high each time
until finally it comes to rest. A rolling cart, at least on
flat ground, will gradually slow down and stop. Even
on the smoothest materials, such as ice, a stone sliding
along will come to rest eventually. At the beginning of
every motion there seems to stand a living body like
the player throwing his ball. However true this observa-
tion may be on the small scale, on the larger scale it
seems to break down. Thus the wind blows and, unless
we invoke a god of the winds, there is no animate mat-
ter pushing it. The tides come and go and ocean cur-
rents flow and, most mysterious of all, the Moon and
the planets carry on their movements across the skies.
Which is the more complicated phenomencn—the
Moon’s continuing to circle the Earth or the ball’s ceas-
ing to bounce and coming to rest?

Since the ball is familiar and the motion of the Moon
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less immediately apparent, for a long time people
jumped to the conclusion that it was the motion of the
ball that was the simpler, and therefore that the coming
to rest was natural, that there was something about the
state of rest that attracted objects to it, while a special
explanation was required for the continuing motion of
the planets, like Kepler’s idea that angels were pushing
them along their orbits. It needed the genius of New-
ton to see that things were the other way round. There
is nothing peculiar about the state of rest: there is only
a series of very complicated phenomena that we call
friction preponderating in our neighborhood. In the
skies we see the simpler phenomena in which friction
does not matter, and celestial bodies move naturally.
Before Newton the permanence of their motion was
thought to require explanation—an explanation that
might be thought of as force. It was only Newton who
saw that the question was wrongly put. There was noth-
ing to be explained about velocity; what did require
explanation were the changes of velocity—accelerations.

THE EVALUATION OF ACCELERATION

The idea of acceleration is quite basic. It is a measure
of the rate of change of velocity. Velocity changes not
only if the speed increases or diminishes, but also if its
direction alters. There is no acceleration only if a body
is moving in a straight line with constant velocity, and
acceleration is the measure of the deviation of its mo-
tion from this standard. Nowadays, with smooth trans-
port, we are in a better position to realize that velocity
does not matter. Pouring out a cup of tea in the dining
room at home is an operation requiring a certain mini-
mum of skill. Pouring out a cup of tea in a jet plane
flying smoothly at 600 miles per hour is precisely the
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same operation requiring precisely the same kind of
skill. The fact that in the one case we are moving rela-
tive to the Earth, and in the other not, is totally irrele-
vant. Thus Newton’s first great insight, his Principle of
Relativity, as we might call it, is that velocity does not
matter. To put it a little more precisely, what can be
done inside a box is independent of the box’s velocity
provided only that the velocity is constant. This is fa-
miliar from dining cars. If the train is running smoothly,
pouring out a cup of tea in the dining car is just as
simple as at home or in the jetliner, but if the train is
braking sharply or going round a bend or being jerked
by crossing points, then the operation requires very
much more skill-otherwise a lot of tea is spilt.

Thus as soon as the velocity ceases to be constant,
as soon as there are accelerations, new factors enter.
How do we evaluate this acceleration? This calculation
is most easily accomplished by representing velocity by
an arrow, an .arrow in the direction of the motion and
of a length representing the speed of the motion. If we
then compare the velocity arrows at one instant and a
second later, with the foot of each arrow in the same
place, the arrow that runs from the tip of the first one
to the tip of the second one represents the acceler-
ation. When a train is increasing speed, then the ac-
celeration is in the same direction as its velocity. But
a case of at least as great importance is when the train
is going round a bend. Then the speed stays the same,
but the arrow points at successive moments in different
directions. It is readily seen that the arrow joining the
tips of the two arrows a few moments of time apart is
more or less at right angles to the arrows themselves.
The acceleration is at right angles to the velocity.

To account for accelerations, the concept of force is
introduced. Force is that which is required to produce
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an acceleration. Again, this is not unfamiliar. Tie a
stone into a net and swing the net round you. You
have to exert a force to keep the stone the same dis-
tance from you. The stone is following a circular orbit
and so the acceleration is at right angles to the orbit.
Hence, the acceleration is toward you, and your pull
on the stone (through the medium of the net) is the
force that accounts for the acceleration keeping the
stone in its orbit.

Another case, on a much larger scale, concerns the
motion of the Earth round the Sun (Fig. 1). As long

earth in four different positions

Fic. 1. Tangential arrows point in the direction of the
Earth’s velocity at the four positions; the arrows at
right angles pointing toward the Sun give the direction
of acceleration.

as one thinks that the keeping in motion requires an
explanation, one naturally looks in the direction of the
Earth’s velocity to find the cause of the motion. But
looking in that direction one never sees anything of
great significance, but a different object every time one
looks. If, however, one looks at right angles to the di-
rection of the velocity, that is, in the direction of the
acceleration of the Earth, then one always sees the Sun,
which is clearly a body of great significance. In other
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words, merely changing the question from “What causes
the velocity of the Earth?” to “What causes the ac-
celeration of the Earth?” immediately leads one from
chasing a hare to seeing the Sun, undoubtedly the most
important object in our astronomical neighborhood. It
needs, then, only a small step to say that thus, by merely
changing the question, one gets from an unknown cause
of the Earth’s motion to the immediate idea that it is
the Sun which is responsible for the orbit of the Earth.
Similarly, Newton accounted for the orbit of the Moon
round the Earth by showing that the acceleration of
the Moon was always directed toward the Earth, which
could thus be taken to be the reason for this motion.

THE UNITY OF PHYSICS

There is yet another point that emerges from these
simple considerations. A great deal is said about spe-
cialization and departmentalization, but these very
basic experiments and observations in physics that we
have been mentioning now exhibit the unity of physics.

For purposes of textbooks and of university examina-
tions, physics is subdivided into such subjects as dy-
namics, the science of force or optics, the science of
light, etc., but this division is highly artificial and can-
not be sustained. It is probably impossible to think of
any experiment that is purely dynamical or purely opti-
cal. Some combination is always involved. So when
Newton said that dynamics was fundamentally con-
cerned with acceleration, and the acceleration of the
Earth was found to point toward the Sun, such a junc-
tion of dynamics and optics had been achieved. The
acceleration, the basic dynamical property of the orbit
of the Earth, is in the direction in which we see the
Sun, and to see an object is the simplest and most im-
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portant optical observation. Thus the very way in
which it is found that acceleration is so important in
dynamics depends on an optical observation—the direc-
tion in which the light from the Sun arrives. Keeping
this basic lesson of the unity of physics in mind, we
shall easily be able to avoid the pitfalls that misled
physics in the late nineteenth century, and to follow
necessarily the track of Einstein’s Theory of Relativity.



CHAPTER II

MOMENTUM

In the preceding chapter attention was given to New-
ton’s identification of the direction of force with the
direction of acceleration, and to the fact that absence
of force implies absence of acceleration. The question
that was not then discussed was how much acceleration
follows from a given amount of force. The clue to the
answer to this question is the concept of mass, or, a
little more highbrow, the concept of momentum. As for
mass, we are all familiar with the fact that the same
spring extended the same way will move some objects
much less rapidly than others, and we call the objects
that move sluggishly massive, while the ones that move
rapidly are called light. If one wanted to pursue the
argument in detail, one would say that the same force,
such as a spring extended a certain way, will produce
accelerations of different particles in certain ratios, and
this ratio is, by experiment, found to be independent
of the actual extension of the spring, though, of course,
the individual accelerations do depend on it. Thus we
introduce the notion of mass with the idea that the ac-
celeration produced by a given force is inversely pro-
portional to the mass of the object on which it acts—
that is, the greater the mass the smaller the acceleration.
In daily life we do not usually measure mass but weight.
This is what scales are for. In fact, mass and weight
are exceedingly closely related, so closely that ordinarily
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one can use one to stand in for the other. But from
the point of view of the physicists weight is a rather
more complicated concept than mass, since it depends
on a local circumstance, the strength of the Earth’s
gravitational field.

To come now to the notion of momentum, which is
such a very useful notion in physics, we simply multiply
mass by velocity. The masses of objects are usually
constant (though not when, for example, the motion
of a growing raindrop through a cloud is considered,
or the trajectory of a rocket that is firing out gases at
the back). The rate of change of momentum equals
the force and it is this law which, in fact, generalizes
to the more complicated cases just referred to. It is a
remarkably useful law, because we can apply it to a
whole system. The question arising here is a very deep
one which goes through the whole of science. In sci-
ence one is always concerned to put the best face on
one’s ignorance. One is never in total command of the
facts, and a scientist who waits until he knows every-
thing before he says anything is like the man who will
not make a decision until he has all the facts. One never
has all the facts, the scientist’s knowledge is always very
limited, and he has to make the best with what he has
got. Thus it could be argued that it is absurd to try to
evaluate the gravitational field of the Earth as it af-
fects the Moon’s orbit without knowing every detail of
the internal constitution of the Earth. But this is not so.
Fortunately, a very great deal can be said about the
Moon’s orbit and even about the orbit of a sputnik,
without knowing much about the internal constitution
of our Earth.

MOMENTUM 11

THE MOTION OF A SYSTEM OF BODIES

Momentum is what the mathematician calls an addi-
tive quantity. The momentum of a large body is the
sum of the momenta of all its individual particles. The
individual particles may have the most complicated
forces acting between them, but the momentum of the
whole body depends only on the forces acting on it
from outside. And it is often extremely useful to be
able to say something about the motion of a whole
system of bodies without knowing how every individual
particle moves. An example drawn from everyday life
may help. Consider a baby in a pram on smooth, level
ground. At first the baby is asleep and the whole sys-
tem, pram and baby, is at rest. Then the baby wakes
up and begins to kick. What happens now? Can the
baby propel the pram along by its kicks? See Fig. 2.

If we consider the whole system of pram and baby
(and suppose the baby to be safely strapped in so that
the two will not separate), then the momentum of this
system can change only if external forces act. To move
it horizontally there must thus be horizontal external
forces. The only way in which these can arise is through
the friction against the ground. For our purposes we
may suppose, without changing anything essential in the
picture, that if the brake is off (so that the pram can
roll smoothly), then there is no friction against the
ground, whereas if the brake is on, so that the wheels
turn only with difficulty, then there is such friction. In
the first case, with the pram unbraked, it follows that
the momentum of the whole system must always vanish.
Therefore the center of mass, as we call it, of the whole
system, having originally been at rest, must remain at
rest. Motions internal to the system are possible, how-



Fic. 2. In the first two drawings, with the carriage
brake off, movements of the baby’s legs cause equal
and opposite motions of carriage. In the last two draw-
ings, with brake on, resulting motions are no longer
equal and opposite.
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ever. Thus if the baby kicks out its feet the pram moves
a little in the opposite direction by recoil, but as soon
as the baby pulls its feet up the pram will move back
by precisely the same amount. What happens when the
brakes are on? Of course, if the brakes are perfect and
the ground is very rough, then no motion is possible
and we need not think about the situation. But suppose
that the pram stands on fairly smooth ground so that
some motion is possible. Then it may well occur that
as the baby kicks its feet out this increases its weight,
because it pushes its body downward, and therefore
there is much more resistance to the motion of the pram
and no motion will result. But in the opposite case,
when the baby pulls its legs in, downward, its weight
is diminished, and so the friction on the ground is less
and now the pram may move a little. All the motion
of the pram is now in the same direction. If the baby
keeps on kicking for a long time there may therefore
be a substantial motion of the pram if the brake is on,
whereas with the brake off there can be no major mo-
tion, although the pram may move forward and back-
ward a little bit each time the baby kicks. The result is
rather the opposite to what one would expect, but on
suitable ground and in suitable conditions the results
stated here are indeed verified by observation. Of
course, if the ground is not strictly level or if there is
a wind blowing the pram along, it would be exceed-
ingly dangerous to take the brake off, but, say, indoors
on a smooth level floor the situation will be exactly as
represented here. With the brake off the pram will move
more with each of the baby’s kicks, but the forward
and backward movements will cancel exactly, and by
and large there will be no motion. On the other hand,
with the brake on, with each individual kick there will
be far less motion than before, but these movements
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may add to something very substantial in the course of
time. The remarkable thing is that we can make a very
definite statement about the behavior of the pram on
smooth level ground in the absence of friction. One
might have thought that in order to predict the motion
of the pram one would have to know how the baby
kicks and would have to consult a child psychologist to
discover exactly how the kicking goes on, etc. But this
is not necessary. When there is no frictional force act-
ing, we can say something about the motion of the
pram without knowing what goes on inside it. It is this
fact that makes the law of conservation of momentum
so extremely useful, It is a Jaw that enables us to state
something about the over-all behavior of systems that
we do not understand in detail. A minor point that
emerges is the tremendous importance of systematic
movements. It is the fact that the movements, however
small, may be additive in the case of the braked pram
that makes all the difference. The much larger move-
ments of the unbraked pram add up to zero.

THE MOMENTUM OF AN AIRPLANE

The law of conservation of momentum applies to many
fields and is one of the most important laws of physics
that we have. Thus when we think of a propeller-driven
plane, then the forward momentum of the plane can be
increased only by supplying backward momentum to
the air. What the propeller does is to push the air back-
ward. This involves, as a kind of recoil action, a for-
ward push for the plane. In this sense the difference be-
tween a propeller-driven and a jet plane is purely a
technological one. For some purposes it is more ad-
vantageous to use a propeller outside the engine to
produce the backward flow of air; for other purposes it
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is more advantageous to use machinery inside the en-
gine to produce a powerful rearward flow of air and
exhaust gases. In either case, as must be true from the
law of conservation of momentum, the forward push
on the plane must be balanced by a similar backward
motion given to other materials, such that the momen-
tum imparted to the one is equal and opposite to the
momentum imparted to the other. The rearward mo-
tion always involves both the exhaust gases of the en-
gine and the surrounding air, but the relative impor-
tance of these two, understandably, depends on how
much air there is. The higher the plane flies the thinner
the atmosphere, the more important the rearward mo-
tion of the exhaust as compared to that of the sur-
rounding air. If then, one goes right out into space
where there is virtually no medium, then the forward
push of a missile must be due to the rearward momen-
tum of the exhaust gases alone. Thus spaceships or very
high-flying missiles use their own exhaust as the only
possible way of producing rearward momentum to bal-
ance their own forward momentum. This is the princi-
ple of a rocket, which, of course, can be applied at
ground level, too, as we all find out on the Fourth of
July in the United States or on Guy Fawkes’ Day in
England.

THE IRRELEVANCE OF VELOCITY

In the atmosphere any increase in speed brings its
own difficulties with it. There is a rest state that is dis-
tinguished from the others; the rest state of the atmos-
phere surrounding the plane. The faster the plane, the
greater its friction against the surrounding atmosphere,
the harder the engine has to work to keep the plane
going at the requisite speed. But out in space the situa-
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tion is quite different. It needs no more fuel to increase
the speed of a spaceship from 1000 miles an hour to
2000 miles an hour than it needs to increase the speed
of a spaceship of the same mass from 100,000 mi.les
an hour to 101,000 miles an hour. By the Newtonian
principle of relativity, velocity does not matter for these
dynamical phenomena. A spaceship once at a speed of
10,000 miles an hour will glide along at constant speed
just as happily as a spaceship at 1000 miles an hour
will, and it needs just as much effort to raise the speed
of the one as to raise the speed of the other. The notion
that we have a real state of rest is one that is entirely
due to our own surroundings, in which the atmosphere
and the ground beneath us always give us an idea of
rest. Once we are out of these local circumstances and
have shed our parochial prejudices, every speed is j_ust
as good as any other speed, as far as this dynamical
work goes. This is an immediate consequence of Nefw-
ton’s laws and a vital principle of this branch of physics.

CHAPTER HI

ROTATION

In the previous chapters the irrelevance of velocity has
been discussed. Velocity, however, is only one of the
possible aspects of the motion of a simple rigid body.
In addition to a motion of translation the body may
possess a motion of rotation. One might at first sight
suppose that just as there was no state of translatory
velocity distinguishable from all others, there might also
be no such distinguished state of rotary motion. This is
not so. We all know that there is a state of no rotation
in which a body can be without any internal strains but
that, as soon as rotation sets in, the body tries to dis-
tend, and strains arise to keep the parts farthest from
the axis from flying off. From what has been said be-
fore it is not difficult to see how this arises. There is
no force only if a particle continues with the same
velocity, both in direction and in magnitude (speed).
However, a particle on a rotating body will change the
direction of its velocity in the course of its motion
around the center of the body. Thus there will have to
be a force holding the particle in, a centripetal force,
to counter the fictitious centrifugal pull of the particle.
The centripetal force can vanish only if there is no ro-
tation whatever. Hence the very law that shows that
there is no preferred state of rest for a motion of trans-
lation implies that there is a state of rest as far as ro-
tation is concerned. Not having velocity does not mean



18 RELATIVITY AND COMMON SENSE

anything unless the standard of rest is specified. Non-
rotating, however, means something perfectly definite.

To measure the speed of rotation we can either speak
of the total time of revolution or we can speak of a
subdivision. We may discuss, for example, how many
seconds a body takes to turn through 1 degree, or, as
the mathematician usually does, we speak about the
time the body takes to turn through an angle of just
over 57 degrees (180°/a to be precise), an angle which
is called one radian. The reciprocal of this time is called
the angular velocity. The higher the angular velocity
the faster a body is turning. Engineers work in terms
of the number of revolutions per minute (r.p.m.), and
when one talks about the speed of engines this is the
terminology usually employed. Whichever way we
count it, angular velocity is the correct measure of ro-
tation.

MEASUREMENT OF THE EARTH’S ROTATION

A body whose rotation is of particular importance to us
is the Earth. How do we measure the rotation of the
Earth? Perhaps the best-known method is the use of
Foucault’s pendulum. To see how this works we im-
agine an ordinary pendulum freely suspended above the
North Pole and allowed to swing there. Then the pen-
dulum moves freely under the influence of gravitation.
If originally set up to swing in a straight line, it will go
on doing so. The rotation of the Earth is quite irrelevant
to it. The Earth will rotate beneath the pendulum. Thus
to an observer on the Earth the plane of the motion of
the pendulum will appear to be rotating in just the op-
posite way to the direction in which the Earth is rotat-
ing. If the pendulum were fixed somewhere other than
at the Pole, the situation would be rather different be-
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cause some of the rotation would be ineffective, as it
would try to pull the pendulum out of the vertical. It is
easily seen that, looking downward on the North Pole,
the plane of the Foucault pendulum appears to be
rotating clockwise, whereas looking down at the South
Pole, at a pendulum similarly fixed there, the rotation
will appear to be anticlockwise. It does not need any
great mathematical insight to appreciate that in be-
tween the situation is intermediate. Thus on the Equa-
tor the pendulum would not vary its plane at all relative
to the Earth; in northern latitudes it would rotate clock-
wise, but more slowly than at the Pole, diminishing its
speed of rotation from the Pole to zero in low latitudes,
and the opposite would occur in the Southern Hemi-
sphere. Thus the Foucault pendulum is a means of
measuring the rotation of the Earth.

Another way of measuring the rotation of the Earth
is to look at the fixed stars, The Earth is also rotating
relative to them, so that the celestial sphere seems to be
revolving round the Earth. The remarkable fact is that
the rotation of the Earth relative to a Foucault pen-
dulum on the Pole is, as near as one can tell, the same
as the rotation of the Earth relative to the fixed stars.
This raises the question first asked by Bishop George
Berkeley! in the eighteenth century and then put more
precisely by Ernst Mach? toward the end of the last

1 George, Earl of Berkeley (1685~1753) was a clergyman, phi-
losopher, and Fellow of the Royal Society, author of A Treatise
concerning the Principles of Human Knowledge. His concept
of time as relative conflicted with Newton’s picture of the uni-
verse. It took mathematicians more than a century to overcome
the technical objections he raised against Newton's statement of
the calculus. Berkeley was a brilliant writer and had one of the
most acute minds in the history of philosophy.

2 Ernst Mach (1838-1916) was an Austrian philosopher and
physicist of great influence in modern thought. Einstein repeat-



20 RELATIVITY AND COMMON SENSE

century, and again by Einstein in the early years of this
century. What is the connection between the two rates of
rotation? Roughly speaking, it appears as though the
distant matter of the universe determined what state of
rotation was to be called no rotation in our neighbor-
hood. The most precise measurements of what this state
is probably follow from the motion of the bodies of the
Solar System and appear to agree extremely well with
the state of no rotation found by observing distant mat-
ter. How it is that the distant masses fix the state of no
rotation is not wholly clear, although Einstein’s Gen-
eral Theory of Relativity goes a long way toward ac-
counting for this very mysterious fact.

THE CoRriOLIS EFFECT

While it might seem that the dynamic effects of the ro-
tation of the Earth are a matter of not very much im-
portance for our daily lives, though relatively easily
ascertained by looking at the stars or at a Foucault
pendulum or a gyroscope, yet it is true to say that our
whole lives probably are shaped by them. The influence
comes from the effect of the rotation on the motion
of the atmosphere—i.e., the winds. The effect is per-
haps most easily imagined on a gramophone turntable
(Fig. 3). Suppose a particle is gently moved toward
the axle on such a turntable, having previously been
at rest relative to the turntable. It will then carry
with it its forward velocity from the place it origi-
nated and, as this was farther from the axle than
its later positions, it will seem to be going forward in

edly acknowledged his debt to Mach’s analysis of Newtonian
mechanics as a philosophical groundwork to formulation of
Relativity. Mach numbers, the familiar measure of speed in the
jet- and missile-age, are named for him.
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Fi1G. 3. As in the experiment with the ball on the turn-
table, winds are deflected as they blow from one place
to another owing to the rotation of our planet. Thus
the winds are made to circulate instead of going
straight from a high-pressure to a low-pressure region.

the direction of rotation, relative to its new neighbors.
Similarly, a particle moving in a circle round the axle
relative to the turntable in a direction that enhances the
rotation will thereby go faster round the axis and so
will require a larger force than previously to keep it on
its circular track. If no such larger force is applied it
will push outward relative to its neighbors. Thus the
effect of the motion of the turntable will be that any
particle moving on the turntable will be deflected in a
direction at right angles to that in which it first wished
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to go. This so-called Coriolis® force is particularly im-
portant for the winds.

THE MOVEMENT OF WINDS

Basically the direction of wind is from regions of high
barometric pressure to regions of low barometric pres-
sure in order to equalize the pressures between the two.
But as the wind moves from one pressure area to the
other it is deflected sideways so much that instead of
making for the center of the depression it circles round
it. This at least is what happens in moderate latitudes,
and there the resulting effect is that winds go round a
depression forming a cyclone, whereas they go in the
opposite direction round regions of high pressure, form-
ing anticyclones. The effect of this is that the wind takes
far longer, owing to its many orbits round the center
of the depression, to take air toward the low pressure
region than it would otherwise do, and hence regions
of high and low pressure have such long lives. Because
of this persistence of the pressure pattern, the low pres-
sure regions can drift far inland and bring rain to re-
gions distant from the ocean. It is due to this drift,
essentially, that the continents in moderate and fairly
high latitudes are fertile and not deserts. Similarly the
trade winds, which also result from the rotation of the
Earth, though in a slightly different way, bring moisture
to the continental regions in the vicinity of the Equator.
Thus the whole pattern of life and agriculture on the
surface of the land is based on the fact that the Earth
rotates. It may be worth mentioning that the effect of

8 Gaspard Gustave de Coriolis (1792-1843) was a French engi-
neer and scientist. The use of Work to mean force multiplied
by distance originated with him.
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the rotation of the Earth in deflecting winds brings
about a situation that is quite different from what one
might expect. So strong is the effect, that instead of
flowing directly from high pressure to low pressure at
right angles to the lines of constant pressure, the wind
follows almost exactly the lines of constant pressure, the
isobars.

