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Science is the belief in the ignorance
of experts.

—St. Richard Feynman



Preface

Some time ago, never mind how long, I was helping my father install a hose bibb
at the bottom of a hill. The pipe running to it was buried and ran in a straight line
on a shallow slope. The details aren’t important, but we’d made an entirely natural
mistake early in the process. There was a constant trickle of water flowing into the
top of the pipe, but at the bottom, where we were working, the water emerged in
pulses. “Hey Dad,” I mused “Why is the water coming out in pulses?” He almost
had an answer for a moment, but then the enormity of the question paralyzed him
and we had to stop and lean on our pickaxe and shovel. “Huh.”, he said.

So we stood under a fig tree and argued about what was going on. It turns out (at
least, this is the explanation we came up with) that we were witnessing “sheeting”.
A thin layer of water experiences a lot of drag because a larger fraction of it is in
contact with a surface than a thick layer of water. So, if by random chance some part
of the trickle gets thicker, it moves faster. As it does, it picks up the water in front
of it, making it bigger, while leaving a thinner layer of water behind. This runaway
effect causes small, barely noticeable pulses to become big, conversation-inspiring
pulses farther down the pipe.

It turns out that there are a lot of things in the world that can be understood, or at
least approached, if you have someone to talk about them with.

Years later a good friend of mine, Spencer Greenberg, soon to become known
as “A Mathematician”, suggested we attend a large, fire-themed art festival in the
Nevada desert (Figure 1). While most of the other attendees had applicable skills to
contribute to the festival, we had spent the bulk of our lives learning about how the
universe hangs together. We might be able to reason out how your car works from
first principles, but you certainly wouldn’t want us to fix it. So, we settled on sitting
in the desert and talking to people about the universe (while fixing nothing) under a
sign that read “Ask a Mathematician, Ask a Physicist”. And it went well. It turns out
that a lot of people have profound, answerable questions and all they needed was
someone to talk with.

vii



viii Preface

Fig. 1 A Mathematician
(left) and a Physicist (right)
staring directly into the Sun.

When we tried the same thing in New York’s Union Square, the same thing
happened.1 Some people had noticed something subtle about the world, some had
nagging questions that had been bothering them for decades, and most just got
caught up in what other people were wondering about.

So, based on the rather outlandish but empirically supported notion that people
want to hear answers to other people’s questions,2 we set up a website, “askamathe-
matician.com”, where I’ve been talking with thousands of strangers by email (under
the pseudonym “A Physicist”) for the better part of a decade. Some small fraction of
those emails and in-person conversations became posts, and some fraction of those
posts became the articles in this book. I collected the questions that I thought would
be the most natural and interesting to a curious mind.

Each article considers the big picture first. There is math, because sometimes
you need math, but I’ve put the heaviest stuff at the end of some articles in a section
called “gravy”.3 The gravy is there for those of you interested in the math behind
the scenes. The big picture is for everybody, to provide answers and stimulate more
questions.

1Maybe not exactly the same. The questions were a lot weirder, by and large, and there was one
group who flatly refused to believe there was no money involved.
2It helps more than a little to have the audacity to think that our answers might be right more often
than not.
3Because gravy adds that extra something.



Preface ix

With these articles I’ve tried to convey how mathematicians and physicists
actually think about things in their most private moments, rather than just supply
a list of facts and trivia to be accepted or rejected. The way physics is taught is to
explore past questions and resolutions that others have found, so that the questions
we encounter in the future may not seem so new. My hope is that by the end of this
book your own unanswered questions will inspire you to stand under a tree and talk
with someone about them.

New York, NY, USA Seth Stannard Cottrell
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Chapter 1
Big Things

Space is big. Really big. You just won’t believe how vastly hugely mindbogglingly big it is.
I mean you may think it’s a long way down the road to the chemist’s, but that’s just peanuts
to space.

—Douglas Adams, godfather of modern scientific discourse
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2 1 Big Things

On the largest scale, we can’t help but talk about space, things in space, and the
colossal arc of time. Events in space happen on a time scale that makes geological
time seem hurried, in no small part because it takes eons for anything to travel to
anything else.1 Gravity, despite being a simple attractive force, twists the matter in
the universe into a beautiful fractal of shapes, from light-seconds to tens of billions
of light-years across.

The defining characteristic of space, not surprisingly, is the amount of room it
has and the profound dearth of things to fill it (Figure 1.1). Space is so completely
empty that we can see, with crystal clarity, to the edge of the observable universe.2

A key part of understanding the universe comes from relativity, which describes
the nature of time and space themselves. For most of history, time and space were
seen as a static stage; we could rest assured that the distance and duration between
events was fixed. But a century ago, a strange, unshakeable property of light was
becoming difficult to ignore: light always travels at the same speed regardless of
how fast you’re moving when you measure it (Figure 1.2).

If light passes by at speed c, then you’d expect that if you were running, it would
pass you at “c minus running speed”. But it doesn’t. It passes at c no matter what.

Speed is just distance over time (as in “miles per hour”). But since one particular
speed, c, refuses to change for differently moving observers, distance and time have
to change for them instead. Special relativity is the study of the interrelationship
of time, distance, and the speed of light. It describes a universe with a bizarre
underlying geometry that incorporates both space and time into a single framework
ingeniously named “spacetime”.

Fig. 1.1 The Earth-Moon system (1:5,000,000,000 scale) is an unusually high concentration of
matter in a universe that, despite containing everything, is profoundly empty.

1The last time the solar system was on this side of the galaxy, one “galactic year ago”, all of the
continents were smashed together in Pangaea and dinosaurs had only just begun to differentiate
from reptiles.
2If we look perpendicular to the disk of our galaxy there’s almost nothing in the way, but our view
across the disk of the Milky Way is blocked by local stars, gas, and dust.
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Fig. 1.2 The venerable Michelson-Morley experiment (1887): Despite being on a planet whipping
around the Sun at 30 km/s (in a direction that changes throughout the year), Michelson and Morley
found that light behaves as though the whole experiment were standing still. They sent light along
perpendicular paths, recombined it, and observed an interference pattern. If anything had changed
how long it took for light to make the journey along either path, the interference pattern would have
changed. It didn’t.

Spacetime geometry isn’t like Euclidean geometry3; it changes in the presence
of stuff.4 Einstein discovered that the acceleration we feel from gravity is exactly
the same as regular acceleration. In conjunction with the (at that time) new
philosophies of special relativity, general relativity was born, ushering in our
modern understanding of not just gravity, but the nature of the universe at large.

In space, gravity is the rule of the day and relativity is the key to understanding
both. This chapter is about things in space, spacetime, and the universe itself.

3“Euclidean geometry” is the stuff you learn in a regular geometry class. It was named after Euclid,
because he bothered to write it down in a book: “Euclid’s Elements”.
4Matter or energy in any form.



4 1 Big Things

1.1 What would Earth be like to us if it were a cube?

The Earth is really round. It’s not the roundest thing ever, but it’s high on the list.
If the Earth were the size of a basketball, our mountains and valleys would be
substantially smaller than the bumps on the surface of that basketball. And there’s
a good reason for that. Rocks may seem solid, but on a planetary scale they’re
squishier than soup. A hundred mile column of stone is heavy, so the unfortunate
rocks at the bottom tend to pulp in a hurry. Part of what keeps mountains short is
erosion, but equally important is that the taller a mountain is, the more it wants to
sink under its own weight. So as a planet gets bigger and gains more gravity, the
weight of the material begins to overwhelm the strength of that material, and the
planet is pulled into a sphere (Figure 1.3).

So a tiny planet could be cube shaped (it’s not likely to form that way, but this is
what hypotheticals are for). Something the size of the Earth, however, is doomed to
be round.

Life on a cubic Earth would be pretty different. Although gravity on the surface
wouldn’t generally point toward the exact center of the Earth anymore (that’s a
symptom of being a sphere), it will still point roughly in toward the center. The
closer you are to an edge, the more it will feel as though you’re on a slope. So,
although it won’t look like it, it will feel like each of the six sides forms a bowl.
This has some very profound effects (Figure 1.4).

Assuming that the seas and atmosphere aren’t held in place by the same
mysterious forces holding the rock in place, they would flow to the lowest point
they can find and puddle in a small region in the center of each face, no more than
a thousand miles or so across. However, both the seas and atmosphere would be
several times deeper; which doesn’t count for as much as you might think. Here on
Earth (sphere-Earth), once you’re a mere five kilometers above sea level most of the
air is already below you.

The majority of the cube-Earth’s surface would be vast, barren, and absolutely
sterile expanses of rock exposed to space. If you were standing on the edge of a face

Fig. 1.3 Phobos (left), a very small moon about 20 km across, isn’t big enough to generate the
gravity necessary to crush itself into a sphere. Unlike its host planet Mars (right).



1.1 What would Earth be like to us if it were a cube? 5

Fig. 1.4 Distance to the center of the Earth vs. longitude. If you walk around the Earth’s equator
(left) your altitude stays almost perfectly even. If you walk around the cube-Earth’s equator, cutting
four of the faces in half, you’d experience altitudes changes as great as 2,100 km. The eight corners
of the cube would be a full 3,800 km higher than the centers of each face. For a sense of scale, Mt.
Everest (a paltry 8.8 km) is shorter than these lines are thick.

Fig. 1.5 A cross-section through a face. Gravity still points roughly toward the center of the cube-
Earth (although in some areas it can point as much as 14ı away from the center). As a result, the
water (blue) and air (light blue) flows “downhill” and accumulates at the center of each face. This
picture is way out of scale; there is no where near this much air and water on our Earth.

and looked back toward the center, you’d be able to clearly see the round bubble of
air and water extending above the flat surface. I strongly suspect that it would be
pretty.

All life (land based life anyway) would be relegated to a thin ring around the
shore of those bubble seas a couple dozen miles across (Figure 1.5).

What’s really cool is that the cube-Earth would have six completely isolated
regions. There’s no good reason for the life on each face to be related to the life on
each of the other faces. “Panspermia”, wherein an impact event throws rocks hosting
microbes into space, might cause the six sides to share common single-celled
ancestors. More complex organisms would need to make the (entirely impossible)
walk from one face to the next. They’d be stuck. If the biospheres took different
routes, you could even have a nitrogen/oxygen atmosphere on some faces (like we
have today) and a hydrogen/nitrogen/carbon-dioxide atmosphere on others (like we
had three billion years ago).5

5The “Great Oxygenation Event” took place about 2.5 billion years ago, when a bunch of
cyanobacteria showed up in the oceans and decided to burp out a bunch of oxygen. Evolution
being an ultimately random process, this could have happened earlier or later or not at all.
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Fig. 1.6 This Cube-Earth is a lot more livable than it should be.

The small area of each region would also affect (which is to say “end”) large-
scale air and water movement. Hurricanes wouldn’t be a problem, but by the same
token the cube-Earth would have a really hard time equalizing temperature. If
you’ve jumped into the Pacific Ocean on the west coast (of the United States) you’re
familiar with the teeth-chattering horror of the Arctic currents, and if you’ve been in
the Atlantic Ocean on the east coast (USA again) you’re no doubt familiar with the
surprisingly pleasant equatorial currents. The point is, there’s a fantastic amount of
thermal energy being carried around our planet by air and water. As one region heats
or cools, it creates currents that span the globe. On cube-Earth, you’d have to deal
with huge seasonal temperature fluctuations. Assuming that the cube was oriented
with the poles in the center of two of the faces, then two of those bubble seas would
take the form of solid ice cap domes, while the other four would be sweltering hot
(Figure 1.6).

If I had to guess, it’s unlikely that complex life would evolve on a cube-Earth.
Complex life (like us) is remarkably picky. However! If life did bother to exist,
then their space program would be as easy as a long walk, and their most attractive
physicists would spend their time pondering what a round Earth would be like.
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1.2 Why does going fast or being lower make time slow
down?

Back in the day, Galileo came up with the “Galilean Equivalence Principle”, which
states that all the laws of physics work exactly the same regardless of how fast
you’re moving or indeed whether or not you’re moving.6 What Einstein did was to
tenaciously hold onto the Galilean equivalence principle, in spite of what common
sense and everyone around told him. It turns out that the speed of light can be derived
from a study of physical laws. But if physics is the same for everybody, then the
speed of light, hereafter “c”, must be the same for everybody. The new principle, that
the laws of physics are independent of velocity and that c is the same for everybody,
is called the Einstein Equivalence Principle (EEP).

Fast things experience less time

One of the better ways to understand this is to actually do the calculation, then sit
back and think about it. First, when physicists talks about time, they’re talking about
something remarkably concrete: time is what clocks measure. Second, relativity
hinges on the invariance of c, so a good place to start is to ask yourself “How can
you connect the speed of light and clocks?”. The short answer is, build a “light
clock”.

A light clock is a pair of mirrors, a fixed distance d apart, that bounces a
photon back and forth and “ticks” at every bounce. What follows is essentially the
exact thought experiment that Einstein proposed to derive how time is affected by
movement (Figure 1.7).

Let’s say Alice is holding a light clock and runs past Bob with speed v. Alice is
standing still (according to Alice) and the time, � , between ticks is easy to figure out:
it’s just � D d

c . From Bob’s perspective, the photon in the clock doesn’t just travel
up and down, it must also travel sideways to keep up with Alice. The additional
sideways motion means that the photon has to cover a greater distance, and since it

Fig. 1.7 The proper time, � , is how long it takes for the clock to tick from the clock’s point of view.
The world time, t, is the time it takes for the clock to tick if you’re moving with a relative velocity
of v.

6Acceleration is a different story. Acceleration screws everything up.
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travels at a fixed speed (EEP!) it must take more time. The exact amount of time
can be figured out by thinking about the distances involved. Mix in a pinch of
Pythagoras, and you have the time between ticks for Bob: t D dp

c2�v2
. Since t > � ,

Bob sees Alice’s clock ticking slower than Alice does.
It turns out that the most enlightening quantity here is the ratio:

t

�
D

c

d

d
p

c2 � v2
D

c
p

c2 � v2
D

s
c2

c2 � v2
D

s
1

1 � v2

c2

D
1q
1 � v2

c2

This equation is called the “gamma factor”. It’s so important7 in relativity, that
it’s worth writing it again:

� D
1q
1 � v2

c2

You can easily reverse this experiment (just give Bob a clock), and you’ll find
that Alice sees Bob’s clock running slow in exactly the same way. It may seem
at first glance that the different measurements are an illusion of some kind, but
unfortunately that’s not the case. For Alice the light definitely travels a shorter
distance and the clock ticks faster. For Bob the light really does travel a greater
distance and the clock verifiably ticks slower. They’re both right, just not talking
about exactly the same thing. “The future direction” is a lot like “to the right”; it can
be a different direction for different observers.

A reasonable question, that eventually occurs to everyone, is “sure it works for
light clocks, but what about not-weird clocks?”. The easy way to deal with this is to
duct tape a regular clock to a light clock. If they’re in sync in their rest frame, then
they’ll be in sync (and slower) if they’re moving at high speeds. If they didn’t stay
in sync, then you’d have a way to tell the difference between a moving frame and
a stationary frame. By comparing your two clocks you’d be able to detect whether
or not you’re moving, and even how fast, by measuring how out of sync they are.
But that’s explicitly ruled out by the Equivalence Principle: there is no physical
difference between moving and sitting still.

The lower the slower

Less commonly known, is that the lower you are in a gravity well, the slower
time passes. Someone on a mountain will age very, very, very slightly faster than
someone in a valley.8 This falls out of general relativity (as opposed to special
relativity), and the derivation is substantially more difficult than the one above.

7� isn’t just a description of how time is different between moving observers, it also describes
“relativistic mass” (the apparent increase in mass of fast objects) and length contraction. That is to
say, when � D 2 you see the other person’s clock ticking at half the speed, they’re half the length
in the direction of motion, and seem to have twice the mass.
8Someone hanging out on the top of Mt. Everest is aging about one part in a trillion faster than
someone hanging out on the beach. Just one more reason not to climb Everest.
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Fig. 1.8 An object, moving
sideways, enters a room
mounted on a rocket in deep
space (left) or sitting on the
ground (right). In both cases
the room is accelerating
upwards, so the object falls.
There is no physical way to
tell the difference between
these two rooms without
looking out a window. This
equivalence is the basis of
our understanding of gravity.

Einstein scribbled down special relativity in a few months, but it took him another
ten years to get general relativity figured out.

Albert’s insight (a much bigger jump than the EEP) was that gravitational
acceleration and inertial acceleration are one and the same.9 So the acceleration
that pushes you down in a rocket does all the same things that the acceleration
due to gravity does. There’s no way whatsoever to tell if your rocket is on and
accelerating you through space, or if the rocket is off and you’re still on the launch
pad (Figure 1.8).

With that equivalence in mind, here’s a good way to picture why either accelera-
tion or gravity cause nearby points to experience time differently (Figure 1.9).

Alice and Bob (again) are sitting at opposite ends of an accelerating rocket. Alice
is sitting at the top of the rocket, and she’s shining a red light toward Bob, who’s
taken up position at the bottom of the rocket. It takes some time (not much) for
the light to get from the top of the rocket to the bottom. In that time Bob has had
a chance to speed up a little, so by the time the light gets to him it will be a little
blueshifted. Again, Alice sees red light at the top and Bob sees blue light at the
bottom.

The time between wave crests for Bob is short, while the time between wave
crests for Alice is long. Say, for example, that the blueshift increases the frequency
by a factor of two, and Alice counts ten crests per second. Bob will count twenty
crests per second and therefore, since no new crests are being added, two seconds
of Alice’s time happen in one second of Bob’s time. Alice is moving through time
faster.

9Einstein claims that his happiest thought was “The gravitational field has only a relative
existence. . . Because for an observer freely falling from the roof of a house—at least in his
immediate surroundings—there exists no gravitational field.” Einstein, like all physicists, had a
grim, slapstick sense of humor.
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Fig. 1.9 Alice shines a light
from the top of a rocket to the
bottom. By the time Bob sees
it, he’s moving a little faster,
so the light is blueshifted.

Fig. 1.10 You can calculate
the time dilation between two
altitudes by taking the speed
something is moving when it
gets to the bottom of its fall
and plugging that into � .
Excluding black holes, this
works really well.

Objects in free-fall don’t worry about time dilation the way accelerating objects
do. Falling clocks “keep the correct time” of the altitude from which they fall. This
insight gives us a cute way to figure out the rate that time is passing at different
altitudes. Rather than wrestle with the horrors of general relativity, you can just
look at how fast those clocks are falling, v, and plug that value into � D 1r

1� v2

c2

(Figure 1.10).
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The “escape velocity” of Earth is about 11 km/s. This is both how fast you need
to travel upward to never fall back to Earth, and how fast something would be falling
if it “fell from infinity”. In practice, if you fall from merely very far away, you’ll be
moving at very nearly escape velocity when you hit the ground. Plugging 11 km/s
into � we get � D 1:00000000067. That’s pretty close to one, which means that
time in deep space progresses at about the same rate as time here on Earth. Being
here means that we experience about one second less every sixty years.
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1.3 Why does entropy always increase and what is the “heat
death” of the universe?

Entropy increases because it’s overwhelmingly unlikely to decrease. For example,
if you throw a bucket of dice, you’ll find that about a sixth of them will be 1, about
a sixth will be 2, and so on. This has the most ways of happening, so it’s the most
likely outcome, and for the same reason it’s the outcome with the highest entropy
(Figure 1.11).

In contrast, you wouldn’t expect all of the dice to be 4 at the same time, or to
write out the first thousand digits of � ,10 or otherwise assume any particular pattern.
Those are very unlikely and very low entropy outcomes, because there are relatively
few ways that they can happen (Figure 1.12).

“Entropy”, as it is used in physics, is just a mathematical tool for extending the
same idea down to the atomic scale, where we don’t have a nice idea like “dice”
to work with. It turns out that there are more ways for things to be evenly spread
out than concentrated. If you spill some sand, it’ll get everywhere. If you turn on a
porch light, the photons will scatter into deep space. And if you have a hot object
next to a cold object, then the heat will spread so that the cooler object heats up and
the hotter object cools down. There are more ways for things to be mixed and spread
out than sorted and collected.

The same processes play out on a much larger scale. The Sun and every other star
are radiating heat into the universe. But they can’t do it forever. Eventually the heat
will spread out so much that everything will be the same temperature. The same,
very cold, temperature. The vast majority of the universe is already screaming cold,
so the heat death of the universe is mostly about burning through all of the fuel

Fig. 1.11 High entropy.
Arrangements of lots of dice
tend, over time, to end up like
this.

10In base 6.
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Fig. 1.12 Audrey Hepburn is
one of the lower entropy
states you’ll ever see. Or
rather, will never see, because
it’s so unlikely. (You may have
to sit back and squint a little
to see it.)

Fig. 1.13 The cold and unyielding cosmos.

that exists (hydrogen) and mixing the heat created into the ever-expansive, cold, and
unyielding cosmos. Both the fusing of hydrogen11 in stars and the distribution of
heat are processes which increase entropy (Figure 1.13).

11Larger stars can fuse heavier elements all the way up to iron, but hydrogen provides practically
all of the kick.
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The only reason that anything ever happens is because of an imbalance in
energy.12 Water flows downhill because in so doing it moves from high gravitational
potential to low and steam engines push because the steam flows from high pressure
and temperature to low. But you can’t have waterfalls in the middle of the ocean,
because the water is already all at the same level.13

Once everything is the same temperature and there’s nothing left to generate new
heat, the universe attains a “steady state”. With no energy differences, there’s no
reason for anything to change what it’s doing. Heat death is the point at which the
universe has finally settled down completely (or almost completely), and nothing
interesting ever happens again. We can expect that for a tremendously long time
after all of the stars have burned down to cold blobs there will be the occasional
collision of objects in space or the final “pop” of a black hole radiating the last of
its matter with Hawking radiation, but even that has to stop eventually.

That all sounds depressing, but it is a fantastically long time away. Assuming
nothing too terrible happens, Earth should be able to support life for another half
billion to four-and-change billion years. That’s much, much longer than the human
race will be around.14 That time frame is based on the lifetime of our Sun which,
like most Sun-mass stars, has a lifetime of about ten billion years. Bigger stars have
higher pressures in their cores, which means they fuse hydrogen faster and burn out
much faster, but stars smaller than our Sun can burn quietly and consistently for
trillions (with a T, trillions!) of years. If there’s even a little life in the universe, it’ll
be around for an incomprehensibly long time. As far as people are concerned, the
time until the heat death is, in every useful sense, infinite. There’s plenty of time to
get your stamp collection in order.

The eminent philosophers Flanders and Swann have a more up-beat take on the
heat death of the universe:

“Heat is work, and work’s a curse,
and all the heat in the universe,
is gonna cool down. ‘Cause it can’t increase,
then there’ll be no more work, and there’ll be perfect peace.
That’s entropy, man.”

12All forces can be expressed as an energy imbalance or “potential gradient”. Mathematically:
F D �rU.
13There are certainly currents in the ocean, but those too come from heat or salinity/density
imbalances.
14Considering that life on Earth was single-celled a little over half a billion years ago, another half
billion years is a really, really long time for humanity to not evolve or die out or both.
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1.4 How can photons have energy and momentum but not
mass?

Classically,15 kinetic energy is given by E D 1
2
mv2 and momentum is given by

P D mv, where m is mass and v is velocity. If you plug in the mass and velocity
for light you get E D 1

2
0c2 D 0. But that’s no good. If light didn’t carry energy, it

wouldn’t be able to heat stuff up.
The difficulty comes from the fact that Newton’s laws paint an incomplete and

ultimately incorrect picture. When relativity came along it was revealed that there’s
a fundamental difference in the physics of the massive and the massless. Relativity
makes the (experimentally backed) assumptions that:

#1) It doesn’t matter where, whether, or how fast you’re moving, all physical laws
stay the same.

#2) The speed of light16 is invariant and is always the same to everyone.

Any object with mass travels slower than light, and that means that it may as well
be stationary (#1). Anything with zero mass always travels at the speed of light. But
since the speed of light is always the speed of light to everyone (#2), there’s no way
for these objects to ever be stationary. Vive la différence des lois!17

The point is, light and ordinary matter are very different, and the laws that
govern them are just as different. Every piece of matter is sitting still, from its own
perspective, and every massless thing is always traveling at the speed of light from
every perspective (Figure 1.14).18

That being said, in 1905 Einstein managed to write a law that works whenever:

E2 � P2c2 D m2c4

Fig. 1.14 Light and Matter:
different

15“Classical” basically means “according to Newton”.
16Which includes light, but also includes a handful of other things, like gravitons.
17“Long live the difference of laws!”
18Things traveling at light speed don’t technically have their own perspective. A photon expe-
riences neither the distance nor the time involved in any of its journeys; it just “is” when it’s
generated and then instantly “isn’t” when it hits something.
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Here E is energy, P is momentum, m is rest mass,19 and c is the speed of light. This
equation is describing an invariant in a manner similar to the way the Pythagorean
theorem, x2 C y2 D r2, describes invariant lengths. If you fix the length, r, then x
and y can only change in a very prescribed way as the angle changes (moving along
a circle).

If you fix the mass, m, then P and E can only change in a very prescribed way as
the speed changes (moving along a hyperbola20).

What Einstein did was to describe momentum and energy using the same
mathematical object, the “momentum 4-vector”. Momentum has three components
(one for each direction an object can move) with energy now included as a fourth.
Energy is literally the “time direction” of momentum.

Back to the point. For light m D 0, so

E2 � P2c2 D 0

E2 D P2c2

E D Pc

In other words, for light, energy and momentum are proportional.21 Notice that
you can never have zero momentum, since something with zero mass and zero
energy isn’t something, it’s nothing. This is just another way of saying that light
can never be stationary. We don’t normally think of light as carrying momentum.
After all, when you stand in a sunbeam you’re not pushed over by it. But in space,
where friction is a luxury,22 the tiny effect of “photon pressure” becomes noticeable.

Now consider an object with mass, m, that isn’t moving, P D 0. Plug it in and
you get

E2 � 0 D m2c4

E2 D m2c4

E D mc2

19Rest mass is the mass something has when it’s just sitting there. Basically, it’s the mass.
20For a fixed r, x2 C y2 D r2 describes a circle and x2 � y2 D r2 describes a hyperbola.
21This is worth mentioning because for matter, according to Newton’s laws, E D P2

2m . Until
relativistic effects kick in at very high speeds, energy is proportional to the square of momentum.
22Here on Earth things tend to come to a halt quickly because they run into other stuff. In space
even a tiny bump sends things flying. This is really annoying for astronauts.
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That should look familiar!
Einstein’s clever equation, E2 � P2c2 D m2c4, is based on our modern

understanding of the geometry of spacetime. It works with complete generality,
including both massive and massless particles. Famously, it says that mass has
energy, E D mc2, but it also says that light has momentum, E D Pc.

Gravy

If Einstein’s equation is true and works, then why did we once think that momentum
was P D mv? It turns out that Newton’s physics is just a special case of Einstein’s
relativity. When the velocities involved are small compared to the speed of light,
Newtonian physics works well enough that Newton and his compatriots would never
have noticed the difference.

In relativity, the energy of a massive particle is E D �mc2, where � D

q
c2

c2�v2
.

Throwing that into E2 � P2c2 D m2c4 and solving for P we get:

m2c4 D E2 � P2c2

m2c4 D �2m2c4 � P2c2

P2 D m2c2
�
�2 � 1

�
P2 D m2c2

�
c2

c2�v2
� 1

�
P2 D m2c2

�
v2

c2�v2

�
P2 D m2v2

�
c2

c2�v2

�
P D mv

q
c2

c2�v2

P D �mv

When v is much smaller than c, � � 1 and P � mv. Newton’s equation for
momentum, P D mv, is accurate to less than one part in a million of the correct
value so long as v is slower than about 1,500,000 kph. There are reasons why the
Royal Society didn’t notice anything amiss.
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1.5 What is the twin paradox?

The Twin Paradox is a relativistic effect that shows up when different observers take
different paths between two events and find that they experience different amounts
of time. The classic narrative for describing the Twin Paradox, not surprisingly,
involves twins and, somewhat surprisingly, doesn’t involve paradoxes.

The story is this. You start with twins on Earth, Alice and Barb, who are clearly
the same age. Sick of sharing a birthday, Barb leaves Earth (event 1) for a trip to
another star system (doesn’t matter where) at nearly the speed of light, then turns
around and comes back. When the trip is over and the twins are reunited (event 2),
Alice will literally be older than Barb. The traveling twin experiences less time
(Figure 1.15).

Fig. 1.15 The situation: One twin goes on a trip (fast) while the other twin stays on Earth.
Sometime later the traveling twin returns to the Earthbound twin and they find that the traveling
twin has experienced less time and aged less than her sedentary sibling.
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Fig. 1.16 Out and back: In
both situations Barb (blue)
experiences the same
acceleration when she turns
around to come back to
Earth, where Alice (aqua) is
sitting around. The situation
on the right involves twice the
distance traveled and twice
the difference in experienced
time. Acceleration is not what
causes the twin paradox. The
source of said “paradox” is
the size and shape of the path
overall.