ANGULAR MOMENTUM AND ANGULAR VELOCITY

Just as a body in translatory motion has a tendency to
persist and, in fact, will keep its velocity unless a force
acts, so a rotating body will have a tendency to persist
in its rotation. The measure of what it is that persists
in the straight-line motion we called momentum or, to
be more precise, linear momentum, and our rule was
that without force there could be no change of linear
momentum. It was particularly important that this rule
applied to a system as a whole and that we did not have
to know every detail about the system to be able to
speak about the fate of its momentum. Alt we had to
know were the external forces. The measure of the
tendency of a body to keep rotating is called its angular
momentum, and if there are no forces acting that tend
to slow down or accelerate its rotation (the technical
term for such forces is couples or moments), then the
angular momentum of the body will persist. However,
the angular momentum of a body is not related to its
angular velocity as simply as the linear momentum is
related to the linear velocity, where there was just a
usually constant factor of proportionality, the mass of
the body. Mass is unalterable (except by throwing
things out as in the case of rocket fuel), but the link
between angular momentum and angular velocity is
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much more complicated, and this is easily understood.
If all the particles making up a body are close to its
axis of rotation, then they will all move only at low
speeds even when the body is being spun round the axis
many times per second. If, however, the shape of the
body is changed so that many of its particles are far
from the axis, then at the same rotation rate as before
these particles will now have to move fast. Thus if the
masses are far from the axis of rotation, even a small
angular velocity will produce a large angular momen-
tum, whereas if the masses are near the axis of rotation
the opposite will be the case. There is then the pos-
sibility, by shifting masses, of changing the angular
velocity while keeping the angular momentum constant.
This is well known in skating. If a skilled skater rotates
slowly with his arms outstretched and then pulls his
arms in and makes himself as narrow as possible, owing
to the fact that his angular momentum must stay the
same, his angular velocity will increase very much, and
he will pirouette at high speed. This is quite a com-
plicated subject, and so it comes as a slight surprise
that the cat understands these matters very thoroughly
indeed, at least, in an instinctive way.

DROPPING A CAT

We all know that whichever way you drop a cat it will
land on its feet. At first sight this seems a very remarka-
ble phenomenon. If a cat is dropped without rotation
and, therefore, without angular momentum, how can
it turn over so as to arrive on its feet (Fig. 4)? It must
have had an angular velocity at some stage of its fall,
although its angular momentum must have been zero all
the time. How could the cat have had an angular
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Fic. 4.

velocity without having an angular momentum? The
explanation is found in the marvelous flexibility of
cats.* Suppose first that the cat sticks out its hind legs,
pulls in its front legs and head, and twists its back.

4The actual motion of a cat is rather complex but conforms,
of course, to the principles laid down here. In order to make
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The total angular momentum must of course be zero,
as it was to start with. But with the mass of the hind
legs far from the axis of rotation, a very small angular
velocity in the rear will cause the same angular momen-
tum as a large angular velocity will do in front, owing
to the fact that the masses of the front paws are so close
to the axis of rotation. The two will balance, therefore,
to give zero total angular momentum, with the head
end of the cat turning much farther in one direction
than the tail end turns in the opposite direction. Next,
the cat sticks out its front paws, pulls in its hind legs,
and twists back. Now the high angular velocity belongs
to the back legs and the low one to the front, because
the hind legs are close to the axis of rotation and the
front paws are far from it. During this time of twist,
therefore, the front will turn far less than the rear end.
When the back legs at the end of this twist are pushed
out and the front paws pulled in, the cat is in the same
position as when it first started to move, except that
the whole animal has turned through an appreciable
angle. Going through this kind of motion a few times
in rapid succession, a cat orients itself properly and
lands on its feet. There is thus a way of cheating, as it
were, round the law of conservation of angular mo-
mentum in a way that is impossible in the case of linear
momentum.

To sum up all these considerations about linear and
angular motion: There is a state of no rotation but no
state of rest as far as linear velocity is concerned. A
system that is not rotating and not accelerating is called
an inertial system, and there exists an infinity of inertial
systems, any two inertial systems moving relative to

the account a little simpler, only the fundamental features of
the necessary motions will be discussed.
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each other with constant velocity in a straight line and
without any rotation whatever. It is this large variety of
inertial systems that is one of the deep consequences of
Newtonian physics and, as we shall see, this is carried
over without any alteration into relativity.



CHAPTER IV

LIGHT

We shall now consider another branch of physics, but
starting from a different set of experiences, those con-
nected with light.

There are two properties of light that are immediately
apparent from daily experience. One is the fact that light
travels in straight lines and the other is the fact that it
travels at very high speed indeed. As for the first, we
all know that we cannot look around corners. As for
the second, light travels so fast that we are not aware
in everyday life of its taking any time at all, On the
basis of these two properties and related ones (reflec-
tion, refraction), a subject known as geometrical optics
is built up. Highly useful, it is yet in many ways in-
complete and wholly divorced from the rest of science.
A physical theory that links light to other parts of
physics is relatively recent and is due essentially to Max-
well.! The first experiment that displayed quite unam-
biguously such a link between light and something else
(magnetism, in this case) is due to Faraday.?

1 James Clerk Maxwell (1831-79), a Scot, is one of the great
figures of physics. His famous equations described the electro-
magnetic nature of light and predicted the existence of radio
waves. They are often referred to as the only laws of physics
that have withstood every assault from the twentieth century’s
developments in scientific thinking.

2 Michael Faraday (1791-1867) was a great English experi-
menter who discovered electromagnetic induction and developed
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FARADAY AND THE POLARIZATION OF LiGHT

Light can be given a property known as polarization.
We need not consider this phenomenon in any detail,
but its chief character is that of a combing of light.
When light is passed through particular media like cer-
tain crystals, it emerges as though it had been combed

electromagnet

light beam

/ // }M'lecfed light

analyzer

Fic. 5. With the magnet turned off, polarized light is
reflected from the metal and transmitted by the ana-
lyzer, showing that its plane of polarization is un-
changed. However, with the magnet turned on, no light
is passed by the analyzer; the plane of polarization has
been altered.

the concept of “fields” to replace the idea of action-at-a-distance.
Maxwell formulated his mathematical equations to describe
Faraday’s discoveries and concepts. Faraday’s achievement was
the more remarkable in that he was self-educated.
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in a direction at right angles to the direction of propaga-
tion. This direction of combing is called the plane of
polarization. If the crystal is turned, then the plane of
polarization of the emerging light has been turned, too.
The plane of polarization is something that, in gen-
eral, is rather well fixed, once the light has been
polarized. For example, the light cannot then pass
through a like crystal at right angles to the first one,
simply because it is combed in the wrong direction to
go through that crystal. Faraday discovered that al-
though the plane of polarization of light is not changed
by reflection from an ordinary mirror or metal surface,
it is turned if it is reflected from a powerful magnet
(Fig. 5). In this way, Faraday could show that there
was a link between magnetic forces and light, and so
he paved the way for the later work of Maxwell, which
displayed light as a phenomenon of electromagnetism.

MAXWELL AND THE ELECTROMAGNETIC THEORY OF
LiGHT

What Maxwell found was that changes in the electro-
magnetic field, as it is called, travel with a very definite
velocity that could be inferred from experiments on
electromagnetic induction in the laboratory, a speed
which turned out to be equal to the speed of light. The
coincidence between this speed inferred from laboratory
experiments and the measurements of the speed of light
is a powerful argument in favor of the electromagnetic
theory of light. The most startling result of Maxwell’s
theory is that light is only a rather special case of all
these disturbances, which are all wave phenomena. That
is to say, they all tend to have a period and a wave
length, and what Maxwell showed was that such dis-
turbances would travel with the speed of light whatever
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the wave length. This paved the way for the discovery
by Hertz? that ordinary electric disturbances, such as
discharges, produce an electric field some distance away
through the propagation discovered by Maxwell. From
here it was a short step to the detection and transmission
of radio waves with their enormous variety of wave
length, from the very long waves used in wireless teleg-
raphy to the short waves used in TV and radar. Thus
ordinary electrical apparatus can be used to transmit
and receive radio waves varying in wave length from
perhaps a tenth of an inch to the wave lengths of a few
yards or meters used for TV, and on to wave lengths
of many, many miles used in wireless telegraphy. Cor-
responding to the wave length there is the frequency,
that is, the number of oscillations per second. Fre-
quency is measured in cycles or thousands of cycles
(kilocycles) or millions of cycles (megacycles). For
waves yet shorter than the shortest radio waves, it is
not electrical apparatus but atomic or molecular excita-
tions that are used, and for the very shortest wave
lengths nuclear excitation. It so happens that the retina
of our eyes contains atoms of materials that respond to
a particular range of wave lengths—a range of wave
lengths centered around one fifty-thousandth of an inch.
The longest of these wave lengths excites those particu-
lar atoms that give us the sensation of red, the inter-
mediate ones go through yellow and green to blue and
violet, which are the very shortest ones. Actually, the
mechanism of color vision is very complicated and can-
not just be represented in the manner of particular wave
lengths producing particular colors; it is a far more

3 Heinrich Hertz (1857-94) was a German physicist best known
for his experiments on electromagnetic waves, but he also did
first-class work in other areas of physics and wrote an impor-
tant book, Principles of Mechanics.
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complicated system in which the whole picture has to
be taken into account.

Longer than visible light in wave length but shorter
than radio waves is a type of radiation that is called
infrared or heat rays, whereas rather shorter than visi-
ble light there is ultraviolet, some of which is responsi-
ble for browning our skins and giving us a tan. Still
shorter wave lengths are called X-rays, and even shorter
are the gamma rays that occur in nuclear processes. The
enormous power of Maxwell’s theory is shown by the
fact that it can comprehend this tremendous range of
waves, differently excited, differently received, and yet
all traveling in accordance with the laws that he found.
The law of rectilinear propagation applies to all these
waves, but the wave character of the motion means
that the waves can flow a little bit round objects that
are small compared with the wave length. For radio
communication round the globe one does not, how-
ever, rely on this property but on the fact that owing
to peculiar radiations received from the Sun a sub-
stantial layer of the high atmosphere acts as a mirror
for radio waves. This layer is the so-called ionosphere,
and it is a most convenient fact that waves of more
than about 15 meter wave length are reflected by the
ionosphere and are thus trapped between the surface of
the Earth and the higher layers of the air. Owing to this
fact we can have radio communication all round the
world. On the other hand, for some purposes, such as
TV, higher frequencies are required, essentially because
the lower ones are too sluggish to convey the tremen-
dous amount of information that goes into making up
a radio picture. Therefore TV reception is limited, more
or less, to the areas from which reasonably straight
paths can be run from transmitter to receiver, and there-
fore the coverage for television is much more difficult
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to achieve than for long-wave radio. For the best repro-
duction of sound, too, there are advantages in using
these very short waves and this is the manner in which
frequency modulated high-frequency radiation is sent
out to give us the best possible reception. The waves
employed there are long enough to flow round minor
obstacles like trees and, to some extent, even buildings.

UsING RADAR To MEASURE DISTANCE

A special application of short radio waves that is of
great importance in war and peace and of considerable
interest to the physicist is radar. As is well known, the
notion of radar is that you transmit a short pulse of
radiation, which bounces back from the target; and the
wave received gives one information about the distance
and direction of the target, the direction being simply
that in which the wave had to be sent out to be received
back.- Of -particular interest to us here is the manner
in which the distance of the object is found. What one
does is to measure the interval of time between the
transmission and reception of the pulse. Since one
knows that radio waves travel with the speed of light,
this interval multiplied by the speed of light gives one
the total length of path traveled by the packet of waves,
which is to the target and back, and thus twice the
distance of the target. The great interest of the principle
of this method of measuring distances is that one does
not use a yardstick. No standard meter or standard yard
is employed. What one does is to measure an interval
of time and then multiply this by a quantity, the velocity
of light. We can then speculate a little about the true
nature of distance. It is often very useful in physics
to try to get away from the particular circumstances of
our existence, in which certain materials are cheap and
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others expensive, in which the temperature variations
are small round a mean temperature that is far removed
from the very cold of space or the very hot of the stars,
and so on. In the present instance, we want to make
only a very simple assumption. We shall suppose, for
the moment, that the makers of radar sets have man-
aged to become so much more efficient than the makers
of yardsticks that instead of rulers one normally
employs a radar set, measuring the time between trans-
mission and reception of a pulse. If, then, we had grown
up measuring distances through the measurement of
times, if we had grown up without using inch tapes and
the like, then I should guess that the whole notion of a
scale of distance would not occur to anyone.

TeE UNITS OF DISTANCE

One would always use time to express distance. This
of course is done to a considerable extent in astronomy,
where, to get away from the awkwardly big figures ar-
rived at otherwise, we measure the distances of stars in
light years, that is, the distance light travels in a year.
But there is no reason why this manner of expressing
distances should be confined to the very large astro-
nomical distances. We could speak of light microsec-
onds, that is, the distance light travels in a microsecond
—a millionth of a second. This distance is about 300
meters or 330 yards and is quite a convenient unit. A
light millimicrosecond would then be a thousandth of
this unit and would roughly equal a foot in length, and
so on. If we imagine, then, a civilization in which the
yard or meter is unknown and every distance is ex-
pressed as light second or light millimicrosecond or
whatever the case might be, then the members of that
sort of civilization would look at one very blankly if
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one asked them what the velocity of light was. They
would not regard this as a quantity to be expressed in
meters a second or miles a second, as the case may be,
but simply as a unit, the natural unit of velocity. Veloc-
ity one would refer to as an object moving as fast as
light. All ordinary velocities would be expressed in
terms of this standard. Thus the velocity of a jet plane
would be around one-millionth; that is to say, a jet
plane takes a million times as long to get from one place
to another as light does. Similarly, a train or fast car
might have a velocity of one part in ten millions (67
miles per hour approximately). In other words, by ac-
cepting the natural standard of velocity, the velocity of
light, this civilization would have done away with the
need to register both a standard time and a standard
distance and to use the awkward translation figure of
the velocity of light. There would be only a time stand-
ard in this civilization which would make life rather
more convepient, and its members would regard us as
people who work with distances and times in a most
complicated and absurd way.

Perhaps it might be worthwhile here to describe an
alternative civilization, which has the same relation to
ours as we have to the one just imagined. This is a
civilization in which the direction north and south is
regarded as holy and is measured always in miles,
whereas the direction east and west is regarded as per-
fectly ordinary and profane and is always measured in
yards. If people had been brought up to look at things
that way from an early age, it would require a daring
mind to suggest that there was some connection be-
tween distances north and south on the one hand,
and east and west on the other, and physicists would
be employed to work these things out and would then
arrive at the remarkable result that 1760 yards of the
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east/west measure were, in some sense, equivalent to
the mile of the north/south measure and this figure of
1760 would acquire a sacrosanct meaning there, a little
as the velocity of light has for us. Of course, we must
imagine that in this civilization their national physical
laboratory would keep two quite different standards—a
standard mile for measurements of north/south direc-
tions and a standard yard for measurements of east/
west directions. This would look absurdly complicated
to us and unnecessary, but this, I am sure, is what we
would look like to the civilization about which we
talked earlier. The physicist has no hesitation in jump-
ing to the simpler conclusion, and he immediately agrees
then that there is really no point in using a standard of
distance; all we need are standards of time. Again, there
is the question as to what the value of the velocity of
light is. The velocity of light, of course, is unity by
definition. What we call measuring the velocity of light
would seem to him a complicated and roundabout way
of determining the length of the standard meter in Paris
in terms of the well-known public standards of time.

TeE VELocITY OF LIGHT

On this basis, then, we can look at time standards as
primary and at distance standards as quite secondary
and of little importance. This does seem to be a sound
procedure, particularly when we think about what our
inch tapes and measuring rods are actually made of.
We know that they are composed of atoms whose struc-
ture is kept in shape by electric forces. We know that
these atoms have certain periods of vibration and we
know that, in the materials we call very rigid, it is as 2
consequence of the particular petiods of vibration of
the atoms that different atoms keep a definite distance
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apart in the structure of the rod. Thus we can argue
that the length of a rod is really determined by the
period of the oscillation of the atoms of which it is
composed, this being translated, in the usual way,
through the velocity of light into distance. If we argue,
as we well may, that the distances between the atoms
in what we call rigid materials are the distances cor-
responding to the oscillations of the atoms, then we
could say that those distances, too, are effectively deter-
mined by radar methods. On that basis, then, distance
becomes a purely secondary quantity, time is the pri-
mary thing, and the velocity of light is in natural units
necessarily equal to unity. But if we are so perverse as
to choose to measure distances in feet rather than in
light millimicroseconds, then we have to introduce a
conventional factor of conversion which effectively de-
fines the foot, and this we call the velocity of light.

CHAPTER V

PROPAGATION OF SOUND WAVES

For our purpose the most interesting properties of light
concern its propagation. In order to bring out these
properties it may be worthwhile to consider the con-
trast with other wave phenomena. The most familiar
of these is sound. Sound consists of pressure variations
in the air traveling at the speed of sound, which is
around 370 yards a second or about 750 miles per
hour. The wave length (and with it the frequency) of
sound determine the pitch of the sound we hear. A low
note corresponds, in extreme cases, to 20 cycles or
thereabouts, which is to say, a wave length of some 18
yards. (The product of wave length and frequency
equals the velocity of sound.) Similarly the highest notes
we can perceive (which vary with individual and age)
are around 20 kilocycles, which is a wave length of
perhaps half an inch. The usual register of voice oc-
cupies a band centered on one kilocycle, that is wave
lengths of the order of a foot. It is easy to make a wide
range of observations on the velocity of sound owing to
the fact that it is so much lower than the speed of light.
Thus, for example, if one observes a man hammering at
a considerable distance one can perceive the difference
in the arrival time of light and of sound, the light re-
quiring only a negligible time—microseconds—to cover
the distance, whereas the sound wave may take several
seconds (Fig. 6). Thus it is quite a simple matter to
establish the properties of the propagation of sound.
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Tue DoPPLER SHIFT

One of the most interesting of these is the so-called
Doppler! shift, a fairly familiar effect. If a hooting
railway engine passes one at high speed, then the pitch
of its whistle seems to drop suddenly when the train is
at its closest. This is clearly an effect due to the motion
of the engine, for if both the source of the sound and
the listener are at rest in the air, then the listener re-
ceives sound of precisely the same pitch as emitted. It
is not difficult to see how this occurs, but perhaps the
argument will be made simpler if we consider a very
fast-moving source of sound, say one traveling at half
the speed of sound. For the purpose of this argument
we take the velocity of sound to be exactly 370 yards
per second (757 miles per hour). Suppose then that
the source of sound is moving toward us, with our-
selves, the receiver of the sound, at rest in the air. Con-
sider this source of sound at two instants one second
apart. At the second instant it is 185 yards closer to
us than at the first instant. The sound coming from it
at the second instant has 185 yards less to travel than
the sound emitted at the first instant. The sound takes
just half a second to cover these 185 yards. Therefore
the second sound has a travel time half a second less
than the one emitted at the first instant and so, since
they were emitted one second apart, the sound from
the second moment arrives only half a second later than
the sound from the first moment. Instead of considering
moments one second apart we can consider them a very
much shorter period apart. We can consider, say, the
high-pressure points of a sound wave of a thousand

1 Christian Johann Doppler (1803-53) was an Austrian.
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cycles emitted by the source. Then the peaks of the
wave occur a thousand times a second, and are thus a
millisecond apart. In that millisecond the source will
have traveled .185 of a yard and the sound after that
millisecond will, therefore, take half a millisecond less
to come to us. Therefore, the pressure peaks when they
arrive at us will appear to be only half a millisecond
apart corresponding to a frequency of 2000 cycles per
second. This means that we will perceive the pitch of
the sound as one octave higher than when it was emitted
by the source. It is not difficult to see that when the
source is receding from us then each successive sound
wave has a greater distance to cover, and so the in-
terval between the arrival of successive peaks is higher
than the interval between their emission and, accord-
ingly, the pitch of the sound will be lowered. This ac-
counts for the well-known effect of the railway engine
and is referred to as the Doppler shift. What is not
quite so well known, and interesting in view of what
we shall do later, is that the Doppler shift is not the
same when the source is moving relative to the air with
the receiver at rest in it (as in the case just discussed)
as it is when the receiver is moving through the air with
the source at rest in it. Suppose we are on a fast ve-
hicle traveling at half the speed of sound toward a
source of sound. Suppose, again, that we consider the
noise emitted by the source at two instants a second
apart. At a particular moment we will receive the noise
emitted at the first instant. Then consider the situation
two-thirds of a second later. Since we are traveling with
half the velocity of sound (185 yards per second) we
will then be 123 yards or so nearer the source. Sound
emitted by the source will, therefore, take one-third of
a second less to reach us than when we received the
first noise. The noise emitted one second after the first

PROPAGATION OF SOUND WAVES 43

emission considered will reach us therefore at this mo-
ment, two-thirds of a second after the first noise was
received. For though it started on its journey a whole
second later, the diminution of distance reduces its jour-
ney time by just a third of a second. Thus, if we are
moving toward the source, then noises emitted at inter-
vals of one second will be received by us at intervals
of two-thirds of a second. Hence, the frequency of the
noise is increased by 50 percent now, not by 100 per-
cent as in the case when the source was moving, and
so the pitch instead of being raised one octave is only
raised by a fifth. It is, therefore, not enough to con-
sider just the velocity of the source relative to the re-
ceiver; one must consider both the velocity of the
source relative to the air and the velocity of the re-
ceiver relative to the air. For small velocities it does
not make much difference which is moving but, when
one considers, as just now, velocities as high as half
the velocity of sound, then it matters quite appreciably.

THE SoNic BooM

These effects, striking enough at moderate speeds, be-
come quite extraordinary when speeds higher than the
velocity of sound are considered. With the advent of
supersonic aircraft this has become quite familiar in re-
cent years, and one of the best-known and most de-
plored effects of supersonic flying is the supersonic bang
(in America, the sonic boom) or, as it is often called,
breaking through the sound barrier. As we shall see,
this is a very bad name indeed, but the phenomenon
itself is interesting and instructive.

Consider first a plane flying, as in Fig. 7, on 2 straight
level course at a height of two miles (10,560 feet)
at a speed in excess of the velocity of sound, such that
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FiG. 7. The Boom of a Supersonic Aircraft
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it covers a mile in every four seconds, whereas we may
take for the purposes of this argument that sound covers
a mile in every five seconds (720 m.p.h.). When the
plane is far away, then the part of its speed that is
directly toward us is greater than the velocity of sound.
In other words, the plane diminishes its distance from
us more rapidly than a sound wave does, and there-
fore we receive the sound from a later moment in the
flight of the plane earlier than we receive the sound
from a preceding moment in the flight of the plane.
However, when the plane gets more nearly overhead,
its distance from us does not diminish nearly so rapidly.
In fact, the distance of the plane from us reaches a
minimum when the plane is directly overhead and after
that increases again. As soon as the main reason for
the distance of the plane, as it were, is its height, which
is not changing, the speed of the plane does not imply
such a rapid diminution of its distance from us. It then
stays more nearly at the same distance. If its distance
diminishes less rapidly than the velocity of sound, then
sound from later moments in the course of the plane
will reach us later, just as ordinarily. Thus the distant
parts of the flight we hear, as it were, in reverse and
the later parts of the flight we hear in their correct
sequence. There is, therefore, a first moment at which
we hear the plane at all and then noise from quite a
stretch of the flight of the plane arrives simultaneously,
because the distance of the plane from us is then di-
minishing at just the rate at which sound covers dis-
tance. Therefore the noises emitted at successive mo-
ments all arrive at the same time. It is this simultaneous
arrival of noise from quite a stretch of the flight of the
plane that through the summation of the noise pro-
duces the bang.