In relativity23 there’s no difference between being stationary and moving at a
constant velocity. On the surface of it, the only difference between Alice and Barb
is that, in order to return home, Barb has to accelerate (turn around) at some point.
So is acceleration the secret to the twin paradox? Nope. The exact same acceleration
applied at different times causes the paths to be different shapes and the shape is
what’s important (Figure 1.16).

In all of the pictures that follow the “time direction” is up and one of the (three)
space directions is horizontal.

The ordinary equation for distance, D, that we’re used to is

D2 D �x2 C�y2 C�z2

�x is the difference in the x coordinates between the two points in question (same
for �y and �z). This is just the Pythagorean theorem. This equation for distance
stays constant when you rotate or shift, which is extremely handy because no matter
where a thing is or how it’s oriented, it should always be the same size and the math
needs to reflect that (Figure 1.17).24

Unfortunately, you find that when you start involving time and movement, this
isn’t a particularly good measure of the distance between two points. For example,
distances are different for different observers because of length contraction (as
completely bizarre as it sounds, objects really are shorter in the direction of motion
when they pass by at high speeds).

23Which is to say: “in reality”.
24This is rule number one in physics. If your math doesn’t describe reality, then don’t use it.
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Fig. 1.17 If you move a stick to a new location or rotate it, its length, D, stays the same. We use
the equation D2 D �x2 C�y2 because while the difference in position between the two ends (�x
and �y) may change, the length of the vector (pardon me: “stick”) stays the same.

So, we need a better measure for spacetime distance, and the one that works
is called the “Spacetime Interval” or the “Lorentz Interval” or the more convivial
“Interval”:

S2 D c2�t2 ��x2 ��y2 ��z2

The advantage here is that, no matter what, the interval between any two “events”
in spacetime (two locations and times) is always the same, despite any rotating,
shifting, or relativistic weirdnesses.25 That’s important, since relativity screws up a
lot of quantities, so it’s good to have something invariant to get your feet under you.

If you apply the interval to yourself, something funny happens. No one ever really
feels like their own position is changing (Figure 1.18), so �x D �y D �z D 0 and

S2 D c2�t2 � 02 � 02 � 02

therefore

S D c�t

It’s describing the amount of time you’ve experienced! This makes the spacetime
interval physically meaningful. More generally, the interval of a path is the same as
the amount of time experienced on that path. It’s easy to use, so it gives us a quick
tool for figuring out how much time something else has experienced.

Now to understand the twin paradox, all that’s left is to draw a picture
(Figure 1.19) and do a little calculating. Here’s an example. The difference between
Alice and Barb’s velocity is 0:6c (60% of light speed). Alice sits still (from her
perspective) and experiences ten years, while (from Alice’s perspective) Barb travels
three light-years in five years at 0:6c and then travels back for another five years.
From Barb’s perspective, each leg of her trip took four years.

While the distances, durations, and even directions of all of the paths change from
perspective to perspective, the spacetime intervals always stay the same. Whether

25It may concern you that a squared quantity might be negative. Don’t worry about it. The important
thing is that S2 doesn’t change.
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Fig. 1.18 Without looking around, there is no physical way to determine whether or not you’re
moving. Sitting still and moving at a constant speed are indistinguishable in every sense.

Fig. 1.19 Alice stays on
Earth while Barb takes an
out-and-back trip at 0:6c.
Using the spacetime interval
we can figure out how much
time they each experience.
Alice experiences 10 years
(102 D 102 � 02) while Barb
experiences two 4 year trips
(42 D 52 � 32).

or not Alice is moving, and whether or not Barb accelerates at some point, have
nothing to do with who experiences more or less time. The difference lies in who
has a straighter path (Alice) and who has a curvier path (Barb).

Ultimately the Twin Paradox is due to the weird way geometry works in
spacetime vs. space. In normal geometry a straight line is the shortest path between
two points, and that distance is measured with a ruler. But in spacetime a straight line
is the longest path between two events, and that “distance” is measured with a clock.
In a nutshell: the more circuitous a path is, the less time will be experienced by
things following that path. The twin paradox has nothing to do with who’s moving
and who’s stationary.
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1.6 Why are so many things in space flat disks?

In a word: “accretion”.

Fig. 1.20 Accretion: making stuff flat for billions of years.

Accretion is the process of matter gravitationally collapsing from a cloud of dust
or gas or (usually) both. Before thinking about what a big cloud of gas does when
it runs into itself, it’s worth thinking about what happens to just two clumps of dust
when they run into each other (Figure 1.21).

In a perfectly elastic collision (one that doesn’t lose energy), objects will bounce
out at about the same angle that they came in. Most collisions are inelastic, which
means they lose energy, and the angle between the objects’ trajectories decreases
after a collision. In the most extreme inelastic case, the particles will stick together.
For tiny particles this is more common than you might think; on the scale of dust
grains, electrostatic forces play a major, and sticky, role (Figure 1.22).

Collisions release energy as heat and light. This loss of energy causes the cloud
to physically contract, since losing energy means the bits of dust and gas are moving
slower and falling into lower orbits. But collisions also make things “average” their
trajectories. So while a big puffy cloud may have bits of dust and gas traveling
every-which-way, during accretion they eventually settle into the same, average,
rotational plane (Figure 1.23).

Each atom of gas and mote of dust moves along its own orbital loop, pulled by
the collaborative gravitational influence of every other atom and mote (there’s no
one point where the gravity originates). While the path of each of these is pretty
random, there’s always net rotation in some direction. Everything in space has at
least a little bit of spin. This isn’t a big claim. Try throwing something into the

Fig. 1.21 Left: Most
collisions are inelastic, which
means they lose energy and
the objects’ trajectories are
“averaged” a little. Right: In
the most extreme case the
objects stick together.
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Fig. 1.22 Ordinary table salt
in zero gravity spontaneously
clumping together due to
electrostatic attraction that’s
normally too weak to notice.
This mechanism is suspected
to be important during the
earliest stages in the
formation of solid objects in
space, before they’re big
enough for gravity to be
effective.

Fig. 1.23 Accretion, if undisturbed, does a really good job of bringing almost all of the involved
material into the same orbital plane. This is Saturn, its moon Titan, and the razor-thin arc of
Saturn’s rings seen edge-on.

air with no spin whatsoever or try pouring coffee into a cup without any swirling.
That same turbulence shows up naturally at all larger-than-coffee-cup scales in the
universe, so every chunk of cloud will be turning (at least a little) in some direction.
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Fig. 1.24 Bottom: The planets always lie within the same plane, “the ecliptic”. Since the Earth
is also in this plane, the ecliptic appears as a band in the sky where the Sun and all of the planets
can be found. Top: Jupiter’s moons lie in a similar plane around Jupiter.

Things in the cloud will continue to run into each other until everything in that
cloud is doing one of three things: 1) flying off into deep space, 2) sitting in a clump
the center, or 3) moving with the flow. Most of the cloud ends up in that central
clump. For example, our central clump, the Sun, makes up 99.86% of the matter in
the solar system. All of the matter in our solar system is either in the Sun or very
lucky. The stuff that stops colliding and goes with the flow forms a ring. Anything
not in the plane of the ring must be on an orbit that passes through it, which means
that it will continue hitting things and losing energy. Eventually, an “incorrectly
orbiting” object will either find itself co-orbiting with everything else in the ring, or
will lose enough kinetic energy to fall into the planet or star below.

Those rings are pretty exciting places themselves. Because nothing is perfect,
there are bound to be lumps of higher density inside those rings that draw in
surrounding material. Eventually this turns into smaller accretion disks within the
larger disk. Our solar system formed as a disk, which is why all of the planets lie
in the same plane: “the plane of the ecliptic”. One of those lumps became Jupiter,
which has its own set of moons that also formed in an accretion disk around Jupiter.
In fact, Jupiter’s moons are laid out so much like the rest of the solar system (all
orbiting in the same plane) that they helped early astronomers to first understand the
solar system as a whole (Figure 1.24). It’s hard to understand how the planets are
moving from a vantage point on the surface of one of those moving planets,26 so it’s
nice to have a conveniently packaged example like Jupiter (Figure 1.25).

26Earth, for instance.
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Fig. 1.25 The combined motion of both Earth and Mars is responsible for the weird path Mars
takes through Earth’s night sky.

That all said, those lumps add an element of chaos to the story. Planets and moons
don’t simply orbit the Sun, they also interact with each other. Sometimes this leads
to awesome stuff like planets impacting each other and big explosions. The leading
theory behind the formation of our Moon is one such impact throwing big swaths
of Earth’s crust into orbit. But these interactions can also slingshot smaller objects
into weird, off-plane orbits. Knowing that planets tend to be found in the same
plane makes astronomer’s jobs that much easier. From Earth, the ecliptic is a thin
band where all of the other planets can be found. Pluto was the second dwarf planet
found27 because it orbits pretty close to the plane of all the other planets. The dwarf
planet Xena and its moon Gabriel orbit way off of the ecliptic, which is a big part
of why they weren’t found until 2005 (the sky is a big place after all). Xena and
Gabriel’s official names are “Eris” and “Dysnomia”, respectively, but I support the
original discoverer’s labels, because they’re amazing. So things can have wonky
orbits, but they need to do it way, way out there, where they don’t inevitably run
into something else. Xena is usually about twice as far out as Pluto, which itself is
definitively way, way out there.

Not all matter forms accretion disks. In order for a disk to form, the matter
involved has to interact. Gas and dust do a great job of that. But once they’ve
formed, stars barely interact at all. For example, when the Andromeda and Milky
Way galaxies hit each other, four billion years from now, it’s unlikely that any of
their hundreds of billions of stars will smack into each other; they’re just too small
and far apart. However, the giant gas clouds in each galaxy will be able to slam into
each other easily, sparking a flurry of new star formation. In four billion years, we
can expect the sky will be especially pretty.

27Ceres, the largest object in the asteroid belt, was the first by several hundred years.
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1.7 Why isn’t the shortest day of the year also the day with
the earliest sunset?

The shortest day of the year is the Winter Solstice, which is on or around December
21st. However, the earliest sunset typically happens a few weeks earlier, around
December 10th. You’d think that the shortest day would have the earliest sunset, but
reality takes another view.

As the Earth moves around the Sun, it needs to turn slightly more than 360
degrees to bring the Sun to the same place in the sky, because during the course
of that day the Earth has also moved about one degree in its orbit (360 degrees over
365 days), which puts the Sun about one degree away from where it “should” be.
It takes 23 hours and 56 minutes for the Earth to turn all the way around once, a
“sidereal day” (Figure 1.26).28

The standard 24-hour day isn’t quite the time from noon to noon, a “solar day”,
it’s actually the average noon-to-noon time.29 That average time is set in stone and
it’s the time your watch reads. After all, with most clocks today being accurate to
within a couple minutes a year,30 it’s easier to ignore the Sun and just go with your
watch.

Because the Earth’s orbit is elliptical, the angle we cover every day in our orbit
changes. When we’re farther from the Sun, the angle doesn’t change as fast, and the
solar time gets a little ahead of standard time. When we’re closer, the angle changes
faster and the solar time falls a little behind standard time (Figure 1.27).

Fig. 1.26 Every day Earth turns slightly more than one full rotation. As seen from above the north
pole, the Earth both turns on its axis and orbits the Sun counter-clockwise.

28The sidereal day is defined with respect to stars, which are distant enough that they’re almost
perfectly stationary in the sky.
29Averaged over the year.
30Or regularly reset with respect to an atomic clock somewhere.
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Fig. 1.27 When we’re
farther from the Sun, Earth
orbits slower, the angle we
sweep out is smaller, and the
Sun moves ahead of our
clocks. This is cumulative, so
the Sun rises and sets further
and further ahead of
schedule. When we’re closer,
the opposite occurs and the
Sun rises and sets behind
schedule.

It so happens that the closest we get to the Sun corresponds with the Winter
solstice, but not exactly. The “perihelion”31 falls around January 3rd, a couple weeks
after the solstice.

Solar time falls behind more and more between November and February (losing
the most time on January 3rd), thus pushing the sunset later. The length of the day
gets shorter up until December 21st, thus pushing the sunset earlier. The strength
of these effects happens to balance around December 10th (give or take). Before
then, the length of the day has a bigger effect, and afterward the standard/solar time
discrepancy has a bigger effect.

The effect is pretty small, so in general the length of the day is the only thing you
need to worry about; solar time never gets more than 15 minutes away from standard
time. When standard time became the standard, sundial makers started putting an
analemma on their sundials so people could correct for the difference (Figure 1.28).

On a mostly unrelated tangent: The seasons and the length of the day are caused
by the tilt of the Earth’s axis. The fact that the north pole points away from the Sun
(“winter”) at about the same time that the Earth is closest to the Sun leads to less
extreme seasons in the northern hemisphere. When the axis tilts away in the north
at the same time that the Earth is farthest from the Sun, the seasons in the north are
more extreme. This leads to more snow cover, and since the north has more land,
more sunlight is reflected back into space (snow is white), which cools the planet
more, which helps lead to ice ages (Figure 1.29).

The Earth’s axis “wobbles” in a circle over the course of about 26 thousand years.
In about 13 thousand years, the north pole will point away from the Sun when the
Earth is farthest away. As a result, glacial periods have cycles of around 26 thousand

31At perihelion, Earth is a mere 147 million kilometers from the Sun, while at aphelion we’re a
staggering 152 million kilometers out.
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Fig. 1.28 You don’t have to trust me. Set up a camera anywhere on Earth and take pictures of the
sky at the same time every day. The “analemma” shows up on sundials so that you can correct for
the Sun being in the “wrong” place.

Fig. 1.29 Snow on the ground reflects light. Snow on the ocean doesn’t.
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Fig. 1.30 The Martian analemma: the position of the Sun photographed at the same time every
few Martian days for a Martian year, as seen from the landing site of Pathfinder (on Mars).

years. Also as a result of our moving axis, the North Star has not been, and will not
be, the North Star for long. So soak it up. Ancient Egyptians (and everyone else at
the time) had to average between two stars, like savages.

The exact shape of the analemma is a function of the tilt of the axis, the timing
of the solstices and equinoxes, and the eccentricity (“ellipticalness”) of the orbit. As
such, every planet has its own analemma. We can easily calculate what those should
look like, but, with the exception of Mars (Figure 1.30), it’s unlikely we’ll be able
to photograph them any time soon. You can’t land a probe on the gas giants, you
can’t see the sky on Venus, and it’s such a pain to land on Mercury that we’ve never
bothered to do it.32

32Getting to Mercury involves falling toward the Sun, which builds up a lot of speed that you then
need to lose using rockets. Once you get there, there’s no air to help slow you down, so: more
rockets. If you get past all that, the surface swings from �170ıC at night to 430ıC during the day,
so your probe is unlikely to last a full mercurial mercurian year.
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1.8 What is dark energy?

The universe is expanding33 and the rate of that expansion is increasing. If the
universe were full of only matter (both regular and dark) and energy, then we’d
expect that the expansion would be slowing. “Dark energy” is the thing that is
responsible for that accelerating expansion. Now as for what exactly that “thing”
is: we have interesting and vaguely informed guesses.

Back in the day, Einstein spent some time thinking about falling elevators
and rockets and came to a few realizations.34 Over the course of a decade, he
codified those ideas into the science of general relativity; specifically the “Einstein
field equations”. The field equations describe how time and space are influenced
by the presence of big chunks of mass, like planets and stars. They manage to
explain/predict Mercury’s weird orbit, gravitational time dilation, frame dragging,
gravitational lensing, gravitational waves, and a bucket of other stuff. General
relativity has passed every test it’s been put to with flying colors. That last bit is
important: it’s easy to come up with crazy new theories,35 but hard to come up with
theories that precisely predict results that were not previously understood.

Einstein’s general relativity is an excellent system for describing space and time,
based on a remarkably simple premise. It works so shockingly well that it has
become the basis of how we talk about the entire universe.

Enter Alexander Friedmann (Figure 1.31), who happened to be thinking about
the entire universe one day. Einstein’s field equations relate mass/energy with the
shape of spacetime. So, pondered Friedmann, what happens when you apply those
equations to the universe itself? First he assumed that space can expand or contract
over time (why not?), then he threw that assumption at Einstein’s field equations to
see if they’d stick. Somewhat surprisingly, the mind-boggling size of the universe
makes this easier.

Words utterly fail when trying to describe how much “out there” is out there. On
a totally-over-the-top-large scale (billions of light-years) the matter and energy of
the universe is distributed roughly uniformly. On this scale, we describe the matter
and energy in the universe as the “cosmological fluid”, because even the largest
clumps of matter are as indistinguishable as atoms in water. These “largest chunks”
are galactic super clusters; ours is about half a billion light-years across and there
are on the order of many millions of super clusters in the observable universe. And
that’s only the observable universe. Guessing the size of the entire universe based

33Presently, the universe scales up by a little less than one part in ten billion every year.
34Einstein said that the happiest thought of his life was “For an observer falling freely from the roof
of a house, the gravitational field does not exist.” What he was doing was drawing an equivalence
between the push you feel into your seat when you accelerate in a car and the push you feel into
the ground when you stand on the surface of a planet. This simple insight led, in a decidedly not
simple way, to the theory of general relativity.
35Frankly, general relativity is one of the crazier theories out there. It’s a damn shame it works so
perfectly.
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Fig. 1.31 Alexander
Friedmann: a man who looks
exactly like you’d hope he
would.

Fig. 1.32 So you’re
somewhere. How big is it?

only on the part of it that we can see is like trying to guess the size of the Earth by
standing in a featureless open field (Figure 1.32).

Mathematically speaking, this is great; all that’s important for figuring out the
overall behavior of the universe is the average density of mass and energy, which is
roughly the same everywhere. You don’t need to stress about every star and galaxy
in the universe, or even about the size of the universe as a whole, any more than
you need to stress about every grain of sand on a beach. Without a nice simplifying
assumption like this, general relativity is notoriously difficult to work with.36

The “spacetime interval” is how you describe distance in spacetime. The same
way that regular distance is the basis of geometry in space, the spacetime interval is

36As John Wheeler succinctly put it, “Spacetime tells matter how to move; matter tells spacetime
how to curve.” In order to know what one will do, you already need to know what the other will
do. This makes the math remarkably ornery.
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the basis of geometry in spacetime. If the physical distance between two events is
dr and the difference in time between them is dt, then the spacetime interval,37 ds,
is given by

ds2 D c2dt2 � dr2

This is ordinary space with ordinary time. Nothing special.
When Friedmann said space can expand or contract over time, he said it this way:

ds2 D c2dt2 � Œa.t/�2 dr2

This is a beautifully simple guess. One of the hallmarks of a good guess is a
complete lack of specificity; a.t/ is some amount that depends on time. With the
addition of the scaling term, a.t/, Friedman was describing a universe where space
can grow or shrink over time in the sense that a bunch of things that are sitting still
will find that the distance between them can change. If a.t/ doubles, that means that
the physical distance between any two points in space has doubled.

If you figure out how a.t/ changes over time, you can know how the universe
is expanding or contracting over time. Incidentally, a.t/ also describes the cosmo-
logical redshift of light. If a.t/ doubles between when some light is emitted and
absorbed, then the wavelength of that light, like the space it’s traveling through, will
double, becoming “redder”. The oldest light in the universe was emitted when a.t/
was about 1100 times smaller than it is now.

It turns out (this is not obvious) that Einstein’s equations dictate that the scaling
constant needs to be

a.t/ D kt
2

3.wC1/

w is the weirdly named “equation of state” and k is a constant number. By very
carefully measuring the redshift of distant galaxies, we can figure out both a.t/ and
w throughout the history of the universe.

For a universe filled mostly with radiation (light, neutrinos, and matter moving
near light speed), w D 1

3
and a.t/ / t

1
2 . For a universe filled with regular matter

(you, your stuff, basically everything else, and dark matter too), w D 0 and a.t/ /

t
2
3 . In both of these cases the universe expands, and the rate of that expansion slows

down forever.

37An example of how to actually use the spacetime interval can be found in Section 1.5. The “d”
notation here is basically a flag that says “ready to be used in calculus to find lengths of arbitrary
paths”. If it bothers you, just think of “dr” as “the difference in position” (which is essentially what
it is).
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Fig. 1.33 The expansion of
space decreases the energy
density of matter by spreading
it out and decreases the
energy density of radiation by
spreading and redshifting it.
But the expansion of space
doesn’t decrease the energy
density of dark energy, it just
seems to create more.

The difference comes down to how radiation and mass are affected by expanding
space. The expansion of space decreases the density of both matter and radiation.
But radiation not only spreads out, it also gets redshifted, and that means that the
energy density of radiation drops faster than the energy density of ordinary matter.

So, we can expect that w for our universe overall should be somewhere in the
range 0 < w < 1

3
, since there’s both radiation and mass around. The expansion of

space decreases the energy density of radiation faster than matter, so over time w
should drift closer to 0 as matter becomes dominant (Figure 1.33).

But here’s the thing! Since the late 90s, we’ve been able to show that the
expansion of the universe is speeding up, not slowing down. In order for that to
happen, the equation of state, w, of the universe must be w < � 1

3
. This came as a bit

of a shock to cosmologists. But being brow-beaten by experiment and observation
is what good science is all about. Onward.

If, in addition to the mass and radiation, we include “stuff” with the equation of
state w D �1, we find that our theoretical a.t/ is a really good fit for the a.t/ we
observe. w D �1 corresponds to a uniform negative energy with a constant density
(that’s only obvious to cosmologists, who throw w’s around all the time). There are
a couple of things about that which are. . . strange. A constant density means that
as space expands there’s more of this stuff around. Matter and radiation are being
thinned out more and more by the expansion of the universe, but this very bizarre
new stuff doesn’t get thinned out. The fact that it has negative energy is just icing
on the weirdness cake.

So that’s dark energy. We’ve got theories about spacetime that work amazingly
well and a universe that’s behaving weirdly. If our theories are solid, and if the
universe is expanding the way it appears to be, then general relativity predicts that
there’s lot’s of “w � �1 stuff” around. Lacking imagination, we’ve named that stuff
“dark energy”.
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We have no real idea what dark energy is, but that’s no reason not to give
something a name. Unfortunately, dark energy and dark matter are difficult to
study38 so it’s tricky to figure out exactly how much of each is around. Of the energy
and matter around today, very roughly 75% is dark energy, 20% is dark matter, and
5% or less is regular matter. Over time, as the expansion of space waters down all
of the matter and radiation, the universe will become “dark energy dominated”.39

Because the amount of dark energy seems to be proportional to the amount of
space around, it seems fairly reasonable to say that dark energy is the “energy of
empty space”. Whatever that’s supposed to mean is now a lively topic of discussion
and debate. There are a bunch of theorists and experimentalists running around
trying to directly detect and/or describe dark energy, and with any luck they just
might do it.

38Hence the names. Dark energy and dark matter are completely different and unrelated phenom-
ena, so the similarity of their names is unfortunate. If it were up to me, they would be called “ghost
matter” and “expando energy”.
39Physicists really have a flare for dramatic names. “Dark energy dominated universe” sounds so
much more impressive than “there’s more ‘w D �1 stuff’ than not”.
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1.9 Two moving observers see the other moving through time
slower. But doesn’t one have to be faster?

One of the weird consequences of relativity is that when you see someone40 move
past at high speed, you’ll find that their clock is running slower than yours. This
isn’t an optical illusion or some mathematical artifact, it’s a real thing.41 And yet,
when they look at you, they see you moving past them (in the opposite direction),
and see your clock running slower than theirs. Again: not an illusion.

The situation is completely symmetric: both parties see themselves as stationary
with a normally running clock, and both see the other as moving with a slower-
running clock. The so-short-it’s-not-helpful resolution to this “paradox” is: if you’re
flying past each other, and never come back to the same place again to compare
clocks, what’s the problem? You may both observe the other person’s clock running
slower, but that’s not a contradiction in any physical sense.

Although if you do meet up again, then you’ve got the “twin paradox”,42 which
still isn’t a problem (or a paradox). One of the most frustrating things about the
universe is that there is no such thing as “absolute time“, which would allow you to
determine who’s right and who’s wrong. If you could ask the universe “what time
is it?” the universe’s best answer would be “that depends on who’s asking”. The
universe is kind of a smart-ass.

This diagram about lightning strikes (Figure 1.34) is pretty standard physics
fare. If you want to draw a picture of something happening in four dimensional
spacetime, you just drop two of the spacial dimensions to make things easier on
yourself. In this diagram (and all the others), time is up and space is left/right. The
red arrow is a person sitting still and moving forward in time (like you’re doing right
now, in all likelihood). The yellow triangle is a lightning strike at the bottom tip with
the light expanding out from it. The picture should make sense: the longer after the
lightning strike (the higher on the picture) the farther the light from the strike has
traveled (the wider to the left and right). “Lightning” is a common example of an
“event”, because it hits in a definite place at a very definite time. Plus lightning
is bright, so unlike most small instantaneous events it makes sense that everyone
should be able to see it.

Now, let’s say you’ve got two people: Alice, who likes to hang out near train
tracks, and Bob, who likes to ride trains on said tracks (Figure 1.35).

As Bob, sitting in the exact center of a train, passes Alice, they high-five each
other. In a remarkable coincidence, at that exact moment both ends of the train are
struck by lightning. Alice knows this because very soon after the lightning strikes,
the light from both strikes gets to her. Being smart, she realizes that the strikes must
have happened at the same time, because they happened equally far away from her,

40Or something.
41Section 1.2 goes into why.
42See Section 1.5 for more on that.
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Fig. 1.34 You don’t see an event when it happens, you see it when the light from the event gets to
you. But you can easily figure out when it did happen by dividing the distance to the event by c,
giving you the time delay.

Fig. 1.35 A train car (light
blue) moves to the right. At
the moment when Alice (red)
and Bob (blue) are eye-to-eye,
the front and back of the train
car are hit by lightning. This
moment, that Alice calls
“Now!”, is the red line.
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Fig. 1.36 The same situation from both perspectives. The thin lines are all of the points in
spacetime that Alice (red) and Bob (blue) consider to be happening at the same moment as their
high five. All the same events happen from both points of view, but not necessarily in the same
order.

and the light took the same amount of time to get to her. Moreover, being terribly
clever, she predicts that Bob will see the lightning bolt at the front of the train first,
and the lightning bolt at the back of the train second.

The speed of light,43 c, is an absolute. No matter where you are, or how fast
you’re moving, c stays exactly the same. So Alice’s reasoning is completely solid,
and she’s right when she says that the lightning bolts happened at the same time
(Figure 1.36). This method for finding out when something happened44 isn’t a stand
in for some more sophisticated technique. It is the only option. Physical laws are
“local”, which means that the only time and place anything has access to is here and
now. You only find out about distant things when something physically makes the
journey from that thing to you. For example, you don’t see something until the light
gets to you. So while Alice and Bob will agree on their high-five, they can disagree
about when and where every other event in the universe happens. Frustratingly,
physical law is just fine with that.

When you say that two things are “happening at the same moment”, or
“happening now” you’re saying that they’re on the same spacetime plane, that I’ll
call a “moment-plane”. In the same way that a regular two dimensional plane is
a big, flat subset of regular three dimensional space, the moment-planes are big,
flat three dimensional subsets of four dimensional spacetime. The high five, the
lightning strikes, and everything else in the universe at that moment are all in the

43c stands for “constant” or “celeritas” (meaning fast) because the speed of light is both of those
things.
44Measure the distance to the event, divide by c, subtract that from the time when the light got to
you.
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same moment-plane. However, (and here comes the crux) a bunch of events being
in the same moment plane does not mean that every point of view will agree that
those events happened at the same time.

Around 1900, the Michelson Morley experiment (among others) was busy
demonstrating that the speed of light seems to be the same to everyone, regardless
of whether or not they’re moving. The light around you right now is passing by at
the speed c relative to you. If you were to move at any speed in any direction, that
would still be the case; light will still pass you at c relative to you. If that bothers you
or seems strange, then you’re awake. Einstein’s great insight was “Hey everybody,
if the speed of light seems to be the same regardless of the observers’ movement,
then maybe it really is the same?” He was a staggering genius. Also, he was exactly
right.

Alice was right about Bob seeing the front bolt first and the back bolt second.
However, as far as Bob is concerned, she was wrong about why. Using the same
reasoning as Alice, he figures that: the speed of light is fixed, the distances from
him to the front and back of the train are the same, and, since he saw the front bolt
before the back, it must have happened first. And he’s right. Because the speed of
light is the same for everyone, he doesn’t need to do any kind of special adjustments;
the light travels along the train at c as though the train were sitting still. Moreover,
he thinks that the reason that Alice saw both bolts at the same time is that she’s
moving to the left, away from the first bolt and toward the second.

The first thing that most people say when they hear about the train thought
experiment is “Isn’t the person on the tracks correct, since they really are sitting
still?”. Nope! The tracks and the ground may be bigger, but there’s no physical
way to say who’s moving and who’s not. Ultimately, the only “physically real”
movement is movement relative to something else. The laws of physics are
obnoxiously egalitarian. Both Alice and Bob are completely correct. The reason this
feels like there’s a paradox is that the ideas we intuitively have about “nowness” are
wrong. As soon as two people45 are moving with respect to each other, the set of
points that they consider “now” are no longer the same; their “nows” are different
moment-planes.

After all of that lightning, trains, and Alice and Bob’s will-they-won’t-they
drama, the one big take away is: “a thing’s moment-planes tilt up in the direction of
its movement”. Bob considers a certain set of events to be happening “right now”,
but for Alice the events at the front of the train will happen later and those at the
back of the train will happen earlier (Figure 1.36).

This stuff isn’t complicated, so much as it is reality-shaking and mind-bending.
It so completely flies in the face of our everyday experience, that the mind balks. So
take a moment.46

45Or two things.
46Have some tea, walk around, consider the big picture, etc. This isn’t the sort of thing you read
once and then just understand.
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Fig. 1.37 Alice and Bob’s
moment-planes at various
times. If you were to ask
either of them “how much
time has the other
experienced?” each of them
would answer “less time than
I’ve experienced!”.

Finally, to actually answer the question, imagine a perspective in-between Alice
and Bob in which they’re flying off at equal speeds in opposite directions. This puts
Alice and Bob on equal footing, and there’s no question about “which one is right”
or “which one is moving” (Figure 1.37).

Since the moment planes of each person “tilt up in the direction of movement”,
each person is always trailing behind the other in time. When they pass each other
they each start their stopwatches. For that one moment they can agree that T D 0 for
both of them. But that’s where the agreement ends. If you ask Bob about what set of
points in the universe (both position and time) correspond to T D 7, he’ll have no
trouble telling you. Specifically, he’ll tell you “right now my stopwatch reads T D 7

and, F.Y.I., Alice’s stopwatch reads T D 5”. Bob recognizes that this is because her
clock is running slower, and he’s right. At least, he’s right in terms of how time is
flowing for him.

If you were to run over to Alice at the moment that her stop watch reads 5, she
would say “right now my stopwatch reads T D 5 and Bob’s reads T D 3:5”. She
realizes that this is because Bob’s clock is running slower, and she’s right. Notice
she doesn’t say T D 7. Once again, this is because they disagree on what “now”
means, since their moment planes aren’t the same.

The first question that should be coming to mind is something like “Fine, but
what’s really happening?” or “How is time actually passing?”. Sadly, time is a
strictly local phenomena. How it flows is determined (defined really) by relative
position and relative velocity. That is to say, there is no “universal clock” that
describes how time passes for the universe at large, only “personal clocks” that are
separate for every individual object. The only reason that there seems to be some
kind of universal clock is that we’re all moving at very nearly the same speed (at
least compared to light). Or equivalently, we’re all sitting still in very much the same
way.
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1.10 How close is Jupiter to being a star? What would
happen to us if it were?

Jupiter is a long way from being a star. That estimate was based on some old nuclear
physics (like 1980s old). By being awesome, and building neutrino detectors47 and
big computers, we’ve managed to refine our understanding of stellar fusion a lot in
the last few decades.

Although the material involved (how much hydrogen, how much helium, etc.)
can change the details, most physicists (who work on this stuff) estimate that you’d
need at least 75–85 Jupiter masses to get fusion started. By the time a planet is that
large the lines between planet, brown dwarf (failed star), and star get a little fuzzy.
In order for Jupiter to become a star you’d need to slam so much additional mass
into it, that it would be more like Jupiter slamming into the additional mass.

If you were to replace Jupiter with the smallest possible star, it would have very
little impact here on Earth. There’s some debate over which star is the smallest star
(seen so far). OGLE-TR-122b, Gliese 623b, and AB Doradus C are among the top
contenders,48 and all weigh in at around 100 Jupiters. They are estimated to be no
more than 1/300th, 1/60,000th, and 1/1,000th as bright as the Sun, respectively. So,
let’s say that Jupiter suddenly became “OGLupiter” (replaced by OGLE-TR-122b,
the brightest of the bunch, and then given the worst possible name). It would be a
hundred times more massive, 20% bigger, a hell of a lot denser, and about 0.3% as
bright as the Sun.

At its closest Jupiter is still about four times farther away from us than the Sun,
so OGLupiter would increase the total energy we receive by no more than about one
part in five thousand (about 0.02%). This, by the way, is utterly dwarfed by the 6.5%
yearly variation we get because of the eccentricity of Earth’s orbit (moving closer
and farther away from the Sun over the course of a year). There would be effectively
zero impact on Earth’s life.

There are examples of creatures on Earth that use the Moon for navigation, so
maybe things would eventually evolve to use OGLupiter for navigation or timing or
something. But it’s very unlikely that anything would die. If anything, the biggest
impact on Earth would be social. The daytime sky would now host three objects (the
Sun, Moon, and OGLupiter) worth talking about (Figure 1.38).

At its closest, OGLupiter would be around 80 times brighter than a full moon
at its brightest, so for a good chunk of every year, you’d be able to read clearly at
night. It would be very distinctively red (being substantially colder than the Sun),
but would only be about 3% as wide as the Sun in the sky. Basically a sky pimple.

47Neutrinos are produced during fusion reactions and pass through ordinary matter with ease, so
when we detect them coming from the Sun we’re looking directly at the fusion reactions in the
Sun’s core while ignoring the half-million miles of star that covers it. The fact that neutrinos almost
never interact with matter means that they’re hard to detect, but it also means we can study the Sun
day and night, since they pass through the Earth too!
48Why is every other culture better at naming stars?
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Fig. 1.38 The Moon and OGLupiter at its closest. Tatooine this is not.

The moons of Jupiter would bear the brunt of the change. They’d all stay in orbit,
but would be absolutely roasted. The most distant, Callisto, would get almost 20
times as much light as Earth does from the Sun and Europa’s frozen oceans would
be boiled off in a hurry by exposure to about 150 times as much. For comparison,
Mercury (a verifiable wasteland which can famously melt lead) only gets about 6.5
times as much light as Earth.

The biggest impact of OGLupiter would come from its mass. Jupiter has about
0.001 Sun masses, but OGLupiter would have about 0.1 Sun masses. Jupiter’s heft
already dominates the behavior of everything else in the solar system, but if it were
a hundred times more massive, then our solar system could rightfully be called a
“binary star system”. Over the last decade or so we’ve managed to find several
thousand “exoplanets” outside of our solar system and this has given us a great deal
of insight into what is and isn’t allowed (planet-wise). It turns out that if OGLupiter
were 10% the mass of the Sun, the inner planets49 would probably be fine. Our orbits
would be more chaotic, but ultimately none of the inner planets would gain enough
energy to escape. Flying out of orbit means “climbing uphill”, and OGLupiter’s
interaction shouldn’t be able to provide that extra kick necessary. For binary stars
with a mass ratio of ten to one, orbits around the main star are stable out to around
40% of the distance to the secondary star, based on computer simulations and the
planets we’ve cataloged in actual binary star systems (Figure 1.39).

“Stable” here means “doesn’t escape and doesn’t fall into either star”. That leaves
a lot of room for meandering around the inner solar system, which is not ideal if
what you want is a stable climate.50

49Mercury, Venus, Earth, and Mars.
50Which living things do.
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Fig. 1.39 Even with a tenth
of the Sun’s mass, OGLupiter
would be far enough out that
the inner planets would
probably be able to keep
orbiting the Sun. The orbits
are to scale, but Earth and
Jupiter are not.
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1.11 How does Earth’s magnetic field protect us?

High-energy particles rain in on the Earth from all directions all the time, most
of them produced by the Sun. If it weren’t for the Earth’s magnetic field we
would be subject to bursts of radiation on the ground that would be, at the very
least, unhealthy. The more serious, long-term impact would be the erosion of
the atmosphere. Massive particles51 carry far more kinetic energy than massless
particles,52 so when they strike air molecules they can sometimes kick them hard
enough to eject them into space. This may have already happened on Mars, which
shows evidence of having once had a magnetic field and a complex atmosphere,
and now has neither (Mars’ atmosphere is about one percent as dense as ours).
Fortunately for us, the most common and potentially destructive particle, protons,
have an electrical charge and as such are subject to magnetic fields (Figure 1.40).

Rule number one for magnetic fields is the “right hand rule”53: point your fingers
in the direction a charged particle is moving, curl your fingers in the direction of
the magnetic field, and your thumb will point in the direction the particle will turn.
You’ll notice that if the particle is moving in the same direction as the field, then
there’s nowhere to curl your fingers (you can’t curl your fingers in the direction
they’re already pointing). Fortunately, the only component of a particle’s movement
that matters is the component perpendicular to the magnetic field. A particle moving
in the direction of a magnetic field feels no force (Figure 1.41).

This works for positively charged particles (protons). If you’re wondering about
negatively charged particles (electrons), then just reverse the direction you got. Or
use your left hand. In fancy math this rule is written

F D qV � B

Fig. 1.40 The reason bullets work better than laser weapons is that matter does a much better job
of carrying energy and packing a punch.

51Particles with mass.
52Light.
53Named after Vilhelm Von Wright, the inventor of hands.
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Fig. 1.41 The charge and
velocity of the particle is qV,
the magnetic field is B, and
the force the particle feels is
F. In this case, the charged
particle is moving to the left
and the magnetic field points
out of the picture, so force is
going to make the particle
curve upwards.

That “�” is the “cross product” (not multiplication) and it’s basically the math
symbol for the right hand rule; it takes in two vectors (one to point your fingers
along and another to curl them toward) and produces a third (your thumb). It does
have some similarities to multiplication in that the force, F, gets proportionately
greater for greater charge, q, velocity, V, and magnetic field, B.

In addition to finding perpendicular vectors and describing electromagnetism,
the cross product is also the source of about 73.2% of all non-statistics related math
humor.54

As it happens, the Earth has a magnetic field and the Sun fires charged particles
at us55 in the form of “solar wind” and occasionally “coronal mass ejections”. The
right hand rule can explain most of what we see. The Earth’s magnetic field points
from north to south through the Earth’s core, then curves around and points from
south to north on Earth’s surface and out into space (Figure 1.42). So the positive
particles flying at us from the Sun are pushed east and the negative particles are
pushed west (right hand rule).

Since the Earth’s field is stronger closer to the Earth, the closer a particle is, the
faster it will turn. So an incoming particle’s path bends near the Earth and straightens
out far away. That’s a surprisingly good way to get a particle’s trajectory to turn just
enough to take it back out into space, where it goes back to traveling in a straight
line. The Earth’s field is stronger or weaker in different areas, and the incoming
charged particles have a wide range of energies, so a small fraction do make it to
the atmosphere where they collide with air. Only astronauts need to worry about
getting hit directly by particles in the solar wind; the rest of us only get low-energy
“shrapnel” from those high energy collisions in the upper atmosphere.

54E.g., “What do you get when you cross a lawyer with a priest? Someone perpendicular to both!”
There are many of these and legend has it that some are funny.
55As well as every other direction.
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Fig. 1.42 Roughly what the
Earth’s magnetic field is
shaped like. The Earth’s
magnetic south pole is defined
by where a compass needle’s
magnetic north points.

Fig. 1.43 The path of a
charged particle moving
perpendicular to a magnetic
field is curved into a circle,
but the component of the
velocity that points along the
field is ignored. As a result,
charged particles can spiral
along magnetic field lines.

Since magnetic fields push particles in a direction perpendicular to the direction
they were traveling, those particles can often end up spiraling in circles. After all,
if you keep turning left, where do you go? Most protons and electrons are deflected
into space, but if they lose enough energy56 they can end up captured by the Earth’s
magnetic field. Since no force is exerted along magnetic field lines (only across
them) charged particles will tend to corkscrew around those field lines and follow
them (Figure 1.43).

Around the magnetic north and south poles the magnetic field points directly
into the ground, so in those areas particles from space are free to rain in. In fact,
the Earth’s magnetic field gathers them and directs them to the poles. The result is
described by most modern scientists as “pretty”. There’s a lot of air between you
and the aurora, so all of the dangerous radiation is dealt with a long time before the
light show gets to you (Figure 1.44).

56Accelerating charges emit light and in so doing lose energy. One way to accelerate, as anyone
who’s been flung off of a carousel can tell you, is to move in a curved or circular path.
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Fig. 1.44 Charged particles from space following the magnetic field lines into the upper atmo-
sphere where they bombard the local matter. Green indicates oxygen in the “local matter”.

A tiny fraction of the incoming ions slow down enough that they neither hit
the Earth nor escape back into space. Instead they get stuck moving in big loops,
following the right hand rule all the way, thousands of miles above us. This
phenomena is a “magnetic bottle”, which traps the moving charged particles inside
of it. The doughnut-shaped bottles around Earth are the Van Allen radiation belts.
Ions build up there over time (they fall out eventually) and are still moving very fast
making it a dangerous place for delicate electronics and doubly delicate astronauts
to hang out. NASA’s solution? Don’t hang out there.

Magnetic bottles, by the way, are the only known way to contain anti-matter. If
you just keep anti-matter in a mason jar, you run the risk that it will touch the mason
jar’s regular matter and annihilate. But an ion contained in a magnetic bottle never
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Fig. 1.45 A Van Allen radiation belt simulated in the lab. Why is there a map on it?

touches anything. If that ion happens to be anti-matter: no problem. It turns out that
the Van Allen radiation belts are lousy with anti-matter, most of it produced in those
high-energy collisions in the upper atmosphere (it’s basically a particle accelerator
up there). That anti-matter isn’t dangerous or anything. When an individual, ultra-
fast particle hits you it barely makes a difference if it’s made of anti-matter or not.

And there isn’t much of it; about 160 nanograms, which (combined with 160
nanograms of ordinary matter) yields about the same amount of energy as seven
kilograms of TNT. You wouldn’t want to run into it all in one place, but as luck
would have it: you won’t. There’s a lot of room in space.

In a totally unrelated opinion, Figure 1.45 beautifully sums up the scientific
process: build a thing, see what it does, tell folk about it. Maybe give it some style
(time permitting). This globe holds a strong electro-magnet to simulate the Earth’s
magnetic field and the chamber is almost completely evacuated of air before a trickle
of ionized gas is introduced.
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1.12 What would it be like if another planet just barely
missed colliding with the Earth?

There’s a long history of big things in the solar system slamming into each other.
Recently (the last 4.5 billion years or so) there haven’t been a lot of planetary
collisions, but there are still lots of “minor” collisions. Sixty-five million years ago
(practically this morning compared to the age of the solar system) the Chicxulub
impactor57 caused a minor kerfuffle when it wiped out the dinosaurs and in 1994
comet Shoemaker Levy 9 uglied up Jupiter, briefly reminding humanity that space
exists. To date, that’s the largest thing-slamming-into-another-thing ever directly
observed (Figure 1.46).

While planets slamming or nearly slamming into each other doesn’t happen
today,58 it almost certainly did at one time. Of course, in solar systems where this is
still a serious concern, there’s unlikely to be anything alive to be concerned.

Let’s imagine that there’s another planet, “Htrae”, that is the same size and
approximate composition of Earth59 and that they find their way to each other.

Fig. 1.46 Jupiter after a run-in with Shoemaker Levy 9. Each of those black clouds is caused by
the impact of a different chunk of the same comet and each is bigger than Earth.

57“Impactor” because we don’t know what it was made of. It may have been a comet or an asteroid.
58At least in our solar system.
59Presumably populated entirely with evil goatee’d doppelgängers with reversed names.
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A direct impact does more or less what you might expect: you start with two
planets and end with lots of hot dust. We’re used to impacts that dent or punch
through the crust of the Earth, but really big impacts treat both planets like water
droplets. Rather than crushing together like lumps of clay, Earth and Htrae would
“splash” off of each other. A glancing, off-center impact “stirs” both planets, leaving
none of the original surface on either, and sends a lot of material flying. Material
shed into orbit by a glancing impact between Earth and a roughly Mars-sized ex-
planet, “Thea”, is one of the better modern theories for the origin of the Moon.60

If Htrae were to fall out of the sky, it would probably hit the Earth with a speed
at least as high as Earth’s escape velocity: 11 km/s.61 The time between when Htrae
appears to be about the same size as the Sun or Moon, to when it physically hits
the surface, would be a couple of weeks (give or take a lot). The time between
hitting the top of the atmosphere and hitting the ground would be a matter of
seconds. If you were around, you would see Htrae spanning from one horizon to the
other. A few moments before impact the interface between the atmospheres of both
planets would flare brightly as they are suddenly compressed. By “flare brightly” I
mean that the heat would cause everything on both surfaces to burst into flame in
their last uncrushed moments. People on the far side of Earth wouldn’t fare much
better. They’d get very little warning before needing to deal with the ground, and
everything on it, suddenly being given a kick from below big enough to send it flying
into space.

Most medical practitioners would likely agree that being slapped by the ground
so hard that you find yourself in space is seriously fatal.

A near miss is a lot less flashy, but you really wouldn’t want to be around for that
either. When you’re between two equal masses, you’re pulled equally by both. You
may be standing on the surface of Earth right now, but most of Earth’s mass is still
a long way away (about 4,000 miles on average). So if Htrae’s surface was within
spitting distance, then you’d be about 4,000 miles from most of its mass as well.
Nothing on the surface of Earth has any special Earth-gravity-solidarity, so if you
were “lucky” enough to be standing right under Htrae as it passed overhead, you’d
find yourself in approximately zero gravity (Figure 1.47).

Of course, there’s nothing special about stuff that’s on the surface. The surface
itself would also be free to float away and the local atmosphere would certainly take
the opportunity to wander off. On a large scale this is described by the planets being
within each other’s Roche limit,62 which means that they literally just fall apart. It’s
not merely that the region between the planets is in free fall, halfway around both

60The Moon is weirdly big for a planet as modestly sized as the Earth and physicists find it difficult
to explain how it could have formed on its own so close. Combine that with the fact that it is made
of material that is essentially identical to the Earth and the “giant impact hypothesis” is born.
61You need to be moving at 11 km/s (“escape velocity”) to get from Earth to “very far away”, so
if you fall from very far away you’ll be moving at 11km/s. If you happen to have been moving in
this direction already, that just means you’ll be going even faster.
62The Roche limit is the distance at which the tidal forces (named for the tides they cause) on
an object is equal to the gravity that object has on itself. Typically this manifests (or should,
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Fig. 1.47 Earth and Htrae have an extremely near miss. Which way does the gravity between them
point?

worlds gravity will suddenly be pointing sideways quite a bit. So, what does a land-
slide the size of a planet look like? From a distance it’s likely to be amazing, but
you’re gonna want that distance to be pretty big.

Even a near miss, with the planets never quite coming into contact, does a
colossal amount of damage. There would be a cloud of debris between and orbiting
around both planets, or rather around both “roiling molten masses”, as well as long
streamers of what used to be ocean, crust, and mantle extending between them as
they move apart. This has never been seen on a planetary scale, since all the things
doing the impacting these days barely have their own gravity. That’s why it’s so hard
to land on a comet.63

But the news gets worse. Unless both planets have a good reason to be really
screaming past each other (maybe they were counter-orbiting or Htrae fell inward
from the outer solar system or something), a near miss is usually just a preamble to
a direct impact. All of the damage and scrambling that Earth and Htrae do to each
other takes energy and that energy is taken from their kinetic energy. What was the
nice, coordinated kinetic energy of a couple planets whipping through space has
been siphoned into the more entropic, random energy of a swirling debris cloud.
After a near miss the average speed of the two planets is always at least a little less
than it was before, and that means that the planets may not escape from each other.

since we’ve never observed it in action) as a moon getting too close to its host planet and then
“dissolving” into a ring system.
63When the Philae lander landed on 67P/Churyumov-Gerasimenko (a comet), it found that with an
escape velocity close to walking speed the smallest bump sent it “skyward” hundreds of meters in
bounces that lasted a couple hours.
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Fig. 1.48 Shoemaker-Levy 9 after passing through Jupiter’s Roche limit and being torn asunder,
but before impact. Like almost all astronomy pictures, this is a false-color image.

“Not escaping” means that sooner or later the two planets cross paths again and
either impact or rip each other up again, losing more energy. This process is why
Shoemaker Levy 9 impacted Jupiter a dozen times instead of all at once. Before
impacting, the comet had passed within Jupiter’s Roche limit, been pulled into a
streamer of rocks, and slowed down (Figure 1.48).



52 1 Big Things

1.13 Why is the light from the Big Bang still around?

There’s a very common misrepresentation of the Big Bang that you’ll often see
repeated in popular media. In the same documentary/book/blog you may hear
statements along the lines of:

“our telescopes can see the light from the earliest moments of the universe”

“in the Big Bang, all of the energy and matter in the universe suddenly exploded out of a
point smaller than the head of a pin”.

If you also happen to be aware of the fact that light is the fastest thing around,
then you may notice a contradiction between these two statements. If they’re both
true, then the universe should be a ball of expanding matter surrounded by a shell of
light expanding even faster (Figure 1.49).64

The first statement is pretty solid. Technically, the oldest light we can see is from
about 300,000 years after the Big Bang,65 but we can use it to infer some interesting
things about what was happening within the first second (which is the next best
thing to actually being able to see the first second). That light is now the Cosmic

Fig. 1.49 The misrepresentation often shown (implied) in many science shows and books: The Big
Bang is an explosion that happens in some particular place and all of the resulting light (blue ring)
and matter in the universe spreads out from that point. However, this means that the light from the
early universe should be long gone, and we would have no way to see it.

64Because “faster” is what light does.
65This oldest light is from the “Recombination”, the time when the universe cooled enough that
neutral hydrogen could exist without being blasted apart.
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Fig. 1.50 “The Observable Earth” tells you very little about the actual size of the Earth. “The
Observable Universe” has the same problem.

Microwave Background Radiation (CMB): “microwave” because that’s the kind of
light, “background” because it’s from literally behind everything else we can see,
and “cosmic” to make it sound more impressive.

The second statement has a mess of holes in it.
First, when someone says that all of the matter and energy in the universe was

in a region smaller than the head of a pin, what they’re actually talking about is the
“observable universe”, which is just all of the galaxies and whatnot that we can see.
If you’re standing on the sidewalk somewhere you can talk meaningfully about the
“observable Earth” (everything you can see around you), but it’s important to keep
in mind that there’s very little you can say about the size and nature of the entire
Earth from one tiny corner of it (Figure 1.50).

The second statement also implies that there’s time and space independent of
the universe. Phrases like “suddenly exploded out of a point” makes it sound like
you could have been floating around, biding your time and playing solitaire in a
vast void, and then Boom! (pardon: “Bang!”) a whole lot of stuff suddenly appears
nearby and expands. If the Big Bang were as straightforward as an explosion
happening somewhere and then things flying away from that explosion, then the
earliest light would definitely be on the outer most edges of our ever-expanding
universe and long gone.

Just to be doubly clear, the idea of the universe exploding out of one particular
place, and then all of the matter flying apart into some kind of pre-existing space,
is definitely not what’s actually going on. It’s just that getting art directors to be
accurate in a science documentary is about as difficult as getting penguins to walk
with decorum.
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The view of the universe that physicists work with today involves space itself
expanding, as opposed to things in space flying apart. Think of the universe as
a rubber sheet.66 The early universe was very dense and very hot, what with
everything being crammed together. Hot things make lots of light, so there would
have been plenty of light everywhere, shooting in every direction.

If you start with light everywhere in a big empty universe, you’ll continue to have
it everywhere forever. The only thing that changes with time is how old the light you
see is and how far it’s traveled. The expansion of the universe doesn’t change that.
Imagine standing in a huge (infinite) crowd of people. If everyone yelled “woo!” (or
something equally pithy) all at once, you wouldn’t hear it all at once, you’d hear it
forever, from progressively farther and farther away (Figure 1.51).

As the universe expands (as the rubber sheet is stretched) everything cools off,
the universe becomes clear,67 and everything is given a chance to move apart. No
matter where you were in the early universe, you’d see light radiating in from every
direction, because that’s exactly where all of the hot material was (everywhere).
Wait a few billion years (14 or so) and you’ve got galaxies, sweaters for dogs,
celebrity journalism; a thoroughly modern universe. But that old light will still be
everywhere, shooting in every direction. Certainly there’s a little less because it’s

Fig. 1.51 Everyone in a crowd yells “woo!” at the same time. As time marches forward you (red
dot) will continue to hear the sound, but the sound you’re hearing is older and from farther away
(yellow line). Light from the early universe works the same way; it started out everywhere, so we’ll
keep seeing it forever.

66The universe may be “closed”, in which case it’s curved and finite, or “open”, in which case it’s
flat and infinite in all directions. A closed universe is like a balloon while an open universe is like
an infinite rubber sheet. So far, all indications are that the universe is flat, so it’s either infinite or so
big that the curvature can’t be detected by our equipment (kinda like how the curvature of the Earth
can’t be detected by just looking around, because the Earth is so big). In either case, the expansion
works the same way. However, in the open case it’s a touch more difficult to picture how the Big
Bang worked. The universe would have started infinite and then gotten bigger. The math behind
that is pretty easy to deal with (it’s the same as the closed case in every important sense), but it’s
still harder to imagine.
67Ions (like free electrons and protons) scatter light, but neutral matter (like protons and electrons
paired in the form of hydrogen) does not. So a hot ionized universe scatters light like fog, but a
cold universe is clear like air. This is a big part of why neutrino and gravity wave astronomy is so
exciting; they don’t care about ions, so with them we can see what the universe was like before it
cooled off.
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constantly running into things, but the universe is, to a reasonable approximation,
completely empty. So most of the light is still around.

The expansion of the universe does have some important effects, of course. The
light that we see today as the cosmic microwave background started out as gamma
rays, being radiated from the omnipresent, ultra-hot gases of the young universe.
But as the space it’s been moving through expanded, it got stretched out as well and
the longer the wavelength, the lower the energy. The background energy is now so
low that you can be exposed to the sky without being killed instantly.68 In fact, the
night sky today radiates energy at the same intensity as anything chilled to about
�270ıC. That’s why it’s cold at night. Mystery solved!

Even more exciting, the expansion means that the sources of the light we see
today are now farther away than they were when the light was emitted. So, while the
oldest light is only about 14 billion years old and has traveled only 14 billion light-
years, the matter that originally emitted it can be inferred/calculated to be about 46
billion light-years away right now. We have absolutely no idea what it’s presently
doing,69 we only know where it is (give or take).

68When the universe first cooled enough to become clear during the Recombination, it was still a
balmy 3000ıC.
69Being out of touch for billions of years does that, even for close friends.
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1.14 What would happen if you drilled a tunnel through the
Earth and jumped down it?

This is a beautiful question, on the one hand because it’s an interesting thought
experiment with some clever math, but mostly because of all the terrible things that
would go wrong if anyone ever tried. Right off the bat: clearly a hole can’t be drilled
through the Earth. By the time you’ve gotten no more than 30 miles down (less than
0.4% of the way through) you’ll find your tunnel filling will magma, which tends to
gunk up drill bits. Also: everything melts. The “Kola Superdeep Borehole”, named
for the peninsula it penetrates and the fact that it is super deep, is the deepest hole
anyone has ever bothered to dig; an impressive 7.6 miles. Although they planned
to drill farther, the Russians found the temperature was increasing faster than they
expected. Hot drill bits are like any hot metal, better at bending than drilling.

Long story short, you can’t drill a hole through the Earth for the same reasons
you can’t drill through any ball of drill-melting liquid (Figure 1.52).

But! Assuming that wasn’t an issue and you’ve got a tube through the Earth
(never mind how), you still have to contend with the air in the tube. In addition to
air-resistance, which on its own would drag you to a stop near the core, just having
air in the tube would be amazingly fatal. The lower you are, the more air is above
you, and the higher the pressure. The highest air pressure we see on the surface of
the Earth is a little under 16 psi.70 But keep in mind that we only have about 100
km of real atmosphere above us, and most of that is really thin. A good rule of
thumb is that the density of the atmosphere is cut in half for every 5.5 km you rise

Fig. 1.52 Jumping into a hole through the Earth. What’s the worst that could happen?

70“16 psi” means, literally, the air above every 1“x1” square weighs 16 pounds.
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and, conversely, doubles about every 5.5 km you drop. If the air in the tube were to
increase in pressure and temperature the way the atmosphere does, then you’d only
have to drop around 50 km before the pressure in the tube was as high as the bottom
of the ocean.

Even worse, a big pile of air (like the atmosphere) is hotter at the bottom than at
the top (hence all the snow on top of mountains). Temperature varies by about 10ıC
per km or 30ıF per mile. So, by the time you’ve fallen about 20 miles you’re on fire
a lot. After a few hundred miles (still a long way from the core) you can expect the
air to be a ludicrously hot sorta-gas-sorta-fluid, eventually becoming a solid plug.