Suppose, to make it more definite (Table 1), that,
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when we start our stopwatches at zero hour, the plane
is at such distance from us that the point directly un-
der the plane is exactly 6 miles from us. Owing to the
height of the plane its distance from us is a little larger,
say 6.3 miles, and sound will take approximately 31.5
seconds to reach us from there. Eight seconds later the
plane has covered 2 miles, the point directly below the
plane is thus only 4 miles from us, and the distance
from the plane to us is about 43 miles, which sound
covers in 22} seconds. Since the sound started 8 sec-
onds after the sound from the previous moment con-
sidered, it arrives 30} seconds after zero and thus 1
second before the noise emitted 8 seconds earlier. Four
seconds later the distance of the point just below the
plane from us is only 3 miles, the distance of the plane
from us is 3.6 miles, which sound covers in 18 seconds,
and the sound arrives half a second earlier than the
sound emitted 4 seconds before. Four seconds after-
ward the plane is now at an elevation of 45 degrees so
that a point directly under the plane is only 2 miles from
us and the distance from the plare to us is about 2.8
miles, covered by sound in approximately 14 seconds.
Therefore the noise from this moment arrives at pre-
cisely the same instant as the noise emitted 4 seconds
earlier. The earliest sound, in fact, arrives a shade be-
fore this from a point in the flight of the plane between
the last two positions considered. Four seconds later
the point directly below the plane is only 1 mile from
us, the distance of the plane is now 2} miles, covered
in about 11 seconds by the sound, which therefore ar-
rives a second later than the sound emitted 4 seconds
earlier. Four seconds later still, the plane is directly
overhead, the sound requires 10 seconds to cover the
distance of 2 miles representing its height, and thus this
sound arrives 3 seconds later than that emitted 4 sec-
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TABLE I
Timeof Ground  Slant Distance Time of
Emission Coordinate between Aircraft Travel Time Arrival
of Sound of Aircraft  and Listener of Sound  of Sound
(seconds)  (miles) {miles) (seconds) (seconds)
0 6 6.3 31.5 0+315
0+ 4 5 54 27.0 0+31
0+ 8 4 4.5 22,5 0+30.5
0+12 3 3.6 18.0 0+30
0+ 16 2 2.8 14.0 0+30
0+20 1 2.25 11.25 0+ 31.25
0+24 0 2.0 10.0 0434

onds earlier. Thus, until nearly 30 seconds after the
start of our investigation, we hear nothing at all. Then
suddenly we hear, as a bang, the noise from quite a pe-
riod in the life of the plane, and after this we hear
simultaneously, going forward in time, the noise emit-
ted by the plane after this instant and, going backward
in time, the noise emitted by the plane earlier on when
it was farther from us. Thus the noise emitted by the
plane when it was 4 seconds after the beginning of our
investigations and the point below the plane was 5 miles
from us arrives at precisely the same moment as the
noise emitted by the plane when the point just below the
plane was 1 mile from us.

Another kind of phenomenon also occurs frequently.
Suppose the plane was originally flying on the same
course as before and at the same level but at slightly
less than the speed of sound. Thus although it was ap-
proaching us fairly fast, the noise from successive mo-
ments of the plane’s flight was received by us in that
order. Then suppose that the plane speeded up to above
the velocity of sound until the start of the previous in-
vestigation is reached, when, as will be remembered,
the noise of the plane was received backward in time.
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Between the going forward of the subsonic part of the
flight and the going backward of the supersonic part
of the flight there must have been a moment when we
received sound from a whole stretch of flight simul-
taneously—another bang. This will have occurred at a
time when the plane was diminishing its distance from
us at just the speed of sound. It would have had to go
at somewhat more than the speed of sound at that time,
since in level flight it could not have come directly to-
ward us. Thus in such a flight there are two supersonic
bangs, and the first one discussed here is the first one
received. Before this bang we hear nothing at all; after
this bang we hear simultaneously noise from three pe-
riods in the flight of the plane: the subsonic period be-
fore it increased its speed and the noises emitted then
we hear in the right order; the part of the supersonic
portion of the flight far from us we hear running back-
ward in time, and the later part of the flight when it
was more nearly overhead and the noise again arrives
in the right order in time but simultaneously with the
other two lots. A little later we will hear the second
bang—the one discussed second in our considerations;
after this we only hear the noise emitted by the plane
when it is overhead or flying away.

The difference between the motion of the receiver
and the transmitter is shown by the fact that supersonic
bangs can only occur if the transmitter is moving at a
speed exceeding the velocity of sound. If a plane is
flying toward a source of noise on the ground at a speed
exceeding the speed of sound, the people on the plane
will not hear any form of supersonic bang. For a bang
is heard only if noise from a whole period arrives si-
multaneously at the receiver. With the transmitter at
rest in the air sound waves would have to overtake each
other to produce this effect, and this cannot happen
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since the speed of sound is the same for all sound waves
and so no bang is perceived.

Another familiar class of waves is that on the sur-
face of water. Like sound waves they travel in a me-
dium, the water, but their properties are rather more
awkward, since the speed of a water wave depends on
its wave length. Thus waves 500 yards from crest to
crest rush across the ocean at almost 60 m.p.h., while
waves measuring only one foot from crest to crest move
at a mere 1.5 m.p.h. Nevertheless many of the features
of sound waves discussed in this chapter can be illus-
trated with water waves.



CHAPTER VI

THE UNIQUENESS OF LIGHT

When Maxwell showed, about one hundred years ago,
that light consisted of waves, people naturally turned
to other types of waves for analogies so as to gain in-
sight into the phenomenon of light propagation. There
are many such other kinds of waves—sound waves and
water waves, waves on stretched strings, earthquake
waves, and so on.

All these waves travel of necessity through a medium,
which may have a velocity of its own that can be ascer-
tained quite independently of wave propagation and,
moreover, the velocity at different points of the medium
need not be the same, leading to complicated processes
of scattering and refraction. It is perhaps not surprising
that at first people did not fully appreciate how radically
different the propagation of light was from all these
other phenomena. They invented a hypothetical medium
for the propagation of light which they called the ether.
As so often happens in science, this was an idea, con-
ceived on a nomexistent analogy, that misfired com-
pletely and confused instead of helping.

A HyproTHETICAL ETHER

The ether served one purpose and one purpose only
—to account for the propagation of light, to be for light
what air is for sound. But air can be weighed, it can
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be pushed around, it can be pumped out or it can be
put under pressure. None of these things can be done
with this hypothetical ether. The ether must be every-
where because it cannot be removed. Ether cannot 'be
pushed around; otherwise it would exert a I.‘etar.ding in-
fluence on the planets and introduce friction into the
Solar System where the motions of the planets show
that there is no such friction. The ether is not moved
even by big bodies, for when the Moon passes in front
of a star, the light from that star is received without any
observable change whatever until the Moon obscures it.
This means that the Moon, even directly above its sur-
face, exerts no effect on the ether. Thus, the ether has
no properties bar one: it helps to make an analogy be-
tween the propagation of light and the propagation of
sound. But this is readily seen to be a false analogy by
considering Newtonian dynamics.

We have pointed out that uniform motion does not
affect dynamical processes. You will recollect t'hat at-
tention was drawn to the complete and exact likeness
between pouring out a cup of tea in an aiFlin_er and
pouring out a cup of tea at home at rest. This hkej,n_ess
was referred to as the Newtonian principle of relativity.
All inertial observers are dynamically equivalent in tl}e
sense that if each of them carries out an experiment in
his own surroundings he will get precisely the same an-
swer as any other inertial observer. To put it a little dif-
ferently, we found that velocity was irrelevant, and only
acceleration mattered. For example, in a comfortable
airliner we can talk to our neighbors just as easily as
we can talk to them when we are both on the ground.
This is a simple example of Newtonian relativity. SouPd
is essentially a dynamical phenomenon, concerned w1'th
the motion of the air. The speaking person (transm}t-
ter), the medium of propagation (the air), and the lis-
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tening person (receiver), which are all that matter for
this consideration, all move together with the speed of
the plane and, therefore, have the same experiences as
the people on the ground.

THE ABSURDITY OF THE ETHER CONCEPT

What happens to light on the plane? The only simple
way—indeed, to us nowadays the obvious way—is to say
that just as one can talk as easily on a plane as on the
ground, so one can read as easily, although this involves
the propagation of light. But according to the ether
concept, absurd as this seems to us now, the plane
would have been in a rather different position from the
ground. As the evidence of the Moon showed earlier,
the motion of objects cannot drag the ether along with
them. Accordingly, if we suppose the ether to be at rest
relative to the people on the ground, there would be an
ether wind blowing through the plane, and this would
affect the propagation of light. It is true that the velocity
of the plane is very small compared with the velocity
of light (barely one-millionth of it), but the same argu-
ments would apply to far higher velocities. Further-
more, instruments for measuring properties of light are
exceedingly sensitive. The concept of the ether, there-
fore, involves the absurd consequence that by optical
means one should be able to distinguish between being
in a state of uniform motion and being at rest, although

it is impossible to do so by dynamical means. This mis-

conception is clearly contrary to all the ideas that were

stressed eatlier concerning the unity of physics; the im-

possibility of separating optics and dynamics and other
branches of physics. If there is no way of distinguishing
between different inertial observers by dynamical means,
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there cannot be any method of distinguishing between
them by any other means. .
This clear and obvious extension of the Newtonian

Principle of Relativity was not accepted seventy years
ago. So powerful had the ether concept bec.ome that
people went about “measuring” this ether lend. Now
it is clear to us that the whole ether concept in suggest-
ing an ether wind was harmful and misleading, but this
was very hard to see at the time. One of the most fa-
mous experiments in physics, the Michelson—M(?rley ex-
periment, was undertaken to find this ether wind, and
only its failure led to the recognition of' the .fact of the
unity of physics, the notion that if velocity dxq not'mat-
ter for dynamics it could not matter for optics ext!ner.
Led on by the absurd ether concept, people feahzefd
that one could not expect the ether to be standing still
relative to the Earth, which is rushing round the Sun
at a speed of nearly twenty miles per sec?nd, roughly
one part in ten thousand of the speed of. light. Bl%t the
Earth cannot push the ether round with it. There is the
evidence that the Moon cannot do it; moreover,.a mo-
tion of the ether pushed or dragged along with the
Earth relative to the ether farther away _would show
itself in complicated refraction effects giving the stars
an apparent motion that is not, in fact,. observed. Thus
an ether wind should be expected blowing at about one
ten-thousandth of the velocity of light. How would one
measure this ether wind? It would show itself asa dif-
ference of the velocity of light in different directions.

MEASURING VELOCITY

The usual method of measuring the velocity_ of an ob-
ject is to measure a distance, and then to station observ-
ers with clocks at each end to time the passage of the ob-
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ject. The distance divided by the difference in the clock
readings is then the velocity. For a given distance, the
faster the object the more critical will be the clock read-
ings, and even a small error in the synchronization of
the two clocks will completely invalidate the determina-
tion of the velocity. For anything as fast as light this is
clearly a very serious difficulty over any practicable dis-
tance between the observers, particularly if one is try-
ing to measure the speed of light with sufficient accuracy
to notice the effect of the ether wind on it. There is the
additional difficulty that the observers normally would
synchronize their watches by signaling to each other
with light, therefore making the synchronization de-
pendent on the very thing they are trying to measure
—viz., the speed of light. These difficulties are avoided
by working in one place only, and measuring the length
of the round trip of light from the observer to a mirror
and back. One therefore would compare the timing of
an upwind/downwind round trip with that of a cross-
wind round trip. An example may help to make the ar-
gument clear.
Suppose we are on a river two miles wide that flows
at a speed of three miles per hour (Fig. 8). We have a
boat capable of five miles per hour in still water. We
want to use it on one occasion to visit another place on
our shore two miles upstream from us and return, and
on another occasion to cross the river to the poiat op-
posite us and come back. How long will these expedi-
tions take? First, traveling upstream our boat will travel
at effectively two miles an hour using its power velocity
of five miles an hour against a stream of three miles
per hour, so that we shall take one hour to reach this
place upstream. On the way back the velocity of the
river will be with us and, adding our five miles an hour
to the river’s three miles an hour, we travel back at
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eight miles an hour, covering the two miles in a quarter
of an hour. Therefore the trip there and back will take
one hour and fifteen minutes. Crossing the river, we
must not point the nose of our boat straight across be-
cause then we would be drifting downstream to a place
much lower down the river. We must turn the nose of
our boat partly upstream, so that while we are going
five miles an hour in the direction the boat is pointing,
three miles per hour of this is an upstream direction to
counteract the velocity of the river. Looking at the
drawing (Fig. 8) it will be seen that this leaves us an ef-
fective velocity of four miles an hour for crossing the
river so that it takes us half an hour to get across and
half an hour to get back, just one hour altogether. Thus
traveling to a place two miles away and coming back
to the starting point takes different times whether the
journey is upstream and downstream, or across the
stream. This was the method used in the celebrated ex-
periment of Michelson and Morley.!

THE MICHELSON-MORLEY EXPERIMENT

Light was sent off in two directions and reflected from
places the same distance from the starting point and
then the travel times, or, to be precise, the number of
wave lengths, were compared. Taking the speed of the
Earth as approximately 20 miles a second, roughly one
part in ten thousand of the velocity of light, the dif-

1 Albert Abraham Michelson (1852-1931) was the first Ameri-
can scientist to receive (1907) a Nobel prize. Besides contribut-
ing to the development of relativity, he measured the speed of
light and invented an interferometer for precise measurement
by means of wave lengths of light waves.

Edward W. Morley (1838-1923), Michelson’s collaborator in
the famous experiment on ether drift, was a chemist by training.
See Michelson and the Speed of Light (Science Study Series).
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ference in the travel times should be only one part in
two hundred millions, but so accurate are the methods
of spectroscopy that this difference is detectable by so-
called interference methods in which waves returning
from the two directions are combined. First the pattern
made by the combination of waves is noted for one po-
sition of the apparatus which is then turned through an
angle. If this change of direction changes the travel
times of light (through the cross-stream arm becoming
the upstream-downstream arm and vice versa), then
this would show itself in a shift of the interference pat-
tern of the two waves. No such shift was observed. So
persuasive was the pernicious ether concept that at the
time this was regarded as unintelligible. Nowadays this
pegative result is clear because we suppose that the
travel times of light are independent of direction, in-
dependent of whether the beam travels in the direction
of the Earth’s motion or opposed to it or whether it
travels 4t right angles to it, because velocity matters as
little for the propagation of light as it does for dy-
namics. The negative outcome of the Michelson-Morley
experiment turned out to be fundamental, leading to
the insight that velocity does not matter for optical
phenomena any more than for dynamical ones, a state-
ment known as the Principle of Relativity, which was
first clearly enunciated by Einstein in 1905 following
earlier statements by Lorentz* and Poincaré.?

2 Hendrik Antoon Lorentz (1853-1928) was a brilliant Dutch
physicist who developed a kind of theory of relativity before
Einstein’s in the course of working on Maxwell’s equations to
meet new experimental data. Einstein’s basic mathematics for
his Special Theory of Relativity was the same as the Lorentz
Transformation, but he had not heard of Lorentz's prior work.
3 Jules Henri Poincaré (1854-1912) was the leading French
mathematician (and one of the world’s greatest) at the turn of

the century. Many scholars believe that he would have produced
Einstein’s Theory of Relativity if Einstein had not got there first.
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A final remark about how nonsensical the basic ex-
periment of seventy years ago appears to our present
generation. Clearly, if one or both of the arms of the
Michelson-Morley apparatus had changed their lengths

mirror

holf-silvered
mirror

measuring equipment

F1G. 9. The speed of light in two different directions
can be compared in an interferometer.

in turning, then this change would have affected the re-
sult considerably. Therefore the authors of the experi-
ment took the greatest trouble to make the arrange-
ments as rigid as could be done. But to us now this
looks very peculiar. With present-day technology we
would fix the length of these arms by radar methods or
by equivalent optical interference methods. But this
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would mean that we fix the length by measuring the
time light takes to go there and come back. If we es-
tablish the distance of a mirror by the requirement
that the travel time of light there and back should stay
fixed irrespective of the orientation of the path, then it
can come as no surprise that the travel time of light
there and back stays fixed irrespective of the orienta-
tion of the path. It may be argued against this that,
after all, Michelson and Morley did not use radar or
interference methods to fix the distance of the mirrors
from the source. They used rigidity, and we can say
that the outcome of the experiment showed that the
method of using rigid rods is equivalent to the method
of using radar or optical interference methods. This
statement is a truism, for, as was stressed in an earlier
chapter, the length of a rigid rod is determined by the
electrical interactions of the atoms and, therefore, in
fact, by a superposition of radar methods. Now, seventy
years after the event, not only is it evident what the
result of the Michelson-Morley experiment was bound
to be, but the answer seems to be so crystal clear that
one might judge the experiment to have been scarcely
worth doing. But such hindsight is not useful in science.
What makes the Michelson-Morley experiment so cele-
brated is that it first proved something that has so
deeply entered our thinking that it has become obvious.
There can be no greater merit in a scientific discovery
than that before long it should appear odd that it ever
was considered a discovery. Only what has become ob-
vious was really important, because only those things
that have so deeply affected our thinking and so thor-
oughly changed our outlook that we cannot think with-
out them have really entered the spirit of the human
race.

CHAPTER VI

ON COMMON SENSE

The arguments of this book, and particularly of the
last chapter, point clearly to the fact that all inertial
observers should be regarded as equivalent, not only in
respect of dynamics, as Newton already found, but also
in respect of light. In particular, this implies that the
velocity of light is the same in all directions, irrespective
of the state of motion of the observer, provided only
that he is inertial.

This result, as has been stressed before, is indeed ob-
vious once it is agreed that distance measurements
should be made by radar methods. For then one meas-
ures a time, half the time between the emission and
the return of the radar pulse, in order to determine the
distance of the target. This time, which could perfectly
well itself be used to describe this distance, is, as a mat-
ter of habit, multiplied by a purely conventional (and
therefore arbitrary) number, called the velocity of
light, merely to express the distance in miles (or centi-
meters), etc. Also, the principle of the unity of physics
requires that systems that cannot be distinguished by
internal dynamical experiments should be indistinguish-
able by any internal experiments. And so we are driven,
virtually without means of escape, to Einstein’s Principle
of Relativity: All inertial observers are physically
equivalent and no internal experiment can be devised
that discriminates in any way between different inertial
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observers. Put more simply, it says that there is no way
of appreciating the velocity of one’s vehicle unless one
looks out of the window, provided the vehicle is un-
accelerated.

Contemplating this great principle of physics after
fifty-nine years, one cannot help wondering how people
could possibly ever have thought differently. To say this
is no disparagement of the tremendous achievement of
Einstein: on the contrary, it is the mark of a really
major step in thinking that, when we have become used
to it, we can no longer imagine how things were before
that step. In spite of its, to us, almost obvious charac-
ter, the Principle of Relativity at first had a rather rough
passage. Such situations occur frequently in physics if
a step is taken, logically compelling, forced upon us by
experiment, and yet upsetting one of our cherished no-
tions. This is what the Principle of Relativity did to the
concept of time. As will be shown in the next chapter,
it changed the concept of time in a way that seemed to
be contrary to common sense.

THE EXPERIENCE OF EVERYDAY LIFE

It may be worth digressing for a moment to discuss
what is meant by common sense, and whether a con-
flict of physics and common sense is something to be
expected. Common sense refers to the tremendous
amount of experience we gain in early life that tells
us such an enormous amount about the world we live
in and the objects that surround us. Though possibly
some elements of it are instinctive, the bulk of common
sense is distilled experience. The experiences we gain in
those early years of life are naturally gained in our ordi-
nary surroundings, using the tools and materials that
are at hand. We do not gain any common sense appre-
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ciation of the behavior of gas at a million degrees be-
cause we do not meet that kind of thing in ordinary
tife. Nor do we gain any appreciation of the view of the
world one would have if one were speeding through the
countryside at 100,000 miles a second, simply because
this does not happen to us. On the other hand, common
sense is a splendid guide in that particular field on which
it is based—that is, the experience of everyday life. It
is the task of the physicist to go beyond this, to devise
and use instruments that enrich experience, that allow
one to gain knowledge of objects and circumstances
one would not normally come across. One would then
expect that when the physicist, in his exploration of a
larger range of experience than what has gone into the
making of common sense, examines his results, he may
find either that the impressions of common sense apply
or that they do not apply. If they do apply then it
merely means that, in his extension of range of cir-
cumstances, he has not gone beyond the validity of
what was acquired in a narrower context. If he does
run out of this set of circumstances, then, naturally,
one would not expect common sense to apply. In fact,
common sense would then be an unwelcome intruder
making it more difficult for us to adapt ourselves to
these new circumstances than it might otherwise be.
Adaptation to a new set of circumstances is always
possible. Human beings are intelligent, which is equiva-
lent to the statement that they are flexible. Once one
has met enough of a new set of circumstances, one can
order them and acquire a new understanding of them,
in just the same way that one can learn a new language.
It so happened historically that the physicists’ instru-
ments became sufficiently powerful to outrun the range
of validity of common sense at the end of the nine-
teenth century and in the early years of the twentieth
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century. Then, for the first time, results were derived
clearly contrary to experience in our ordinary and very
different circumstances, and a great deal of heart-
searching and trouble arose. Nowadays we know that
this is totally misplaced; the farther we range with our
instruments, the stranger the worlds we investigate, the
more different they will clearly be from what we are
accustomed to. The modern physicist, to follow Lewis
Carroll, is used to believing at least two incredible
things every day before breakfast. To put it again a
little differently, the surprising thing, surely, is that mole-
cules in a gas behave so much like billiard balls, not
that electrons behave so little like billiard balls. To
come back, then, to Einstein’s Principle of Relativity,
its fundamental importance is that it extends the New-
tonian notion of relativity to all physics. All inertial
systems are equivalent in every sense of the word. It
is not only a question of pouring out tea in a jetliner
being the same as pouring out tea at home, but it is also
true that looking into a mirror in a jetliner one sees the
same as one does when one looks into a mirror at home.

TiME: A PRIVATE MATTER

Optics, dynamics, in fact the whole of physics is un-
changed by uniform velocity. It turns out, as will be
proved in the next chapter, that the common sense con-
cept of time does not fit in with the Principle of Rela-
tivity, combined with the fact that the velocity of light
is the same in all inertial systems. We have to ease our-
selves out of the time concept of earlier days. It turns
out that this is only seriously upset when one considers
very high velocities, velocities not much smaller than
the velocity of light. But, in principle, the difficulty arises
at all speeds. We have acquired the knowledge that if
you have a watch and I have a watch and they are
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made by reputable watchmakers and we synchronize
them at one time, then whatever you do and whatever
1 do, the two watches will always show the same time.
However, this is a piece of experimental knowledge ac-
quired in a very narrow context, viewed from the point
of view of physics as a whole. For neither you nor I
will travel with really high speeds at any stage. We
must therefore contemplate the possibility, not to put
it any higher, that this permanent keeping together of
your watch and my watch applies only as long as we
both travel very slowly. To suggest that because our
clocks keep the same time when we both travel slowly,
therefore they must keep the same time when we move
at velocities close to that of light, is obvious non-
sense. We thus have to get used to the idea that time is
a private matter. That is to say, that MY time is what
MY watch tells me.

Time is that which is measured by a clock. This is a
sound way of looking at things. A quantity like time, or
any other physical measurement, does not exist in a
completely abstract way. We find no sense in talking
about something unless we specify how we measure it.
1t is the definition by the method of measuring a quan-
tity that is the one sure way of avoiding talking non-
sense about this kind of thing. If, therefore, we enter
the discussion of the nature of time with an open mind
on the basis that in everyday life we do not actually
test what happens to time when we move very fast,
then we must be prepared for universal public time to
break up into a multitude of private times.