But! Assuming that somehow there’s no air in the tube that somehow exists,
you’re still in trouble. If the Earth is rotating, then in short order after jumping
into the hole71 you’d be ground against the walls of the tunnel, and would either
be pulverized or would slow down and slide to rest near the center of the Earth;
how much damage you’d suffer comes down to how rough the walls are (you’d
want them to be slide-smooth). This is an effect of “Coriolis forces” which show
up whenever you try to describe things moving around on spinning things. Earth, in
this case. To describe it accurately requires the use of angular momentum,72 but you
can picture it pretty well in terms of “higher things move faster”. Because the Earth
is turning, how fast you’re moving is proportional to your altitude. Normally this
isn’t noticeable. For example, the top of a ten story building is moving about 0.001
mph faster than the ground (ever notice that?), so an object nudged off of the roof
can expect to land about 1 millimeter off-target.73 But over large changes in altitude
(and falling through the Earth counts) the effect is very noticeable: about halfway
to the center of the Earth you’ll find that you’re moving sideways about 1,500 mph
faster than the walls of your tube, which is potentially unhealthy (Figure 1.53).

Fig. 1.53 The farther from the center you are, the faster you’re moving.

71In a spacesuit presumably.
72“Conservation of angular momentum” says that rv is constant, where r is the radius of the circle
and v is the tangential (sideways, not up/down) velocity.
73This is fortunate for would-be piano assassins.
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Fig. 1.54 Pick a layer.
Anything inside will
experience exactly the same
amount of pull in every
direction, and so, no pull at
all.

But! Assuming that you’ve got some kind of a super-tube, that the inside of that
tube is a vacuum, that you remembered to drill the hole from the north or south
pole (so that the rotation of the Earth isn’t an issue), and that there’s nothing else
to worry about like building up static electricity or some other unforeseen problem,
then you would be free to fall all the way to the far side of the Earth. Once you
got there, you would fall right through the Earth again, oscillating back and forth
sinusoidally exactly like a bouncing spring or a clock pendulum. It would take you
about 42 minutes to make the trip from one side of the Earth to the other.

Here’s the cute math behind that “42 minutes”.
It turns out that spherically symmetric things, which includes the Earth and Earth-

shaped things, have a cute property: the gravity at any point only depends on the
amount of matter below you, and not at all on the matter above you.

If you’re in any uniform spherical shell of matter and happen to be closer to one
side, then you’ll find that although the side you’re closer to has more pull, there’s
less of it, and conversely the far side has less pull, but there’s more of it. For a
sphere (but not a ring!74) these forces cancel exactly. As you fall into the Earth you
can ignore all of the “onion layers” above you (Figure 1.54).

One of the greatest tools in the physicist’s tool kit is “Gaussian Surfaces”. They
let you shortcut really difficult math problems75 using pictures and a little reasoning.
Even better, you come across smarter than perhaps you deserve, which is a big
plus.76

A Gaussian surface is nothing more than an invisible bubble that you draw in
space. The “inverse square law” of gravity can actually be rewritten as “the total
amount of gravity pointing into the bubble is proportional to the amount of matter
inside the bubble”. The arrangement of matter (both inside and outside the bubble)

74After Larry Niven’s “Ringworld” was published, angry nerds pointed out that the titular ring
world was unstable. In response, Niven authored another book, “The Ringworld Engineers”, where
the issue was explained away with lots of rockets.
75For example, “how would you fall if you jumped down a tunnel through the Earth?”.
76Like wizardry, half of doing physics is about building mystique.
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Fig. 1.55 Top Left: when the matter is arranged symmetrically, the gravity is exactly the same
everywhere on the surface. Top Right: if the matter is off to the side, then gravity will be stronger,
weaker, or point in different directions, but the total through the surface stays the same. Bottom:
matter outside of the surface can affect how gravity pokes through, but it doesn’t affect the total.

certainly changes how gravity points into the bubble, but the total amount of gravity
pointing through depends only on the amount of matter inside (Figure 1.55).

Now say that your bubble is an exact fit around a sphere of matter. Everything is
perfectly symmetric, so gravity points down. If you were to add more matter evenly
on top of your original sphere, gravity would continue to point down and, since the
matter inside the sphere has remained the same, the pull at the surface of that sphere
remains the same. As long as the matter above is at least fairly symmetrical, you can
ignore the layers above the surface of the bubble (Figure 1.56).

Because you can ignore all of the layers above, as you fall it “feels” as though
you’re always falling right next to the surface of a progressively shrinking planet
(Figure 1.57). This, by the way, is another way to explain why the exact center of
the Earth is in free-fall; gravitationally speaking, you’re on the surface of a zero-
sized planet.

The force of gravity is F D � GMm
r2

, where M is the big mass and m is the smaller
falling mass, r is the distance between the centers of those masses, and G is the
gravitational constant.77 But, since you only have to consider the mass below you,

77It says how strong gravity is.
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Fig. 1.56 Both situations are symmetrical, so gravity is pointing down. Both surfaces contain the
same amount of matter, so the same total gravity points through them. For something on the dotted
line or below, the dark blue matter is irrelevant.

Fig. 1.57 The clever math behind calculating how an object would fall through the Earth: As you
fall, all of the layers farther than you from the center cancel out, so you always seem to be falling
as though you were on the surface of a shrinking planet.

then if the Earth had a fixed density,78 �; you could write M D � 4
3
�r3. So as you’re

falling:
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78It doesn’t really. The average density of Earth is 5:5 g
cm3 , but it varies from 2.2 here on the surface

to around 13 in the core. Not surprisingly, the core is where you find the heaviest stuff (iron mostly).
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“Huzzah!” says every physicist “This is the (in)famous spring equation, F D

�kr!” Physicists get very excited when they see this because it’s one of, like, three
questions that can be exactly answered.79 In this case that answer is

r.t/ D R cos
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where R is the radius of the Earth, and t is how long you’ve been falling. Cosine, it’s
worth pointing out, is sinusoidal: the standard back-and-forth motion common to
swinging pendulums and bouncing springs and rolling wheels. That R is determined
by the fact that you jump in at the surface, so that’s the amplitude of the oscillation,
and the junk inside of the cosine determines the frequency, which is where that “42
minute” estimate comes from.

Interesting fun-fact: the time it takes to oscillate back-and-forth through a planet
is dependent only on the density of that planet and not on the size!

This part has nothing to do with falling through the Earth, it’s just interesting.
You can use Gaussian surfaces to prove some other surprising things. Specifically:
Dyson spheres work and black holes have no more gravity than the stars they came
from.

When you fall into a planet, the layers above you have no net gravitational effect
on you. But what if you fall a little way into a planet and suddenly find that the
inside of it is completely hollow? Once you’re inside, all of the layers are above
you, so there’s no net gravity inside of a large hollow sphere (at least, none caused
by the sphere). If you built a really huge sphere around a star you’d have a “Dyson’s
sphere”. The sphere doesn’t pull the star, and the star doesn’t pull the sphere. As
long as no one shoves anything, everything will just float neutrally where it is. A
Dyson’s Sphere is stable the way a marble on a countertop is stable: it’s not going
anywhere, but it has no reason to stay where it is either (Figure 1.58).

Now, put a Gaussian surface around a star. There’s a certain amount of matter in
the star, and that tells you how much gravity is pointing through the surface. If the
star shrinks, who cares? Same amount of mass = same amount of gravity through
the surface.

If you draw a small Gaussian surface around the core of the star you’ll find that
the gravity along the surface is small, because there is (relatively) little mass inside
of it. If for some reason you found yourself in the exact center of the Sun, you’d be
floating in zero G.80

Now when a star collapses, all of its matter is drawn into a tiny region. Both
spheres, the one that was around the entire star and the smaller one around the now-

79Seriously. There’s the harmonic oscillator, the two body problem, the hydrogen atom (all of
which are practically the same problem, mathwise), the free particle (they go in straight lines), and
a few others. A big part of what makes physics tricky is that practically everything comes down to
careful approximations and “numerical methods” (using computers).
80You’d also, very briefly, be on fire.
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Fig. 1.58 Left: the set up for
a Dyson Sphere. A perfectly
spherical shell has no
gravitational effect on
anything inside the sphere
and vice versa. Therefore,
both the sphere and the star
move as though there is no
gravity between them. Right:
the author’s artistic
interpretation of a Dyson
sphere.

collapsed star, contain all of the star’s matter and thus the same total amount of
gravity pokes through them. The only difference is that the inner sphere is smaller,
so the gravity has to be more intense to get the same total as the outer sphere.

Black holes do have very intense gravity, but only in the region where the star
once was. If the Sun were to collapse into a black hole81 everything in the solar
system would keep orbiting in exactly the same way, just in the dark.

Although Gaussian surfaces don’t tend to get brought up until vector calculus,82

the idea provides lots of cute cheats that anyone can use. Calculating bizarre
hypotheticals and understanding the gravity of black holes barely scratches the
surface.

81It won’t. Stars need to be several times more massive than our Sun to become black holes.
82Section 3.11 has another example of Gaussian surfaces, where they’re used to talk about the
electric field of a charge.
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1.15 How does a gravitational sling shot actually speed things
up?

A gravitational slingshot (or “gravity assist”) is a slick way to pick up speed using
a moving planet’s gravity. What’s counter-intuitive about a gravitational slingshot
is that, from the point of view of the planet, the object in question comes flying in
from space with some amount of kinetic energy and leaves with the same amount of
kinetic energy. If you throw something up in the air, it will return to your hand at the
same speed that you threw it.83 This is true in general: when an object returns to a
given altitude, it will have the same speed it had the last time it was at that altitude.
So how can gravity alone speed up some passing object (Figure 1.59)?

Here’s the cleverness: the Galilean Equivalence Principle. The GEP states that
the laws of physics work the same whether you’re moving (at a constant speed) or
not. If you see the world as a movie, it’s impossible to tell if everything you see is
moving to the right or if the camera is moving to the left. Fundamentally, there is no
difference. In other words, to see a situation from a differently moving perspective,
you just add the same velocity (the same speed in the same direction) to everything
in consideration.

If you keep the planet sitting still in your “camera”, then you’ll see the
probe/ship/rock approaching and leaving at the same speed but in different direc-

Fig. 1.59 The physics of skateboards and space probes. Under the influence of gravity alone, you
always have the same speed at a given altitude. However much speed you gain on the way down,
you lose on the way back up.

83Minus loses to air resistance.
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Fig. 1.60 The same situation from two perspectives. Left: An object that passes by a stationary
planet will change direction but approach and leave at the same speed. Right: If the planet is
moving, then the incoming and outgoing speeds are different. This is exactly what you’d see if you
took the first situation and “slid the camera” to the left.

tions. If the planet is moving in your “camera”,84 then the incoming and outgoing
speeds will be different (Figure 1.60).

A slingshot increases the kinetic energy of an object by decreasing the kinetic
energy of the planet around which it slung. But don’t worry too much, an ant
pushing a tricycle is having an affect on the order of one hundred quadrillion (1017)
times greater.85 By the time we’ve sent enough junk around the solar system to
change anything even minutely, something more important will surely have come
up. Assuming that we may someday use sling shots regularly, we’ll be coming
and going about equally often and slowing down deposits energy just as much as
speeding up takes it away.

A spaceship using gravitational slingshots is like a sailing ship. Rather than using
big engines to push itself along, it harvests energy from its surroundings (planets)
to get where it’s going. Truly, a classy way to travel (Figure 1.61).

Gravitational slingshots are used primarily for probes we’ve sent to the outer
solar system. Harvesting power from the motion of the planets lowers the fuel costs a
lot, but all the wandering around makes the trip quite a bit longer. Cassini-Huygens,
using gravitational slingshots, made the trip to Saturn in about seven years. New
Horizons, a tiny probe thrown into space by a huge rocket, blew passed Saturn’s
orbit on its way to interstellar space in about two and a half years.

84With respect to the rest of the solar system, the “heliocentric frame”, all of the planets are
definitely moving.
85The mass ratio of an ant to a tricycle is on the order of 1017 times greater than the mass ratio of
a typical space probe to Earth. Point is: planets are big.
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Fig. 1.61 The course of the Cassini-Huygens probe. After its initial launch it did four slingshots,
around Venus, Venus again, Earth, and Jupiter to gain enough speed to reach Saturn’s orbit. Even
after it arrived, Cassini used Saturn’s moon Titan to adjust its orbit around Saturn many times over
the following decade.
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1.16 How can the universe expand faster than the speed of
light?

It doesn’t.
You’ll often hear that “the universe is expanding faster than the speed of light”,

but unlike “you only use ten percent of your brain”, which is merely false, this
statement is akin to “green is bigger than happy”. It’s not even wrong.

The universe doesn’t expand at any particular speed, it expands at a speed per
distance. This is why it doesn’t make sense to talk about the universe expanding at
a particular speed; the units are wrong.86

Right now the expansion is about 70 kilometers per second per megaparsec.87

That means that galaxies that are about one megaparsec88 away are presently getting
farther away at the rate of 70 kilometers every second, on average. Galaxies that are
two megaparsecs away are presently getting father away at the rate of 140 kilometers
every second, on average.

Notice the awkward phrasing there: distant galaxies are “getting farther away”,
but oddly enough they are not “moving away”. This is a subtle distinction, but it’s a
useful one to make (Figure 1.62).

The easiest way to think about the expansion of the universe is to think about
the expansion of something simpler, like a balloon. If for some reason you have
a balloon covered in ants, and you inflate it slowly, then the ants that are nose-to-

Fig. 1.62 Initially, the distance between Red and Yellow is one, and the distance between Red and
Green is two. After doubling the size of the “universe” the distances are two and four, respectively.
Yellow receded by one, while Green receded by two. Green would seem to be “moving” faster than
Yellow, but in fact all of the dots are sitting still while the space they inhabit expands.

86Speed is “distance over time” but the expansion of the universe is in units of “distance over time
and distance”.
87H0 D 70 km

s Mpc is “Hubble’s constant”.
881 parsec = 3 light-years and change.
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Fig. 1.63 The red smudges near the center are among the most distant galaxies ever observed,
about a hundred million light years from the Hubble horizon. During the light’s trip to us, the
space it passed through expanded and stretched out the light’s wavelength, “redshifting” it.
Unfortunately, since this is the extreme limit of what our best telescopes can see, the resolution
doesn’t get better than this (for now).

nose (pardon, “antennae-to-antennae”) will barely notice the expansion. However,
the farther a pair of ants are apart, the more the expansion increases the distance
between them.

If an ant on one side tries to run to one of her sisters on the far side of the balloon,
she may find that the distance between the two of them is increasing faster than
she can close that distance. The distance at which this happens, where the distance
between two ants is increasing exactly as fast as they can approach each other, is
a kind of “ant horizon”. Any pair of ants that are already farther apart than this
distance can never meet, and any pair closer than this distance may (if they want).

The “ant horizon” is a decent enough analog for the “edge” of the visible
universe. Instead of ant speed, of course, the speed of light is the important quantity;
it defines the “Hubble horizon”.89

The oldest photons we see are those that have come from just barely on the near
side of the Hubble horizon. It’s not that things beyond that horizon are moving
away faster than light, it’s that the light they emit just isn’t moving fast enough
to overcome the expansion. Presumably, the universe “out there” is more or less
the same as it is here (every indication points to that), and the fact that our part of
the universe can’t communicate with their part of the universe doesn’t change that
(Figure 1.63).

89The same Hubble of “Hubble’s constant” and “the Hubble Telescope”. Before Hubble, our view
of the universe was that it contained one galaxy (the Milky Way) and wasn’t expanding.
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Here the analogy breaks down and starts making our intuition incorrect. When
you inflate a balloon the sides are obviously moving apart. With a ruler and a
stopwatch you can measure how fast the opposite sides of the balloon are moving
apart and you can say “dudes and dudettes of the physics world, the speed of
expansion is !”. Even worse, when a balloon expands it expands into the space
around it, which begs the question “what is the universe expanding into?”. But keep
in mind, all that physics really talks about is the relationship between things inside
of the universe (on the surface of the balloon). If you draw a picture on the surface
of a balloon, then if the balloon is dented somewhere or even turned inside-out, the
picture remains the same (all the distances, angles, densities, etc. remain the same).

Point of fact: it may be that the balloon is a completely false metaphor for the
universe as a whole, since the best modern measurements indicate that the universe
is flat. That is, rather than being a closed sphere (hypersphere) it just goes forever in
every direction, so a rubber sheet may be a better metaphor. This means that, with
no “far side of the balloon” to reference, there is genuinely no way to describe the
expansion of the universe in terms of a speed even if you were inclined to force the
issue.



Chapter 2
Small Things

Not only is the Universe stranger than we think, it is stranger than we can think.

—Werner Heisenberg, frustrated more than you think
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When you look at very, very, very small objects you find that they don’t behave
the way you’d expect. They obey quantum laws. If particles were ordinary objects,
then you could point at them and say “there it is, it’s in a definite place doing a
definite thing”. Instead, they “ooze” from place to place, move through impassable
barriers, and exist in several places at the same time. Fundamentally, it’s impossible
to say exactly where a particle is or even (sometimes) whether or not it exists at all.

Very broadly, and leaving out all the details and practically everyone involved,
the history of quantum mechanics can be understood as the transition from “light
is a particle” to “everything acts like a wave”. Chronologically speaking, it went
something like this:

• 1600ish: Newton proposed that light is a particle.
• 1800ish: Thomas Young1 showed that light is a wave
• 1900ish: Einstein demonstrated that light is a particle that sometimes acts like a

wave and sometimes acts like a particle.
• 1930ish: Every kind of particle is like that; it sometimes acts like a particle and

sometimes acts like a wave.
• 2000ish: Everything is like that.

The articles in this chapter will consider the spooky nature of quantum mechan-
ical laws. But in order to understand how we can even tell the difference between
being “wave-like” and being “particle-like” it helps to be familiar with Young’s
Double Slit Experiment, arguably the oldest quantum experiment (Figure 2.1).

In the double slit experiment, light2 is shone onto two slits with a screen on the
far side. If light were a particle, it would travel in straight lines from the source,
through each slit, and impact the screen creating two bright regions. But when
this experiment is done we instead see many alternating bright and dark regions,

Fig. 2.1 Young’s double slit
experiment. On the screen,
bright spots correspond to
constructive interference and
dark spots correspond to
destructive interference.

1Because Young was such a badass, he also showed that light is a transverse wave (side-to-side not
front-to-back) by demonstrating that light is polarized. Also, he deciphered the Rosetta Stone.
2The light waves need to be “coherent”: at the same frequency and phase. Today we typically
achieve this using two slits and a laser, but Young used the method in the diagram: a primary slit
on the left to ensure the same phase and a prism to ensure a single color/frequency. This requires a
lot of squinting in a very dark room to work.
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Fig. 2.2 Left: When waves “disagree” they interfere destructively. Right: When they “agree” they
interfere constructively. In the double slit experiment this is responsible for the bright and dark
fringes.

Fig. 2.3 The build up of impacts on the screen of a double slit experiment, as individual particles
are sent through one at a time.

“fringes”, corresponding exactly to what we expect from wave interference. In fact,
using this experiment Young became the first person to accurately measure the
wavelengths of visible light (Figure 2.2).3

So case closed: light’s a wave. But in the early 20th century it was determined
that light is also a particle. In 1900 Planck successfully described the black body
spectrum (the light emitted by hot objects) based on the assumption that light is
quantized4 and in 1905 Einstein’s analysis of the photoelectric effect showed that
light deposits energy in discrete chunks (the way a particle would). The immediate
question then became “so. . . does the double slit experiment still work?”. Turns out:
yes!

When you turn down the light source so low that only a single photon goes
through at a time the interference still shows up. Each individual photon, which
can clearly go through only one slit, still manages to interfere with itself as though
it went through both. How crazy is that? Different versions of a single, individual
photon are literally in different places at the same time (Figure 2.3).

3From � 0:7�m for red down to � 0:4�m for purple.
4Planck was not happy about it. Like almost all physicists at the time he was in the “light is
obviously a wave” camp. He later called his quantized theory of light “an act of despair. . . I was
ready to sacrifice any of my previous convictions about physics”. That’s excellent sciencing.
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The terrifying thing about this experiment is that light is nothing special; literally
everything does the same thing in the double slit experiment.5 We see the wave
nature of matter everywhere we look.

Through most of the 20th century, the technology to explore the weirdest aspects
of quantum mechanics was out of reach, so physicists were free to say “the math
says one thing, but that’s just too weird to be reality”. But in the last few decades,
experiments that were once considered completely infeasible are now routine.
Physicists can now be found wandering the halls of science scratching their heads
mumbling “the reality is. . . weird”.

In the face of seemingly impossible and yet irrefutable experimental results, we
have to almost completely abandon intuition in favor of mathematical reasoning that
is, unfortunately, difficult to convey in words. Quantum science has advanced much
faster than our language; there’s no pronoun for the multiple quantum versions of a
single person.6

Not surprisingly, there are a lot of misconceptions and questions around quantum
mechanics. This chapter is about atoms, particle-waves, and the bizarre behavior of
(usually) tiny things.

5Literally everything we are capable of testing has proven to be wave-like. Every kind of particle,
buckyballs, proteins, molecules with hundreds of atoms; if it fits, and we’ve tried it, it works.
There’s more on that in Section 2.11.
6“Quim” and “quer” maybe? Or the neutral, “quey”?
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2.1 Can you do the double slit experiment with a cat cannon?

It helps to first get an idea of how the double slit experiment is done. The double
slit experiment works for any particle, but in what follows I’ll use light to avoid
confusion.

Shine light on two slits separated by some distance d. The light that emerges
on the other side is free to scatter in any direction, but it doesn’t. Instead we find
that it prefers a particular set of angles, and that these angles depend on d and the
wavelength of the light, 	.

In Figure 2.4 the upward angle means that the light from the bottom slit has
to take a slightly longer path. If the path difference is equal to a multiple of the
wavelength, then the light from the two slits will be “in phase”, and will experience
“constructive interference”. They’ll add to each other, rather than cancel each other
out, producing a bright spot in that direction.

It’s subtle, but already two assumptions have been made. 1) The screen that the
light is being projected onto is very far away, so the light from the two slits, falling
on a particular point, follows roughly parallel paths. This is a reasonable assumption,
and doesn’t cause any problems. 2) The light that comes out of the two slits is
already in phase, and has the same wavelength. Luckily, there’s more than one way
to skin a cat: you can either use coherent7 (laser) light or make all the light come
from a very small source (like another slit).

Fig. 2.4 Changing the angle
changes the difference in path
length from the two slits.
When the difference is a
multiple of the wavelength
you get constructive
interference.

7Coherent light is all the same frequency (color), all waving back and forth in lock step. Imagine a
sea of metronomes all ticking perfectly in sync. The only example you’re likely to come across is
laser light. Incoherent light, on the other hand, is “noisy”.
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As a quick historical aside: When Thomas Young originally did this experiment
he was looking at the interference pattern produced by allowing sunlight to pass
through a colored filter (to get one 	), then a single slit (to get the light “coherent”),
then the double slits, then projected onto a wall. It was very dark, and (one can only
assume) Young was very squinty. Tom was about the smartest person ever to live.
He let the cat out of the bag with regard to shearing forces, the Rosetta stone, and
the transverse-wave nature of light, to name a very few. He was the polymath cat
that ate the canary of science.

Back in the day (1924) fat cat Louis de Broglie, the seventh duke of Broglie,8

proposed the idea (later proven experimentally) that not only is light a wave:
everything is. Kittens (the cute ones) have a mass of about m D 0:3 kg, and old
timey cannons have a muzzle velocity as high as the speed of sound (v D 340m=s).
This implies a de Broglie wavelength of

	 D
h

mv

r
1 �

�v
c

�2
D 6:5 � 10�36 m

Since kittens are about ten centimeters long, the slits should each be about
that size and, say, two meters apart (larger slits need to be farther apart to keep
the interference fringes from overlapping). So d D 2m. Finally, you’d like the
interference fringes on the screen to be several times farther apart than the kittens
are large, otherwise you won’t be able to tell which impact corresponds to which
fringe. Say one meter apart, give or take (Figures 2.5 and 2.6).

The separation between fringes is approximately L�
 , where L is the distance
to the projection screen, and �
 is the angle between two adjacent fringes. For
small angles you can use the aptly named “small angle approximation” for sine:
sin .x/ � x. Since sin .
k/ D k	

d (see Figure 2.4) we have that the angles of adjacent

Fig. 2.5 Ammunition with a
wavelength of
	 D 6:5� 10�36 m. The
wavelength of visible light is
about a nonillion (1030) times
bigger.

8Seriously. He was a duke.
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Fig. 2.6 The smaller the
wavelength, the closer the
fringes are together, and the
harder it is to tell that there
are fringes at all.

fringes are 
k � k	
d and 
kC1 � .kC1/	

d and therefore �
 � 	
d . Since it would

be nice for the fringes to be at least 1m apart, 1 � L�
 � L	
d and therefore

L � d
	

D 3:1 � 1033 m. This distance is large enough that it should give us paws.
After passing through (both) of the double slits the cats will have to fly through

about 330 quadrillion light-years of purfectly empty space, before impacting the
projection screen (on their feet, naturally). Unfortunately, the visible universe is a
lot smaller than 330 quadrillion light-years. Even so, this cat-astrophe is not the
biggest problem with a cat-based double slit device.

Not to con-cat-enate the difficulties, but the biggest problems stem from the
supreme challenge of generating a “coherent cat beam” (a “cat-hode ray”, as it
were). Also, in order to get reasonable results from the experiment, it should be
repeated at least 1036 times (that’s on the order of one hundred identical-to-the-last-
atom cats per fringe). By most reasonable objective measures: that’s too many cats.

In order to do the double slit experiment, especially when tiny wavelengths are
involved, it’s very important that all of the particles involved are exactly identical
and in phase. The best way to do this with light is to build a laser (which is an
acronym for “Light Amplification by Stimulated Emission of Radiation”). Light,
being made of bosons, obeys Bose-Einstein statistics and as such the presence
of a bunch of identical photons increases the likelihood of new identical photons
being generated.9 Laser generation is an example of large scale entanglement,
but unfortunately extending the technology to large scale cat entanglement would
require all the yarn.

Coherent matter waves do exist, but so far they’ve all been made up of
atoms in a Bose-Einstein condensate. As it happens, both curiosity and picokelvin
temperatures are fatal to cats (Figure 2.7).

So to create a “caseo” (Cat Amplification by Stimulated Emission of Other
cats), would require gathering so many exactly identical bosonic cats,10 that the
probability of new identical cats spontaneously forming from some kind of proto-cat

9That’s not obvious, so take it as read.
10“Bosonic” here means an even, not odd, number of protons, neutrons, and electrons.
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Fig. 2.7 A pulsed, coherent matter wave (an “atom-laser”) made of sodium. Easy to do with
atoms, tricky to do with cats.

particle soup becomes fairly high. Getting a “cat field” with entropy that low (about
zero) would be, I suspect, precisely as difficult as herding cats.

But, if you can do that, then you can create a coherent cat-beam of absolutely
identical cats. And once the 330 quadrillion light-year long double slit apparatus is
set up, you’re ready to go! Easy peasy!

No point in pussy-footing around it, there’s a reason why we don’t see quantum
mechanical effects like this in “every day life”.
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2.2 Does true randomness exist?

What we normally call “random” is not truly random, but only appears so. The
randomness is a reflection of our ignorance about the thing being observed, rather
than something inherent to it. For example, if you flip a coin and cover it, then since
you don’t know whether it’s heads or tails, you’d be correct in saying that there’s
a 50/50 chance of either heads or tails. The source of these probabilities is a lack
of knowledge: ultimately the coin is definitely either heads or tails, you just don’t
know which.

Quantum mechanics is different. The probabilities and uncertainties in quantum
mechanics don’t come from a lack of information, they’re fundamental. “Funda-
mental Uncertainty” boils down to the fact that quantum mechanical things can be
in multiple states at the same time, a situation called “superposition”. The question
“which state is it in?” literally doesn’t have an answer because a “quantum coin”11

can be both heads and tails (Figure 2.8).
If you try to predict something like the moment that a radioactive atom will

radioact, then you’ll find yourself completely out of luck. Einstein and many others
believed that the randomness of things like radioactive decay, photons going through
polarizers, and an endless array of other quantum effects could be explained and
predicted if only we knew the “hidden variables” involved. Not surprisingly, this
became known as “hidden variable theory” and frustratingly, it turns out to be
wrong.

If outcomes can be determined (by hidden variables or whatever), then every
experiment must have a result. More importantly, this is true whether or not you
choose to do that experiment, because the result is written into the hidden variables.
Like the hidden coin, the result is there whether or not you bother to find out what
it is. The idea that every experiment has an outcome, regardless of whether or not

Fig. 2.8 Left: Ordinary probability and randomness comes from a lack of knowing. Right:
Quantum randomness comes from being in multiple states. The most famous demonstration of
this is the interference created by a single photon going through two or more slits.

11Any quantum system that can be in multiple states, which is all of them.
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you choose to do that experiment, is called “the reality assumption” or “realism” or
sometimes “counterfactual definiteness”,12 and it should make a lot of sense.