Tue “RouUTE-DEPENDENCE” OF TIME

The possibility of time being private rather than pub-
lic raises the question of the “route-dependence” of
time. In everyday life there exist two quite different



ON COMMON SENSE 67

kinds of quantities which we may describe as route-
dependent and route-independent. The distinction be-
tween them is readily explained when we consider a
journey across hilly country (Fig. 10). If we start in
one town and drive across the hills, up and down, over
various ridges, to another town, and keep account al-
ways of the gain of height and the loss of height in
every part of our way, then the net amount of height
we have gained is simply the difference in the levels of
the town where we finished the journey and the town
where we started it. Had we followed a very different
route, starting and finishing at the same points, the net
gain of height would have been the same, as it must
be, because it is simply the difference in the heights of
the starting and finishing points of the journey. This is
a typical example of a route-independent quantity. The
net gain of height does not depend on the route chosen.
On the other hand, if we use the milometer of the car
to measure the distance between the two towns, then
our route will matter very much. According to the way
we travel, the mileage covered between the towns may
have one value or another value, The mileage is, there-
fore, a route-dependent quantity. This may sound a
mere statement of the obvious, but the important fact
is that all the quantities of physics can be classified as
cither route-dependent or route-independent.

Fic. 10. Mileage is a route-dependent quantity.

Consider, as a route-independent quantity, the mo-
tion of a diesel train running a shuttle service on a
single-track line between two towns (Fig. 11). If there
is no wheel slip, the wheels of the train will be in pre-
cisely the same position whenever the train is standing
. & at the same point, irrespective of how many forward and
a Agy backward journeys the train has undertaken. Thus, if

\"\"fg \ / / / (2 a chalk mark were put near the top of one of the wheels
T f( /u'/ /qu when the train was in its starting position, then, when-

I
i
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F16. 11. The wheel is in the same position whenever
the car passes the same point, so that the rotation of
the wheel is route-independent.

ever the train returned to that position, the mark on
the wheel would be near the top. Thus the position of
these wheels is a route-independent quantity. We can
contrast this with a route-dependent quantity such as
the level of fuel in the oil tank of this train, which
clearly depends crucially on how many of these return
journeys it has made since the tank was filled.

How absurd it would be in ordinary life if we mixed
up route-dependent and route-independent quantities is
shown by the suggestion that, while it is quite reasonable
for the railway to charge a substantial single fare, the
return fare should always be nil, since one ends up in
the place where one started, Perhaps the rule should
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then be that you pay a fare when you go somewhere,
and when you return you get your money back. Such
a route-independent charging system would bear no re-
lation to railway costs, which are strongly route-depend-
ent. To the physicist and mathematician there is all the
world of difference between a route-dependent and a
route-independent quantity.

The crucial discovery of relativity was the route-
dependence of time which, having previously been con-
sidered a public universal quantity, was naturally
thought to be route-independent. Of course, it is only
the fact that time has become private, rather than pub-
lic, that allows it to be route-dependent at all, but the
important point to emerge in the next chapter is that
we cannot escape within the Principle of Relativity from
the notion of route-dependence of time,



CHAPTER VI

THE NATURE OF TIME

We are ready now to demonstrate one of the most in-
teresting consequences of relativity—namely, that time
is a route-dependent quantity. In order to show this we
have to consider objects traveling at very high speeds,
speeds comparable with the speed of light. We do not
knowingly encounter such objects in everyday life, and
we never have two human beings traveling at such rela-
tive speeds. Hence we are considering strange and un-
familiar situations. But modern technology leaves us no
choice. In the big particle accelerators (“atom-smash-
. ing machines”) minute particles are made sometimes to
travel at speeds of over 99 percent of the speed of light,
and the physicist must examine situations in which such
velocities do occur. He also can observe atomic particles
traveling at such speeds in cosmic rays. For technologi-
cal reasons, only atomic particles can be accelerated to
such speeds, and the strangeness of the intrinsic prop-
erties of such particles gets mixed up with the strange-
ness arising from their high velocities. Our imagination,
however, is untrammeled by these technological limita-
tions; at least for the purposes of discussion we can
isolate the peculiarities arising from high speeds and
allow ourselves to think about human beings instead
of atomic particles traveling at such velocities.
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THE PECULIARITIES OF HIGH SPEEDS

Since we shall need inertial observers in our discus-
sion, we must require them to travel at constant speed.
If we want to avoid thinking about terribly short inter-
vals of time, our observers have to have plenty of room,
and so we may imagine them to be space travelers, pro-
ceeding at much higher speeds than present rocket tech-
nology can give them. Nevertheless, such an image helps
one to visualize the arguments to be given. These will
aim at clarifying the Principle of Relativity and finally
deducing observable consequences from it, so that its
experimental tests can be appreciated.

It will be remembered that Einstein’s Principle of Rel-
ativity asserts the equivalence of all inertial (i.e., uni-
formly moving) systems. Newtonian dynamics already
stresses the importance of acceleration and the irrele-
vancy of velocity (pouring tea in a smoothly flying jet-
liner is no more difficult than in one’s home), and so
defines inertial systems. It asserts the equivalence of
these inertial systems as far as dynamics goes, but earlier
chapters, in stressing the unity of phyics, showed how
awkward it would be if different parts of physics were
governed by different rules of transformation from one
inertial observer to another. Thus we were Jed to Ein-
stein’s principle of the complete equivalence of all in-
ertial observers, and we now explore its consequence us-
ing simple ideal experiments.

It will be useful to depict our moving observers,
to use the jargon of the theory, on space-time diagrams
(Fig. 12). In such a diagram the vertical axis repre-
sents time, as measured by some inertial observer, and
the horizontal axis represents distance. Fortunately, al-
most all our arguments require only one space dimen-
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Fic. 12. Space-time Diagram

sion (i.e., all bodies considered move along one straight
line), and so this representation is sufficient.

THE RELATIONSHIPS OF INERTIAL AND
MovING OBSERVERS

Since the observer 4 is the one who draws the dia-
gram, he understandably will make himself the origin
of the coordinate system—that is to say, he will begin
making his observations at his own time zero, and will
measure the positions of other observers (in both time
and distance) from his own position at his own time
zero. Because he considers himself to be at rest and thus
is not going anywhere along the distance axis, his
x-coordinate remains zero. Distances along the t-axis,
representing change in time, show the progress of 4
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in the diagram of our experiment, and it should be re-
membered that it is A who is measuring the distances
along t.

For example, to plot the position of B at a time
0 + 5, say, and at a distance of 6 units from himself,
A will count 5 units up on the r-axis and 6 units along
the x-axis, erect perpendiculars at both points, and fix
B’s position on the space-time diagram at the intersec-
tion of the two perpendiculars. 4 thus in relation to
himself has established B’s position at a given time
and distance.

Since B, too, is an inertial observer, he is, by our
definition, traveling at a constant velocity, and in equal
intervals of time he will travel equal distances. Hence,
all B’s positions on the space-time diagram will be found
to lie on a straight line, and any other inertial observers
likewise can be represented by straight lines.!

Fig. 13 is a space-time diagram of A and four other
observers. Note especially the differences in the steep-
ness (or slope, to use the conventional mathematical
term) of the lines representing the observers B, C, D,
and E. The steeper the line, the less does x change for
a given change of ¢ and hence the slower the motion
(the less distance covered in a given time) of the ob-
server relative to A. Thus B moves away from A4 fairly
slowly and C rather faster; while E, whose x-coordinate
is constant, is at rest relative to A. Both B and C move
away from A4 since at later times (i.e., higher up on
the diagram) their x-coordinates are greater. On the
other hand, D approaches 4. Light, being very fast,

1 The reader must realize, however, that while space-time dia-
grams are extremely helpful in showing who is where and when,
they are only graphical representations drawn by one observer.
The times experienced or the distances measured by other ob-
servers cannot be found by measuring distances on the diagrams.
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Fic. 13.

has a rather greater slope, and the dashed line is sup-
posed to represent the journey of a flash of light.
Light is a wave phenomenon. In Chapter V we in-
vestigated another wave phenomenon, sound, and in
particular examined the Doppler effect, the difference
between the pitch of a wave when emitted and when
received due to the relative motions of the source and
the listener. In the case of sound, it will be remembered,
it was necessary to know both the velocity of the trans-
mitter relative to the air and the velocity of the receiver
relative to the air. In the case of light there is no such
thing as the air, and so all we have to know is the ve-
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locity of transmitter relative to receiver, supposing both
to be inertial and therefore moving with constant ve-
locity.

Let us suppose that we have two observers a con-
stant distance apart, and that the first observer, called
Alfred, flashes an electric torch at regular intervals
(Fig. 14). Purely in order to have a definite inter-
val to talk about, and without any special significance
attaching to this value, we suppose him to flash his
torch every 6 minutes as measured by his watch. Then
the light from each flash travels across to David, the
second observer. Since the distance between them does
not change in the course of time, it follows that each
flash takes the same time to travel. Thus, if Alfred
flashes his torch every 6 minutes by his watch, then
these flashes will be received by David at equal in-
tervals, also 6 minutes apart, by David’s watch. We as-
sume Alfred and David to be a good long distance apart.
It might take each flash ten years (remember this is an
idealized experiment) to reach David, but the significant
thing is that the flashes, however long in transit, arrive
at intervals of 6 minutes. There is nothing out of the
way in this and the roles of the two observers could
easily be interchanged.

Next, suppose we have a third observer, Brian, trav-
eling quite fast from Alfred to David, who remain at
rest relative to each other. (See Fig. 15. The reader is
advised to open to this figure and leave it constantly
available while following the argument.) Brian, while
traveling from Alfred to David, also watches these
flashes. As he moves away from Alfred every successive
flash has to travel farther to reach him than the previ-
ous one, and is therefore longer in transit. Accordingly,
by Brian’s watch the flashes will not arrive every 6 min-
utes, but at longer intervals, simply because each flash
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Fic. 15. The ratio of intervals of reception to intervals
of transmission is 1 between Alfred and David (at
rest relative to each other); % between Alfred and
Brian, and % between Brian and David.

has a greater distance to cover than the preceding flash.
For a suitable speed, which we need not work out now,
we may suppose that the flashes are received every 9
minutes by Brian’s watch. We always stress that every
observer compares the arrival time of the flashes with
his own watch, because otherwise we would have great
difficulty in discussing just how long it takes him to see
the other chap’s watch.

Now suppose that Brian also has a light, a red one,
which he flashes every time he sees a flash from Alfred.
Since Brian sees these flashes every 9 minutes by his
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time, he will flash his red light every 9 minutes. The
red flashes will then travel in company with the white
flashes from Alfred, since they are emitted just as the
flash of light from Alfred passes Brian. (We neglect the
time it takes him to flash his torch.) These flashes from
Brian, traveling in company with the flashes of Alfred’s
light, will be seen by David, who receives the flashes
of Alfred (i.e., the white flashes) every 6 minutes. Thus
he will receive the red flashes also every 6 minutes. Let
us put this a little differently. Alfred and Brian are sepa-
rating at a certain speed, which we have taken to be
such that the interval between Alfred’s flashes is mul-
tiplied by £ to give the interval between Brian’s recep-
tion of the flashes (9 minutes instead of 6). Brian is
traveling at the same speed foward David as he is reced-
ing from Alfred, but now it is a velocity of approach,
not a velocity of recession, and the flashes emitted every
9 minutes are received every 6 minutes, reduced by a
factor of 2. Correspondingly, had Brian flashed his light
every 6 minutes, the flashes would have arrived at David
at 4-minute intervals. Thus, if instead of a velocity of
recession one of approach is considered, the factor of
£ between interval of transmission and interval of re-
ception is changed to a factor of %. Our results are quite
independent of whether any of these inertial observers
can be regarded as at rest; indeed, the question of which
of them is at rest does not make any sense. The only
relevant matter is their relative velocity. What we have
to remember is that if a velocity of recession leads to
some ratio of transmitting interval to receiving interval,
then the same velocity, but in approach, implies the re-
ciprocal ratio.

In more general terms, if Alfred had flashed his light
at intervals 4, then David would have seen these flashes
at intervals A, each flash taking the same time to reach
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him. Brian would have seen them at some interval ki
by his watch so that k is the ratio of the interval of re-
ception to the interval of transmission. If Brian flashes
his torch at intervals kk by his watch, then these flashes,
traveling in company with those emitted by Alfred,
would be seen by David at intervals h, giving the re-
ciprocal ratio 1/k between Brian and David.

The relation between any two of our inertial observ-
ers is completely specified by the ratio of the interval
of reception to the interval of transmission. If this ratio
is unity (as in the case of Alfred and David) then the
two observers are at relative rest; if it is greater than
one they are receding from each other; and if the ratio
is less than one they are approaching each other. Note
that the Principle of Relativity, by insisting on the equiv-
alence of all inertial observers, makes it quite clear that
the ratio must be the same whichever of a pair of inertial
observers does the transmitting. It is through this rule
that our work on light differs so sharply from the work
on sound (Chapter V) where, it will be remembered,
the speed of transmitter and receiver relative to the air
had also to be taken into account.

A MoRE COMPLICATED SITUATION

We can now apply what we have found (importance
of ratio of intervals—dependence of ratio only on pair
of observers—reciprocal ratio for approach as compared
with recession) to a more complicated situation. Let us
consider another observer, Charles (David will no
Jonger be required), whose velocity relative to Alfred
is the same as Brian’s, but in the opposite direction.
(See Fig. 16 and Table IL.) He, too, is therefore an
inertial observer. We further suppose that Brian passes
Alfred at 12 noon by Brian’s watch, and that Charles
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passes Brian at 1 p.M. by Brian’s watch. Some time
later Charles passes Alfred. Since Charles and Brian
have the same speed relative to Alfred and are in fact
quite symmetrically placed, one hour will elapse accord-
ing to Charles’ watch between his meeting with Brian
and his meeting with Alfred. The situation is that Al-
fred, Brian, and Charles remain in line through the ex-
periment. Initially Brian is to the left of Alfred and
Charles to the right of Alfred but much farther away.
Brian and Charles are approaching Alfred at the same
speed. Accordingly, first Brian passes Alfred, then Brian
and Charles meet, and finally Charles passes Alfred;
eventually Charles is to the left of Alfred, while Brian
is to Alfred’s right and much farther away. Both Brian
and Charles are then receding from Alfred.

We focus our attention on the three meetings (first,
Alfred and Brian; second, Brian and Charles; third,
Charles and Alfred). As we have stated, the first two
of these meetings are separated by one hour according
to Brian’s watch, he being the only observer present at
both, and similarly the last two meetings are separated
by one hour according to the watch of Charles, who is
the only observer present at both of these meetings
(Fig. 17). Suppose now that Charles adjusts his watch
to read the same as Brian’s when they are together. Thus
it will read 1 p.M. then and hence it will read 2 P.M.
when he meets Alfred. Suppose that Alfred also adjusted
his watch by Brian’s when they were together, so that
it will have read 12 noon then. The question now is:
What will Alfred’s watch read when he and Charles
meet? If, as we shall prove, it does not read 2 p.m., the
time registered by Charles’ watch, then we have estab-
lished the route-dependence of time. It will be route-
dependence in a slightly different form from that of
mileage. It will depend on coming and going (i.e.,
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switching from one inertial observer to another) as op-
posed to staying with one and the same inertial ob-
server.

To establish Alfred’s timings, suppose next that Brian
emits flashes every 6 minutes by his watch, the first one
at his meeting with Alfred, the last one at his meeting
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with Charles. Between these two meetings, which occur
one hour apart by Brian’s watch, there are thus exactly
ten intervals between flashes. Since Alfred and Brian
are receding from each other with the same velocity as
in the previous example, Alfred receives these flashes at
9-minute intervals by his watch. Alfred’s watch read 12
noon when the first flash arrived since Brian was with
him at the time and the transmission and reception of
the signal were virtually simultaneous. Thus Alfred re-
ceives the last flash 90 minutes later—at 1:30 p.M. by
his watch. This is the moment when light from the meet-
ing of Brian and Charles reaches him—i.e., the moment
when he “sees” them meet.

Next suppose that Charles, too, is sending out flashes
at 6-minute intervals by his watch, the first when he
meets Brian and the last when he is with Alfred. There
are thus ten such intervals since the journey takes him
one hour by his watch. By the previous example, these
flashes are received by Alfred at 4-minute intervals,
since Charles is approaching Alfred at just the speed
at which Brian was approaching David. Thus these ten
intervals occupy 40 minutes of Alfred’s time. The first
flash arrives at 1:30 p.M. by Alfred’s watch since it was
emitted when Charles met Brian, the light from this
meeting arriving at 1:30 p.M. according to Alfred.
Hence the last flash arrives 40 minutes later by Alfred’s
watch, which then reads 2:10 p.M. But this last flash
was emitted by Charles when he was close to Alfred, at
2 p.M. by Charles’ watch. Since the two observers are
then so close together that light takes virtually no time
to reach one from the other, the time of this meeting
is 2 p.M. by Charles’ watch and 2:10 p.M. by Alfred’s.

To sum up: The first event we consider is the meet-
ing of Alfred and Brian, at which both these observers
set their watches to read 12 noon. At that moment
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Brian sends out his first flash, which is received imme-
diately by Alfred. During the next phase Brian is reced-
ing from Alfred, while Charles is approaching Alfred,
though he is still beyond Brian. During this phase, which
lasts one hour by Brian’s watch, Brian emits flashes
at 6-minute intervals, and Alfred receives them at
9-minute intervals (3:2 ratio). At the end of this phase
Brian’s watch reads 1 p.M., and Charles passes him,
setting his watch by Brian’s. Charles immediately starts
to emit flashes at 6-minute intervals. Brian’s last flash,
emitted at this meeting, travels in company with Charles’
first flash and they both arrive at Alfred at 1:30 p.m.
according to Alfred’s watch (ten intervals of 9 minutes
length each after 12 noon). During the second phase
Charles is approaching Alfred and sending out flashes
at 6-minute intervals (Brian, beyond Charles, is no
longer of interest). Charles’ flashes are received by Al-
fred at 4-minute intervals (2:3 ratio). When Charles
has traveled for one hour of his time since the meeting
with Brian, he meets Alfred. Accordingly, by Charles’
watch this meeting occurs at 2 p.M. The ten intervals
between Charles’ flashes occupy 40 minutes of Alfred’s
time. Since the first one arrived at 1:30 p.M. on Al-
fred’s watch, the last one (emitted by Charles when
with Alfred) arrives at 2:10 p.M., which is thus Al-
fred’s time when Charles and he meet (Fig. 16 and
Table II).

RELATIVITY EXPLAINS A SUPPOSED DISCREPANCY

Which of them is right? Of course, the answer is that
they are both right; after all, if two motorists drive
from New York to Boston and one clocks 230 miles
and the other clocks 250 miles, we do not say that one
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of them was wrong; we merely say that one took a more
direct route than the other. We need not suspect either
milometer. What we have to get used to is that time,
just like distance, is route-dependent. The time from the
first meeting to the last via the meeting between Brian
and Charles is shorter than the time from the first meet-
ing to the last meeting, as measured by Alfred. It is not
a question of the clocks of Brian or Charles having
been “affected” by their speed. This would be as absurd
a way of looking at it as to say that a motorist’s milome-
ter had been “affected” by his circuitous route in indi-
cating a longer distance than some other motorist’s has
shown. It is not a question of there being anything
wrong with the milometers or the watches; it is simply
a fact that time is a route-dependent quantity, just as
mileage is. What we have deduced is that, with the no-
tions of relativity, we cannot maintain the idea that time
is a route-independent quantity and hence that a public
time exists. What does exist is private time and one that
depends on the way one goes from one event to another
one, whether with Alfred or with Brian and Charles.

Sometimes people have been confused by this result
and complain, “But we can just as well regard Brian as
standing still and Alfred as moving as Alfred standing
still and Brian moving.” This, of course, is perfectly
true: the one thing that we cannot do is to regard both
Brian and Charles as not moving. There is no way in
which this problem is symmetric between Alfred, on the
one hand, and Brian and Charles, on the other. There
is one of Alfred but two of Brian and Charles, and
there is no way of looking at it that can reduce more
than one of the three to rest. One measurement is al-
ways carried out by Alfred himself; the other is a com-
bination of measurements of Brian and Charles.
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THE VALUE oF k: A FUNDAMENTAL RATIO

It is clear that the discrepancy of ten minutes in two
hours is highly velocity-dependent. We investigate the
problem now in general terms. Suppose the ratio of the
interval of reception to the interval of transmission be-
tween Brian and Alfred to be k. By what has been
proved, it is then 1/k between Charles and Alfred.

We now suppose Alfred and Brian to set both their
watches to read zero at their encounter, and we call
Brian’s watch reading zero + T at the moment when
Charles shoots past him. Charles sets his watch by Bri-
an’s at that moment so that it also reads zero + T.
Charles rushes toward Alfred at just the speed at which
Brian is moving away from Alfred, and so Charles reg-
isters the same time T between passing Brian and Alfred
as Brian did between meeting Alfred and Charles. Thus
Charles’'watch reads zero + T + T, or 27T, when he
encounters Alfred. (See Table II1.)

Suppose now that Brian emitted a flash of light when
he passed Alfred, and again when he passed Charles,
i.e., at an interval T by Brian’s watch. These two flashes
will therefore be received by Alfred separated by inter-
val kT. Since the first flash had no distance to travel, be-
ing emitted just when Brian was close to Alfred, it will
arrive immediately (i.e., at Alfred’s time zero) and so
the second one will arrive at Alfred’s time kT. Charles
similarly emits flashes at both his encounters. They are
separated by interval T by Charles’ own watch, but
since Charles is approaching Alfred; will be received
at an interval T/k. The first of Charles’ flashes is emit-
ted at the same place and time as Brian’s second flash
(viz., at their encounter) and so travels with it, also
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TABLE 111

THE SEQUENCE OF EVENTS
As seen by Alfred As seen by Brian  As seen by Charles

Alfred’s time Brian’s time Charles’ time

0: Brian very close. | 0: Alfred very
Flash from him close. Watch set
received. by his watch.

Flash sent out.

T: Charles very T': Brian very close.
close. Flash sent Watch set by his
out. watch. Flash

sent out.

kT: Meeting of
Brian and
Charles seen.
Flashes re-
ceived from
both.

(k+ hl )T:
Charles very
close. Flash

2T: Alfred very
close. Flash
sent out.

from him re-
ceived.

arriving at Alfred at time kT on Alfred’s watch. Thus
Charles’ second flash reaches Alfred at time (k+ )T
on Alfred’s watch. Since it was emitted by Charles when
he was close to Alfred, it arrives immediately so that
(k+31)T is the reading of Alfred’s watch when
Charles passes him at a time 27 by Charles’ watch.
Thus the ratio of the time between Brian’s and Charles’
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meetings with Alfred as measured by Alfred, to that
measured by Brian and Charles, is

1
k+- T
GO,
2T 2 k
This ratio depends very sensitively on the value of &
as Table IV shows, which also gives the difference be-

tween the readings of Alfred’s and Charles’ watches for
T =1 hour.

TABLE IV

1 1 Time diff.
k 2(k+k) T =1 hour
1 1 0
1.0001 1.000000005 140 millisec.
1.01 1.00005 14 sec.
1.25 1.025 3 min.
1.5 1.083 10 min.
2 1.25 30 min.
4 2.125 2 h. 15 min.
10 5.05 8 h. 6 min.
100 50.005 4 days 4 h.

36 sec.

While the connection between k value and velocity
will only be found in the next chapter, it might be worth
mentioning here that k=0.0001 corresponds to a
speed of 19 miles per second, which is the orbital speed
of the Earth and about four times the speed of an or-
biting satellite, while k=10 corresponds to 90 per-
cent of the speed of light and k=100 to 99.98 percent
of that speed.