Basically, realism says that everything is like the hidden coin; everything is in a
particular state, it’s just that we may not know what that state is. The important thing
about realism, mathematically speaking, is that it implies that everything should be
describable using regular probabilities. For example, if you roll a bunch of dice and
keep them hidden, then they’re all in a definite, “real” state. As you reveal them one
by one you find that a sixth of them are 1, a sixth of them are 2, etc. Evidently, the
probability of each result is 1

6
. The same process can be applied to any real, reveal-

and-see, kind of system and as a result they can all be described by probabilities.
Experiments with results that can be predicted, even in theory, are essentially

the same as uncovering coins. The results are already there, we just need to see
what they are. Like the coins, the results of such experiments can be described by
probabilities. It turns out that obeying the laws of probabilities was all it took to
overturn hidden variable theory.

It took a while,13 but hidden variable theory was eventually ruled out by Bell’s
Theorem. With his theorem, John Bell showed that there are lots of experiments that
cannot have unmeasured results. Literally, there are experimental results that cannot
be described using probabilities alone, which means that there’s no definite state to
“reveal”, and therefore no hidden variables.14 If there was a definite state, then in
theory there may be some way to figure out what it is in advance. What Bell did was
show that (at least some) things cannot be in definite states, and therefore their state
cannot be predicted.

This is what “fundamental randomness” is about. If it is physically and mathe-
matically impossible to predict the results, then the results are truly, fundamentally
random.

Gravy

Fundamental randomness shows up everywhere, but entanglement really forces the
issue. Say you’ve got two ordinary marbles in a hat: one red and one blue. You and
a friend each take out a marble without looking at it. If you have the red marble
your friend will have the blue marble, and vice versa. The marbles are “correlated”,
because when you know about one, you know about the other.

Obviously your marble is in one state. But in quantum mechanics, things can be
correlated and still be in multiple states. Repeating the same process with quantum
marbles, you and your friend each get a marble that is in a superposition of red and
blue. Yet the marbles are still correlated, since when you look at them you’ll find
they never have the same color. These quantum marbles are “entangled”; they’re

12While some folk do call it “counterfactual definiteness”, you shouldn’t. Pedantic eloquisms such
as this are little more than a means by which the sesquipedalian cognoscenti may have a good
gasconade, despite the phrase’s conspicuously obfuscating aspect. So don’t.
13Not until 1964.
14Or at least, if there are hidden variables (things we’re not taking into account), they don’t explain
away what’s happening.
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in multiple states, but those multiple states are correlated. An “entangled state” is
shared between multiple, often distant, objects.

Photons are a great particle to work with and their “polarization states” are easy to
entangle. A vertically polarized photon will always pass through a vertical polarizer
and will always be stopped by a horizontal polarizer. If you create two streams of
photons polarized so that each pair are either both vertical or both horizontal, and
send them through a vertical polarizer, then each pair will either pass through or be
stopped together. You get the same result every time. There’s nothing spooky about
this so far. This is ordinary correlation.

If you send any given vertically or horizontally polarized photon through a
diagonal polarizer there’s a 50% chance that it will pass or be stopped. So if you take
those same vertical/horizontal pairs of photons and send them both through diagonal
polarizers, there’s only a 50% chance that you’ll get the same result each time. Still
nothing spooky. This is exactly what we expect from mismatched photon/polarizer
alignments.

But entangled photons are different. And weird. You can align your polarizers in
any way you like, but as long as they’re aligned the same way, entangled photons
will both stop or both get through every time. That’s impossible for pairs of photons
polarized in any one particular direction. In some sense, a pair of entangled photons
are polarized in every possible way.

So far, the behavior of entangled photons is merely very strange. There might
still be some hidden variables behind the scenes. Here’s one of the experiments
that demonstrates Bell’s Theorem and shows that the reality assumption is false and
there are no hidden variables (Figure 2.9).

Fig. 2.9 The experiment: A pair of photons are generated (there are many ways to do this). These
photons then go through polarizers that are set at two different angles. Finally, detectors measure
whether a photon passes through the polarizer or not. A detector “clicks” when a photon hits it.
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Step 1) Generate a pair of entangled photons.15

Step 2) Fire them at two polarizers.
Step 3) Measure both photons and record the results. Do they go through the

polarizers and make the detector click or not?
Step 4) Change the orientation of the polarizers and repeat the experiment at

several different angles. The most impressive results (it turns out) happen with
0ı and 45ı for one and 22:5ı and 67:5ı for the other.

The amazing thing about entangled photons is that they always give the same
result (both detectors “click” or both photons are blocked by the polarizers) when
you set the polarizers to the same angle.16 More than that, it has been experimentally
verified that if the polarizers are set at angles 
 and �, then the Coincidence
probability, the chance that either both detectors click or both don’t, is:

C .
; �/ D cos2 .
 � �/

This is only true for entangled photons (Figure 2.10).
Name the polarizers A and B, and set A to 0ı or 45ı and B to 22:5ı or 67:5ı

(Figure 2.11). Just to keep track of the results of the experiments, we’ll denote
a clicking detector with “1” and notably quiet detector as “�1”. For example, if
polarizer A is at 0ı and the photon passes through, then you’d say “A0 D 1” and if
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Fig. 2.10 The coincidence probability, C .
; �/. When the polarizers are aligned in the same
direction (
 � � D 0ı) the results are always the same and when the polarizers are at right
angles to each other (
 � � D ˙90ı) the results are always different.

15This is often done with a “parametric down converter”, which splits one photon into an
entangled pair of lower energy photons, but the details aren’t important. There are many kinds
of entanglement and many ways to realize them.
16This is only one kind of entanglement. You could also, for example, entangle the photons such
that they always give opposite results.
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Fig. 2.11 The arrangement
of polarizations for this
experiment.

not then “A0 D �1”. Similarly, you can define B67:5, A45, B22:5, and the results for
each.

This is going to seem totally arbitrary,17 but take a look at:

L D A0B22:5 C A45B22:5 C A45B67:5 � A0B67:5

D .A0 C A45/B22:5 C .A45 � A0/B67:5

L has a useful property:

L D ˙2

Two things can happen: either .A0 C A45/ D ˙2 and .A45 � A0/ D 0, or .A0 C

A45/ D 0 and .A45 � A0/ D ˙2. B22:5 and B67:5 are ˙1, so they can only change the
sign. If you could fill out each of these values, .A0;A45;B22:5;B67:5/, then you would
always find that jLj D 2. Indeed, you don’t even need to know the values.

However, you can’t make all of these measurements simultaneously, so you can’t
actually get L for each run of the experiment. The best you can do is find one of
these four terms each time you run the experiment. For example, if polarizer A was
set to 45ı and the detector clicked, and polarizer B was set to 22:5ı and the detector
didn’t click, then you just found out that A45B22:5 D .1/.�1/ D �1 for that run.

You can find the expectation value, EŒ��, by running the experiment over and over
and keeping track of the results and polarizer orientation. This is exactly what you’re
doing when you roll dice over and over to find the average.

EŒL� D EŒA0B22:5�C EŒA45B22:5�C EŒA45B67:5� � EŒA0B67:5�

17And arguably this sort of thing is why it was so long before Bell showed up and figured this out.
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Because L D ˙2 for each individual trial, the expected value for many must be
somewhere in Œ�2; 2�. In particular,

EŒA0B22:5�C EŒA45B22:5�C EŒA45B67:5� � EŒA0B67:5� � 2

This is a “Bell Inequality”,18 and it holds if each term .A0;A45;B22:5;B67:5/ has
a value. Bell inequalities describe the limits of what can happen if the regular rules
of probability hold. That is to say, if the results can be described by a probability
distribution, which is the case if the results of each experiment exists independent
of being measured, then EŒA0B22:5�C EŒA45B22:5�C EŒA45B67:5� � EŒA0B67:5� � 2.

By running each experiment over and over we can determine each of these four
expectation values. Using the fact that the chance of getting the same result is
C.
; �/ D cos2.
 � �/, that the chance of getting different results is 1 � C.
; �/,
and that each term is 1 when the results are the same and -1 when the results are
different, you can calculate each term.19 For example20:

EŒA0B22:5�

D 1 � P.same/C .�1/ � P.different/

D cos2 .22:5/ � .1 � cos2 .22:5//

D
p
2
2

Doing the same thing for all four yields:

EŒA0B22:5�C EŒA45B22:5�C EŒA45B67:5� � EŒA0B67:5�

D
p
2
2

C
p
2
2

C
p
2
2

� �
p
2

2

D 2
p
2

The honed mathematical mind will note that 2
p
2 > 2. But that’s a violation of

Bell’s inequality! This (empirical) result is absolutely impossible if the results can
be described using probabilities. That each result exists (whether or not you actually
do the measurement) is all you need to guarantee that you can describe the results
with probabilities. But you can’t, so they don’t.

18Specifically, it is the “CHSH” Bell Inequality. There are an infinite number of Bell Inequalities
and this is one of the simplest.
19When the results are the same we have either .1/.1/ D 1 or .�1/.�1/ D 1 and when the results
are different we have either .1/.�1/ D �1 or .�1/.1/ D �1.
20Fans of trigonometry will notice the double angle formula here: cos2 .22:5/�.1�cos2 .22:5// D

2 cos2 .22:5/� 1 D cos.45/ D
p

2

2
.
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Ultimately this means that you can’t predict the outcome of this experiment
because the outcome doesn’t exist or isn’t definable until after the experiment is
done. The universe is a profoundly weird place to find yourself.

Some proponents of quantum theory have suggested that this has something to
do with consciousness and spirits and the power of the human mind to affect reality.
But, since at no point is it necessary for people or spirits or the rest to be involved at
all, this bizarre result is really more of an indication that context is important when
considering interactions of a quantum nature. Although we can’t describe what’s
happening using probabilities, we can perfectly describe what’s happening using
“probability amplitudes” and the rest of the very exciting math of quantum theory.
It’s weird, sure, but not beyond understanding and definitely not supernatural.

This sort of thing is never clear the first twenty times you hear it. Don’t stress. If
you’re bothered, then you’re in good company. It bothers everybody.

Some physicists, desperate to find an loop hole, pointed out that those hidden
variables might be conspiring behind our backs to correlate how the photons pass
through the polarizers. “Perhaps”, they mused, “there’s some kind of mysterious
coordinating signal. Maybe each polarizer knows how the other is oriented and that
somehow influences whether or not they allow the photon to pass. . . ”. This level of
caution falls somewhere between grasping at straws and covering all the bases. To
be fair, this is one of those things that’s so fantastically weird, that you do want to get
it right. Just to make the whole process water-tight, the experiment can be repeated
where after the photons are released the polarizers are randomly oriented. In that
way, no information about the results or potential results from one can make it to
the other without traveling faster than light (which is a well established no-go21).

There are two ways out of this: either the states can be in superpositions or they’re
in a definite state and somehow conspiring faster than light. Either way we lose
Local Realism; “local” meaning things can only influence other things at light speed
or slower and “realism” meaning things are in definite states. The generally accepted
view of quantum mechanics involves dropping the “real” and keeping the “local”.

The needling details motivating possible obscure issues with these Bell Tests
and the subsequent experimental resolutions to those issues have, over decades,
started to sound like an online Kirk vs. Picard debate. However, the results of the
experiments are always the same: things really are in multiple states and the reality
assumption is false. If our universe really is dead-set on fooling us, it’s doing an
amazing job.

21“No-go theorems” are an actual term of art in quantum circles. For example, the fact that you
can’t use entanglement alone to communicate information is the “no-communication theorem”.
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2.3 Are atoms really 99.99% empty space?

This is a bit of a misnomer.
When we think of an atom we usually picture the “Bohr model”; a nucleus made

of a bunch of protons and neutrons tightly packed together with electrons zipping
around them (Figure 2.12). Based on this picture, you can make a guess about of
the size of electrons and calculate how far they are from the nucleus, and come to
that weird, famous conclusion about atoms being mostly empty. Even so, that guess
is surprisingly hard to make: the “classical electron radius” is an upper-limit guess
based on the electron’s electric field, but ultimately it’s just an ad-hoc estimate.
There’s no useful way to talk about the actual, physical size of electrons.

The difficulty is that electrons aren’t really particles,22 they’re waves. Instead of
being in a particular place, they’re kinda “smeared out”.

If you ring a bell, you can say that there is a vibration in that bell but you can’t
say specifically where that vibration is; it’s a wave that’s spread out all over the bell.
Parts of the bell will be vibrating more and some (small) parts may not be vibrating
at all. Electrons are more like the “ringing” of a bell and less like a fly buzzing
around it (Figure 2.13).

Just to be clear, this is a metaphor: atoms are not tiny bells. But the math that
describes the “quantum wave function” of electrons in atoms and the math that
describes vibrations in a bell have things in common. In fact, if your bell were a
metal sphere, the vibrations would be described using “spherical harmonics” which
are also used to describe the electron orbitals in atoms (Figure 2.14).

So, the space in atoms isn’t empty. It is true that the overwhelming majority of
the matter in an atom is concentrated in the nucleus, which is tiny compared to
the region where the electrons are found. However, even in the nucleus the same

Fig. 2.12 This picture gives
you an idea of more or less
where things can be found in
an atom, but does a terrible
job conveying what those
things are actually like.

22Which is why we have to guesstimate their size rather than measure them.
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Fig. 2.13 Where exactly is
the ringing happening?

Fig. 2.14 “Electron orbitals” are standing waves around atoms made of electrons. Left: Standing
waves are always a multiple of the wavelength of the wave. These multiples are called “harmon-
ics”. Right: “Spherical harmonics” are standing waves on a sphere (or in an atom). They’re more
complex, but the idea is the same. Chemistry enthusiasts may recognize these as electron orbitals:
2p, 3p, 3d, 4p, etc.

problem crops up; protons and neutrons are just “the ringing of bells” too. The
question “where exactly is this electron/proton/whatever?” isn’t merely difficult to
answer, the question genuinely doesn’t make sense. You can talk broadly about how
most of a wave is located in one region or another, but describing the location of an
ocean wave (for example) to within an inch is a little silly.
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2.4 If quantum mechanics says everything is random, then
how can it also be the most accurate theory ever?

When Marie Curie first started studying radioactivity it was because the process
was so inexplicably random. Up until then, every known (and understood) physical
process had a definite cause leading to a definite effect. The randomness behind
when a given atom will decay and produce radiation is described by quantum
mechanics. Quantum mechanics doesn’t tell us when an atom will decay, it tells
us that the decay is impossible to predict.

But at the same time, quantum mechanics has been used to make shockingly
precise predictions. At this time QED (quantum electrodynamics) is perfect within
our ability to test it. That is to say, the limitations on it are not theoretical, but
experimental. For example, the electron’s g-factor23 has been measured to less than
one part in a trillion24 and it agrees with theory. That’s like accurately predicting
the distance between Eiffel’s twin master pieces, the Statue of Liberty and the Eiffel
Tower, to within less than a tenth the width of a hair.

Whether a quantum system is random or not depends on what you’re talking
about. For example, the electrons in an atom show up in “orbitals” that have
extremely predictable shapes and energy levels, and yet if you were to measure the
location of an electron within that orbital, you’d find that the result is very random.

One of the great victories of quantum mechanics was to prove, despite Einstein’s
scoff to the contrary, that God does play dice with the universe.25 Everything in
the universe can be in multiple states, but when a thing is measured it’s suddenly
found to be in only one state.26 Setting aside what a measurement is and what
measurements do, the result of a measurement (the state that a thing will be found
in) is often “irreducibly random” and unpredictable. That is to say, there’s no way
to reduce the situation to smaller more fundamental pieces until you can finally say
“ah, this is why it looks random but really isn’t!”.

For example, when a beam of light passes through a beam splitter the beam splits
(hence the name) into two beams of half the intensity. In terms of waves this is pretty
easy to explain; some of the wave’s energy goes through and some reflects off of the

23The g-factor is a value that describes the relationship between an electron’s “spin” and its
magnetic properties.
24Numbers like this are so preposterously big that they defy useful description. For example, if
you’re lucky you may live for three billion seconds (95 years). Nothing on Earth has ever come
close to living for a trillion seconds (31.7 millennia).
25Einstein was a big fan of “determinism”, the belief that the universe is essentially clockwork.
In determinism, everything that will happen is determined by what has happened. When early
quantum research began to hint that some things in the universe are irreducibly random, he
famously quipped “God doesn’t play dice with the universe”. He died in 1955, nine years before
Bell’s theorem demonstrated, rather convincingly, that God has a serious gambling problem.
26Technically, a smaller set of states.
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Fig. 2.15 According to
quantum theory (and verified
by experiment) there is no
way to predict which direction
a photon will take through a
beam splitter. This situation is
“irreducibly random”.

splitter. In quantum theory you continue to describe light (and everything else) as a
wave, even when you turn down the light source so low that there’s only one photon
passing by at a time (Figure 2.15).

So, in exactly the same way that you’d mathematically describe a wave as going
through and being reflected, you also describe the photon as both going through and
being reflected. Place a pair of detectors in the two possible paths and you’re making
a measurement. Suddenly, instead of taking both paths at the same time, the photon
is found on only one, as indicated by which detector clicks,27 and there is absolutely
no way to predict which path that will be.

So on the face of it, that seems like it should be the end of the road. There’s
an irreconcilable randomness to the measurements of quantum mechanical systems.
In the example above (and millions of others like it) it is impossible to make an
accurate prediction. However: it is possible to be clever.

The quantumy description of each photon going through the beam splitter isn’t
as simple as “it’s totally random which path it takes”. Each photon is described, very
specifically and non-randomly, as taking both paths.

Take the same situation, a laser going through a beam splitter, and add a little
more to the apparatus. With a pair of mirrors you can bring the two paths back
together at another beam splitter. The light waves from both paths split again at
the second beam splitter, but when you’re looking at the intensity of what comes
out you have to take into account how the light waves from the two paths interfere
(Figure 2.16).

By carefully adjusting the distances you can cause one path to experience
complete destructive interference and the other to experience complete constructive
interference. After being recombined, all of the light follows the constructive path
and none follows the destructive path. This is all fine and good for a laser beam,
but when you turn down the intensity until there’s only one photon passing through
at a time, you still find that only the top detector will ever be triggered. This isn’t
“theory” by the way, it’s pretty easy to do exactly this experiment in a lab.

27In the past photo-detectors made a click that sounded a lot like a geiger-counter (not a coinci-
dence). Modern photo-detectors don’t “click”, they quietly send data to a computer. However, the
terminology has stuck and is now mired in the culture.
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Fig. 2.16 By properly adjusting the path lengths you can make it so that all of the photons go to
a single detector. You can’t predict which path the photon takes, but you can perfectly predict the
end result.

Fig. 2.17 With no obstruction in place all of the light will go to the top detector. If there is an
obstruction, then photons will often go to the lower detector. Those photons don’t directly interact
with the obstruction and yet they still manage to indicate its existence.

This is a little spooky, so take a moment. The quantum theory description is
that a single photon will take both paths. If detectors are placed in the two paths
it is impossible to predict which will fire. But if the paths are recombined, we
can see that the photon took both paths, because it interferes with itself in a very
predictable way, and produces very predictable results. If, instead, we took the
“quantum mechanics says things are random” tack we’d expect that at each beam
splitter the photons made a random choice, and the detectors in the second example
would each fire half the time.

So quantum theory can not only predict that an event will be random in one
situation, but accurately predict the outcome in another. It all comes down to a
judicious application of measurements and how you allow the quantum system to
interact with itself.

This isn’t part of the question, but it is interesting. This particular example can be
extended to allow for something called “interaction free measurements” or “ghost
imaging”. By placing an obstruction into one of the paths, there is no interference
at the second beam splitter and therefore the (remaining) beam is free to randomly
split again (Figure 2.17).
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Once again, when you turn the intensity down to a single photon, the same
behavior persists. Here’s why this is called an interaction free measurement: if the
lower detector clicks, then you know that: 1) there’s something blocking one of the
paths, since otherwise the photon would have been directed to the upper detector,
and 2) the photon didn’t take the blocked path, since otherwise it would have been
destroyed. So the obstruction has been detected without anything actually coming
into contact with it.

How. . . mind boggling is that? This technique has been refined so that you’re
overwhelmingly likely to detect the obstruction without losing your photon in the
process and without false negatives.28 Ghost imaging is now being researched as,
among other things, a means of ultra-low-exposure photography.

28In the procedure described here, sometimes the upper detector clicks, but that doesn’t tell you
much because that always happens if there’s no obstruction.
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2.5 How does a quantum computer break encryption?

The short answer is: Shor’s algorithm.
The most common form of encryption used today is the RSA algorithm (named

after some dudes whose names started with R and S and whatnot). The security
of RSA is based on the fact that large numbers are hard to factor. Without going
into too much detail,29 creating an encryption key, M, is done by generating two
large primes, P and Q, and multiplying them together, M D PQ. “Breaking the
encryption” means finding P and Q given M. Multiplying two numbers is easy (ask
a grade school kid to do it), but factoring a number into its factors is so difficult that
it can’t be done in any reasonable time for large values of M.

For example, M D 656395510919398005869752992469994099667649141321

9355771. What are P and Q?30

What does Shor’s algorithm look for?

Shor’s algorithm factors M (and thus breaks RSA encryption) in a very roundabout
way. It first uses a cute quantum mechanical trick to find “r”, a number that describes
how often a particular pattern repeats. Without a quantum computer there’s no
known way to (efficiently) find r, but once you have it a completely normal computer
(or even a pocket calculator) can be used to factor M easily.

RSA encryption makes heavy use of modular arithmetic. In modular math you
have a number called “the mod”, M, and every time you deal with a number larger
than M you subtract copies of M until you’re dealing with a number smaller than
M. Clocks are a great example of “mod 12” arithmetic in action. For example, 31
o’clock is the same as 19 o’clock is the same as 7 o’clock (never mind am and pm).
You could re-write that as Œ31�12 D Œ19�12 D Œ7�12. There’s a lot of interesting stuff
(card tricks, math puzzles, digital security, all kinds of stuff) that uses modular math.

Now check this out!

Œ20�15 D Œ1�15

Œ21�15 D Œ2�15

Œ22�15 D Œ4�15

Œ23�15 D Œ8�15

Œ24�15 D Œ16�15 D Œ1�15

Œ25�15 D Œ32�15 D Œ2�15

Œ26�15 D Œ64�15 D Œ4�15

Œ27�15 D Œ128�15 D Œ8�15

Œ28�15 D Œ256�15 D Œ1�15
� � �

29To go into too much detail, see Section 4.8.
30Obviously, P D 8764325985409367513190343 and Q D 748940091927375783904810247597.
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This pattern: 1; 2; 4; 8; 1; 2; 4; 8; : : : repeats forever. Here’s why that’s useful. For
any given A (it doesn’t really matter what A is, so long as it’s a positive integer) there
is a lowest value, r, for which ŒAr�M D Œ1�M . This r is also the how often the patterns
repeats. Now here’s a slick trick. If r is even you can do this:

ŒAr�M D Œ1�M

ŒAr � 1�M D Œ0�Mh�
A

r
2

�2
� 12

i
M

D Œ0�M�
.A

r
2 � 1/.A

r
2 C 1/

	
M D Œ0�M

If r isn’t even you change A and try again.31 When you say something is equal
to Œ0�M , what you mean is that it’s a multiple of M. So .A

r
2 � 1/ and .A

r
2 C 1/ have

factors in common with M, and yet neither of them is a multiple of M on its own.
The name of the game is to find that “r” value. It has two properties: it’s the

smallest number such that ŒAr�M D Œ1�M , and as you raise A to higher and higher
powers r is how long it takes for the pattern to repeat (like in the“15” example;
1; 2; 4; 8; 1; 2; 4; 8; : : :). By finding r, we can factor numbers.

Example

Above we found that r D 4 for M D 15 and (the arbitrarily picked) A D 2. Using
that fact, we can factor 15:

Œ24�15 D Œ1�15
Œ24 � 1�15 D Œ0�15

Œ.22 � 1/.22 C 1/�15 D Œ0�15
Œ.3/.5/�15 D Œ0�15

Boom! There are the factors! You heard it here first: the factors of 15 are 3 and 5.

But why use quantum computers?

For large values of M you can’t just raise A to higher and higher powers and wait
until ŒAr�M D Œ1�M . Heavens no. For example, if you were trying this technique on
the M from the top of this article you’d find that to get back to 1 for the first time,
you’d have to raise 2 to every power until you got to:

�
26563955109193980058697529175751084743315298140895917832

	
M D Œ1�M

It’s easy to raise A to a large power once, but there literally hasn’t been enough
time in the universe to raise it to every power up to a seriously huge number such as
this.

31For profoundly mathy, long winded, and tangential reasons, r is even for most values of A.
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Fig. 2.18 f .x/ D Œ2x�15. This
is the example used to
demonstrate the Shor
algorithm below. The
important thing to notice is
that the function repeats.

Fig. 2.19 A classical
computer can only see one
value of x at a time, so there’s
no sense talking about
“repeating” and
“frequencies”.

There are buckets of tricks to cut down on the amount of computational effort
involved in doing this,32 but ultimately this just isn’t something that can be done
using regular computers in a reasonable amount of time.

Enter quantum computing. A quantum computer has no problem raising A to
many, many powers at the same time (Figure 2.18).

In a nutshell: You’d like to find the value of r such that the function f .x/ D ŒAx�M
repeats every r, so that you can do the “.Ar=2C1/.Ar=2�1/” trick. Since this function
has such a nice, repeating pattern the “Fourier transform” is very sharp. The Fourier
transform breaks down signals into their component frequencies, and a repeating
function has a very definite frequency. You can use that frequency to give you r.
The smaller r is, the faster the function repeats, and the higher the frequency, and
the larger r is, the slower the function repeats, and the lower the frequency.

So why do you need a quantum computer to do this? You need the function
to exist in the computer all at once. If (like in a conventional computer) you can
only have one value at a time, suddenly it doesn’t make sense to talk about the
“frequency” of the function (Figure 2.19). A normal computer can do many values
in a row, and different computers can handle different values at the same time, but
you need a quantum computer to have multiple values in the same processor.

32That’s why the NSA loves mathematicians so much.
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So, what’s the algorithm?

It’s not necessary to understand all of the math in detail to understand the overall
ideas. So please: don’t stress. After every step will be an example of the math at
work finding the factors of M D 15.

The computer starts with two registers. In what follows the notation “j1ij2i”
means the first register holds a 1 and the second register holds a 2. Several of
these added together means that the computer is in multiple states at the same time.
For example, “j1ij2i C j3ij4i” means that the computer is holding two states at
the same time: 1 and 3 in the first register, 2 and 4 in the second register. This is
exactly the same weirdness that shows up all over the place in quantum mechanics:
superposition. The machine that’s running this algorithm is literally in multiple
states at the same time (or at least, some of the internal bits and pieces need to be).

Step 1) Initialize

Initialize the first register to an equal superposition of every possible number from
0 to N � 1. N is a power of 2 because it’s dictated by the number of qubits33 (and n
qubits can describe N D 2n numbers) in the first register, but for now the only thing
that’s important is that N is big.

The quantum state looks like this:

1
p

N

N�1X
xD0

jxij0i

Example

In these examples we’ll factor the number M D 15 and use N D 16. The initialized
state looks like:

1
4
j0ij0i C 1

4
j1ij0i C 1

4
j2ij0i C 1

4
j3ij0i

C 1
4
j4ij0i C 1

4
j5ij0i C 1

4
j6ij0i C 1

4
j7ij0i

C 1
4
j8ij0i C 1

4
j9ij0i C 1

4
j10ij0i C 1

4
j11ij0i

C 1
4
j12ij0i C 1

4
j13ij0i C 1

4
j14ij0i C 1

4
j15ij0i

The “ 1
4
” in front of each term is the “probability amplitude” of an event, and the

square of the probability amplitude is the actual probability (this is called “Born’s

rule”). Each term has the same 1
16

D
ˇ̌
1
4

ˇ̌2
chance of being measured. Or at least it

would, if you measured right now. Which you don’t.
This is one of those very bizarre subtitles in quantum mechanics: things can exist

in many states simultaneously, but can only be measured to be in one state.

33A “bit” is the smallest unit of “classical information”, either 0 or 1. A “qubit” is the smallest unit
of “quantum information”, a combination of both 0 and 1 in the same sense that a photon in the
double slit experiment goes through both slits.
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Step 2) Calculate every value of f.x/

Define f .x/ D ŒAx�M . Take the first register, run it through f , and put the result in the
second register.

1
p

N

N�1X
xD0

jxijf .x/i

It doesn’t really matter what A you pick, so generally smaller, easier A’s are the
way to go.

Example

In this example, f .x/ D Œ2x�15, so now you have:

1
4
j0ij1i C 1

4
j1ij2i C 1

4
j2ij4i C 1

4
j3ij8i

C 1
4
j4ij1i C 1

4
j5ij2i C 1

4
j6ij4i C 1

4
j7ij8i

C 1
4
j8ij1i C 1

4
j9ij2i C 1

4
j10ij4i C 1

4
j11ij8i

C 1
4
j12ij1i C 1

4
j13ij2i C 1

4
j14ij4i C 1

4
j15ij8i

Notice that the same repeating 1; 2; 4; 8; : : : pattern shows up in the second
register.

Step 3) “Look” at the second register

One of the entirely awesome, mind-blowing things about quantum computing is
that it’s sometimes necessary to entangle the outside of the computer (including the
person using it) with part of the internal mechanism. That is to say; in order for this
algorithm to produce results that make sense, the user needs to be “caught up” in
the quantum nature of the machine. Don’t get too excited; this happens all the time,
everywhere it’s just that now it’s being done on purpose (Figure 2.20).

You can describe this as “wave function collapse” or “projection” or whatever. In
this case, it has the effect that the vast majority of states “vanish” while those that
remain are spaced at a regular interval: the “r” that the algorithm is looking for. One
of the clever things about the Shor algorithm is that it doesn’t matter what you see,
just that it is seen. As a quick aside: the thing that does the “looking” doesn’t have

Fig. 2.20 When you measure the second register you get one result. However, if there are several
different states that yield that result, then the overall state will be a superposition of all of those.
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to be a person, it could just as easily (easier) be another device. Despite what you
may have heard, consciousness plays precisely zero role in every quantum process
ever investigated.

A completely literal interpretation of the mathematics behind quantum mechan-
ics says that the states that “disappeared” are still being used, they’re just being
used by different versions of you that saw different results. That should be pretty
off-putting (or simply unbelievable), so just roll with it.

Back to the point.
Lets say that the observed value of f .x/ is “B”. The new state looks like:

r
r

N

N=rX
jD0

jx0 C jrijBi

This is just the collection of all of the equally likely inputs that could have led
to f .x/ D B, starting at the lowest value of x that could do it, x0, and then every rth
number after that, x0 C r, x0 C 2r, etc.

Example

Let’s say that when you look at the second register you see “8” (it’s as likely to be
observed as any other number). As a result the second register is in a “definite state”,
j8i, but the first register is still in a superposition of several states.

1

2
j3ij8i C

1

2
j7ij8i C

1

2
j11ij8i C

1

2
j15ij8i

In this case B D 8, N D 16, x0 D 3, and r D 4. This r is ultimately what
the algorithm is looking for. Even though these states are clearly spaced 4 apart,
someone running the algorithm wouldn’t know that yet because (unlike an ordinary
computer) you can’t stop and look at what your computer is doing at every step.
Quantum mechanics is very touchy about observation.

Step 4) Take the “quantum Fourier transform” of the first register

The Fourier transform takes in waves and spits out the frequencies of those waves.
If you have a function, f , then its Fourier transform is written “Of ” (read “f hat”). A
good way to picture the Fourier transform is as a piano keyboard. Sound itself is
just air moving back and forth, f , but if it’s moving back and forth quickly, then you
must be playing the high keys, Of (Figure 2.21).

In this case the pattern of numbers that exist in the first register are all evenly
spaced (r apart). This is a very regular tone, so the Fourier transform will have sharp
spikes. The new state after the quantum Fourier transform is:

1p
N

PN�1
kD0

hp r
N

PN=r
jD0 e�2� i k

N .x0Cjr/
i

jkijBi

D
p

r
N

PN�1
kD0 e�2� i k

N x0
hPN=r

jD0 e�2� i kr
N j
i

jkijBi
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Fig. 2.21 The keys on a piano are like the Fourier transform of the sound the piano makes. High
frequency waves are represented by high keys, low frequency waves are represented by low keys.
The back-and-forth movement of the air is like f and the corresponding collection of keys is like Of .

The Fourier transform is the part of this process that takes advantage of
constructive and destructive interference, which is an expression of the wave nature
of quantum systems. If this equation looks terrifying: don’t worry about it. The
important bits will be hashed out in a minute.

Example

The Fourier transform of the example state in step 3 is:

1

2
j0ij8i C

i

2
j4ij8i �

1

2
j8ij8i �

i

2
j12ij8i

Yes, those are imaginary i’s (as in i D
p

�1), but it’s cool. The probability is
equal to the square of the absolute value of each of those numbers, and the absolute

value of i is jij D 1. So, for example,
ˇ̌

i
2

ˇ̌2
D
�
1
2

�2
D 1

4
. Each of these four values of

k (0, 4, 8, and 12) has an equal one-in-four chance of being measured.

Step 5) “Look” the first register

This will give you another number. The “spikiness” of the Fourier transform in the
last step means that when you measure the value of the first register, you’ll be most
likely to measure values of k such that kr

N is very near or equal to an integer. The last
equation in step 4 is mostly fluff; the important part is

X
j

e�2� i kr
N j
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Fig. 2.22 The important summation as seen in the complex plane. When kr
N is close to an integer

the terms in the sum “agree” and make the sum bigger. When kr
N is not close to an integer the terms

in the sum “disagree” and cancel each other out, making the total small.

When kr
N is close to an integer, then this summation looks like “1 C 1 C 1 C

1 C 1 : : :” and ends up very large. Otherwise, it ends up canceling itself out. For
example, if kr

N D 1
2
, then the summation becomes “1 � 1 C 1 � 1 C 1 � 1 : : :”

(Figure 2.22).
The larger N is, the more sharply the Fourier transform “spikes”. So, there’s some

advantage to using bigger values of N.

Example

The probability of measuring any of the values of the state 1
2
j0ij8i C i

2
j4ij8i �

1
2
j8ij8i � i

2
j12ij8i is 1

4
. Notice that each value of k makes kr

N an integer! (remember
that r D 4 and N D 16) It actually doesn’t matter which of the values we get,34

which is a big part of what makes this algorithm so damn slick.
Let’s say that (by random chance) we measure the first register and get k D 12.

Ultimately, this is the only useful piece of information that the quantum computer
gives us. The quantum computer’s work is done: k D 12. You’re welcome. All that’s
left is to do some math.

Step 6) Do some math

So, in step 5 you measure a value of k such that kr
N � `, where ` is an integer. You

know what N is (it’s the number of input states from step 1), and you know what k

34Except for k D 0, but for typical (insanely large) values of N this is unlikely in the extreme.
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is (a quantum computer told you in step 5), but r and ` are still unknown. So what
you’ve got is k

N � `
r ; an approximation of one rational number, `r , with another, k

N .
Right now the only thing we know about r is that r < M (the number we’re trying
to factor).

This is a very old problem. If you were to ask Euclid about it he would probably
say something like, “�� K̨�� �˛ �˛
��˛��� K̨ ! EK��˛� ˛�� K� � ���˛� K� �o�
�� Ko�o�?”.35 It turns out that so long as N > M2 > r2, finding k determines both
r and ` uniquely. So, if we were factoring M D 15 correctly, we should have been
using N D 256 (a power of 2 bigger than 152 D 225), but that makes explicitly
writing out examples more difficult.

Example

In the last step the measured value was k D 12. So, `r � 12
16

D 3
4
. In this case the

approximation was exact, and r D 4 and ` D 3 (not that it matters what ` is).
So, finally, r D 4! This means that

�
24
	
15

D Œ1�15. So:

�
24 � 1

	
15

D Œ0�15

)
�
.22 � 1/.22 C 1/

	
15

D Œ0�15

) Œ.3/.5/�15 D Œ0�15

We can now say, with heads held high, that 15 D 3 � 5. Tell your friends!

The “15” example is a little ideal (but also simple enough that you can look at
each step in detail), so here’s one more example of the math with bigger numbers.

Say M D 77, and you want to find the factors. Then you choose A D 2 (because
it’s easiest), and since M2 D 5929, you choose N D 8192 (8192 D 213 is the first
power of 2 greater than M2, so this can be done with a 13 qubit register). You run
through the algorithm and find that k D 5188 (it could have been any one of many
values, but this is what you got this time). Now you know that 5188

8192
� `

r , where
r < M. Using approximation by continued fractions (or any of a number of other
techniques) you find that the closest values of ` and r that work are 17

30
. So, your

guess for r is r D 30.

The two numbers you get are:
h
2
30
2 � 1

i
77

D Œ32767�77 D 42 and
h
2
30
2 C 1

i
77

D

Œ32769�77 D 44. Now obviously, neither 42 nor 44 are factors of 77. However, they
each share a factor in common with 77. All you have to do now is find the greatest
common divisor (which is an extremely fast operation).

gcd.77; 42/ D 7

gcd.77; 44/ D 11

35“Forget the mathematics! Is that a time machine?”
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The Shor algorithm works perfectly (gives you a useful value of k and a correct
value of r) more than 40% of the time.36 That may not sound great. But if it doesn’t
work the first time, why not try it a few thousand more times? On a quantum
computer, this algorithm is effectively instantaneous. The one correct answer shows
up consistently and is therefore distinguishable from the cloud of random incorrect
answers that show up.

So, quantum computers (when they get around to existing in a useful form) break
encryption keys using some slick math to factor numbers. This slick math can only
be done on a quantum computer because it involves using every value of a function
simultaneously, a trick called “quantum parallelism”, while ordinary non-quantum
computers can only look at values one at a time (no matter how fancy they are).

36A “useful” value of k is one where � r
2
< Œkr�N < r

2
, which (with a little algebra) means that

there’s an ` such that
ˇ̌

k
N � `

r

ˇ̌
� 1

2N . Assuming that N > M2 and `
r ¤ `0

r0
, it follows that

ˇ̌̌
`0

r0
� `

r

ˇ̌̌
�ˇ̌

k
N � `

r

ˇ̌
C
ˇ̌̌

k
N � `0

r0

ˇ̌̌
� 1

2N C 1
2N � 1

M2 . But at the same time
ˇ̌̌
`0

r0
� `

r

ˇ̌̌
D
ˇ̌̌
`0r�`r0

r0r

ˇ̌̌
� 1

r0r >
1

M2 .

This is a contradiction, so `
r D `0

r0
. In other words, the condition that N > M2 ensures that a

“useful” value of k will produce a unique `
r with the correct value of r.
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2.6 Is it true that all matter is condensed energy?

Pretty much!
If you can get enough energy into one place, then you’ll get a (mostly random)

burst of particles popping out. The conversion between mass and energy is so
ubiquitous in physics that most physicists only know the mass of particles in the
context of their equivalent energy. If you ask a physicist “what’s the mass of an
electron?”, dollars to doughnuts they’ll say “0.5 MeV”,37 which is a unit of energy.
Frankly, the equivalent energy is more important than the actual mass. I mean, how
hard is it to pick up an electron? If you answered either “I don’t care” or “zero”,
you’re exactly right (Figure 2.23).

The only thing that keeps particles from turning back into energy (usually light
and kinetic energy) are “conserved quantities”. If you’ve taken an intro physics
course you should be familiar with conservation of energy and momentum. In
particle physics you also need to worry about things like: electrical charge, Lepton
flavor (which covers things like electrons and neutrinos), and baryon number (which
covers things like protons and neutrons).

The classic example is neutron decay (Figure 2.24).
A neutron is heavier than a proton, so you’d think it would decay into a proton

and some extra energy, since that would conserve energy and baryon number. But
that would violate conservation of charge: protons have a charge of one, neutrons
have zero. So maybe it could decay into a proton and electron? Now you’ve balanced

Fig. 2.23 The kinetic energy
of two lead atoms being
turned into a bunch of new
particles in the ALICE
detector.

37An electron-volt, eV , is the kinetic energy of an electron after passing through a potential
difference of one volt.
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Fig. 2.24 Neutron decay:
Tricky business.

charge, but violated lepton flavor; electrons have “electron flavor one”. To balance
everything you need to add an anti-electron neutrino, which has electron flavor
negative one, to the mix.

A good way to balance out all of those conserved quantities is to get some anti-
matter. Anti-matter particles are exactly like their matter counterparts except that
their corresponding conserved quantities are flipped. So, a proton and anti-proton
are free to turn into energy because their combined charge, baryon number, and all
the rest total to zero. What isn’t zero are their masses, m, which turn into E D 2mc2

of energy (because there are two of them).
The very early universe38 was a “particle soup”. The mean energy of the photons

flying around was more than enough to generate new particles. These would pop into
existence in balanced quantities and then cancel out again producing light. “Heat” in
the early universe wasn’t just light bouncing around, being in “thermal equilibrium”
at 1010 K involves both light being absorbed and reemitted as well as matter being
created and annihilated. The big difference between now and then is that the average
energy of photons today is nowhere near the energy needed to create electrons,
which are seriously tiny. And there’s (effetively) no anti-matter left anywhere, so
while energy and matter are interchangeable, it doesn’t come up a lot in practice.

38“Very early” means “first second or so”.
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2.7 What are “quantum measurements”? Why do they cause
so many problems?

Since its advent, quantum mechanics has been plagued by spooky phenomena and
unintuitive math. Its earliest proponents were so disturbed by its implications that,
as often as not, they dug in their heels and refused to accept the results of their own
calculations and experiments. Unlike every previous physical theory, fixed causes no
longer led to fixed effects. Quantum theory describes a world in which individual
things must be in multiple places and times. It has been quipped that “the only thing
quantum mechanics has going for it, is that it works.”

Quantum mechanics was relegated to the “physics of the small”, because on the
atomic scale its disturbing realities can’t be ignored. We work with a different set
of laws on the human scale and keep the strange predictions of quantum theory at
arm’s length. But working with two sets of physical laws has led to no end of bizarre
“paradoxes”. Chief among them is the “Measurement Problem”. When the large
non-quantum world interacts with the small quantum world, we see phenomena that
can’t be described by either set of physical laws. Simply by measuring a quantum
system we find effects that seem to travel faster than light. Large parts of quantum
systems, integral to their behavior moments before, inexplicably vanish. Even the
basic tenents of cause and effect go out the window.

The alternative to working with two sets of laws is to accept the quantum laws at
face value and consider what they have to say about measurement. Doing so yields
mind bending insights. That’s what we’ll do here. First we’ll go over how terribly
weird the measurement problem is and ponder why it may not be as simple as “when
you interact with something it stops acting quantumy”. Then we’ll also look at what
quantum mechanics says about measurements “from the particle’s perspective” and
hopefully shed a little of our anthropocentric point of view.39

What’s the measurement problem?

To understand the measurement problem, it’s important to first understand the
difference between the single-state-ness of large things vs. the many-state-ness of
quantum things. The “state” of a thing describes everything about it: its position,
the amount of energy it has, how it’s moving, its spin, its polarization, everything.
Ordinarily, we assume that any given thing is in a particular state. If you’ve lost your
keys, they’re definitely in some particular place.40

In quantum mechanics, things can be in many states simultaneously, a condition
physicists call a “superposition” of states. It is not hyperbole or metaphor when they

39Anthropocentric means “human centered”. Traditionally, getting away from an anthropocentric
view point has been a good move. For example, including humans in the pantheon of animals really
helps explain why we have all the same bits and pieces as so many of our animal brethren. And
when we stopped assuming that the Earth was the stationary center of the universe we got rid of
all the inscrutable machinations we had needed to explain the loopy paths of all the other planets.
40Specifically, the last place you look.
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say things like “an electron is in multiple places at the same time”. The physical laws
we use to describe the behavior of quantum systems work perfectly,41 and never
involve the superposition losing states. If something starts out in two states, then
any kind or number of quantum interactions will always take into account both of
those original states, and the end result will continue to be a combination of both.

But when “measured”, a thing that was once in a superposition is always
observed to be in only one state.42 All of the other, “unrealized” states abruptly
vanish. This is called “wave function collapse”. How this happens and the mystery
of the mechanism behind it is the “Measurement Problem”. For a century, it has
given rise to no end of weird paradoxes, arguments, and broken physicist hearts
(Figure 2.25).

The measurement problem crops up frequently in conjunction with the “Copen-
hagen Interpretation”43 of quantum mechanics, which is generally described along
the lines of “a thing is in a superposition of states until it’s measured”. Some folk
have mistakenly come to the conclusion that “measurement” means “measured by
something conscious” and an overly-optimistic few have concluded “therefore our

Fig. 2.25 Schrödinger’s Cat: A cat is sealed in a measurement-proof box with a radioactive atom
and a vial of poison that will break if the atom decays. If atoms can be in a superposition
of decayed/not-decayed (they can), then this should force the cat to be in a superposition of
alive/dead. When the box is opened, clearly the cat will either be alive or dead, not in a
superposition of both. Schrödinger proposed this thought experiment to argue that superposition is
impossible (for both atoms and cats). It turned out he was wrong, but the thought experiment has
become a staple of quantum culture and is now the go-to example for the Measurement Problem.

41To within the, frankly stunning, accuracy with which we measure and double check those laws.
42Or at least a smaller subset of states.
43The name comes from the Copenhagen of the 1920s, where Heisenberg and Bohr did a lot of the
foundational work of quantum theory. The more precise sense, as a philosophical interpretation of
quantum mechanics, came later in the 1950s.
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thoughts control reality and we’re all psychic and modern science is only now
coming to understand what mystics have known for billions of years”.44

More often (in sciencey circles), the Copenhagen interpretation is described as
a small system in many states interacting with a larger system that’s in only one
state. Somehow that interaction “collapses the wave function”, and only one of the
many states of the small system persists. However, the idea that large systems hold a
privileged position in the quantum hierarchy is very hard to support experimentally.

Here’s something to notice: the quantum physicist’s go-to example, the double
slit experiment,45 can be done in air. That is, you don’t have to remove the air (a
very large system) from around the double slits before you do the experiment. Light
travels slower in a medium, so there’s definitely a lot of interacting going on, and
yet the photons (a very small system) clearly continue to demonstrate superposition.
Whether in air, or vacuum, or water, the double slit experiment always produces
interference fringes due to the superposition-ful wave nature of light. You can even
bounce the light off of a mirror, a definitively large system, and the double slit
experiment still works. So it’s not just an interaction between a small, many-state
system and a large, single-state system that defines a “measurement”. It’s a bit more
subtle.

We have to be careful here. The statement “things are in many states until
measured” isn’t a Truth so much as an observation. A somewhat more nuanced
statement is “things are in many states until you interact with them, then they’re in
one state from your perspective”.

What is a measurement?

A measurement is best defined as anything that gives you “information”. Informa-
tion allows you to narrow your choices, or at least refine your probabilities. The
“polarization” of light is a great example to study, because it’s easy to measure,
easy to manipulate, and it is a quantum state that’s pretty robust (polarized light can
pass through miles of air without most of it changing). The polarization of light is
a direction that’s perpendicular to the light’s direction of travel that describes how
the light “waves back and forth”. A polarizer or “polarizing filter” only allows light
polarized in a particular direction to pass through.46

44It seems that every relatively new and not generally understood science goes through this
“healing energy” phase. In the 1780s, when electricity and magnetism were first being studied in
earnest, Franz Mesmer (of “Mesmerizing” fame) popularized the entirely fictional idea of “animal
magnetism”. For a fee, he would “magnetize” things (people, trees, rooms, rivers, tools, anything
you could pay for), granting them healing properties. As electricity became more commonly
understood and less en vogue, mystical claims like this became less lucrative. The same surge in
nonsense showed up when radioactivity was discovered, but lost popularity much faster. Customers
got skittish when the “health benefits” of “vita-radium suppositories” became general knowledge.
45See the Chapter 2 introduction.
46Polarizers and polarized light show up a lot more often than you might think. 3D movie glasses,
LCD screens, digital watch faces, sunglasses, all kinds of stuff. If you’re not sure if your sunglasses
are polarized, then find a patch of empty sky far from the Sun, look through the lenses, and rotate
them. If they’re polarizers, the sky will alternate between light and dark every 90ı.
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When light passes through sugar water, its polarization rotates.47 But if you don’t
know what the polarization of the light was before it entered the sugar water, you
won’t know anything about the polarization afterward. It’s an interaction, but not
a measurement. It’s like asking “if I take a coin and turn it over, will it be heads
or tails?”. Without knowing what it was beforehand, there’s no new information
about what it will be afterwards. In the case of the sugar water, this manifests as a
conservation of states: if the photon enters in multiple states, it leaves in multiple
states (just not the same states).

A polarizer, on the other hand, definitely performs a measurement. If light goes
through, then it was polarized in the same direction as the polarizer, and if it doesn’t,
then it was polarized perpendicular to the polarizer. The situation is muddied a bit
when you consider diagonally polarized light. Diagonal light is a superposition of
vertical and horizontal light, but when it encounters a vertical polarizer it’s either
vertically or horizontally polarized. The other state is “collapsed” (Figure 2.26).

But describing a measurement in terms of information leads to another, possibly
nightmarish, question: Is it possible to do a “partial measurement”, that yields only a
little information? If you’ve ever listened to a bus or train announcement, you know
that it’s possible to get more than none, but far less than all, of the information you’d
like. For example, after an announcement you may decide that there’s a 70% chance
that the train is late, a 25% chance that it’s on time, and a 5% chance that someone
or something is eating the microphone. This is a partial measurement, because a
full measurement would take the form of 100% probabilities. As in “the train is
definitely, 100%, late”.

Fig. 2.26 Left: The “Faraday effect” is the rotation of polarization (in this case from vertical to
not-quite-vertical) when light passes through a “twisty” material, like sugar-water. Although the
polarization angle changes, this is not a measurement because it doesn’t tell you anything about
that polarization. Right: For polarizers, either the light is polarized correctly and passes through,
or it’s polarized incorrectly and is stopped. This is a measurement, since you gain information
about the photon’s polarization.

47This is an excellent thing to try for yourself, if you happen to have a couple of polarizers around.
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Happily, the same is true in quantum mechanics and it’s extremely useful! For
example, you can use partial measurements to make “interaction free measure-
ments” (sometimes called “seeing in the dark” or “ghost imaging”).48 Measurements
can refine the states of a system without destroying its superposition-ness.

In the usual setup for the double slit experiment there is a 50% chance of each
photon going through either slit. “50/50” is just another way of saying “there’s no
information about which slit the photon is going through”. This is done intentionally
to produce the clearest interference fringes.

There are many ways to gain a little information about which slit the photon goes
through while leaving some ambiguity. For example, you can move the light source
closer to one slit, or put smoked glass over a slit to absorb some photons. Either
way, once a photon has passed through the slits, you have some idea of which one
it went through but not certainty. As in: “it probably went through the slit that isn’t
covered by the darkened glass, but maybe not” (Figure 2.27).

Partial or total, measurements affect the interference pattern. What’s very
exciting is that you can slide cleanly from “no measurement”, 50/50, to “total
measurement”, 0/100 (Figure 2.28).

So, while it’s a huge pain to define “measurement” in a physical context, you can
define it pretty readily using mathematics/information-theory as “an interaction that
conveys information, allowing you to be more certain about what the states are”.

Just to be clear, there doesn’t need to be a person doing a measurement. Any
interaction that conveys information (which in day to day life is effectively all of
them) is a measurement. If a tree falls in the forest, and no one’s there to see it, the

Fig. 2.27 How to do a
“partial measurement” in the
double slit experiment. If you
make it less likely that the
photon goes through one slit
(using an sophisticated
technique like blocking it a
little), then you know a little
about which slit it goes
through, but not everything.

48See Section 2.4 for details about how to do that.



2.7 What are “quantum measurements”? Why do they cause so many problems? 107

Fig. 2.28 The more certain
you are about which slit the
photon passes through, the
weaker the interference
pattern. Once you’re 100%
certain which slit the photon
goes through, you’re left with
a simple bright “bump”
under that slit. This is exactly
the single-state result you’d
expect.

Fig. 2.29 Baseballs are
pitched such that they bounce
off of each other in mid-air.

tree and ground still measure each other.49 All quantum experiments work in exactly
the same way whether there’s a person around or not.

What does a measurement look like to the thing being measured?

Finally, to think about measurement from a quantum point of view, we need to
introduce “entanglement”.

Imagine that, for some reason, you and a friend get some pitching machines and
start chucking baseballs at each other. Just to see if you can, you set up the machines
so that they fire at the same time and the baseballs hit each other in mid-air. Now,
pitching machines aren’t perfect, so the balls won’t always take the same path, just
one that’s more or less forward. In this scenario, there’s no way to predict what angle
they’ll hit each other and in which directions they’ll bounce apart (Figure 2.29).

49Technically, since both results of this measurement are fairly conclusive, “the tree fell” or “the
tree didn’t fall”, if a tree doesn’t fall in a forest the tree and the ground still measure each other.
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After the collision there’s not a lot you can say about the trajectory of each ball.
One thing you can say for sure is that regardless of the direction one ball flies, the
other ball will fly off in the opposite direction. After the collision their trajectories
are correlated, because the direction of one ball coincides with the direction of the
other ball.

Now look at the same situation from a more “quantumy” perspective. The
pitching machines throw the baseballs, not in one of many slightly different
trajectories, but in all of the possible slightly different trajectories. Clearly the
collision conveys information, so it is a measurement. The information is pretty
straightforward (“you are being hit by another baseball”), but it’s still informative.
Surprisingly, the effect of that measurement depends on your perspective.

From an outside perspective

Both baseballs move toward each other in many, uncorrelated, paths. A “baseball
probability cloud”.50 They’re uncorrelated because even if you know which path
one of the baseballs is taking, you still know nothing about the other (Figure 2.30).

When they collide and bounce apart, they’re still traveling along a superposition
of many possible paths. However, since they always bounce in opposite directions,
their states are now correlated. This is exactly what entanglement is: a correlated
superposition of states. From an outside perspective, where you don’t know the state
of either ball, their collision and mutual measurement has entangled their states.

Fig. 2.30 Each baseball,
rather than following a single
path, takes a superposition of
every possible path. After the
collision the balls are still in
a superposition of every
possible resulting path, but
must also be traveling in
opposite directions.
Correlated superpositions =
entanglement.

50A “probability cloud” is how things like electron shells in atoms are described. The idea is the
same here: it’s not in one place, it’s in a bunch of nearby places.
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Fig. 2.31 After it’s fired, a
particular single state of the
left baseball looks
“non-quantum” and follows
one path. From its perspective
the other ball is initially in a
superposition of states. When
they collide they measure
each other and suddenly see
themselves and the other ball
in just one state. Keep in mind
that each of the different
states experience this.

From an inside perspective

Each state of each baseball thinks of itself as the only state. An “inside perspective”
means picking one state out of the many and thinking about what its life is like
(Figure 2.31).51

Before they collide, one ball sees the other ball as being in many states. When
they collide each suddenly sees the other ball as being in one state. So from an
“inside” point of view, measurement looks like “wave function collapse”, one of
the great weirdnesses of the Copenhagen interpretation. When a ball bounces away
from the collision it still sees itself going in one direction, and (since the balls always
bounce in opposite directions) it’ll definitely see the other ball going in only one
direction.

Their collision and mutual measurement has collapsed the state of the opposite
ball (from the perspective of each ball). But keep in mind that every state of both
balls sees a different wave function collapse. There’s nothing special about either
ball; they’re both still in many states. The only thing that’s changed is that each
state of a ball now “sees” only one of the other ball’s states.

Just for fun, from a very outside perspective

If you could somehow remove yourself completely, you’d see not just the baseballs
in many states, but the people involved as well. After a collision, the people running
the machines see the baseballs as being entangled. Now say one of them, Bob,
tries to find one of the balls. When he does, he suddenly knows where the other
ball is. Bob’s excited because he just experienced “wave function collapse” for
the octillionth time that day. Also, since the balls were entangled, he’s instantly
collapsed the states of the other ball as well (that is, he now knows where it is).

51To be needlessly over-the-top exact, this should be: “. . . picking one collection of indistinguish-
able states out of the many. . . ”.
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However, from a very, very outside perspective (e.g., a distant star system), each
of Bob’s many states eventually finds one of the ball’s many states. Now, from far
enough out, you can’t tell where each of Bob’s states finds the ball. All we can say
is that wherever the ball is, that’s where Bob will find it. That is to say, the state of
the ball that bounced east from the collision will be correlated with the state of Bob
that finds the ball to the east of the collision. Both Bob and the ball are still in many
states, but now they’re correlated. By finding the ball, Bob (in his many states) is
now entangled with it.

Even more awesome, since the baseballs were already entangled with each other,
by entangling himself with one, Bob entangles himself with both. That’s not too
impressive from Bob’s perspective; finding that one ball went east means the other
went west. No big deal. But what seems mundane to Bob can seem spooky at a
distance.52

52Einstein famously dismissed entanglement as “spooky action at a distance” because it seems
(from an inside perspective) to require effects to travel faster than light.
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2.8 What is quantum teleportation? Can we use it to
communicate faster than light?

Contrary to its exciting name, quantum teleportation doesn’t involve any physical
stuff suddenly disappearing and then reappearing somewhere else. Instead it’s a
cute, clever, technique for transferring an unknown quantum state of one system
(usually a single particle) to another, specially prepared, system. That sounds
a lot cooler and more interesting than the reality. Before getting into quantum
teleportation, we’ll go over “classical teleportation”, and you can judge whether
“teleport” is even the appropriate word. This is great at parties or, more likely, Dr.
Who marathons.

A Pointless Thing to do With Spare Change

Start with three coins, A, B, and C. This procedure will allow you to teleport the
result of the flipped coin A to coin C (Figure 2.32).

i) Set up B and C to be the same side up.
ii) Move C as far away as you like.

iii) Flip A.
iv) Compare A and B. If they’re the same, leave C alone. If they’re different, turn

C over.
v) What was the state of A is now the state of C. Take a bow.