In our daily lives the ratio k is always so close to
unity that the discrepancy between the clock readings
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is wholly inappreciable, and thus the illusion of a route-
independent time is fostered.

Now suppose that Brian traveled with his young son,
whom he had entrusted with a watch, and that when
Charles tushed past, Brian threw the boy across to
Charles, who caught him nicely, and then traveled with
the boy to his meeting with Alfred. Then you might
argue, “But is not there as much right for Alfred to
have regarded himself as at rest and the boy as a trav-
eler, as for the boy to have regarded himself at rest and
Alfred as the traveler?” But this is unsound: Brian,
Charles, and Alfred are all inertial observers; they do
not suffer any jerks; if any of them had carried a bag
of raw eggs at the beginning of our experiment, the bag
would still be in order at the end. But the boy is not an
inertial observer; he changes his speed very suddenly
and sharply, receiving a severe jerk. Had he been en-
trusted with a bag of raw eggs they would have been in
a horrible mess at the end. There is no comparison be-
tween Alfred, who is inertial, and the boy, who is not.
Thus there is no symmetry and no difficulty arises in
this manner. If we do not suppose that the shock of
being thrown from Brian to Charles was too much for
the boy or his watch, a question that we shall investi-
gate in more detail in a later chapter, then the boy at
the final meeting will be two hours older than at the
initial meeting, whereas Alfred will have aged two hours
and ten minutes. Again we can compare this with the
mileages. Of all the mileages between two towns, the
shortest one is obtained by traveling in a straight line;
all others are longer. With times in relativity the op-
posite holds; between any two events the time clocked
by an inertial observer is the maximum, and the time
clocked by any other is shorter. Thus, traveling could
keep one young, were it not for the possibly disastrous
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experience of being thrown from Brian to Charles. The
relative speeds of the observers in this example will be
evaluated in the nmext chapter. It is clear that they are
very large, many tens of thousands of miles per second.
Such speeds are so far outside the experience of every-
day life that it is not in the least surprising that the re-
sults of such strange experiences should be unfamiliar.

CHAPTER IX

VELOCITY

In the last two chapters we deduced a variety of results
for inertial observers, given the ratio of the interval of
reception of two flashes of light by one observer to the
interval of transmission by the other. How can we re-
late this ratio, so fundamental to our working, to the
relative velocity, which has a far more direct appeal?

Let us go back to Alfred and Brian and their relative
motions of the previous chapter. For the sake of realism,
we shall equip them with radar instead of lights
(the principle is the same) and assume that Brian, on
receiving a signal from Alfred, can respond with his
radar instantaneously. The situation then, you will note,
will not be unlike sending out a radar pulse and re-
ceiving its reflected echo back from the Moon, say, or
from some artificial satellite whose position we wished
to measure accurately (Fig. 18).

Since the given ratio of the intervals of reception and
transmission is 3:2, Alfred’s signals, emitted at 6-min-
ute intervals, are received by Brian at 9-minute inter-
vals. It is supposed also that the watches of both indi-
cate 12 noon when the two observers pass each other.
Then, if Alfred sends out one pulse at 12 noon and a
second pulse at 12:40 p.M., the two signals will arrive
at Brian sixty minutes apart—in Brian’s reckoning (Fig.
19). Since Brian is with Alfred at 12 noon on Alfred’s
watch, he receives Alfred’s first signal at that hour (12
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Fic. 19. Space-Time Chart of Alfred Measuring Brian’s
Speed

noon by his watch also) and the second one at 1pr.M,
which is the moment of his meeting with Charles. Brian
replies instantaneously with a pulse and this response,
sent out 60 minutes after noon by his own watch, is by
the 3/2 ratio received by Alfred at 90 minutes after
noon (Fig. 19). Remember (from the discussions on
pages 78-79) that neither Alfred nor Brian can say
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that he is standing still and the other is moving; all they
can say is that they are receding from each other. There-
fore, the 3/2 ratio applies in both directions of signal-
ing. Thus, Alfred sends out a radar pulse at 12:40 p.M.
and receives back the echo at 1:30 P.M., 50 minutes
later. It has taken the signal 50 minutes to travel from
Alfred to Brian and back to Alfred, twice the distance
separating the two observers. Therefore, one-half this
time, or 25 minutes, is the time it takes light (or a radar
pulse) to go from Alfred to Brian. So the distance of
Brian at the moment of responding is 25 light minutes,
But how long on Alfred’s reckoning did Brian take to
get there? The time Alfred associates with the reflection
of his radar pulse is halfway between the sending out
and the receiving back—that is, halfway between 12:40
P.M. and 1:30 p.M., which is at 1:05 p.M. Alfred has
no choice but to take this halfway mark as the instant
of reflection. For the velocity of light is unity by defini-
tion and thus in Alfred’s view light must have taken just
as long to get to Brian as to get back. Above all, he
must not attempt to “correct” for Brian’s speed, since
the flash could have been returned just as well by an
object moving quite differently but coinciding momen-
tarily with Brian at the instant of responding. Thus
Alfred cannot help assigning the time 1:05 P.M. to this
instant. He therefore arrives at the answer that Brian
took 65 minutes (from 12:00 to 1:05) to cover a dis-
tance that light covers in 25 minutes. Accordingly,
Brian’s speed relative to him is 28 =-% of the ve-
locity of light in Alfred’s reckoning. With the conven-
tional value for the velocity of light, this fraction gives
the speed of Brian relative to Alfred as 71,700 miles
per second—a very respectable speed by our standards,
but yet a perfectly possible speed. By virtue of our as-
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sumptions, the speed of Charles relative to Alfred is
precisely the same.

EINSTEIN’S LoNG TRAINS

Einstein published his Special Theory of R.elatiwty,
which is the subject of our discussion here, in 1905.
The airplane had been off the ground fo.r only two years;
the railroad train was the ultimate in speed, and it
seemed highly unlikely that trains wou.ld ever travel
at more than 150 miles an hour. When Einstein 1n.1916
wrote a book on Relativity for the general pul.)hc':, he
could think of no better example to illustrate l}ls ideas
than to imagine indefinitely long trains running p.ast
indefinitely long embankments at speeds approz}chmg
the velocity of light! For more than fort)'r years hfs fol-
lowers in the attempt to explain Relativity were in th’e
same fix; even the 1958 revision of Bertrand tI){lussell.s
he ABC of Relativity considers various problems in
Z;lation to z{ train running at a speed three—i-ifths t?le
velocity of light along a straight track of indefinite
length. The writers had no choice. Farfetched as tl.]ey
were, those trains afforded about the only possible im-
ages that would fall within the layman’s unc.le.rstandmg
and not be dismissed as Jules Verne absurdities. S{n:cﬂl
wonder that the public should have regarded‘ Relativity
as at best the impractical speculation of philosophers,
r at worst as learned phantasy.
° Today all this has changed. We send rockets to the
Moon and to the vicinity of Venus. The most stubborn
skeptic no longer doubts that space stations of some
sort will exist within the lifetime of the youngest rea.ders
of these pages. Russian and American astr?nauts circle
the Earth at speeds approaching 20,000 miles an hour,
and while our Brian’s 71,700 miles per second is a far
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stretch from that figure, yet we can think realistically
of speeds quite beyond the ken of our fathers and grand-
fathers. Every day experimenters at the great accelerat-
ing machines (the “atom-smashers”) work with speeds
well over nine-tenths the velocity of light—relativistic
effects are the regular order of their business. In colour
TV sets, the velocity of the electrons is high enough for
the designer to have to take relativistic effects into ac-
count! In a very few years, Special Relativity has come
down from the clouds of phantasy or philosophic specu-
lation to its rightful foot-hold on the solid ground of
the public domain.

It is in the nature of the human mind that learning is
easier when a demonstrable need to learn exists. Qur
fathers had no actual need to understand Relativity,
but we have, and we can address ourselves to the ad-
ventures of Alfred, Brian, and Charles without the emo-
tional misgivings that, forty years ago, upset the pas-
sengers on Einstein’s indefinitely long trains. Alfred,
Brian, and Charles are no less fictional, but their ma-
neuverings in space are representative of situations
which, in more complex detail and refined form, com-
mand the attention and challenge the laboratory skills
of today’s scientists and engineers. So, bearing in mind
always that it is a grasp of the concepts underlying
quite real phenomena we are seeking, let us return
to our three inertial observers’ investigations of time
differences in Special Relativity.

DETERMINING RELATIVE VELOCITIES BY THE RADAR
MEeTHOD

Let us go back to the motions of our observers in Chap-
ter VIII and consider a slightly different situation. Sup-
pose again that Brian and Charles have the same
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speed relative to Alfred and that one hQur elapses by
Brian’s reckoning between his meetings with Alfred and’
Charles, and correspondingly one hour by Charles
watch between Charles’ meetings with Brian and Alfred.
Now, however, we suppose that there is a factor of
three instead of three-halves between the length of the
intervals at which Brian emits flashes and the le‘:ngth of
the intervals at which Alfred receives them (Fig. 20).

10,00 p.m.

~
-
~
/
-
/
3:20 p.m. <2400 p.m
(Alfred's \\ (Charles’
time)
1:06:40 p.m.
/'00p.m
Alfred
Charles
/ 1200

FiG. 20. Brian measures Charles’ speed (ratio of inter-
vals 3:1).
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Then Brian’s one hour between his meetings turns into
th'ree hours for Alfred, and Charles’ one hour into one-
thu'd. of one hour, that is, twenty minutes; so, as stated
prev19usly, three hours and twenty minutes ;merge as
the. time on Alfred’s watch between his meetings with
Brian and with Charles. If Alfred emits a radar pulse
at 12:20 p.M. (twenty minutes after Brian passed him)
th_en by the 3/1 ratio this pulse reaches Brian sixt),/
minutes after the meeting—i.e, at 1 p.M. by Brian’s
watch, {Xgain applying the 3/1 ratio, the return pulse
thfen emitted reaches Alfred at 3 p.M. by his watch, 160
minutes after the emission of the radar pulse. Th\’ls he
ﬁrfds the distance of the meeting place to be eighty light
minutes, and the time he associates with it is halfvja
between 12:20 p.M. and three o’clock, which is 1'43
P.M. Thus in one hundred minutes of Alfred’s tirlne
Brian has covered a distance of eighty light minutes’
aEnd ht?nce he proceeds at four-fifths of the velocity of
light—just on 150,000 miles per second. ’
This evaluation of Brian’s velocity must always lead
to a velocity less than the velocity of light. Indeed, we
shall see later that it cannot exceed that velocity. ,
What can we say about Charles’ speed relative to
Bnan.? In ordinary life we are used to the idea that the
velocity of objects may simply be added. If a train
passes us at 60 miles an hour and a man walks for-
ward in the train at 3 miles an hour, then the man’s
velocit.y relative to us is just 63 miles per hour. How-
ever, if we used this primitive calculus, then, since
Charles’ speed relative to Alfred is equal and o;)posite
to that of Brian, and Brian’s speed is four-fifths of the
velocity of light relative to Alfred, we would arrive at
the result that Charles moves relative to Brian at eight-

fifths of the velocity of light, contrary to the result just
stated.
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But we should not jump to such conclusions. We
have given a perfectly good method for working out
velocities just now using precisely the radar type of
method that is actually often employed. Can we mnot
use the same method directly to establish Charles’ speed
relative to Brian’s in this example? Suppose Brian
wishes to determine the distance of the meeting of Al-
fred and Charles from himself. To use radar, he has to
send out a pulse of light a little while after Charles has
left him, because light travels faster than Charles does,
and then he must wait until the reflection from that
meeting reaches him. In the fast motion just considered,
Charles and Alfred met 200 minutes, by Alfred’s clock,
after Brian left Alfred. When does Brian have to send
out a radar pulse to arrive at Alfred at that time? Since
the ratio of the interval of transmission and the in-
terval of reception is three now, it follows that by
Brian’s watch he should have sent out that pulse after
an interval of one-third of 200 minutes—that is, 1 hour,
6 minutes, and 40 seconds after he left Alfred (Fig.
20), or 6 minutes and 40 seconds after Charles flashed
past him. The radar pulse will come back to Brian at
three times the interval by Alfred’s clock between Al-
fred’s meetings with Brian and Charles. Three times
3 hours and 20 minutes is 10 hours, and thus Brian
receives the return pulse at 10 p.M., 8 hours, 53 min-
utes, and 20 seconds after the pulse was emitted.
Hence, the distance of the meeting of Alfred and
Charles in Brian’s measurements is 4 light-hours, 26
light-minutes, and 40 light-seconds. The time Brian
associates with this meeting is halfway between the send-
ing out and the reception of the ray, which is 4 hours,
33 minutes, and 20 seconds after Charles left him. Ac-
cordingly, in Brian’s reckoning, Charles has covered 4
light-hours, 26 light-minutes, and 40 light-seconds in
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4 hours, 33 minutes, and 20 seconds; a velocity close
to the velocity of light, in fact, about 97.5 percent of
it, but not exceeding it. Thus by adding two velocities,
each 80 percent of the velocity of light, we obtain only
97.5 percent of the velocity of light.

If this argument is pursued, we find that we can add
any number of velocities less than the velocity of light
but never get a velocity equal to or exceeding the ve-
locity of light; we always stay below it. Of course, this
means that adding large velocities is not quite as simple
as adding small velocities, but it is a direct consequence
of defining in a sensible fashion the method of measur-
ing and determining velocities. Thus the velocity of light
appears in this context like a rainbow; try as we will to
reach it, we never can.

Looked at a little differently, this result is really an
obvious consequence of our assumptions. If one ob-
server moves more slowly than light, then a light ray
emitted by him gets everywhere before he does, and
every other observer will agree on this. To every ob-
server, however moving, the emitter will appear to move
more slowly than light. Since the velocity of light is the
same for all observers, his velocity relative to anybody
will be less than the velocity of light.

THE RELATIONSHIP BETWEEN k AND v

To work this through in general, suppose that the
ratio of intervals is k, and that Alfred sends out his
radar pulse at time 7 after he and Brian pass each
other, a moment which for convenience is counted
as the common starting point of both their time reck-
onings. Then this pulse will be received by Brian at
time k7, and Brian’s response will reach Alfred at time
kX kT =k*T. Thus Alfred’s time interval between
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transmission and reception is (k2—1)T and so the
distance of Brian from Alfred at the moment Qf Te-
sponding is $(k*— 1)T. Again, s'mce' the velocity of
light is the same (unity) in each direction, the' moment
of response is counted by Alfred as occurring h‘alf-
way between transmission and reccptiqn—.-l.e., at time
3(k%2+1)T. Between zero time and. th'ls instant Brian
has changed his position from pr0x1mfty to Alfréd to
distance 3(k*— 1)T. Accordingly Brian’s velocity v
is the ratio of these quantities, so that
k2—1
VR @
Note that v is a pure number which is a ngtural con-
sequence of making the velocity of light unity. It will
also be observed that k=1 (equal intervals) corre-
sponds to the state of relative rest v= 9, that rePlace-
ment of k by 1/k simply changes the sign of v, in ac-
cordance with the results of Chapter VIII, and, finally,
that for all values of k the velocity v will be betwe-en
—1 (velocity of light in approach) and +1 (velocity
of light in recession). This is a clear consequence of
the method of measurement for v=+1, since other-
wise the radar pulse could not catch Brian, and of Fhe
replacement of k by its reciprocal for —1. Solving
equation (1) for £ we have

k= (i",) 2)
1—v
The relation between v and k is given in the table

below, including conventional values of v in miles per
second.

k 1j1001] 1.1 | 15 | 3 10 | 100
v 0/0.001| 0.095 | 0.385| 0.8 0.98 | 0.9998

v (miles per o
(second) 0! 186 |17,700 | 71,700 | 149,000 { 182,000 | 186,000
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VELOCITY COMPOSITION

Next consider the composition of velocities. Consider
three gbservers, Alfred, Brian, and Edgar, such that
the 1:atlo of intervals of transmission to inte’rvals of re-
ceI?UOn is k between Alfred and Brian and kL between
Brian a1_1d Edgar, and suppose that, seen from Alfred
Edgar is beyond Brian (Fig. 21). Signals emitteé
by Alfred at interval T are received by Brian at in-
terval £T. If Brian sends out flashes whenever he re-

Alfred

Fie. 21. Composition of k-factors
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ceives signals from Alfred (i.e., at intervals kT'), Edgar
will receive them at intervals kk'T, simultancously with
Alfred’s signals. Thus the ratio between Alfred and Ed-
gar is kk', or, in other words, k values multiply. This
is the fundamental rule of velocity composition, which
at low speed reduces to the familiar direct addition of
velocities. Note that whatever number may result from
the multiplication of & values, the velocity correspond-
ing to the final k value must still be less than the speed
of light by (1).

To work out the effect of & multiplication on veloc-
ities, let v be the velocity Alfred-Brian, v the velocity
Brian-Edgar, and w the velocity Alfred-Edgar. Then

15 %]
{14V L1+ k-1
k—(l—v) & “(’1—vi) P VIR

4)
1+v(1+! 1
_\l=v/\1-! _vty!
T4\ [1+v1 T 14w
(l—v)(T——vl>+1

One sees readily how for small v and v* their sum
equals w, while for any v and v* not exceeding unity w
will also not exceed unity. All this confirms the results
previously obtained in special cases.

PROPER SPEED

There is another way of introducing velocity into the
theory, which is not as close to our usual notion of
velocity as distance covered per unit time, but is a use-
ful quantity.

Alfred, by using his radar technique, employs virtu-
ally the only possible method for finding the distance of
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the meeting between Brian and Charles, but in order to
determine the time elapsed he had to work out the mean
of the time of emission and time of reception of his
radar pulse. Instead of doing that, he could have looked
at ‘Brian’s watch and formed the ratio of the distance
Brian covered in Alfred’s reckoning to the time Brian
took to cover this distance in Brian’s own reckoning.
_We have, therefore, a somewhat hybrid quantity, which
is called proper speed. The word proper is introduced
because we divide by the time that belongs to Brian—
Brian’s proper time. In Brian’s reckoning, 60 minutes
elapsed between his leaving Alfred and meeting Charles.
He thus covered 25 light-minutes of his own time,
and thus his proper speed is 17 instead of the % ob-
tained previously for his ordinary velocity. If we go
over to the faster motion that we considered next, with
three-to-one ratio of intervals of transmission and re-
ception between Brian and Alfred, then, as will be rec-
ollected, Brian’s distance from Alfred when he met
.Charles was 80 light-minutes. Again, in Brian’s reckon-
ing I hour has elapsed since he left Alfred, and so his
proper speed in this case is 4. Thus the proper
speed of a body can be greater than unity. Indeed, it
can grow without limit, and the proper speed of light,
on this basis, is infinite, a result that can readily be
deduced from what has been said earlier.

For many purposes in calculations in the Theory of
Relat.ivity, proper speed is easier to work with than the
vr:el?cny. The point is that in an ordinary velocity we
divide a distance, which different observers will meas-
ure differently, by time, which different observers will
measure differently. On the other hand, in the proper
sPeed, we still have the distance which will be measured
differently by different observers, but at least the time
is the proper time measured by the observer himself
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and therefore is something on which everybody agrees.
Brian’s own clock readings between two events in
Brian’s life will look the same from wherever they are
viewed.

THE UNIQUE CHARACTER OF LIGHT

A further result can be deduced from our considera-
tions. We have seen earlier that as we increase the ratio
of the interval of reception to the interval of transmis-
sion between Brian and Alfred from three-halves to
three, the discrepancy in the time measured between
Brian’s meeting with Alfred and Charles’ meeting with
Alfred, as measured either by Alfred or by Brian and
Charles, increases. We have taken it that in both cases
the Brian/Charles measurement of time was 2 hours,
but the Alfred measurement of time went up from 2
hours and 10 minutes to 3 hours and 20 minutes.
Clearly, the larger we take the ratio, the longer Alfred’s
time will become. Conversely, we could keep Alfred’s
time the same by diminishing the timings of Brian and
Charles as we increase the ratio. As the velocity of
Brian and Charles viewed by Alfred gets nearer and
nearer the velocity of light, light finds it harder and
harder to catch up with them, and so the ratio of in-
terval of reception to interval of transmission increases
from three-halves to three, and on and on without limit
as we consider higher and higher velocities. In order,
then, to get a fixed time for Alfred between his meeting
with Brian and his meeting with Charles, we have to
cut down the time taken from the first meeting to the
last meeting as measured by Brian and Charles. If we
go to the limit and have Brian and Charles actually
riding on light waves, no time will have elapsed by their
reckoning.



108 RELATIVITY AND COMMON SENSE

We cannot imagine real people traveli
speed of light, because, as we lfavep seen ea‘:l];:lrg, t;::rc:tlli:
no way of getting them up to that speed, but we can
thmk‘ of light itself. We could think of a mirror at the
mefetmg of Brian and Charles, from which the light
emitted .bounces back and eventually reaches Alfred. If
Phen, this light ray carried a clock (rather an abs.urci
ld-ea but one which we can approach in the limit) then
this clock would have registered no time whatever be-
tweer-l leaving Alfred and coming back to Alfred adding
th'e time from Alfred to the mirror and back f;om the
mirror to Alfred. We can put this differently; we can
S}mply say that light does not age; there is no passage of
tm}e for light. This view helps to make the unique and
universal character of light somewhat clearer. It cannot
change once it has been produced, owing to the fact

that it does not age, and therefore it must remain the
same.

CHAPTER X

COORDINATES AND THE LORENTZ
TRANSFORMATION

So far we have derived all the consequences of Ein-
stein’s Principle of Relativity by using the factor k. We
have come to mew insights concerning the nature of
time and indeed this k calculus can be used a great deal
further, in order to develop in particular those conse-
quences of the principle that can be observed readily
and therefore afford the most powerful support for the
principle. On the other hand, the textbooks published
hitherto have all worked with coordinates and trans-
formations of coordinates. Of course, this treatment is
completely equivalent to ours. But it is of some ad-
vantage to make a connection with this more usual
mathematical derivation. As a result, this chapter will
altogether be a little more mathematical than either its
predecessors or the later ones, but it is hoped that it will
particularly benefit the reader who has had some pre-
vious knowledge of the theory.

THE MEANING OF COORDINATES

The mathematician uses coordinates to fix the position
of a point, and so it may be of advantage to discuss the
whole meaning of coordinates. The simplest case arises
when one works in a plane, say on a sheet of paper,
on a blackboard, or on the floor of a room. Then one
can specify the position of any point by giving its per-



110 RELATIVITY AND COMMON SENSE

pendicular distances from two lines at right angles to
each other—the two axes of coordinates. In the usual
language, one coordinate is called x, and the other co-
ordinate is called y, the line on which ¥ vanishes is
then called the x-axis, and, similarly, the line on which
x vanishes is called the y-axis. Given the two axes and
given any pair of numbers x, ¥, one can readily find
the point in the plane corresponding to this pair of num-
bers and, conversely, given any point in the plaze, by
simply measuring its perpendicular distances from the
two axes, one can find its coordinates. This is therefore
a very simple and ready method for specifying the posi-
tion of points in a plane and is, indeed, used a great
deal.

The one difficulty, but an unavoidable one, is that the
choice of axes of coordinates is arbitrary. We can work
with one pair of axes just as well as with any other pair
of axes. What happens when we change the axes of
coordinates? There are two rather different ways to do
it. In onhe, which is almost trivial, we simply displace
the axes, but in parallel; that is to say, the orientation
of the new axes is just the same as the orientation of
the old axes—they just meet in a different point. If we
call the new coordinates of a point x” and y’, then it is
clear that these new coordinates will be related to the
old coordinates by the simple addition of numbers. We
get the name of any point in the new system by taking
its name in the old system and simply adding one num-
ber to x and another number to y. We use the same
numbers for this addition wherever the point may be
because these numbers are in fact simply the coordi-
nates of the old origin in the new coordinates.