This is profoundly unimpressive if you do it yourself with all of the coins visible.
However, if you do it without looking, it begins to feel a little spooky. All you’ll need
is some way to get two coins to have the same random result, such as paper-clipping
them together (Figure 2.33).

Classical Teleportation

Fig. 2.32 Initially B D C. If
A D B, then C D A. If
A ¤ B, then after you turn C
over you have C D A.
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Fig. 2.33 The sophisticated
technology behind classical
teleportation. By means of
this remarkable device you
can flip two coins and ensure
that the results are “strongly
correlated”.

This is the same thing, but this time the state of A is teleported to C without you ever
knowing what that state is. I’m calling this “classical teleportation” because it uses
the same big ideas of quantum teleportation, but without all the quantum stuff. As
names go, it’s a little grandiose (as you’ll see in a minute), but then so is “quantum
teleportation”.

i) Clip B and C together so that they are the same side up and flip them.*
ii) Move C as far away as you like.*

iii) Flip A.*
iv) Clip A and B together and flip them.*
v) Compare A and B. If they are the same, leave C alone. If they’re different, turn

C over.*
vi) What was the state of A is now the state of C. Pause for applause.

*Without looking.
This is the same as the last trick, just with more flipping and blindfolds. Once

you compare A and B you can then shout53 “same” or “different”, and whoever has
C can leave it alone or turn it over. You never find out what A was, because you
flipped it (clipped to B). The state of A is lost, but the relationship between A and B
(same/different) is maintained, which is all you need to teleport the unknown state
of A to C.

An important thing to notice here is that until you tell whoever is in charge of
C about the result of the same/different measurement, the state of C is random
and has absolutely nothing to do with the state of A. This is the big limitation of

53For a long-distance teleport, use the phone.
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teleportation and why it isn’t faster than light; you have to communicate the results
of a measurement and that communication is through ordinary, not-faster-than-light
channels.

Interestingly, classical teleportation not only teleports the state, it also teleports
probabilities. For example, if A has a 75% chance of being heads, then after the
teleportation, C has a 75% chance of being heads. At no point is there any indication
about which state is which, and yet something rather profound is sent from A to C;
not just a state, but a probability distribution.

Classical teleportation is capable of sending physical objects from one place to
another exactly as effectively as an email. If you’ve tried this trick out and said
to yourself “wait a minute. . . this isn’t teleportation at all!”, then you understand it
fully.

Quantum teleportation has the same limitations and works very similarly.
Classical teleportation requires B and C to be “maximally correlated” in order to
work. In quantum teleportation you need B and C to be “maximally entangled”. The
difference between correlation and entanglement is remarkably subtle.

Quantum Teleportation

The basic idea is the same as the coin trick, only instead of coins you use “qubits”
and instead of correlation you use “entanglement”. Start with two qubits, B and C,
that are entangled. Then bring in qubit A that’s in an unknown state and compare it
to B.54 Then the results of that comparison are communicated, and C is altered.

A “qubit”, is like a regular “bit” (or a coin), except that instead of just 1 or 0
(heads or tails) it can be in a combination of both. What is physically meant by 1 or
0, or how a qubit is manipulated, depends on the system involved.55

The difference between entanglement and correlation is subtle. Two correlated
coins are either heads-heads or tails-tails, and we’ll write those states as

j11i or j00i

Two entangled coins are both heads-heads and tails-tails, and we’ll write those
states as

j11i C j00i
p
2

54In a way that doesn’t involve directly measuring the states of either.
55Commonly used qubits are the right/left polarization of photons or the ground/excited state of an
atom. There are lots of examples and some are easier to work with than others, but the same ideas
apply to all of them.
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The property of being in multiple states simultaneously is “superposition” and
entanglement is a superposition shared by two or more things. In a nutshell,
entanglement is what you get when you combine correlation and superposition.

The notation here looks a little eldritch, but stay with me. In what follows “j �

� � i” is the notation for a state of all three qubits. So, for example, j101i is the state
A D 1, B D 0, and C D 1. You could also write this as j1ij0ij1i or j1ij01i or
j10ij1i, but that takes more work.56

B and C will start in the entangled state 1p
2
j00i C 1p

2
j11i, which means that

they’re in a 50/50 combination of “both zero” and “both one”. That
p
2 is there

because when you actually do a measurement, the probability of finding a particular

state is the coefficient squared (and
ˇ̌̌
1p
2

ˇ̌̌2
D 1

2
). This is called the “Born Rule” and

don’t worry about it.57 Those
p
2’s are mostly just clutter.

The initial state of all three qubits, “I” in the diagram (Figure 2.34), is:

I W
Œ˛j0i C ˇj1i�

h
1p
2
j00i C 1p

2
j11i

i
D p̨

2
j000i C ˇ

p
2
j100i C p̨

2
j011i C ˇ

p
2
j111i

Where the state of A, which is the state to be teleported, is completely unknown
(˛ and ˇ are unknown). The first thing that’s done is a “Controlled Not Gate”
(CNot).58 An ordinary Not Gate flips the bit, j0i ! j1i and j1i ! j0i. But a CNot

Fig. 2.34 How to quantum teleport the state of A onto C.

56Half of doing math is figuring out how to do things with minimal effort and minimalist notation.
Mathematicians are the kind of people who will spend hours thinking about how to put on their
shoes in the least possible time.
57The Born Rule is one of those things in physics that is, for lack of a better word, “true”. Physicists
love to argue about why it’s true and where it comes from, but (for now at least) this seems to be
the ground floor.
58Like qubits themselves, how a “quantum gate” is implemented depends on what is physically
being used as a qubit.
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has a “control bit” and a “target bit”. If the control bit is 0, then nothing happens,
and if the control bit is 1, then the target bit is flipped. In this case, A is the control
bit and B is the target. Explicitly:

j00i ! j00i

j01i ! j01i

j10i ! j11i

j11i ! j10i

This interaction causes the states of A and B to become entangled. After the CNot
the state of the three qubits, “II” in the diagram, is:

II W
˛

p
2

j000i C
ˇ

p
2

j110i C
˛

p
2

j011i C
ˇ

p
2

j101i

Notice that after the CNot gate the qubits can no longer be mathematically
separated,59 the way the state at I could be. Initially the overall state could be
written with the state of A first, ˛j0i C ˇj1i, and the state of B and C second,
1p
2
j00iC 1p

2
j11i. After the CNot gate this is no longer possible. “Non-separability”

is symptomatic of entangled systems.
Next comes the “Hadamard Gate”, which only exists for quantum systems. CNot

gates can be done in a regular computer, but the Hadamard Gate is strictly quantum.
Here’s what it does:

j0i ! 1p
2
j0i � 1p

2
j1i

j1i ! 1p
2
j0i C 1p

2
j1i

This step hides what state A started out as, so when a measurement is done (in a
moment) you don’t directly measure A. This is important, because if you measure a
state it collapses60; instead of having ˛j0iCˇj1i, you’re left with just j0i or just j1i,
which are different from A. This step and the CNot step are analogous to clipping
the coins together and flipping them; you obscure what the actual state of A was
while preserving the relationship between A and B.

59By “notice” I mean “if so inclined, try and fail to do it yourself until you’re convinced it can’t be
done”.
60Not really. When quantum systems interact they become entangled. From inside of a system this
looks like “wave function collapse” which causes no end of paradoxes and problems, but from
outside of the systems involved interactions don’t cause collapses, just entanglement.
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After applying the Hadamard Gate to A, the state of the three qubits, “III” in the
diagram, is:

III W

p̨
2

h
1p
2
j0i � 1p

2
j1i
i

j00i C ˇ
p
2

h
1p
2
j0i C 1p

2
j1i
i

j10i

C p̨
2

h
1p
2
j0i � 1p

2
j1i
i

j11i C ˇ
p
2

h
1p
2
j0i C 1p

2
j1i
i

j01i

D ˛
2
j000i � ˛

2
j100i C ˇ

2
j010i C ˇ

2
j110i

C˛
2
j011i � ˛

2
j111i C ˇ

2
j001i C ˇ

2
j101i

D 1
2
j00i Œ˛j0i C ˇj1i�C 1

2
j01i Œˇj0i C ˛j1i�

C 1
2
j10i Œ�˛j0i C ˇj1i�C 1

2
j11i Œˇj0i � ˛j1i�

Now when A and B are measured, they can have one of four possible results,
j00i, j01i, j10i, and j11i. When a measurement is made, then what remains are all
of those states consistent with the measurement.61 For example, if A is measured to
be 1, then the state remaining is 1p

2
j10iŒ�˛j0i C ˇj1i�C 1p

2
j11iŒˇj0i � ˛j1i�, and

if B is then found to be 0, then the state remaining is j10iŒ�˛j0i C ˇj1i�.
Each of the four results will mean that C is left in one of four states. The state of

the system at “IV” in the diagram is:

IV W

j00i Œ˛j0i C ˇj1i�

or

j01i Œˇj0i C ˛j1i�

or

j10i Œ�˛j0i C ˇj1i�

or

j11i Œˇj0i � ˛j1i�

If the person in charge of C is then told the results, no matter how far away they
are, they can perform some basic fixes. If the result is 00, then they leave the state
alone. If the result is 01, they run C through a Not gate to switch 0 and 1. For the
others a “Phase Gate” (another quantum-only kind of logic gate) is needed, which
takes j0i ! j0i and j1i ! �j1i. For 11 the Phase Gate does the job and for 10 a
Not then Phase then Not is needed.

61We’re blowing right by it here, but this is one of the weirdest, most philosophically profound
facts to come out of quantum theory.
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Once the appropriate fix is done, C will be in the same state that A started in:
˛j0iCˇj1i. This whole recipe is analogous to the “leave it alone or turn it over” step
in classical teleportation. It’s more complicated, sure, but to be fair: it’s quantum
mechanics.

Here’s the important bit. Just like classical teleportation, without knowledge of
the results of the AB measurement, the person in charge of C can’t turn C into the
original A state. If they were to measure C, without doing any of the fixes, they’d find
that the probability of getting a 0 or 1 is exactly 50%, instead of j˛j2 and jˇj2 which
it should be.62 Classical teleportation is capable of sending probability distributions,
but quantum teleportation is capable of sending “probability amplitudes”, ˛ and ˇ.

You may suspect/hope that there’d be some way to manipulate C, without getting
the results of the measurement, that would allow you to overcome this lack of
information. Turns out: nope. Without ordinary communication, nothing about A
is conveyed to C, and if you only have access to C, you’d never know that a
measurement was even done.

When you hear someone spinning yarns about how entanglement sends informa-
tion faster than light, keep in mind that there’s no way around this “call them on the
phone and tell them the results” barrier. In that sense, entanglement is no better than
correlation. If you set up two coins to be the same side up (correlate them) and move
them to opposite sides of the universe, then when you look at one you’ll instantly
know what the other coin is. This isn’t a faster-than-light effect, or even an effect
that travels at all; it’s just how correlation works. Entanglement and teleportation
work in very much the same way.

62By the Born rule.
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2.9 Does anti-matter really move backward through time?

The very short answer is: yes, but not in a time-traveler-kind-of-way.
There is a “symmetry” in physics implied by our most fundamental understand-

ing of physical law (quantum field theory) that is never violated by any known
process, called the “CPT symmetry”. It says that if you take the universe and
everything in it and flip the electrical charge (C), invert everything as though through
a mirror (P), and reverse the direction of time (T), then the base laws of physics all
continue to work the same.

Together, the PT amount to putting a negative on the spacetime position:

.t; x; y; z/ ! .�t;�x;�y;�z/

In addition to time this reflects all three spacial directions, and since each of these
reflections reverses parity (flips left and right), these three reflections amount to just
one P.63 When you do this (PT) in quantum field theory, and then flip the charge
of the particles involved (C), nothing changes overall. In literally every known
interaction and phenomena (on the particle level), flipping all of the coordinates
(PT) and the charge (C) leaves the base laws of physics unchanged. The behavior of
every particle, every kind of interaction, everything stays the same. Backwards, but
otherwise the same. It’s worth considering these flips one at a time.

Charge Conjugation

Flip all the charges in the universe. Most important for us, protons become
negatively charged and electrons become positively charged. Charge conjugation
keeps all of the laws of electromagnetism unchanged. Basically, after reversing all
of the charges, likes are still likes (and repel) and opposites are still opposites (and
attract).

Time Reversal

If you watch a movie in reverse a lot of nearly impossible things happen. Meals
are uneaten, robots are unexploded, words are unsaid, and hearts are unbroken.
The big difference between the before and after in each situation is entropy, which
almost always increases with time. This is a “statistical law” which means that it
only describes what “tends” to happen. On scales-big-enough-to-be-seen, entropy
“doesn’t tend” to decrease in the sense that fire “doesn’t tend” to change ash into
paper; it is a law as absolute as any other. But on a very small scale entropy becomes
more suggestion than law. Interactions between individual particles play forward
just as well as they play backwards, including particle creation and annihilation
(Figure 2.35).

633 reverses = 1 reverse: R ! R! R ! R.
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Fig. 2.35 Left: An electron and a positron annihilate producing two photons. Right: Two photons
interact creating an electron and a positron. Both of these events occur in nature and are literally
time-reverses of each other.

Parity

If you watch the world through a mirror, you’ll never notice anything amiss. If
you build a car and a mirror opposite car, then each will function just as well as
the other.64 It wasn’t until 1956, when Chien-Shiung Wu heroically put ultra-cold
radioactive cobalt-60 in a strong magnetic field, that we finally had an example
of something that behaves differently from its mirror twin. The magnetic field
forced the cobalt’s nuclei, with their decaying neutrons, to more or less align in one
direction and we found that the electrons shot out (ˇ� radiation) in one direction
preferentially (Figure 2.36).

The way matter interacts through the weak force has handedness in the sense
that you can genuinely tell the difference between left and right. During ˇ� (“beta
minus”) decay a neutron turns into a proton while ejecting an electron, an anti-
electron neutrino, and a photon or two out of the nucleus. Neutrons have spin,
so defining a “north” and “south” in analogy to the way Earth rotates, it turns
out that the electron emitted during ˇ� decay is always shot out of the neutron’s
“south pole”. But mirror images spin in the opposite direction (try it!) so the
reflection’s “north-south-ness” is flipped. The mirror image of the way neutrons
decay is impossible. Just flat out never seen in nature. Isn’t that weird? There doesn’t
have to be a “parity violation” in the universe, but there is (Figure 2.37).

Parity and charge are how anti-matter is different from matter. All anti-matter
particles have the opposite charge of their matter counterparts and their parity is
flipped in the sense that when anti-particles interact using the weak force, they do
so like matter’s image in a mirror. When an anti-neutron decays into an anti-proton,
a positron, and an electron-neutrino, the positron pops out of its “north pole”.

CPT is why physicists will sometimes say crazy-sounding things like “an anti-
particle (CP) is like a normal particle traveling back in time (T)”. In physics,
whenever you’re trying to figure out how an anti-particle will behave in a situation
you can always reverse time and consider how a normal particle traveling into the
past would act.

64One of the owner’s manuals will be a little tricky to read and the threading on all the screws will
be a little screwy, but generally what works for one car will work for the other.
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Fig. 2.36 Chien-Shiung Wu in 1956 demonstrating how difficult it is to build something that
behaves differently from its mirror image.

Fig. 2.37 Matter’s
interaction with the weak
force is “handed”. When
emitting beta radiation (a
weak interaction) matter and
anti-matter are mirrors of
each other.

This isn’t as useful an insight as it might seem. Honestly, this is useful for
understanding beta decay and neutrinos and the fundamental nature of reality or
whatever, but as far as your own personal understanding of anti-matter and time,
this is a singularly useless fact. The “backward in time thing” is a useful way of
describing individual particle interactions, but as you look at larger scales entropy
very rapidly begins to play a dominating role. The usual milestones of passing time
(e.g., ticking clocks, growing trees, training montages) show up for both matter and
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Fig. 2.38 “Anti-matter acts
like matter traveling
backward in time”.
Technically true, but not in a
way that’s useful or
particularly enlightening for
almost anyone to know.

anti-matter in exactly the same way. It would be a logical and sociological goldmine
if anti-matter people living on an anti-matter world were all Benjamin Buttons,65

but at the end of the day if you had a friend made of anti-matter (never mind how),
you’d age and experience time in exactly the same way.66 If you spill an anti-glass
of anti-milk on the anti-table, the atoms won’t somehow coordinate with each other
to un-spill themselves just because they’re anti-matter; instead, your anti-auntie will
yell at you to clean it up (Figure 2.38).

The most important, defining characteristic of time is entropy and entropy
treats matter and anti-matter in exactly the same way. The future is the future for
everything.

65Brad Pitt plays a guy who inexplicably ages backwards. That’s about it.
66You just wouldn’t want to hang out in the same place.
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2.10 Why can’t you have an atom made entirely out of
neutrons?

The short answer is: you can, but not for long.
If you’ve taken a little chemistry you probably know that the electrons in an atom

“stack up” in energy levels. The more electrons you add, the higher the electrons
have to stack. The same is true for the protons and neutrons inside the nucleus of
the atom. We don’t worry about the details as much because the exact arrangement
of particles in the nucleus is far less important for chemical interactions. What’s a
little surprising is that the stack for the protons and the stack for the neutrons are
independent of each other.

In a stable atom the energy in the proton stack will be about the same as the
energy in the neutron stack. If they’re unequal, then a neutron will turn into a proton
(ˇ� decay), or a proton will turn into a neutron (ˇC decay) to even out the levels.
The greater the difference the sooner the decay, and the more radioactive the atom.
There are plenty of exceptions,67 but by and large the pattern usually holds.

An atomic nucleus made entirely out of neutrons (known to some sci-fi aficiona-
dos as “neutronium”) would be completely imbalanced and would decay instantly.
It would be tremendously radioactive (Figure 2.39).

Chemistry nerds may have noticed that heavier elements have more neutrons than
protons. For example, Iron 58 has 26 protons, 32 neutrons, and is stable. Protons
are positively charged and, since likes repel, forcing them together takes a lot of
energy. After hydrogen, proton energy levels grow faster than neutron energy levels
(Figure 2.40).

Fig. 2.39 Carbon 14 is
radioactive because it has too
many neutrons. Neutronium
has the same problem, just
more so.

67E.g., Uranium 235 has a half-life of 700 million years, but if you add three neutrons you have
Uranium 238, a more stable isotope with a half-life of 4.5 billion years.
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Fig. 2.40 A map of all the known isotopes of atoms. When there are too many protons or neutrons
an atom will be unstable and decay toward the black “staircase”. N is the number of neutrons and
Z is the number of protons.

A single neutron on its own is radioactive, with a half life just under 15 minutes.
When a neutron decays it turns into a proton, an electron, an anti-electron neutrino,
and some extra energy. The sudden advent of a proton is why neutrons can be
stable in atoms; adding a proton may require more energy to be added than is
gained by the decay. The electron produced is what ˇ� radiation is: a high-speed
electron.68 And that neutrino is essentially lost to the universe; since they interact so
weakly with everything, the energy that goes into their production may as well have
disappeared.

68ˇC is a high speed anti-electron.
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The one big exception is neutron stars. Once a fantastic amount of gravity and
weight is mixed into the situation, it becomes possible for protons to convert into
neutrons en masse. An ordinary atom takes up a wasteful swath of space because the
electrons that surround them don’t want to be in the same space as other electrons.69

However, when a proton and an electron fuse into a neutron they take up less room
and since gravity wants to crush everything together, this is a lower energy state;
everything above the ex-mostly-empty-space can now drop a little. This sort of
gravitational-space-saving allows a star to collapse from a healthy Sun-sized million
plus kilometers across to a diminutive ten kilometers across. You could walk around
it in a day if it didn’t kill you in a microsecond.

Not all of a neutron star is made of neutrons, just almost all. The surface of
neutron stars don’t have a colossal amount of weight pressing down on them,70 so
there you’ll find a crust of ordinary matter. It’s much hotter than the Sun and the
surface gravity is generally a few hundred billion times that of Earth, but there is
carbon and oxygen and whatnot to be found.

So neutron stars are the one example of stable neutronium. That said, most people
would say that referring to an ex-star as an atomic nucleus is asking a lot of the word
“atomic”.

69This is the “Pauli Exclusion Principle” or, as it is more commonly known, “two things can’t be
in the same place”.
70It’s good to be on top.
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2.11 Does quantum mechanics really say there is more than
one me? Where are they?

“Other Quantum Worlds” has become a whole thing in sci-fi: Star Trek did it,
Stargate did it, Neal Stephenson did it, Sliders was it. Sci-fi tends to paint a
somewhat simplistic view,71 something along the lines of “the whole universe splits
with every quantum event, so everything that can happen does happen. . . in another
universe”.

There are serious issues with that presentation of the “Many Worlds Interpreta-
tion” of quantum mechanics. Where do the new universes come from? Where are
they? If they’re genuinely distinct and separate from ours, then why would we bother
to suspect that they exist?

As it happens, there are reasons to think that “other yous” may exist. It’s not that
there are literally multiple universes (whatever that might mean), it really comes
down to our universe being a profoundly weird place. Here’s the idea.

Superposition is a real thing

One of the most fundamental aspects of quantum mechanics is “superposition”.
Something is in a superposition when it’s in multiple states/places simultaneously.
You can show, without too much effort, that a wide variety of things can be in a
superposition. The archetypal example is a photon going through two slits before
impacting a screen: the double slit experiment (Figure 2.41).

Fig. 2.41 The infamous Double Slit experiment demonstrates light going through two slits
simultaneously before being projected onto a screen. Instead of a pair of bars (one for each slit)
we see “beats” of light caused by photons interfering like waves between the two slits. Eerily, this
continues to work when you release only one photon at a time; even individually, each photon will
only hit the bright regions.

71Contain your shock.
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If you shine coherent light (laser light is easiest) on a pair of closely spaced slits
and allow the resulting light to fall onto a screen, you’ll see an “interference pattern”.
Instead of the photons going straight through and creating a single bright spot behind
each slit (classical) we instead see a wave interference pattern (quantum). This only
makes sense if: 1) the photons of light act like waves and 2) they’re going through
both slits. This is a clear indication of the wave-nature of light. What’s spooky is
that the effect persists even when the light intensity is so low that only one photon
is allowed at a time.

It’s completely natural to suspect that the objects involved in experiments
like this are really in only one state, but have behaviors too complex for us to
understand. Rather surprisingly, we can pretty effectively rule that out.72 The double
slit experiment gets brought up a lot because it’s one of the cleanest examples of
quantum weirdness, but superposition shows up everywhere.

There is no scale at which quantum effects stop working

It often seems as though every example of quantum phenomena is tiny. The reason
for this is that tiny things are easier to keep perfectly isolated. To date, every
experiment capable of detecting the difference between quantum and classical
results has always demonstrated that the underlying behavior is strictly quantum. To
be fair, quantum phenomena are as delicate as delicate can be so these experiments
are difficult. For example, in the double slit experiment any interaction that could
indicate to the outside world (the “environment”) which slit the particle went
through, even in principle, will destroy the quantumness of the experiment. Instead
of interference fringes we see a single bright spot behind each slit.73 The same
delicacy is common to quantum systems in general and since even individual
particles can betray the state of a system, we don’t expect to see superposition on
the scale of people and planets.

That said, the double slit experiment works for every kind of particle and has
even been done with molecules composed of hundreds of atoms.74 Quantum states
can be maintained for minutes or hours,75 so superposition doesn’t “wear out” on
its own. Needles large enough to be seen with the naked eye have been put into

72See Section 2.2.
73This isn’t an either/or thing. If you do a partial measurement, where you’re only kinda sure which
slit the photon went through, you get a pattern between an interference pattern and one-bright-spot-
per-slit. Section 2.7 goes into more detail.
74For example, in 2013 quantum interference was demonstrated with C284H190F320N4S12, a
molecule with 12 fluorous side chains, a mass of 10,123 amu (1 amu = 1 proton or neutron mass)
and 810 atoms. See “Matter-wave interference with particles selected from a molecular library with
masses exceeding 10,000 amu”, an inspiringly named paper.
75Specifically, this was done at room temperature (which is a big deal!) using ions from
phosphorous-31 atoms embedded in silicon-28. See “Room-Temperature Quantum Bit Storage
Exceeding 39 Minutes Using Ionized Donors in Silicon-28”, yet another paper with a name that
says exactly what the paper is about and nothing else.
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Fig. 2.42 Left: Buckminsterfullerene (and much larger molecules) interfere in double-slit exper-
iments. Middle: A needle that was put into a superposition of literally both vibrating and not
vibrating. Right: The Eastern Hemisphere, across which QUESS (QUantum Experiments at Space
Scale) has established quantum entanglement using laser communication with a satellite.

superpositions of vibrational modes76 and in 2016 China launched the first quantum
communication satellite which is being used as a relay to establish quantum effects
over scales of thousands of miles. So far there is no indication of a natural scale
where objects are big enough, far enough apart, or old enough that verifiable
quantum effects cease to apply (Figure 2.42).

The only limits seem to be in our engineering abilities. While we have come a
long way in the last century, it’s fantastically infeasible to do experimental quantum
physics with something as substantive as a person. Not even close.

If the quantum laws did simply ceased to apply at some scale, then those laws
would be bizarre and unique. Every physical law applies at all scales, it’s just a
question of how relevant each is. For example, on large scales gravity is practically
the only force worth worrying about, but on the atomic scale it can be efficiently
ignored (usually). Heck, that’s why this book is organized the way it is (Figure 2.43).

So here comes the point: if the quantum laws apply at all scales, then we should
expect that exactly like everything else, people (no big deal) should ultimately
follow quantum laws and exhibit quantum behavior. Including superposition. But
that begs a very natural question: what does it feel like to be in multiple states? Why
don’t we notice?

The quantum laws don’t contradict the world we see

When you first hear about the heliocentric theory,77 the first question that naturally
comes to mind is “Why don’t I feel the Earth moving?”. But in trying to answer
that you find yourself trying to climb out of the assumption that you should notice
anything. A more enlightening question is “What do Newton’s laws say that we

76You can read about this one in “Quantum ground state and single-phonon control of a mechanical
resonator”. Listen, sometimes papers do have interesting names. When Cavendish experimentally
measured the value of the Gravitational Constant he called it “Weighing the World”. Snappy title.
77The theory that the Earth is in motion around the Sun instead of the other way around.
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Fig. 2.43 Left: Io and Europa (among others) orbit Jupiter because of gravitational forces. Right:
Styrofoam sticks to cats because of electrical forces. Both apply on all scales, but on smaller scales
electrical forces tend to dominate (which is why these packing peanuts are on the cat and not the
ground).

should experience?”. In the case of Newton’s laws and the Earth, we find that
because the surface of the Earth, the air above it, and the people on it all travel
together, we shouldn’t feel anything. Despite moving at ridiculous speeds there are
only subtle tell-tail signs that we’re moving at all, like ocean tides or the precession
of garishly large pendulums.78

Quantum laws are in a similar situation. You may have noticed that you’ve never
met other versions of yourself wandering around your house. After all, one version
is there (you), shouldn’t at least some other versions be as well? A better question
is “What do the quantum laws say that we should experience?”. While the laws of
quantum mechanics make a wide array of incredibly bizarre and (as it turns out)
useful predictions, “you can literally meet yourself” isn’t one of them.

The Correspondence Principle, which is among the most important philosophical
underpinnings in science, says that whatever your theories are they need to fall in
line with ordinary physical laws and ordinary experience when applied to ordinary
situations.

For example, special relativity makes a lot of bizarre proclamations: mass
increases while length and time contract at high speeds, different observers disagree
on what “now” means, mass and energy are interchangeable. . . weird stuff. But
importantly, when you apply the laws of relativity to speeds much slower than
light all of that becomes less and less important until the laws we’re accustomed to
working with are more than sufficient. That is to say; while we can detect relativistic
effects all the way down to walking speed, the effects are so small that you don’t
need to worry about them when you’re actually walking.

78Even so, there’s no way to actually detect constant speed (that’s impossible), but circular
movements can be detected because they involve accelerations. Tides are caused by the gravity
of the Sun and Moon and the circular motion of the Earth in response to both (a wobble for the
Moon and an orbit for the Sun). A “Foucault Pendulum” is a big swinging weight on a long cable.
If allowed to swing for long enough the Earth literally turns under the pendulum.
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Similarly, quantum laws reproduce classical laws when you assume that there are
far more particles around than you can keep track of and that they’re not particularly
correlated with one another (i.e., if you’re watching one air molecule there’s really
no telling what the next will be doing). There are times when this assumption doesn’t
hold, but those are exactly the cases that reveal that the quantum laws are there
(lasers, for example).

It turns out that simply applying the quantum laws to everything seems to be a
perfectly viable option. That’s good on the one hand because physics works. But on
the other hand, we’re forced to cope with the suspicion that the our universe might
be needlessly weird.