A much more interesting transformation, and one of
great importance for our work, arises when instead of
displacing the axes parallelly we turn our pair of axes
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through an angle. Even if at first we keep to the same
origin and merely rotate the system of axes, then it is
clear that the transformation betv.veen the qld coordi-
nates and the new ones will be a little comphcated: We
need not discuss it in any detail at_all, })ut what will be
clear—and this is the crucial point—is that the new
x-coordinate will depend both on the old x- and on th_e
old y-coordinate, and similarly fqr the new y-coordi-
nate. In other words, the old coordinates get jumbled up
when we wish to calculate the new ones.

This complication is quite familiar fr(?m 'everyday
life. When we look at a house we call one side its width,
and the other its length, and if we go a.rounc.i the corner
and look at it from elsewhere, we might ].ust as well
refer now to what was previously the width as, the
length, and vice versa; and if we look at a house vyxth a
really complicated ground plan askew., then the dimen-
sions may get jumbled up—the new width may be.some
combination of old width and the old length. It is be-
cause of this that the mathematician refers to a plane as
having two dimensions. One needs fwo numbers to sPec(i
ify a point in a plane and these two numbers getTmh}xe.
up with each other when we rotate our axes. This 1;
the important distinction betweex'l the coordmatfzs an
other properties. For example, 1f we were demﬁmng,
shall we say, the under-floor heat}ng system of a ouseE
we might be greatly interested in the tempera}ture o
each point of the floor, and we ‘m1-ght say that.t e ter.I:-
perature counted just as much in its specification as 113
distance from the two walls; but alth.ough we wou
now have three numbers for each point of th.e floor,
namely, its distance from the two walls and its tt}elmc;
perature, we would not call the temperat.ure ?he ir

dimension; and we would not call it the third dimension
for the very good reason that there would be no trans-
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formation of coordinates that would be in the least
sensible and have any meaning in which the tempera-
ture got mixed up with the other two coordinates.
This being able to “get mixed up with each other” is
the crucial point about dimensions. In a general trans-
formation of coordinates we both shift the origin and
rotate the axes of coordinates, and if the point were
represented by a pair of numbers x, ¥, in the old system
of coordinates, then it will be represented by quite a
different pair of numbers ¥, ¥, in the new system of
coordinates. But there is, pevertheless, a subtle con-
nection between the two different systems of coordinates,
Let us suppose we have two points, x, ¥, and %, J; then
in the new system of coordinates the first point will have
coordinates x’, y’; the second one %, ¥ but the one
thing that must come out just the same in the one sys-
tem of coordinates as in the other is the distance be-
tween the two points. In other words, the four numbers
that represent the two points must possess a combina-
tion—namely, the distance between the two points—that
is just the same in the old system of coordinates as in
the new system of coordinates. Such a quantity is some-
thing that the mathematician calls an invariant, because
it does not change as he alters the system of coordinates.

RoTATION OF AXES

Since we regard the transformation of just shifting the
axes in parallel as trivial, we might as well shift the
axes of coordinates until the origin is in one of the two
points, say the point %, ¥, and then the change of system
of coordinates is just a rotation of the axes about the
origin. What is the distance, then, of the point x, y, from
the origin? A simple application of Pythagoras’ theorem
shows that the square of the distance is simply x2 4 y2,
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If we rotate the axes about the origin, then the distance
of the point from the origin must be t%xe same as be;
fore, and so we have the theorem t]laat in a rotatlog 0

coordinates the expression x? + y* is transformed into
itself. It does not change its value in the lea}st. Sc.) th?
upshot of all this is that we call a plane t‘wo-dnnensmrix?

because, first of all, we need two coordinates to specify
a point in the plane; secondly, because these two co;
ordinates get jumbled up when we change our axes 0

coordinates; and, thirdly, because ths:re exists an in-
variant, a combination of the coordmat.es, that does
pot change when we change the coordmat'es. 'Asd ax:
example, suppose that the (x’, ) axes are _mchnle " :n
30 degrees to the (x, y) axes. A little triangula

(Fig. 22) then shows that
V3 _, 1

¥=xt gy

]

w

y=- y

]

Thus the invariant 2
2
Ix+y —x+\/3 y)
X2+y2= (\_/—_2____) + (_____2

_ 4x2+ 4y
=g
=x2+y? .

The space in which we live is called three—du'nen—
sional because we need three coordinates, leng-t}f, width,
and height, or x, y, and z, to specif‘{’ the position of a
point. We make this specification in just the same man-
ner as in the case of the two dimensions. We take three
axes, our axes of coordinates, at right angles to ea.ch
other, and then the perpendicular distance of a point
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y

Fi16. 22. The Rotation of Axes

from the plane containi is i
z-coordinalt)e, e Sota;zng the axes of x and y is its
Again, we have the situation that there are three num-
bers. that we need to specify a point, that these numbers
get. ]uleled up when we change coordinates, and that
the:re is an invariant—namely, the distance between
points—which does not change when coordinates are
changed. Once again we have two changes of coordi-
na.te.s, an almost trivial one in which we just shift the
origin, the shift adding constants to the coordinates of
all_pomts, and the much more complicated change in
which we rotate the coordinates so that the new ones
are askew to the old ones. If we so rotate the coordj-
nates, keeping the origin fixed, then again applying
Pythafgoras’ theorem, we find that now X2+ y2 422
remains unchanged. This quantity, in fact, is the only
thmgll:hat is unchanged, the only invariant if we allow
:::t;l:nsn te(:.turn the coordinates in a completely gen-
] It ?s useful, however, to think about this transforma-
tion in a little more detail. Suppose that somebody al-
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ways draws his z-coordinate vertically upward; then
the only change of coordinates that he allows himself
is a rotation of the axes of x and y in the horizontal
plane. It does not matter how much he changes these—
he will always find the same z-coordinate as before. In
the view of such a person, therefore, there are fwo
invariants in space, the z-coordinate itself and x®+y?,
which remains unchanged when we turn the axes in the
plane. This will be reasonable as long as he works only
in a sufficiently small region for the vertical to have a
perfectly clear meaning, and to be the same everywhere.
But if he wants his coordinates to span a continent,
then of course the vertical direction at one point is not
the same as the vertical direction at another; and there
is no particular reason why one of these should always
be considered to be the vertical, the z-coordinate. He
will then, therefore, as soon as his horizon is wider,
consider more transformations of coordinates, even
those in which the z-axis becomes inclined, and when
this happens he finds that instead of his two invariants,
z and x2+732, he has, in fact, only one invariant,
x2+y?+z2. Before he bas gained this insight he
might well have said, “Height!—that is something en-
tirely different from width and length; there is no way
in which the two ever get mixed up and they are com-
pletely different kinds of quantities.” But after he has
learned to consider inclined coordinates, he says, “Of
course, x, ¥, and z are all the same; after all, they get
all mixed up when I tilt my coordinates and they all
enter into the single invariant there is.”

THE LORENTZ TRANSFORMATION

How does all this fit into Relativity? Tt will be recalled
that our guiding principle throughout was Einstein’s
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Principle of Relativity—that all inertial observers are
equivalent. It was this principle that enabled us to make
far-reaching deductions about what occurs at high
speeds—that is, at speeds comparable to the velocity of
light. The most important insight that we gained was
that time is private rather than public, that the time
measurements of different inertial observers do not nec-
essarily fit together. This was the most striking result
and very much in contrast with what had previously
been thought. At low speeds all times fit together form-
ing a public time, and so anybody used to working at
low speeds only would have got the illusion that time
was an invariant, in just the same way that somebody
who had worked only in a small region of the earth,
with the vertical clearly distinguished, might have
thought that the z-coordinate was an invariant. We
have already shown in Chapter VIII that this is not so,
that the time does change when we consider high speeds;
that therefore time cannot be regarded as an invariant,
How does time transform as we go from one inertial
observer to another one? We can now use the k cal-
culus to establish these transformations, which are
called collectively the Lorentz! Transformation.

Let Alfred use coordinates ¢, x and Brian coordinates

1Lorentz developed his Transformation in the course of a
mathematical study of electromagnetism and applied it to an at-
tempt to explain the Michelson-Morley experiment. G. F. Fitz-
gerald, an Irish physicist, had argued that the negative result of
the experiment could be expected if the length of moving bodies,
as measured by a stationary observer, underwent a contraction
in the direction of motion. The Lorentz Transformation fits the
hypothesis exactly. Einstein developed the same equation, but
from a different argument. It has been customary to follow
Einstein’s derivation and to develop Special Relativity from the
equation relating the space and time coordinates of two ob-
servers in uniform motion relative to each other.
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is x= ian is 21 =0, and at
1 x1, so that Alfred is x=0, Brian is x , and
:h;exn,leeting of Alfred and Brian t==0. _Consnd_er
an event which, seen by Alfred, is beyond Brian (Fig.
23). Alfred emits a radar pulse at time z—x and re~

Alfred

/

FiG. 23. The Lorentz Transformation

ceives it back at time £+ x so that. he as§igns coordi-
nates ¢, x to the event. Similarly Brian em_lts a pulse_ at
1 —x! and gets it back at £ +x% Buf in fact B{ls:;
emits his pulse as Alfred’s pulse passes him and receiv



118 RELATIVITY AND COMMON SENSE
it as the returning pulse to Alfred passes him, Hence
f—x'=k(t—x)
t+Hx=k(0 + x1) )
Clearly
£—xt= (12— (x1)? (6)
and, with a little reduction

2 2
tl:zik(t+x)+§(t—x)=k P i I (N

2k 2k
1 k k?+1 k-1
1— 1 R — -
x —2k(t+x) 2(: x) TR % t

Using (2) to express & in terms of v, we have the Lo-
rentz Transformation

_ t—wx _ XxX—vt
1_(_‘l T xl_E(1 T (8)

The results of these few equations are now, first, that
the new coordinates of any event require a knowledge
of both the old coordinates. One cannot know what
the time coordinate of an event is in Brian’s view with-
out first knowing both the space and the time coordi-
nates of the event in Alfred’s view, and vice versa, so
that ¢ and x get mixed up with each other in the trans-
formation. Secondly, equation (6) shows that there is
an invariant to this transformation, an invariant strik-
ingly similar to the invariant we had in two dimensions,
only instead of adding squares one subtracts squares.
Thus, as far as these events go in Alfred’s and Brian’s
plots, all the statements we made about why one called
a plane two-dimensional apply now. Two numbers, ¢
and x, are needed to specify the position of an event;
they get jumbled up as we transform from Alfred’s view
to Brian’s view, and there is an invariant connecting
them. Therefore, one calls this space of Alfred and
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Brian a two-dimensional space, in which time is one of
dimensions. )
tht:'I‘o examine the remaining space c00fdmates y, Z
and y!, z' consider a light ray emanating fror_n the
event described by Alfred as t, Xo and by B.rlan as
1o, xo*. Since light travels with unit speed, the journey
of the flash is described by Alfred as
(t—t)2—[(x—x)2+ )2+ ()?]=0 (9)
the square bracket being the' square of the distance from
the source. Similarly, in Brian’s view
(=) — [ = xot)2+32+22] =0 (10)
But ( 2
t—1)2—(x—x
( '—'0' [(t—x)— (fo—x)] [(1+2) — (to+x0)]
=11 —x) — (it — )] an
kk[(tl +x1) — (ot + 1) ] = (1 — 1o*)2— (x* — xo')
Hence by (9) and (10)

V+2= N2+ ()2 (12)
and since any event is on some such flash, (12) is gen-
erally true. Since the y and z direction‘s are symmetri-
cally placed about the direction of motion we have the
final two Lorentz formulae

y:yl, z=z2! (13)

Four DIMENSIONS

The combinations of equation (6) land eguatmn t(}}S?3
then lead us to think of a space in which the ;z-
space coordinates X, ¥, z, can be jumbled qp bg] ?1 -
tation; and the fourth coordinate ¢ can.be jum ;lfred
with the others through a velocity by going from on
to Brian. If we consider the two processes, the ro
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and the velocity, together, we arrive at a space of four
dimensions, ¢, x, y, z, in the sense that one needs four
coordinates to specify an event, namely, when and
where it takes place. When one changes coordinates
through a rotation, or through having a velocity rela-
tive to one’s previous system, then these coordinates get
jumbled up; and finally, there is an invariant, namely
P—x2—y2—2z2

People have occasionally been baffled and frightened
by this use of “four dimensions” and have thought that
in some mysterious way physicists or mathematicians
can imagine four dimensions. Nothing could be farther
from the truth. All one means by four dimensions is
that these four quantities, the time and the space coordi-
nates, satisfy the conditions just stated and, therefore,
one can treat them as dimensions in very much the same
way one treats the ordinary space dimensions by them-
selves. Of course, what disturbed people at first was
that, whereas previously they had thought of time as
an invariant, it now turned out not to be so; but the
only reason for not thinking of time as something that
gets jumbled up with other coordinates was that no such
high velocities had been considered. When the velocity
is very small then the Lorentz transformation tells us
that the time is unchanged. But time does not remain
unchanged for large velocities.

APPLICATION OF THE LORENTZ TRANSFORMATION

A number of consequences of the Lorentz transfor-
mation can now be given—indeed, the whole subject of
applied theoretical Relativity is simply the application
of the Lorentz transformation.

First, the Relativity of Simultaneity. One sees straight
away from the Lorentz transformation that, if Alfred
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regards two widely separated events as simultane_ous,
then Brian will not do so, for if these events arfs widely
separated, then although Alfred wi.ll have a§s1gned to
them the same coordinate z, he will have given the;n
different coordinates x, and by equation- (8) Brian will
then give them different time coordinates ¢ What
one inertial observer regards as simultaneou§ happen-
ings at spatially separated points, .anothe.r will not re-
gard as simultaneous. This is again an ﬂlusfratl'on of
the private nature of time and a diﬁfarent derivation of
this by the & calculus will be given in one of the later

chapters.

Brian
far end of
Iy Brian's ruler
]
Alfred
/]
7

Fic. 24. The Fitzgerald Contraction
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The Fitzgerald contraction is the name given to the
fact that in Alfred’s coordinates the length of a ruler
held by Brian along Brian’s direction of motion is
shorter than in Brian’s coordinates. This is immediately
clear from the Lorentz transformation. Let the two ends
of the ruler have coordinates, in Brian’s system, x' =0
and x!=L. By (8) this implies that Alfred’s coordi-
nates for them are

x=vt, x=vt+ L(1 —v?)% respectively.
Considering the two ends at the same value of Al-
fred’s time t, Alfred thus ascribes a length of only
L({1—v2%)* to the ruler.

We can also establish this result in the k calculus.
Alfred sends out a pulse at time £,, to measure the far
end of the ruler, and receives this pulse back at t,
(Fig. 24). At ¢, the pulse is sent out to measure Brian
(at the near end of the ruler), and this is received back
at £3. Since Alfred is interested in the difference in the
distances of the near and far ends of the ruler at one
and the same time, according to his reckoning, he must
arrange his signals so that

1 1
§(t1+t4)=§(32+t3) 14)
Also, as usual

ts = k2, (15)
Moreover, the pulse emitted at ¢ passes Brian at kz, and
the pulse received at ¢, passes Brian at 7,/k. Now Brian
measures the length of the ruler to be L, and so the
time difference between sending out a pulse and receiv-
ing it back must be 2L, so

ti/k—kt,=2L (16)

In Alfred’s system the far end of the ruler is at distance
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$(ts—t1), the near end at }(f5—12) and so Alfred
measures the length of the ruler o be

%[<t4-t1) — (ts—12)] (17)

With the aid of (14), (15), (16), expression (17)
becomes
2k
o L (18)
which by (2) equals
L(1—v*)% 19)
It will have been noted that the crux of the argument
lies in Alfred’s comparing the distances of the far end
and the near end of the ruler at the same time in his
reckoning. What Alfred sees is something quite differ-
ent. If he took a snapshot he would see the far end of
an earlier time than the near end, owing to the travel
time of light (Fig. 25). If the two responses are to ar-
rive at the same time fs, the radar signals requireq to
produce them will have to be sent out at different time
t1, to and so reach Brian at kt;, ki respectively. Then
k(ts—t,) =2L (Brian’s measurement), and so Al-
fred sees the length of the ruler to be

1
%(l‘s—tl) _‘2’('73_'1‘2)

1 1 (1—vY
=5t =gt (—“1 T v) (20)

a result quite different from (19).

To see the significance of (20), imagine Brian’s ruler
to hold lights at each end and to slide along a ruler S’lt
rest relative to Alfred. Then the two marks of Alftt_ed ]
ruler that he sees illuminated at one and the same time
will differ by (20). It is only when he makes allowance
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far end of
Brian’s ruler

Alfred

/]

Fi16. 25. Looking at Brian’s Ruler

for the extra travel time of light from the far end of the
ruler that he obtains the more sophisticated resuit (19),

THE ABERRATION OF LIGHT

Again, we think about Alfred and Brian with their
x-axes aligned as before. A ray of light approaches Al-
fred and meets him at the very moment when Brian
passes him. Alfred measures the direction from which
tl}e light came and finds a certain angle 6 between that
direction and his x-axis. Brian receives the same light
at the same moment because he is just passing through
Alfred’s position; what angle & does he find between
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the light ray and his x-axis, which, of course, is in the
same direction as Alfred’s?

Suppose that both Alfred and Brian set their watches
to read zero when they pass each other, and that they
so orient their y- and z-axes (all Brian’s coordinates
are primed) so that all along the ray z=2' =0. Then,
remembering that during the approach of the ray both
¢ and ¢ are negative and that light travels with unit
speed relative to both Alfred and Brian, we have

x=(—t) cos 6, xX=(—t)cos & (21)
y=(—t) sin 6, y=(-t)sin€& (22)
Substituting from the Lorentz formulae (8) into (21)
we find by division
v+cos 9
1+vcos
Equivalent formulae could be derived by substituting
(8) and (13) into (22).

We first notice that if 8=0°, cos 8=1, cos &= 1,
& =0°, while if 6=180°, cos 6=—1, cos ¢=-1,
& = 180°. But for all intermediate values there is sub-
stantial distortion. As an example, the following table
gives the relation between 8 and & for v=0.8, which
corresponds to k=3, a case already considered:
8—0° 30° 60° 90° 120° 150° 180°
§-50° 10°12 21°47 36°52 60° 102°25 180°
Note in particular that the entire region between 6=0°
and 6= 120°, which for Alfred is three-fourths of the
whole sky, is in Brian’s view compressed to the region

cos 6 =

between & =0° and & =60°, a mere one-fourth of

his sky. .
The upshot of all this is, then, that in the direction
in which Brian is going he sees the world around him
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much more compressed than in Alfred’s picture. If Brian
is traveling very fast relative to Alfred, then what to
Brian is a small section of the heavens surrounding the
direction in which he is moving relative to Alfred, is
most of the sky in Alfred’s view; and what to Brian
is the rest of the sky is to Alfred a small patch in the
direction opposite to that in which Brian is moving rela-
tive to him. This is a very considerable distortion of
the picture. This so-called aberration of light is of the
greatest historical importance. If Brian, instead of being
an inertial observer, were changing his speed, he would
therefore see the heavens wobble around him-he would
see the directions to stars make different angles between
each other at different times. The Earth is such a non-
inertial observer in its motion round the Sun; at one
time it is proceeding in some direction in its orbit at
30 kilometers per second—one part in 10,000 of the
speed of light; six months later it is moving in the op-
posite direction, and so there will be a discrepancy be-
tween the angles that the lines to different stars make
at different times of the year. This discrepancy was, in
fact, discovered by James Bradley in 1725, and he im-
mediately called it the Aberration of Light.

The early explanation of the Aberration was an idea
that if light were a bullet moving through the telescope
and always coming from the same direction, it would
make differently aligned holes in the back and the front
according to the direction in which the telescope was
moving. In fact, this gives quite a good answer, not
very different from the relativistic one, but it is a basi-
cally wrong explanation. According to the old explana-
tion, if one filled the whole telescope with water, then
the speed of light in the telescope would be altered; the
aberration should now be larger because the light would
take longer from one end of the telescope to the other,
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and so the telescope would cover a large.t flistanc? while
the light traveled down the tube. But this is Illot,. in fact,
so, although we know this only from rather indirect ex-
periments. The relativistic answer that we have now de-
rived from the Lorentz formulae fits the observations
very well and, furthermore, it predicts that .there shogld
be no variation if the telescope were filled VYlth \fvater e-
cause aberration actually describes the direction from
ich the light comes. _
Wh’}'clllle histo%ic importance of Bradh?y’s discovery v:zs
that it gave, for the first time, a direct .proof ofi the
Copernican idea that the Earth was moving roun1 .te
Sun. What was observed, of course, was not the veloct 3;
of the Earth, which is unobservable, bl}t the fact that i
changes its velocity, that at dit?erent times Qf thfedyear
the aberration displaces stars differently. This evidence
established the Copernican system beyond doubt.



CHAPTER XI

FASTER THAN LIGHT?

We have seen that, however often velocities less than
the velocity of light are added to cach other, the ve-
locity of light is mever reached, let alone exceeded. It
is, therefore, a barrier. The things that move slower
than light compose a whole class of objects—indeed,
all those we are familiar with. Having found this bar-
rier, we may speculate what might be on the other side
of the barrier and what it would look like. What would
the properties of particles moving faster than light be,
if as familiar a word as particle can be used for some-
thing so utterly strange as the entity that would emerge?

CAUSE AND EFFECT

Let us again think of Alfred and Brian. They are to-
gether at twelve noon on both their clocks and are sepa-
rating at a constant speed, so that any interval of time
registered by Alfred is seen as three-halves of that inter-
val by Brian. We have discussed this case in several
previous chapters and now make a further calculation.

Suppose that a hypothetical entity faster than light
passes Alfred at 12:40 p.M. by Alfred’s watch, moving
in the direction of Brian (Fig. 26). The light that Alfred
emits at 12:40 P.M. is received by Brian at 1:00 P.M.
by Brian’s watch, because of the ratio of three to two
that specifies Brian’s speed. Since this entity is supposed



130 RELATIVITY AND COMMON SENSE

24

fast . .....
-object =~ 1240

Alfred

R 12:0012:00

Fic. 26. Alfred and Brian look at an obje

faster than light. ct moving

to .tra’vel faster than light, it must get to Brian before
Brian’s watch indicates 1:00 P.M., to have a definite
pur{lbef at, say, 12:54 p.M. Alfred sees Brian’s watch
indicating 12:54' P.M., three-halves times 54 minutes
after noon by his watch, that is, at 1:21 p.M Thus,
according to Alfred, this entity meets him at 12:4.0 P.M i
anfl he sees it meeting Brian at 1:21 p.M.—later tha; is.,
Brian, on the other hand, sees that entity meet’ing hin;
at 12:54 p.M. by his watch and sees its meeting with
A’lfred at 1:00 p.M., that is, later. Thus, in Alfred’s
view, the entity first passes him and thén Brian; in
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Brian’s view, it first passes him and later Alfred. Imag-
ine any changes going on in this entity. If it is aging be-
tween its encounter with Alfred and its encounter with
Brian, then Alfred will see it aging in the course of time
like a normal object; Brian, on the other hand, will ob-
serve it getting younger. Which way then should this
entity live? Which way does time run for it? Clearly,
it would be something very peculiar for which the sense
of time would appear to differ according to who looks
at it. It would certainly upset all our notions of causal-
ity, of some events being causes for others. If something
happened on this entity at its passage with Alfred and
if this something then caused something else that oc-
curred at its passage with Brian, Alfred would see cause
precede effect, as we normally do; but Brian would see
effect precede cause. Thus, in Brian’s view this object
would be in Looking-Glass Land, where the cake is first
handed out and then cut and where, it will be remem-
bered, punishment necessarily precedes the crime.

Of course, we cannot exclude that such very awkward
things might occur. The physicist must always approach
the world with an open mind. But he is allowed to heave
a sigh of relief that no such entity traveling faster than
light has ever been discovered. He would have to do a
great deal of thinking to adjust himself to such a situ-
ation, though we might charitably have enough confi-
dence in the flexibility of his mind to suppose that he
could cope even with this. Fortunately, as we have been
saying, no such curious entity has ever been discovered,
and so we can stick to the ideas of causality, of causes
preceding effects.

Enough has been said, however, to make it clear that
any entity of this kind would really be so vastly different
from anything we know that it is very fortunate that
the velocity of light is such a perfect barrier separating
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the known type of object from those that are essentially
unknown and, we may hope, will not be met for a long

time,

SIMULTANEITY OF SPATIALLY SEPARATED EVENTS

A related problem is that of whether two distant events
are simultaneous, We are used to regarding this ques-
tion as absolute. We tend to think that if two oc-
currences are simultaneous, however far they may be
separated spatially, then they are simultaneous for who-
ever looks at them. But this would not be so when fast-
moving observers were concerned. Let us again consider
our friends Alfred and Brian and, to make things defi-
nite, say that Brian is moving west relative to Alfred,
again with such a velocity that the ratio of the intervals
of transmission and reception is three-halves. Imagine
then two occurrences to which Alfred ascribes the dis-
tance;of one light hour, both occurring at twelve noon
in Alfred’s reckoning, one to the east of him and one
to the west of him (Fig. 27). When we analyze this
statement, it means that if Alfred sends out radar pulses
at 11:00 A.M. in both directions and if they are re-
flected by these simultancous events one light-hour
away, the pulses will both arrive back at the same time,
at 1:00 p.M. Hence he would deduce their distances
to be one light-hour from him and the events to have
been at twelve noon in his reckoning—one to the east
and omne to the west.

Now let us look at these occurrences from Brian’s
point of view (Fig. 28). At twelve noon when in Al-
fred’s reckoning all this happened, Brian was just pass-
ing him. First, consider the radar pulse Alfred sent out
at 11:00 A.M. to the eastern event. This signal will pass
Brian, since Brian before noon is to the east of Alfred

i

Fic. 27. Alfred finds that events E and W take place

12,000 ,2:00

Alfred /

simultaneously; Brian finds that W preceded E.
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BRIAN'S LOG
TIME OBSERVATION
10,30 Sent out message to Alfred
for transmission
to ‘W' ot 1100
11:20 Picked up Alfred’s
message to ‘£°
/2,00 Possed Alfred
12:40 Picked up 'W's reply
to Aifred
130 Picked up ‘£''s reply
to Alfred

DEDUCTION !

‘W’ sent reply at 1) -
way between 10,30 ondylz.'40}35 (mid

£'sent reply ot 12/ ['Ad
way between 11,20 and l,'30}.2 26 (mia

Thus in Brian's view repli,
were not sent simultonecusiy. ples

FiG. 28. Brian’s Log

and is approaching Alfred. Therefore, when this flash
of. radar energy passes him, in his reckoning it is two-
thirds c_Jf one hour—that is, forty minutes—before twelve
noon; in other words, it is 11:20 a.m. When the radar
gu}se returns from the eastern event
rian is to the west of Alfred, and he is recedi
Alfred. Therefore, the 60-minute gap in Alcfer::ahcijl}sg rf;ani
oning bereen noon and the arrival of this radar pulse
Is in Brian’s reckoning lengthened to three-halves of

, it is after noon,
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that time, that is, 90 minutes. Thus on its return journey
the radar pulse from the eastern event reaches Brian at
1:30 p.M. In other words, if Brian had emitted a radar

_ pulse at 11:20 A.M. it would have illuminated this event,

been reflected, and returned to Brian at 1:30 P.M.
Hence Brian ascribes to the eastern event a time half-
way between emission and reception, that is, 12:25
p.M., and its distance would be described as half the
difference in these times, that is, one light-hour and
five light-minutes.

Now consider the western event. When would Brian
have had to send out a radar pulse to illuminate this
event? Before noon Brian was to the east of Alfred and
his radar pulse would have had to pass Alfred at 11:00
A.M. in Alfred’s reckoning, so as to travel in company
with Alfred’s own pulse. When the three-halves rule is
applied again, it follows that Brian would have had to
emit this pulse 90 minutes before noon, that is, at 10:30
A.M. When the pulse was returned then Brian was to the
west of Alfred, and, therefore, the pulse would reach
him before it reaches Alfred.

The 60-minute gap in Alfred’s reckoning would be
only two-thirds as long for Brian, and so the radar pulse
would arrive back at Brian at 12:40 p.M. Thus Brian
would assign to the western event a timing of 11:35
AM. and a distance of one light-hour and five light-
minutes. Hence the two events, simultaneous in Alfred’s
reckoning, would not be simultaneous in Brian’s reck-
oning. For spatially separated events, simultaneity is a
relative and not an absolute property.

We can now analyze the time concept a little more
closely. In ordinary life we are very well used to a par-
ticular property of time, namely, that it is ordered.
Whenever two things happen, we can say either that
one happened before the other, or the other way round,
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or that both happened at the same time. But what we
have now established has rather upset this situation
Fora d{stant event and one close by, different observers.
may evidently have different ideas of time: they may
!ud.ge the events to be simultaneous, or one ’way round
fn time, or the other way round in time. This is disturb-
ing. ’And so we next ask whether the whole idea of “be-
fore ’.and “after” is meaningless. Fortunately, the an-
swer is no.
SupPose I do one thing today and another tomorrow.
T_hen Imagine other observers looking at these acts
Since there .is never any overtaking of light by light'
the rays emitted by my earlier action will be received,
b.y every observer earlier than my rays emitted at the
time of the later action. So, as far as I am concerned
all observer's will judge the two actions to be in the’
same order in which I performed them myself. For some
eve.:nts, evidently, the “before” and “after” idea holds
universally. It is absolute and not relative, whereas for
others—as we saw in the last example—this is not the
case. 'Some pairs of events are absolutely ordered in
time in the sense that every observer will agree which
of the two happened first. But other pairs of events
are such that different observers will have different views
as to which happened first and which second. Where
does the boundary between these two classes Lie? Evi-
dently .th_e question of the spatial separation of the
events is involved. The events that we considered in the
example. with which we established the relativity of si-
multaneity were widely separated. The events which ev-

erybody agreed happened in the same order both hap-
pened to me. ‘
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Past AND FUTURE: ABSOLUTE AND RELATIVE

Let us again consider two observers, Alfred and Ed-
gar. We say nothing at all about their relative motion
and relative position except that at the material times
of this example they are not together. Something hap-
pens to Alfred and, at that instant, he sends out a flash
of light. This flash of light is received by Edgar at, say,
noon on Edgar’s watch. An hour later, Edgar sits down
to write a letter. We have three events altogether in this
example: Alfred’s sending out a flash of light; next,
Edgar’s reception of the flash of light; and, third, Ed-
gar’s sitting down to write his letter. Since Edgar did
both the receiving and the writing, it follows from what
we said earlier that every observer will agree that Edgar
did not start to write the letter until after he had re-
ceived the flash of light from Alfred. Furthermore, ev-
ery other observer could have followed the flash of light
as it traveled from Alfred to Edgar. Whatever their
state of motion, all observers would at least agree that
Alfred emitted the flash before Edgar received it. Thus,
the three events are strictly ordered. There is no ques-
tion but that all observers, however they might be mov-
ing, would agree that Edgar started writing his letter
later than the moment when Alfred emitted the flash
of light. Therefore, we may regard the writing of the
letter as absolutely later than the emission of the flash.
We can go a bit further. Only light, traveling at the
speed of light, could get from Alfred’s emission of the
flash to Edgar’s reception of the flash, but this restric-
tion does not hold for Edgar’s next event, his sitting
down to write a letter. Whatever Edgar’s speed may
be relative to Alfred, it will be less than that of light,
as was shown in Chapter IX. Therefore, while light
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from Alfred’s event would get to Edgar an hour before
his sitting down to write, in theory Alfred, when he
emitted the signal, might also be able to fire a bullet
(a hypothetical bullet, of course) that would not reach
Edgar until the exact instant of writing. The bullet, ob-
viously, would have to travel at a very high speed, in-
deed, but it still would be a theoretically possible speed,
since it would be less than the speed of light. So we
can say that any event involving Edgar after the arrival
of the flash from Alfred is absolutely later than the
emission of the flash from Alfred and could have been
reached by a particle traveling from Alfred to him at
a speed less than that of light.

Now think of Edgar’s past. If somewhere in his past
history Edgar had emitted a flash of light, it would have
reached Alfred at some time. Suppose the flash reached
Alfred at the instant Alfred emitted the flash we have
been talking about. Then, since all inertial observers
can see that:flash of light traveling from Edgar to Al-
fred, they would all have agreed that Edgar emitted this
flash before Alfred received it. If Edgar had done any
particular thing (say, eaten his lunch) before emitting
that flash to Alfred, then all inertial observers however
traveling would have agreed that he had had lunch be-
fore he emitted the flash—that is, before Alfred received
Edgar’s flash and thus before Alfred emitted his own
flash. Therefore, we can say that the part of Edgar’s
history before he emitted the flash occurred before Al-
fred emitted his; and all events that took place in this
period of time may be called absolutely earlier than
Alfred’s emission of his flash.

Thus we have found two moments in Edgar’s life
that are singled out in relation to Alfred’s emission of
his flash, which for simplicity we shall call event X.
There is the instant P at which Edgar would have to
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press the button of his light to illuminate X, and the
instant F, at which Edgar receives the light emitted at
X. All Edgar’s life before P, as we have seen, will be
regarded as earlier than X by every inertial observer.
All Edgar’s life after F will be regarded as later than X
by every inertial observer. In Edgar’s experience P evi-
dently precedes F, and so one wonders whether the
stretch of his life between P and F should be regarded
as earlier or later than X. There is in fact no absolute
and universal way of deciding. If we consider an event
in Edgar’s life later than P, but earlier than F, then
some inertial observers will regard N as having hap-
pened before X; others will view it as having occurfed
after X, and yet others will regard X and N as having
taken place simultaneously. Therefore, in relation to X
the stretch between P (the end of the “absolute past”)
and F (the beginning of the “absolute future”) is called
the relative past and future.

It is not difficult to fit an inertial observer into our
space-time diagram (one dimension of space only!)
who will find X and the event N to be simultaneous.
First we draw, from the view of some inertial observer,
the event X and a line representing Edgar (Fig. 29).
Next we draw the two dashed lines (both at 45° to the
vertical) that represent the light rays illuminatin.g X and
emanating from X. They intersect Edgar’s line in P an,d
F respectively. Then choose some event N on Efigars
line between P and F. Now we can construct the line of
the inertial observer passing through X who reg.ards N
as having occurred simultaneously with X. First we
draw the light rays AN, NB illuminating N and emanat-
ing from N respectively. Then with X at the center we
draw a circle passing through N. This circle intersects
AN, NB in A/, B’ respectively. Note that, because. of.the
right angle at N, the three points A", X, B’ are in line,
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FiG. 29. Alfred’s line is not shown since only the event
X on it is relevant here.

and that this line is necessarily more nearly vertical than
one representing a light ray. Therefore A’B’ through X
represents an inertial observer. If this observer wants to
illuminate N, he must press the button for his flash at
A, and he will receive the answering flash at B’. He thus
regards N as having happened balfway in time between
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A’ and B’, that is, at X. Hence he finds that N and X
were simultaneous.

Clearly then, we can find other observers who will
find event N to have taken place before event X (Al-
fred’s emission of the flash), and yet others will have
found it to be the other way round. Thus, we can say
that in relation to X, Edgar’s life falls into three parts.
One, before the moment P when Edgar would have to
emit a flash of light to illuminate X, is the absolute past.
Everybody will agree that any such event involving Ed-
gar in this absolute past occurred before X. Part two
falls between P, the end of Edgar’s absolute past, and
F, when Edgar receives the flash from Alfred. In rela-
tion to time this period cannot be ordered absolutely
with Alfred’s flash. For any event in this patch of Ed-
gar’s life, some people will say that it occurred before
Alfred’s emission of the signal, some that it occurred
later, and some that it occurred simultaneously. This
whole stretch will, therefore, be referred to as Edgar’s
relative past and future, because relative to some ob-
servers it will be before Alfred’s event X, and relative
to others it will happen after Alfred’s event. The third
period of Edgar’s history is after F, the reception of the
light ray from Alfred, because all observers will agree
that whatever Edgar did during this period would have
happened after Alfred’s flash was emitted. This stretch
may be referred to as Edgar’s absolute future. We now
consider other observers to the right of X in addition
to Edgar. Just as in Edgar’s case, the world line of each
such observer will contain an instant P marking, in re-
lation to Alfred’s event X, the end of his absolute past,
and an instant F marking the beginning of his absolute
future. For every such observer P occurs when the flash
of light illuminating X passes him, while F occurs when
the light emitted at X reaches him. Thus these two
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Fic. 30. The Light Cone in Two Dimensions

flashes of light are the boundaries of the three regions
(absolute past, relative past and future, absolute fu-
ture). What we have considered in relation to observers
to the right of Alfred’s event X naturally holds also to
the left of X. Therefore (Fig. 30) the light rays that Al-
fred emits, together with the light rays that illuminate
Alfred at the moment of emission, divide the whole of
space and time into three separate parts: the absolute
past, the absolute future, and, between them, the relative
past and future.

THE LicHT CONE

In Fig. 30, as in all our previous diagrams, we have
made use of only one dimension of space, using the
second dimension of the paper to represent time. Let
us now try to use two dimensions of space. We shall
have to make a perspective drawing (Fig. 31) to repre-
sent three dimensions (two space and one time) on the
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paper. The light rays emitted by Alfred’s event now
form a cone with its vertex at Alfred. Similarly, all the
light rays that would arrive at Alfred just at the mo-
ment of Alfred’s event would form a second cone, again
with Alfred at the vertex—the generators of the two
cones are identical and they all meet at the common
vertex.
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The mathematician, in fact, always refers to such a
double cone as just a cone, and this particular cone,
because it represents the travel of light, is always re-
ferred to as the light cone. We can now see clearly what
was not apparent in Fig. 30; namely, that the absolute
past is the inside of the one half of the light cone, the
absolute future the inside of the other half of the light
cone, and the relative past and future is the outside of
the cone.

If we wanted to represent the third dimension of
space on our diagram, we would need four dimensions
which we can neither imagine nor draw, even using any
trick of perspective. We now have to use mathematical
language, and (by further application of the Pythag-
orean theorem) the equation of the light cone with

the vertex at the origin of space and time coordinates
becomes

2—x2—y2~22=0

Note that this single equation represents both the past
light cone—that is, all the light rays that illuminate the
moment when Alfred presses the button of his light
~and the future light cone, which comprises all the light
rays emitted by Alfred’s light. Though there is no
longer any direct geometrical significance, we still refer
to the surface defined by this equation as the light cone,
with its two halves—past and future—and we still say,
with the same justification as before, that the inside of
the past light cone is the absolute past, the inside of
the future light cone is the absolute future, whereas the
outside is the relative past and future and cannot be
ordered in any absolute sense relative to the origin.

Return now to the notion of cause and effect. If we
accept the idea that there are things that may be caused
and that the cause must precede the effect, then it fol-
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Jows that every cause of an effect must lie within or on
the past light cone of the effect. Similarly, we must then
assume that any effect caused by something happening
here and now must lie on or within the future light cone.
If this were not so, if there were cause/effect links run-
ning outside the light cone from here and now, tl"len
the order could be reversed by viewing the situation
from a suitably moving observer. We, therefore, arrive
at the result that, within the context of our ideas of cause
and effect, no influence can travel faster than light, just
as we have seen before, as a matter of observation,
that there is no body traveling faster than light.

It would be a mistake, however, to say that nothing
happens faster than light. If there is no cause and effect
link and no material body concerned, then we may well
have something traveling faster than light and we can
easily show this. Suppose'we have two long straight rul-
ers, one on top of the other, inclined to each other at
a very slight angle; then, if we move one of the rulers
at right angles to itself, the point of apparent.atersec-
tion will move along the rulers. For a given speed of
the moving ruler, however slow, the point of intersec-
tion will move as fast as we like if the angle between
the rulers is sufficiently small. Thus we can always find
an angle so small that the point of 'mtersectiqn goes at
a speed exceeding the speed of light. There is nothing
in Relativity against this. For what travels there f.aster
than light is neither a material particle nor an influ-
ence, but a geometrically defined point which cannot
move anything and cannot do anything.

We can also imagine, as another example of speeds
greater than light, a searchlight of enormous power
mounted on the earth. We now turn this searchlight;
the beam will sweep across the sky, far far away where
it meets the planets or perhaps even the stars. The end
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of the beam will travel at speeds vastly greater than
that of light because of the huge length of the arm of
the lever which we are turning gently on the earth when
we change the direction of the searchlight. But, once
again, this is no material point; this is no influence that
is hopping from planet to planet much faster than light.
This is merely a succession of events that just happen
to be connected because we happen not to switch off
the searchlight at moments during the turning. But what
we have established is that there can be no link between
cause and effect that travels faster than light, just as we
have discovered that there is no object moving faster
than light.

CHAPTER XII

ACCELERATION

In previous chapters we have considered three observ-
ers, Alfred, Brian, and Charles, and we have had Brian
and Charles moving with the same velocity relative to
Alfred but in opposite directions. The meeting between
Charles and Alfred occurred later than the meeting be-
tween Brian and Alfred; but the timing by Brian and
Charles of the period between these two meetings gave
a lower value than the timing by Alfred. Very brief
reference was then made to what would happen if Brian,
on passing Charles, threw his young son across and
Charles caught him. However, this question demands
far closer and more detailed analysis.

Up to now, with the brief exception of the reference
to this boy, we have always been talking about inertial
observers only—that is, observers moving with constant
velocity. In the Principle of Relativity reference was
made only to such inertial systems, and all the state-
ments concerned such systems. The Principle of Relativ-
ity asserts the impossibility of distinguishing one inertial
observer from any other by internal experiment. Now,
however, we wish to discuss systems in a state of ac-
celeration—that is, systems that are not inertial.

The Principle of Relativity can be taken to say that
velocity does not matter, and this statement is complete
and all-embracing. On the other hand, acceleration does
matter and it is not so easy to specify just how it mat-
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ters. To say that something does not matter is a com-
plete description; to say that something does matter re-
quires a great deal of further elucidation.

That acceleration matters is indeed obvious, as it is
an everyday experience. Sitting in a car that is acceler-
ated, say, by rapidly increasing its speed, we feel our-
selves pressing hard against the backs. We feel this
because the car subjects us to an acceleration and,
therefore, must exert a force on us. Thus the absolute
significance of acceleration cannot be denied. How sig-
nificant it is depends on its magnitude, and just what
effect its magnitude has depends on the construction of
the object that is subjected to such an acceleration.

ACCELERATION AND CLOCKS

We have been much concerned with time-keeping, and
so we consider the effect of acceleration on clocks and
watches. An ordinary wristwatch is not significantly
affected by gesticulating while one talks. It is swung
about on one’s arm, but the accelerations are too small
to affect the mechanism—at least, it is not affected seri-
ously. The same watch dropped on a concrete floor
suffers a considerably higher acceleration on hitting the
floor; this acceleration (you will recall that any change
of speed or direction is an acceleration) will usually
break the watch. There is accordingly a limiting acceler-
ation for this kind of watch. If only smaller accelera-
tions occur, as in gesticulating, there is no serious effect,
but larger ones break the watch. A shockproof watch
can take higher accelerations, such as being dropped
from table-height onto a concrete floor; but if it were
dropped, say, from the top of the Eiffel Tower, attached
to a massive object so that air resistance did not matter,
then, no doubt, it would disintegrate on hitting the
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ground. Thus for a shockproof watch there also exists
a limiting acceleration, higher than in the previous case,
but finite nevertheless.

We next consider even tougher clocks. Perhaps the
most solid time-keeping mechanism that one can readily
think of is a radioactive material such as, say, radium.
Radium disintegrates spontaneously with a half-life of
about 1620 years; that is to say, after 1620 years half
the material will have disintegrated. After a further pe-
riod of 1620 years half the remainder will have dis-
integrated, and so on. Radioactive materials with much
shorter or much longer half-life can be chosen to suit
any time-keeping purpose. This rate of disintegration
is quite independent of what happens to the material,
within wide limits. We can subject it to hammer blows,
put it into sticks of dynamite, and explode it, heat it
to millions of degrees, cool it as near absolute zero as
we can, and its half-life will be unaffected. Thus it can
be used as a time-keeper over a vast range of circum-
stances with great accuracy. We can subject it to very
large accelerations indeed without affecting the time-
keeping mechanism locked up in the nucleus. If, how-
ever, we wanted to subject it to reaily enormous accel-
erations, then we could do this only by bombarding it
with very fast particles. They, and they alone, could be
used to convey these very high accelerations; but if the
incoming particles were sufficiently energetic they could
disintegrate even the nucleus of radium. Thus, this
clock, too, has a limiting acceleration although it is ex-
ceedingly high.

We need not think only of physical clocks., We can
use biological ones just as well. We can use the genera-
tions of rabbits or the reproductive cycle of the sea
urchin. Subjecting the rabbits to minor accelerations,
as on a car ride, will not seriously interfere with them,
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but if we subject them to really high accelerations they
are liable to die, and similarly for the sea urchins.

We ourselves, too, could be used for time-keeping.
Our aging is a time-keeper, and so is the frequency
with which our stomachs tell us that we are hungry. Be-
cause there are large individual differences we are per-
haps not very good time-keepers, but we are time-keep-
ers nevertheless. Again, there are limiting accelerations;
if we are subjected to an acceleration of one or two g
we are all right, though, conceivably, we might feel sea-
sick. If, on the other hand, we were subjected for ap-
preciable periods to accelerations of twenty g, we would
die, and our time-keeping would cease. Note that as
long as any of these time-keeping mechanisms move at
constant speed (that is, as inertial observers) they all
indicate the same time. For if this were not so it would
contradict the Principle of Relativity, as we would have
a means of distinguishing between inertial systems. Ac-
cording to the Principle of Relativity there is no means
of distinguishing between them, and so this ratio of
times indicated by our different clocks must be identical
for all inertial observers.

THE TWIN “PARADOX”

In the experiment of Alfred, Brian, and Charles, all
three were inertial observers, but the boy who was
thrown across from Brian to Charles was not. He suf-
fered a period of acceleration; if this was as quick a
transfer as the circumstances warranted, it would, no
doubt, have led to the boy’s immediate death; if, how-
ever, instead of his son, Brian had used a packet of a
suitable radioactive substance, then its disintegrating
properties would have served as a perfect time-keeper
for Charles after the transfer in spite of the high ac-
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celeration involved. If, in that experiment, we changed
all the times from hours to years, we could then afford
to make the transfer from Brian to Charles more slowly
(that is, with lower acceleration) and we could arrive
at a situation where even a living being could survive
the acceleration. In this form the example used to be
called the twin paradox. Alfred and Brian were re-
garded as twins living together; then Brian began to
move with an acceleration that he could survive,
changed his velocity by a further acceleration to return
with Charles, and then, by yet another period of ac-
celeration, came to rest next to Alfred.

As we have seen, the Brian/Charles measurement of
time is lower than the Alfred measurement of time.
Thus Brian would finally again be living with Alfred,
but would not have aged as much as Alfred. They
would be twins of different ages. Of course, it was al-
ways ridiculous to call this a paradox; no paradox of
any form is involved, for Brian has undergone several
periods of acceleration in his life, whereas Alfred has
been inertial all the time. It has sometimes puzzled peo-
ple how, with relatively short periods of acceleration,
Brian could have lost all this time. How can all this
time have got sunk, as they said, in the relatively short
periods of acceleration? But this argument is wrong; it
is based on the hidden assumption that somehow Brian
has “lost” time. Nothing of the sort has happened;
Brian has measured his time and Alfred his time and
there is no reason to believe that the two should be the
same. There is no universal time, because time is a
route-dependent quantity.

The situation is completely analogous to that of driv-
ing from one town to another. The shortest route i§ a
straight line; if somebody travels a long route consist-
ing of two straight lines joined by a short and sharp
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curve, then the second driver will have covered a larger
mileage because there is a curve on his route; but the
extra mileage will not lie in the curve, it will be due to
it. There is only one shortest road, because there is
only one straight line between two points; any other
line must necessarily have at least one bend in it. The
extra mileage then is due to this bend without necessar-
ily in any way residing in the bend. Similarly, the short-
ness of the time between the first and the last meeting
of our observers, as measured by Brian, is due to Brian’s
having undergone periods of acceleration, but in no
way can we say that time has been standing still for
him (or going backward) during these periods of ac-
celeration.

There is only one way of getting from the first meet-
ing to the last without acceleration—namely, the inertial
mode of travel followed by Alfred. Any other way of
getting from the first to the last meeting involves ac-
celerations,.and this means that the time taken by such
an observer is less than the time recorded by the inertial
one.

How Far CaN WE TRAVEL IN SPACE?

This raises a fascinating little question. How far can
we travel in space, subject to our biological limitation?
We want to leave out of consideration all the extremely
serious technological limitations that restrict space
travel even in our day of advanced technology. On the
other hand, we want to confine ourselves to accelera-
tions that we can bear, and to lengths of travel time,
as measured by the traveler, that we can survive. Sup-
pose we travel in a space ship that is always subject
to an acceleration g. This is just the same as the gravi-
tational field that the Earth produces around us. Hence
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life in this space ship would be very comfortable. We
would attain very respectable velocities in the course of
a few years, very close to the velocity of light, and thus
we can usefully employ this mode of travel.

Suppose we start off from here with acceleration g for
a certain period, say, 10 years of our lives. We then
reverse the direction of our rockets and subject our-
selves to the same acceleration but in the opposite di-
rection for a period of 20 years by our reckoning. The
changeover may be momentarily disagreeable, but we
do know that this kind of thing will not do any perma-
nent harm to us. Having attained a certain speed rela-
tive to our starting point in the first 10 years, we will
need the next 10 years of opposite acceleration to re-
duce this motion to rest relative to the starting point
again, and then a further 10 years to bring the rocket
to the same speed in the opposite direction. Switching
the direction of the acceleration again, we will find that
the final 10 years will bring us back to rest on the
Earth, Thus we will have aged 40 years in this journey,
about as much as we conveniently can during our work-
ing lives.

Seen from the Earth, however, we have been moving
with terrific velocity, so much so that for most of the
time we have been traveling at almost the speed of light.
In fact, as observers on the Earth see it, the farthest
point reached in our travels turns out to be 24,000 light-
years from the Earth. Of course, the people on the Earth
have noted the passing of much more time than we in
our travel at such high speed relative to the Earth. We
come back to quite a different situation; to an Earth
48,004 years older than when we left it. Perhaps few
of us would like to undergo such an experience, but,
nevertheless, it gives one an idea of what we are bio-
logically capable of. Thus we can in this way travel to
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Places in space about 24,000 light-years away, about
the distance to the nucleus of our own galaxy, though
not nearly as far as any other galaxy.

If we are capable of taking 2g for forty years then
we could travel to distant galaxies over 600 million
light-years away, and would return correspondingly to
an Earth over 1200 million years older. That we come
back only to tell a much later generation is a serious
matter, as is the fact that our most advanced rocket
engineers could not dream of producing a rocket capa-
ble of maintaining such accelerations for the periods in
question. This limitation, however, is a matter of tech-
nology, not of biology.

CHAPTER XIII

PUTTING ON MASS

We started our investigations with Newtonian dynam-
ics, which led to the Newtonian Principle of Relativity.
When optics, and with it the concept of light as a funda-
mental unique entity, was added, Einstein’s Theory of
Relativity followed. We then worked out various conse-
quences of this theory, always using the technique of
light signaling. In this chapter we return to dynamics
to see how Newtonian dynamics, known to apply at low
speeds, must be modified to fit in with Relativity when
high speeds are considered.

THE STRETCHING OF TIME

First, we have to look more closely at the notion of
time. We return once again to our friends Alfred and
Brian, both inertial observers, both at the same place
at 12 noon according to both their watches, but moving
at such speed relative to each other that after this meet-
ing there is a ratio of three to two of the interval of
reception to the interval of emission. Therefore light
rays sent out by Alfred 40 minutes by his watch after
their meeting will reach Brian at 60 minutes by Brian’s
watch after their meeting; Brian instantaneously returns
this light, and Alfred will receive it 90 minutes after
their meeting.

Thus, if Alfred wishes to assign a time to the moment



156 RELATIVITY AND COMMON SENSE

when Brian returned the light, it would be halfway be-
tween 40 and 90 minutes after their meeting, which is
65 minutes. Though this moment is only 60 minutes
after the meeting by Brian’s watch, Alfred finds it to be
65 minutes after their meeting. The important point here
is not that Alfred sees Brian’s watch indicate 60 minutes
after the meeting—that is, 1:00 p.M.—when it is 1:30
P.M. by Alfred’s watch, but that Alfred’s only way to
allow for the travel time of light is to take the mean
between the time of emission and the time of return
of his pulse, which gives him 1:05 p.M. Even then his
time does not agree with Brian’s, and even when he has
thus made allowance for the travel time of light, Brian’s
watch still seems to him to be going slow, to have ad-
vanced only by 60 minutes in 65 minutes of his own
time. Naturally, if Brian were to move faster, this effect
would be more pronounced. Thus if we take again, as
we have done once before, the case when the ratio be-
tween the times of emission and times of reception is
three to one, then light that reaches Brian at 1:00 p.M,
by Brian’s watch must be sent out when it is 12:20 P.M.
on Alfred’s watch. The returning light would arrive at
Alfred at 3:00 p.M. by Alfred’s watch. The mean be-
tween those two, 12:20 p.m. and 3:00 P.M., is 1:40
P.M., and this is the time assigned by Alfred to the mo-
ment of reflection, 1 p.M. by Brian’s watch. Thus, in
Alfred’s reckoning, when he has allowed for the travel
time of light, it again is true that Brian’s watch is going
slow, having covered only 60 minutes in 100 minutes
(from 12 noon to 1:40 p.M.) of Alfred’s time, This is
the stretching of time or time dilatation, which in the
second case (to be used throughout the rest of this
chapter) is in the ratio one hundred to sixty (five to
three).

Next, let us suppose that Brian has a ruler marked
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in feet and held at right angles to the direction in which
he sees Alfred, and that Alfred has a similar ruler held
parallel to Brian’s, and therefore also at right angles to
the direction in which he sees Brian. Then a foot on
Brian’s ruler looks a foot to Alfred and vice versa, for
if Alfred moves a foot along his ruler, then in the direc-
tion at right angles to his ruler there will be the foot
mark on Brian’s ruler. Thus there is no difficulty in
translating distances along these two rulers into each
other—they are simply the same.

Now let Brian have a particle which moves along
Brian’s ruler at a speed, in Brian’s reckoning, of 60
miles an hour. What will this speed look like to Alfred?
In a given time of Brian’s a certain distance is covered
on Brian’s ruler and Alfred will entirely agree about
this distance; there is no difficulty in translating it. B\'lt
the time that in Brian’s reckoning is only 60 minutes is
100 minutes in Alfred’s reckoning. '

It therefore appears to Alfred that this particle, in-
stead of moving at 60 miles an hour, is moving at -only
36 miles an hour, because the 60 minutes of Brian’s
time that the particle took to cover 60 miles apPeared
to Alfred to have been 100 minutes, and covering 60
miles in 100 minutes corresponds to a speed of 36 mil.es
an hour. Thus what Brian observes as one velocity
along this ruler will appear to Alfred to be only 60 per-
cent of that velocity, lengths being unchanged but times
appearing dilated.

INCREASING MASS

The fundamental dynamical quantity, however, .is pot
velocity but momentum. You will recall. that this im-
portant concept of Newtonian dynamics is the _product
of velocity and mass, and satisfies a conservation law.
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For our present purposes, we want to consider a simple
measure of momentum. For example, we might measure
the momentum of a bullet by the greatest thickness of
armor plating it can penetrate. We may suppose that
the process of penetration is wholly determined by the
momentum of the bullet at right angles to the sheet of
armor plating, and leave out complicating factors such
as the shape and material of the bullet. If Brian fires a
particular type of bullet at a particular speed, he can
then determine the maximum thickness of armor plat-
ing that this bullet can penetrate. If, in Brian’s view, the
armor plating is at right angles to the path of the bullet,
then his measure will be in the right direction to show
the thickness of the armor plating. Since Alfred sees
the armor plating edge on, he will agree with Brian’s
measurement of its thickness. Thus Alfred can deduce
the momentum of Brian’s bullet and gets the same value
as Brian. On the other hand, Alfred’s measurement of
the velocity of Brian’s bullet along the transverse meas-
ure yields only 60 percent (three-fifths) of Brian’s
value. In order to arrive, as required, at the same
momentum as Brian, Alfred deduces for the mass of
the bullet five-thirds of Brian’s value. This enhancement
of mass is clearly due to the time dilatation, which in
turn is due to Brian’s velocity relative to Alfred. Hence
Brian’s velocity has, for Alfred, increased the mass of
Brian’s bullets. This effect must enhance the mass of
all Brian’s objects, since they could all be employed in
the manner of the bullets, or equally the bullets could
have been used to calibrate Brian’s scales.

This increase of mass (ie., of inertia) is easily re-
lated to another quantity. In Alfred’s view, Brian’s mo-
tion relative to him means that Brian and all his
accompanying objects have a substantial energy of mo-
tion (kinetic energy). Dividing this energy by the square
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of the velocity of light, one arrives essential]y- at t.he
extra mass for each of Brian’s objects. In our units, with
velocity of light equal to one, and for moderate veloc-
ities where Newtonian dynamics applies, the extra mass
is just equal to the Newtonian kinetic energy

imy?

It is thus reasonable to suppose that here, as elsewhere,
Relativity gives the extension of Newtonian. terms to
high velocities so that the extra mass always just equals
the kinetic energy in our units. To translate to general
units, we observe that energy is given in terms of mass,
length, and time, by the product of mass and the square
of a velocity. Thus in units in which the velocity of
light is not one, but say, ¢, the extra mass equals the
kinetic energy divided by ¢2. Thus our res_ult can be
interpreted, with equal justice, either as an increase of
mass with velocity or as a mass of energy, in wh{ch we
regard the extra mass of the bullet as being the inertia
of its energy of motion.

Following the first interpretation we see th‘us that
mass, instead of being a constant as in Newt.oman tl}e-
ory, becomes something velocity-dependent in R.elatx‘v-
ity, and it is easily seen that the mass becqmes arbitrarily
large if the speed is increased to S}lﬂic1ently close tf’
the velocity of light. It is worth noting, though,‘ that if
the “proper speed” introduced in Chaptel: IX is used,
the momentum is obtained by multiplying it by a veloc-
ity-independent mass.

When a particle is moving at a speed not much be-
low the velocity of light, its mass is very much greater
than its mass when it is at rest, the so-called rest mas's.
Putting more energy into the particle so that it h%ts
things harder can then increase its speed .only very lit-
tle but does increase its energy and hitting power by
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making it more massive, and there is no limit to this
process. ’Ih.e detailed and precise observations of this
effect constitute perhaps the best test of Relativity.

ACCELERATING PROTONS

As an example, we may consider the protons moving in
the huge joint European Particle Accelerator (CERN),
at Meyrin, near Geneva. The energy communicated
to these protons at the top of the performance of
thl_s, the world’s biggest accelerator, is 28 BeV in the
units nuclear physicists use.! At this energy the mass
of tl}e protons in the sense discussed earlier is around
30 times their rest mass. They move at a speed that is
less than the velocity of light (186,000 miles per sec-
ond) by only 100 miles per second. As a further il-
lus.tration, consider what happens as the protons are
being accelerated to this speed. When they have 95 per-
cent of their final energy, their speed differs from their
f%nal sPeed by only one part in 18,000 of the velocity of
‘llglft—l.e., about ten miles per second. This extra speed
is, in fact, not very different from the maximum speed
f)f the space probes sent up in recent times. The final
Increase in energy therefore adds relatively little to the
speed of the protons. Its real purpose is to make them
put' on mass. Thus, at this level, increasing the energy

while barely increasing the speed, increases the hitting’
power by increasing the mass.

1The electron volt (eV) is the energy an electron acquires if
accelerated in the field of 1V. In a television tube the glow is
produced _by electrons striking the screen with about 10,000 eV.
One BeV is 1,000,000,000 eV, and 6 BeV is approximately equal
to one watt second. In other words, each proton, minute as it is
(there are 21 million million million million proton masses in
one ounce), carries as much energy as a small light bulb (5
watts) emits in heat and light in one second.
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Having seen that the energy of the motion of these
particles shows itself to have mass, two questions come
to mind:

(1) Do all forms of energy (such as light and
other radiation, nuclear energies, etc.) have mass or
is this property confined to the energy of motion?

(2) Given that some of the mass of these particles
represents energy, does the rest mass (the mass they
have when standing still) also represent some form
of energy?

As for (1), clearly all forms of energy have mass.
For the most characteristic property of energy is its in-
terchangeability (consider, for example, the chain:
chemical energy of coal—heat energy of steam in a
power station—electrical energy in the wires—energy of
motion of an electric train). If a change from cne form
of energy to another changed the mass it would play
havoc with the laws of conservation of momentum,
which is an explicit inference from experience and takes
no note of internal changes.

Imagine a spaceship, with its engines off, traveling at
constant speed. The people in the spaceship use the
energy stored, say, in its electric batteries, at one time
to cook their food, at another to drive their washing
machine. By the conservation law, these internal trans-
actions cannot change the momentum of the system.
Thus if the spaceship is at rest relative to one inertial
observer before these operations, then it must be at rest
relative to him afterward. Relative to another inertial
observer it has therefore not changed speed. Since its
momentum is also the same, the mass must have stayed
constant, and hence the energy when in the battery
must have had the same mass as when it was energy of
motion in the washing machine (or energy of heat in
the cooker, etc.).
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EINSTEIN’S EQUATION

Hence every form of energy has mass, given, as in the
case of energy of motion, by Einstein’s famous relation

E =mc?
(Energy) = (Mass) X (Velocity of light)2

In some of his own early work on Relativity Ein-
stein used another method to establish that energy has
mass. First consider how we become aware of mass
rather than weight (which is due to our particular local
condition of living in a gravitational field). Essentially
our awareness of mass is due to its relation to force,
and in Chapter II we saw how this relation led to con-
siderations of momentum. The concept of momentum is
so important because it applies to a system as a whole,
regardless of what may go on inside the system (the
baby and the baby carriage of Chapter 1I). In particu-
lar, if no external force acts on a system, then its mo-
mentum cannot change regardless of what goes on
inside the system. Since the momentum governs the
motion of the center of mass of the system, then if this
center is initially at rest, it will remain at rest whatever
may go on inside the system, provided no force acts on
the system from outside. All this is just a precise state-
ment of the saying that one cannot pull oneself up by
one’s own bootstraps.

As a special example, consider a long box lying on a
smooth horizontal table (see Fig. 32). If nobody
pushes the box, its center of mass, if initially at rest, will
remain at rest whatever may go on inside the box. But
this does not necessarily mean that the outside of the
box will always remain at rest. If masses inside the box
shift around, the location of the center of mass relative

ball
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sticky substance
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ball and box in motion
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to. the box may change and then, with the center of
mass remaining in position, the box will move.

Suppose now that inside the box at one end there
are a ball and a powerful compressed spring held by a
clock-controlled trigger. When at a certain time the trig-
ger is pulled and the spring released, the ball is pro-
pelled along the box. The other end of the box is coated
with some sticky substance to hold the ball fast when
the ball strikes it. What happens then to the box?

This experiment is just like the firing of a gun. There
is a recoil, and the box begins to move in the direction
opposite to the ball’s motion. The center of the whole
system (box and ball) is moving relative to the box,
while remaining fixed in space, and so the box moves
in the direction opposite to that of the ball. This mo-
tion continues until the ball hits the sticky wall when
the impact reduces the box to rest. What the outside
observer will have seen is that the box, initially at rest,
suddenly began to move and equally suddenly came to
rest again, its final position differing from its initial one.
If he knows the law of conservation of momentum he
will appreciate that the center of mass of the whole
system (box plus contents), having initially been at
rest, must always remain in the same position since no
outside force has acted. He must deduce therefore that
the shift in the position of the box must be due to the
shifting of a mass inside the box (the ball). If he has
been told how far the ball has traveled and what the
mass of the box (including spring and clock) is, then
he can deduce from the shift in the position of the box
what the mass of the ball is.

This example is a direct application of Newtonian
dynamics, and Newton himself could easily have car-
ried it out. Einstein’s new insight came when he re-
placed the ball in our example with a flash of light.
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The important property of light required for Einstein’s
demonstration is that it exerts a pressure. If light hits a
black surface (so that it is absorbed) it gives the sur-
face a push; if it bits a mirror (so that it bounces o{i)
it gives twice as much push. For any reasonable in-
tensity of light this pressure is quite small, but the ex-
istence of the pressure follows directly from Max.w.eH’s
theory of light (which came 40 years before Relativity)
and can be demonstrated if enough care is taken. An
apparatus in which light pushes a little paddle wheel
round is a favorite model in science museums, and
opticians occasionally display one in the \_Nindow.
Suppose we have the same box but with the clock
now operating a switch which connects a battery to' a
flashbulb emitting a short intense flash of light (.F1g.
33). All the walls of the box are shiny and reflect _llgh.t,
except the wall at the far end from the bulb, Wh1C1.1 is
black. When the switch is closed the bulb emits light
in all directions. With the bulb close to one end, half
the light bounces off this end and exerts a pressure on
it, which sets the box in motion. When the flash ?uts
the black end a little later (for light takes some time
even to travel along a box!) all the light now exert§ a
pressure which reduces the box to rest. To the- outs'lde
observer, therefore, the situation is in principle identical
with that of the ball. The box, initially at rest, sudden_ly
starts to move and then comes to rest again in a dif-
ferent position. The observer must therefore deduce that
mass has been transferred from the bulb end to the
black end, and he can calculate the quantity of mass
from the displacement of the box. Maxwell’s theory of
light shows that the pressure of light on a ble}ck surface
equals its intensity divided by the speeq of hgh_t. Com-
bining this relationship with the travel time of light and
the duration of the flash, Finstein found that the mass
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transferred equals the enmergy of the flash divided by
the square of the speed of light.

Unquestionably energy has been transferred from the
bulb end of the box (where originally the energy was
stored in the battery) to the black end, which has been
heated by absorbing the light. What Einstein’s ideal
experiment thus shows is that this transfer of energy E
is accompanied by a transfer of mass m, these two
quantities being related by

E=mc?
Thus the energy of light, just like the energy of motion,
has mass. Again, starting from this knowledge, we can
deduce, as before, that all energy must have mass in
accordance with this relation.

To come now to the question whether rest mass, too,
represents energy, we have to turn to nuclear physics.
All nuclei consist of protons and neutrons. The mass of
a composite nucleus is less (by almost as much as 1 per-
cent) than the sum of the masses of the protons and
neutrons of which it is built. This difference is accounted
for by the energy released (and radiated away) when
the protons and neutrons fuse to form the composite
nucleus. Here is the clue to nuclear energies (atom
bombs, nuclear power stations), and proves the com-
plete equivalence of mass and energy. Thus Einstein’s
theory has not only unified optics and dynamics, has
not only clarified the meaning of time and space, but
also has unified the concepts of mass and energy.

THEORY AND OBSERVATION

This concludes our brief survey of the Theory of Rela-
tivity. I hope to have shown that this theory, at one
stage considered so mysterious, is in fact the most ob-
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vious and clear-cut extension of ordinary ideas to the
realm of high velocities. What is unfamiliar in it is un-
familiar only because high velocities are unfamiliar. No
other way could have made the world of high velocities
so simple and so intelligible. But the chief purpose of a
scientific theory is not just to be simple and intelligible,
is not just to enrich experience and unify observations;
it must also fit the facts, and here, we may say, there
is perhaps no other part of physics that has been
checked and tested and cross-checked quite as much as
the Theory of Relativity. Naturally, not every one of
the ideal experiments that, for the sake of simplicity,
we have been considering has itself been tested, but
there are so many points of contact between the theory
and the observations that within the context of what
we have set out to do there is really no doubt that this
theory describes correctly this particular range of ex-
periences.

Wherever high speeds occur, whether in particle ac-
celerators or in optics, everywhere the Theory of Rela-
tivity has stood the test of observation perfectly. It has
added to our understanding of nature a framework into
which we believe that all our physical theories must
fit. If we have been able to show that the theory is not
difficult and mysterious, this book will have served its

purpose.
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three-dimensional, 113
four-dimensional, 119-20
time and, 116, 119
Space stations, 97
Space-time diagram, 73, 74,
95
inertial observer in, 139
Space travel, 152-54
Special Theory of Relativ-
ity, vii, 97
Lorentz Transformation
and, 116
Sputnik, orbit of, 10
Sun:
acceleration of Earth to-
ward, 6
ether wind and, 54
revolution of  Earth
around, 5-6
Supersonic flying, 43--49

Television:
short waves used for, 32
tube-glow of, 160n
Theory and observation,
167-68
Three-dimensional  space,
113
Time:
changing concepts of,
64-65
concept of, 62
high velocities and, 72-73
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Time (cont'd)
importance of, 38
inertial observers and,
73-80
k value and, 88-92
keeping of, 148-50
mass and, 158
measurement of, 61, 65
private, 87, 151
ratio of intervals and, 78—
86
route-dependent, 65-72,
151
route-independent, 67—
68, 87
space and, 116, 119
standards of, 37
stretching of, 155-57
universal, 151
Trade winds, 22
Transformation of coordi-
nates, 110-12
See also Coordinates; Lo-
rentz Transformation
Turntables, motion of, 20—
21
Twin “paradox,” 150-52
Two-dimensional space,
110-12, 119

Uniform velocity:
dynamics and, 64
velocity and, 64

Unity of physics, 6-7, 72

Universal time, 151

v value, k and, 102-3
Vectors, 56
Velocity, 93-108
acceleration and, 3-6
angular, 18, 23-25
changes in, 3—4
composition of, 104-5
of Earth, 6
of ether wind, 54-60
high, 64, 72-73, 116,
120, 12946, 168
irrelevance of, 15-16
of jet place, 36
k value and, 90-92
of light, 29, 35-38, 61,
102, 159
linear, 26
mass and, 157, 159
momentum and, 10
Newtonian principle of
relativity and, 16
optical phenomena and,
59, 64
proper, 105-7, 159
relative, 79, 93-108, 153
of rotating bodies, 17-22
of sound waves, 41
uniform, 64
See also Acceleration
Vision, nature of, 32

Water waves, characteristics
of, 49
Wave phenomena:
characteristics of, 31-34,
39
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Wave phenomena (cont'd)

light as, 75

varieties of, 51

of water, 49

See also Sound waves
Weight, mass and, 9-10
Width, 115

coordinate for, 113
Winds:

circulation of, 21-23

pressure pattern of, 22
Wireless telegraphy, 32

X-axes:
definition of, 110
See also Coordinates
X-rays, 33

Y-axes:
definition of, 110
See also Coordinates

Z-coordinate, 113-15