The big rift between “the quantum world” and “the classical world” is that
large things, like you and literally everything that you can see, always seem to be
in one state or possibly a small set of indistinguishably similar states. When we
keep quantum systems carefully isolated79 we find that they exhibit superposition:
simultaneously being in many distinguishable states. When we then interact with
those quantum systems they “decohere” and are found to be in a smaller set of
states. This is sometimes called “wave function collapse”, to evoke an image of a
wide wave suddenly collapsing into a single tiny particle.

The rule seems to be that interacting with things makes their behavior “more
classical”. But not always. “Wave function collapse” doesn’t happen when isolated
quantum systems interact with each other, only when they interact with the
environment (the outside world).

Experimentally, when you allow a couple of systems that are both in a super-
position of states to interact the result is two systems in a joint superposition of
states; an “entangled state”.80 If the rule were as simple as “when things interact
they decohere” you’d expect to find both systems each in only one state after
interacting. What we find instead is that in every testable case the superposition
is maintained. Changed or entangled, sure, but the various states in a superposition
never just “disappear”. When you interact with a system in a superposition you only
see a those states consistent with your interaction. When only one state fits, then the
superposition is gone. So what’s going on when we, or anything in the environment,
interacts with a quantum system? Where did the other states in the superposition go?

The rules we use to describe how pairs of isolated systems interact also do an
excellent job describing the way isolated quantum systems interact with the outside
environment (which includes us!) because the environment is just another quantum
system (Figure 2.44). When isolated systems interact with each other they become
entangled. When isolated systems interact with the environment they decohere. It
turns out that these two effects, entanglement and decoherence, are two sides of
the same coin. When we make the somewhat artificial choice to ask “What states

79Usually by making them very cold, very tiny, and very dark.
80Not necessarily. Quantum states can interact and not become entangled. For example, light
can pass through air without one having any real impact on the other, leaving the air and light
unentangled.
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Fig. 2.44 We have physical
laws that describe the
interactions between pairs of
isolated quantum systems (A
and B). When we treat the
environment as another
(albeit very big) quantum
system we can continue to use
those same laws.

of system B can some particular state in system A interact with?” we find that the
result mirrors what we ourselves see when we interact with things and “collapse
their wave functions”.

“Where are my other versions?” isn’t quite the right question

Very much like the geocentric/heliocentric divide, we can apply a single set of laws
universally. Historically, when we assume our perspective is privileged, universal
laws suddenly take on different, not-universal flavors. What should be a single set
of laws governing the simple elliptical movement of all of the planets becomes
a hopelessly confused muddle of epicycles and celestial clockwork for the other
planets along with a series of unexplained phenomena on the supposedly stationary
Earth. The phrase “wave function collapse” is like the word “sunrise”; it does a
good job describing our personal experience, but does a terrible job describing the
underlying dynamics. When we ask the natural question “What does it feel like to
be in a many different states?” the frustrating answer seems to be “You tell me.”.

A thing can only be inferred to be in multiple states, such as by witnessing an
interference pattern. You never show that something is in a superposition of states by
counting up the states one at time. After all, if there’s any way to tell the difference
between the individual states that make up a superposition, then from your point of
view there is no superposition. Since you can see yourself, you can tell the difference
between your present state and another. You could be in an effectively infinite
number of states, but you’d never know it. The fact that you can’t help but observe
yourself means that you will never observe yourself somewhere that you’re not.

So where are those other versions of you? Assuming that they exist, they’re
no place more mysterious than where you are now. In the double slit experiment
different versions of the same object go through the different slits and you can
literally point to exactly where each version is (in exactly the same way you can
point at anything you can’t presently observe), so the physical position of each
version isn’t a mystery.

This, by the way, is a good way of thinking about the “other worlds” in quantum
mechanics. Nothing as grand as entire universes, just different versions of the
same photon quietly going through different slits before creating an interesting
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Fig. 2.45 Why don’t we run into our other versions all the time, instead of absolutely never?

interference pattern. If that doesn’t look like a pair of universes to you, then
you’ve got a solid idea of how inappropriate the word “worlds” is in this context
(Figure 2.45).

The mathematical operations that describe quantum mechanical interactions and
the passage of time are “linear”, which means that they treat the different states
in a superposition separately. A linear operator does the same thing to every state
individually and then sums the results. If f .x/ is a linear function, then

f .x C y/ D f .x/C f .y/

There are a lot of examples of linear phenomena in nature: light, sound (any
waves really), gravity, diffusion of heat, etc. For example, if you have two light bulbs
in a room the photons pass right through one another, completely ignoring each
other, and yet the amount of light in the room is the sum of the two. The Schrödinger
and Dirac equations, which describe how quantum wave functions behave, are also
linear (Figure 2.46).

The only operation in quantum mechanics that isn’t linear is decoherence and
that’s only a thing when you consider yourself and the environment to be a special-
and-definitely-not-quantum-system. So, if there are other versions of you, they’re
wandering around in very much the same way you are. But (as you may have
noticed) you don’t interact with them, so saying they’re “in the same place you
are” isn’t particularly useful.

Quantum mechanics is perpetually frustrating in a stuck-in-Plato’s-cave-kind-of-
way.
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Fig. 2.46 The wave equation
is linear, so you can describe
how each of these ripples
travels across the surface of
the water by considering
them one at a time and
adding up the results. They
don’t interact with each other
directly, but they do add up.

Gravy

All linear operators treat everything they’re given separately, as though each piece
was the only piece. In mathspeak, if f .x/ is a linear operator, then f .ax C by/ D

af .x/ C bf .y/, where a and b are ordinary numbers. The output is a sum of the
results from every input taken individually.

Consider a particle that can be in either “spin up” or “spin down”.81 We can
write these states as j "i or j #i. When observed it is always found to be in only
one of the states, but when left in isolation it can be in any superposition of the two.
Superpositions take the mathematically humble form

˛j "i C ˇj #i

where j˛j2 C jˇj2 D 1. The ˛ and ˇ are important for how this state will interact
with others as well as describing the probability of seeing either result. According
to the Born Rule,82 if ˛ D � 2

3
(for example), then the probability of seeing j "i is

j˛j2 D 4
9
.

Let’s also say that the quantum scientist Alice can be described by the modest
notation jA.‹/i, where the “‹” indicates that she has not looked at the isolated
quantum system yet. If the isolated system is in the state j "i initially, then the
initial state of the whole scenario is jA.‹/ij "i.

Define a linear “look” operation for Alice, L, that works like this

L ŒjA.‹/ij "i� D jA."/ij "i

81“Spin” is a commonly used property of particles that dictates, among other things, the orientation
of their magnetic field.
82The Born rule says that the square of the magnitude of the probability amplitude, ˛, is the
probability, j˛j2. The Born rule is just one of those things that’s true. There have been a lot of
attempts to justify or derive it, but listen: it works.
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It’s subtle, but you’ll notice that the coefficient in front of this state is 1 and
since j1j2 D 1 it has a 100% of happening. This is because j "i is a definite state:
definitely spin up. But what happens if the particle is in a superposition of states?
For example:

j #i C j "i
p
2

Since the “look” operation is linear (like all quantum operators), this is no big
deal.

L



jA.‹/i

�
j #i C j "i

p
2

��
D

1
p
2

jA.#/ij #i C
1

p
2

jA."/ij "i

From an extremely outside perspective Alice and the particle are in a joint
superposition of states: this is an entangled state. If you were somehow so isolated
from her and her pet particle that you had absolutely no way of telling the difference
between these states,83 then this is the state you would have to work with.

Anything else that might happen can be described by some other linear operation
(call it “F”) and therefore these two states don’t directly affect each other. Like
waves on water or the double slit, these disparate states add when you’re trying to
figure out the probability of something, but they don’t directly affect one another.

F
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1
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2

F ŒjA."/ij "i�

The Alices in the states jA.#/ij #i and jA."/ij "i consider themselves to be
the only ones. No quantum operation will cause them to interact with their other
versions. The version of Alice in the state jA.#/i “feels” that the state of the universe
is jA.#/ij #i because, as long as the operators being applied are linear, it doesn’t
matter in any way if the other state exists.

The affect of every interaction and the passage of time on a quantum state is
described by a “unitary operator”, which is a particular type of linear operator.
Mathematically speaking, unitary operations include things like rotations and
reflections, but not shearing or flattening. In some sense, the “shape” of states is
left alone by every interaction in quantum mechanics. The affect of measurements,
from our perspective, is different.

83Alice’s state could involve something as physically spectacular as writing down the result,
remembering it, or making important life decisions based upon it.
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If you were to ask either version of Alice what happened, she would tell you
that the particle which was originally in a superposition is now in only one state.
For example, if she looks and finds it to be spin up, then her “world” is suddenly
afflicted by a “measurement operator” which does this

jA.‹/i

�
j #i C j "i

p
2

�
! jA."/ij "i

This is different from the state seen by an outside perspective, 1p
2
jA.#/ij #i C

1p
2
jA."/ij "i. Neither version of Alice sees her own state being modified by that

1p
2
. They don’t see their state as being only 50% likely, they see it as definitely

happening (every version thinks that).84 In every useful sense, they’re all correct.
Whatever result they get is the result as far as they’re concerned. What is decidedly
weird is that when Alice interacts with the particle and determines it to be spin-
up, the spin-down part of the state disappears. This is non-unitary and therefore
completely alien in quantum theory. The “shape” of the state is radically changed;
it isn’t “rotated” so much as part of it is “flattened” (Figure 2.47).85

Fig. 2.47 What happens to
quantum states is almost
always described by unitary
operations. Suspiciously, the
one exception is interactions
with the environment, which
involve projections.

84Each version fixes their state with a “normalizing constant” so that it will have a coefficient of 1.
That sounds more exciting than it is. If you ask “what is the probability of rolling a 4 on a die?”,
then the answer is “1/6”. If you are then told that the number rolled was even, then suddenly the
probability jumps to 1/3. 1, 3, and 5 are ruled out, while the probability of 2, 4, and 6 change
from 1/6 each to 1/3 each. Same idea here: every version of Alice is certain of their result and
multiplying their state by the appropriate normalizing constant (

p
2 in this example) reflects that

sentiment and ensures that probabilities sum to 1.
85Measurement operators can be described as “projection operators” (this is “Neumark’s dilation
theorem”), which are like the operation of turning an object into its shadow. The original state is
certainly an important part of dictating what the “shadow” will look like, but at the same time an
object is clearly very different from its shadow. Projection operators are non-unitary because they
“flatten the state” by removing parts of it and do not preserve the overall “shape”.
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If you are determined to follow a particular state through the problem (for
example, by being one of the states), then you don’t see a nice unitary linear operator
like L

L
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that includes all of the results and adheres to the same rules as everything else.
Instead, for each possible result there is a different measurement operator that takes
the before-measurement state to the after-measurement state.
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Which is applied (which state Alice sees) seems inexplicably random and the
operation itself (which makes the other states disappear) is impossible within the
framework of quantum mechanics. Measurement operators are definitively non-
unitary, which is a big red flag. We never see non-unitary operations when we study
isolated sets of quantum systems, no matter how they interact. The one and only
time we see non-unitary operations is when we include the environment and even
then only when we assume that there’s something unique and special about the
environment or ourselves.

You may find yourself asking questions like “Well sure, but what’s really
happening? What does Alice really see?” This is one of the most frustrating things
about modern physics86: when you ask “what’s really going on?” the answer almost
invariably starts with “It depends who’s asking.”

Long story short, either the laws of quantum mechanics apply at all times or they
don’t. When you assume that they always apply and that everything is a quantum
system capable of being in superpositions of states, the quantum laws become
ontologically parsimonious.87 We lose our special position as the only version of
us that exists, but we gain a system of physical laws that doesn’t involve lots of
weird exceptions, extra rules, and paradoxes.

86The “modern physics” I’m referring to are Relativity and “Relational Quantum Physics”, which
is what this article really boils down to. Everything is a quantum system, it’s just a question of how
those systems “relate” to each other.
87Simple to apply and easy to write down.
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2.12 What are “actual pictures” of atoms actually
pictures of?

“Actual” pictures of atoms aren’t actually pictures at all (Figure 2.48).
There are a few good rules of thumb in physics. Among the best is: light acts like

you’d expect on scales well above its wavelength and acts weird on scales below. In
order to take a picture of a thing you need light to bounce off of it in a reasonable way
and travel in straight lines. Basically: you need light to behave like you’d expect.
But the wavelength of visible light is about half a micrometer (a two-millionth of a
meter) and atoms are around one ångström (a ten-billionth of a meter) across. On
the scale of atoms, visible light is too much wave and not enough particle to be used
for photographs.

Atoms are literally too small to see (Figure 2.49).
You could try using light with a shorter wavelength, but there are issues with that

as well. When light has a wavelength much shorter than an atom is wide, it takes
the form of gamma rays and each photon packs enough energy to send atoms flying
and strip them of their electrons (it is this characteristic that makes gamma rays
dangerous). Using light to image atoms is like trying to get a good look at a bird’s
nest by bouncing cannonballs off of it.

There are “cheats” that allow us to use light to see the tiny. When the scales are
so small that light behaves more like a wave than a particle, then we just use its
wave properties (what else can you do?). If you get a heck of a lot of identical

Fig. 2.48 Something IBM
made with some very flat,
very clean, very cold copper
and a few dozen carbon
monoxide molecules. Despite
all appearances to the
contrary, this is not a
photograph.

Fig. 2.49 Left: An actual
photograph of a billiard ball.
Right: What we have in lieu
of a photograph of an atom.
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Fig. 2.50 Left: When the extra distance traveled (red path) is a multiple of the wavelength,
constructive interference occurs creating a bright spot at that angle. The more times this is repeated
in a material, the sharper and more distinct the bright spot. Middle: One such pattern created by an
electron beam passing through a simple mineral or salt. Right: X-ray diffraction patterns generated
with DNA. Notice how not obvious the helical structure is.

copies of a thing and arrange them into some kind of repeating structure, then
the structure as a whole will have a very particular way of interacting with waves.
Each atom scatters waves in the same way, so if they’re arranged in a very regular
pattern those scattered waves can add up strongly in some directions and cancel each
other out in others. Carefully prepared light waves (e.g., lasers) that pass through
these regular structures create predictable interference patterns that can be projected
onto a screen. Using this technique we can learn about things like DNA or the
physical structure of crystals. This is the closest thing to a photograph of an atom
that is possible using light and, it’s fair to say, it’s not really what anyone means
by “photograph”. It’s less “what-the-thing-looks-like” and more “blurry-rorschach-
that-is-useful-to-scientists”. Even worse, it’s not a picture of individual atoms, it’s
information about a larger repeating structure that happens to take the form of an
image (Figure 2.50).

These techniques are still in use today, but since 1981 we’ve also had access to
the Scanning Tunneling Electron Microscope (STM). But again, despite the images
it creates, the STM isn’t taking a photograph either. The STM sees the world the
way a blind person sees the world88 (Figure 2.51).

An STM is basically a needle with a single-atom point89 which it uses to measure
subtle electrical variations, such as a stray atom sitting on what was otherwise a very
flat, clean surface. The “Tunneling Electron” bit of the name refers to the nature of
the electrical interaction being used to detect the presence of atoms. A tiny voltage
difference is established between the tip and the surface so that when the tip is
brought close to an atom electrons will quantum tunnel between them (hence the

88Assuming that person was really, really tiny.
89Since it tapers to a point that is a single atom, an STM is literally the pointiest possible pointer.
Also, it’s delicate and the needle needs to be replaced on a fairly regular basis.
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Fig. 2.51 The essential
philosophy behind the
Scanning Tunneling Electron
Microscope is what allows
this guy to know more about
the bottom of his chili
cauldron than you do.

Fig. 2.52 An STM (left) and
some of the pictures it pokes
into being: a “quantum
corral” (top) and graphene
(bottom).

“tunneling” in the name). This exchange of electrons is a tiny current, but modern
technology is all about working with tiny currents; an extra/missing electron or two
is easy to notice.

The “scanning” in the name refers to how an STM generates a picture: by
scanning back and forth across a surface until it’s bumped every atom with its needle
several times. The pictures so generated aren’t photographs, they’re “maps” of what
the STM’s needle experienced as it was moved over the surface. The STM “sees”
atoms using this needle in the same way you “see” the bottom of a muddy river with
a pokin’ stick. All you need is a way to keep track of exactly where your stick is: no
light necessary (Figure 2.52).
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2.13 What is “spin” in particle physics?

“Spin” or sometimes “nuclear spin” or “intrinsic spin” is the quantum version of
angular momentum. Unlike regular angular momentum, spin has nothing to do with
actual spinning.

Normally angular momentum takes the form of an object’s tendency to continue
rotating at a particular rate. Conservation of regular, in-a-straight-line momentum is
often described as “an object in motion stays in motion, and an object at rest stays
at rest”, conservation of angular momentum is often described as “an object that’s
rotating stays rotating, and an object that’s not rotating keeps not rotating”.

Any sane person thinking about angular momentum is thinking about rotation.
However, at the atomic scale you start to find some strange, contradictory results
and intuition becomes about as useful as a pogo stick in a chess game. Here’s the
idea behind one of the impossibilities:

Anytime you take a current and run it in a loop, or equivalently take an
electrically charged object and spin it, you get a magnetic field. This magnetic
field takes the usual, bar-magnet-like form, with a north pole and a south pole
(Figure 2.53).

If you know how the charge is distributed in an object, and you know fast that
object is spinning, you can figure out how strong the magnetic field is. In general,
more charge and more speed means more magnetism. Happily, you can also back-
solve: for a given size, magnetic field, and electric charge, you can figure out the
minimum speed that something must be spinning (Figure 2.54).

Electrons each have a magnetic field,90 as do protons and neutrons.91 If enough
of them “agree” and line up with each other you get a ferromagnetic material or, as
most people call them, “regular magnets”.

Fig. 2.53 A spinning
charged object carries charge
in circles, which is just
another way of describing a
current loop. Current loops
create “dipole” magnetic
fields.

90Called the “magnetic moment” for some foolish, inexplicable reason.
91Neutrons have no net charge, but they do have a magnetic moment. This implies that they have
a distribution of different charges and is a big hint that neutrons (and thus probably protons too)
are not fundamental, but are instead built of smaller particles. As it turns out, there are smaller
particles: quarks.
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Fig. 2.54 It’s not too hard to find the magnetic field of electrons, as well as their size and electric
charge. Btw, these experiments are among the prettiest and most immediate experiments anywhere.
Beat that biology!

Herein lies the problem. For the charge and size92 of electrons in particular, their
magnetic field is way too high. They’d need to be spinning faster than the speed of
light in order to produce the fields we see and, as fans of physics are no doubt already
aware, faster-than-light = no. And yet, they definitely have the angular momentum
necessary to create their fields.

It seems strange to abandon the idea of rotation when talking about angular
momentum, but there it is. Somehow particles have angular momentum, in almost
every important sense, even acting like a gyroscope, but without doing all of the
usual rotating. Instead, a particle’s angular momentum is just another property that
it has, like charge or mass. Physicists use the word “spin” to distinguish the angular
momentum that particles “just kinda have” from the regular angular momentum of
objects that are physically rotating.

Spin can take on values like

� � � ;�„;�
1

2
„; 0;

1

2
„; „;

3

2
„; � � �

„ (“h bar”) is a physical constant.93 This by the way, is a big part of where
“quantum mechanics” gets its name. A “quanta” is the smallest unit of something
and, as it happens, there is a smallest unit of angular momentum: 1

2
„!

92Electrons don’t actually have a definable size, but we can find an upper limit to how big they
could possibly be (if they had a definable size).
93„ � 1:0545718 � 10�34 Joule-Seconds.
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It may very well be that intrinsic spin is more fundamental than the form of
rotation we’re used to. The spin of a particle has a very real effect on what happens
when it’s physically rotated around another, identical particle. When you rotate two
particles so that they change places you find that their quantum wave function is
affected. Without going into too much detail, for fermions94 this leads to the “Pauli
Exclusion principle” which is responsible for matter not being allowed to be in the
same state (which includes place) at the same time.

Gravy
A quick word of warning, this gravy has linear algebra lumps.

All particles in our humble universe fall into one of two categories: fermions,
which have half-integer spin, and bosons, which have integer spin. The reason
for this ultimately comes down to the fact that there are “ladder operators” that
only raise or lower the spin of a particle in integer steps. For bosons these steps
transition between : : : ;�2;�1; 0; 1; 2; : : : and for fermions they transition between
: : : ;� 3

2
;� 1

2
; 1
2
; 3
2
; : : :

This is a general property of angular momentum. For example, it not only
applies to the angular momentum of solitary electrons, it also applies to the angular
momentum of electrons buzzing around atoms95 which (for the chemistry nerds out
there) is part of what gives rise to the “principle quantum numbers”. The existence
of the ladder operators is responsible for this quantization of momentum, but they
can only be constructed (see below) in spaces with three or more dimensions. If
our universe were four dimensional all particles would still be either fermions or
bosons, but if the universe were two dimensional that would almost certainly not be
the case.

Here’s the math.
Not everything in the world commutes. That is, AB ¤ BA. In order to talk

about how badly things don’t commute physicists (and even lesser scientists) use
“commutators”. The commutator of A and B is written

ŒA;B� D AB � BA

When A and B don’t commute, then ŒA;B� ¤ 0. As it happens, the position
measure in a particular direction, Rj, doesn’t commute with the momentum measure
in the same direction, Pj (“j” can be the x, y, or z directions). That is to say, it matters
which you do first. This is the infamous “uncertainty principle“. On the other hand,
momentum and position measurements in different directions commute no problem.
In other words, ŒRx;Px� D i„ and ŒRx;Py� D 0. This is more succinctly written as

ŒRj;Pk� D i„ıjk where ıjk D

�
1 ; j D k
0 ; j ¤ k

94Particles with spin ˙ 1
2
„;˙ 3

2
„; : : :

95This distinction is analogous to the difference between the Earth spinning on its axis vs. orbiting
the Sun.
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This is the “canonical position/momentum commutation relation”.96

In both classical and quantum physics the angular momentum is given by R � P.
This essentially describes angular momentum as the momentum of something, P, at
the end of a lever arm, R. Classically, R and P are the position and momentum of a
thing. Quantum mechanically, they’re operators97 applied to the quantum state of a
thing.

For “convenience”, define the “angular momentum operator”, L, as

„L D R � P

or equivalently

„L` D
X

jk

jk`RjPk

where jk` is the “alternating symbol”.98 This is just a more brute force way of
writing the cross product.

It takes a lot of algebra to show it, but the angular momentum operator has its
own commutation relation that falls out of the canonical relations:

ŒLj;Lk� D ijk`L`

What’s useful about this is that it creates a relationship between the angular
momentum in any one direction and the angular momenta in the other two.
Surprisingly, this allows you to create a “ladder operator” that steps the total angular
momentum in a given direction up or down, in quantized steps. Here are the
operators that raise and lower the angular momentum in the z direction:

LC D Lx C iLy

L� D Lx � iLy

96Try not to sound smart saying something like that!
97Basically: they’re matrices. In the infinite-dimensional case we can’t actually write down the
matrix, so to cover our butts we say “operator”.
98jk` are some combination of xyz. If they’re in order,  D 1, if two are switched,  D �1, and if

there are any doubles,  D 0. jk` D

8̂̂<
ˆ̂:
1 ; jk` D xyz; yzx; zxy

�1 ; jk` D xzy; zyx; yxz

0 ; otherwise

.
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Notice that

ŒLz;L˙�

D ŒLz;Lx ˙ iLy�

D ŒLz;Lx�˙ iŒLz;Ly�

D iLy ˙ i.�iLx/

D iLy ˙ Lx

D ˙.Lx ˙ iLy/

D ˙L˙

Here’s how we know they work. Remember that Lj is a measurement of the
angular momentum in the “j” direction (j is any one of x, y, or z). For the purpose
of making the math slicker, the value of the angular momentum is the eigenvalue of
the L operator. If you’ve made it this far; this is where the linear algebra kicks in.

In very brief, operators have a select set of states called “eigenstates” that they
don’t change so much as multiply by a number (considering all the things operators
can do, multiplication by a number is practically nothing). Momentum-eigenstates
(of the momentum operator) are those states that have a definite momentum,
position-eigenstates have a definite position, etc. That number, the “eigenvalue”, is
the value of the quantity being measured. For example, if you have a state j i and
you want to measure its momentum in the x direction, p, you use the momentum
operator, Px, and the relation

Pxj i D pj i

Px is an operator, but p is a number. It shouldn’t be at all obvious why, but this
genuinely makes the math of quantum mechanics more palatable and dynamic (for
example: what follows). But it is an acquired taste.

Define the “eigenstates” of Lz, jmi, as those states such that Lzjmi D mjmi. “m”
is the amount of angular momentum (well. . . “m„” is), and jmi is defined as the state
that has that amount of angular momentum. Now take a look at what (for example)
LC does to jmi:

LzLCjmi

D .LzLC � LCLz C LCLz/ jmi

D .ŒLz;LC�C LCLz/ jmi

D ŒLz;LC�jmi C LCLzjmi

D LCjmi C LCLzjmi

D LCjmi C mLCjmi

D .1C m/LCjmi
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Boom! LCjmi is an eigenstate of Lz with eigenvalue 1 C m! This is because, in
fact, LCjmi D jm C 1i!

The existence of the ladder operators implies that the angular momenta are
spaced out in integer steps. Now there are two ways for that to happen: either you
include zero (: : : ;�2;�1; 0; 1; 2; : : :) and hit all the integers or you skip over zero
(: : : ;� 3

2
;� 1

2
; 1
2
; 3
2
; : : :) and hit all the half-integers. This distinction cleanly divides

all of the particles in the universe into exactly two categories: bosons have integer
spin and fermions have half-integer spin. Each type has their own wildly different
properties. Most famously, fermions can’t be in the same state as other fermions
(this leads to the “solidness” of ordinary matter), while bosons can (which is why
light can pass through itself).

By the way, notice that at no point has mass been mentioned! This result applies
to anything and everything. Particles, groups of particles, your mom, anything!
Despite being almost 2000 times more massive, protons have the same spin as
electrons: 1

2
„.

Normally living in three dimensions is really nice. We can tie knots, we can
run things through tubes; it’s a quality universe. But in this case, living in three or
more dimensions is extremely restricting. The entire ladder operator thing for any
Lj is dependent on the L operators for the other two directions. In three or more
dimensions you always have access to at least two other directions, so the same
brick of math above can be applied. Particles in three or more dimensions are always
either fermions or bosons.

But in two dimensions there aren’t enough other directions to create the ladder
operators, L˙. It turns out that without that restriction particles in two dimensions
can assume any spin value (not just integer and half-integer). These particles are
called “anyons”, as in “any spin”.99 While actual two dimensional particles can’t
be created in our three dimensional universe, we can create tiny electromagnetic
vortices in highly constrained, flat sheets of plasma that have all of the weird spin
properties of anyons. As much as that sounds like sci-fi, it really isn’t (Figure 2.55).

“Anyon world line manipulation” is one of several proposed quantum computer
architectures that’s been shown to work (small scale). By “braiding” anyons around
each other we can encode information and execute quantum logic operations.

Fig. 2.55 If you loop a pair
of fermions or bosons once
around each other nothing
changes. Because of their
strange spin, this is not true
of anyons. Looping in one
direction has a different effect
on their collective state than
looping in the other.

99Astronomers have whole committees dedicated to making sure official names aren’t silly. Particle
physicists have no such governing body.
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2.14 What does it mean for light to be stopped or stored?

Every now and again an experiment will come along claiming to have “slowed light
to walking speed” or “stopped light for a minute”. But light by its very nature always
travels at the same speed, 2:99 � 108 meters per second, the aptly named “speed of
light”. When light travels through water or glass and “slows down” it’s actually just
getting absorbed and re-emitted over and over by atoms in whatever it’s traveling
through. When it does travel through the vacuum between atoms (which is just the
vacuum of space writ small), it travels at full speed.

One of the methods used to “stop” light for about a minute and then get the light
going again is “Electromagnetically Induced Transparency” (EIT). Whether or not
light can pass through a material, like glass, depends on what the electrons in that
material are willing to do. If the energy of an incoming photon lines up with the
energy difference between an electron’s present state and an available state, then the
electron will absorb the photon and jump to that higher state. At that frequency, the
material is opaque. In EIT, a “probe” laser is used to modify how electrons move
between states100 in a crystal in such a way that when a very particular frequency of
light passes through, the crystal is clear, and when the probe laser is off, it becomes
opaque. Timed correctly, a pulse of light can be in the middle of the crystal at the
moment the probe laser terminates, “stopping” the light in the suddenly opaque
medium (Figure 2.56).

Fig. 2.56 Every material has
an “absorption spectrum”
which describes how
enthusiastically it absorbs
light at different frequencies.
In very particular situations
we can use EIT to manipulate
whether or not a material will
absorb a very specific
frequency. Light enters when
a material is transparent,
stops when it’s opaque, and
starts again when it’s
transparent again.

100The details behind this are. . . many. In short, there need to be two different ways for the electron
to make the transition between states, and the probe laser ensures that those two ways interfere
destructively. It’s not so much that the transition is blocked, it just has a zero probability of
happening. EIT requires very specific materials and light frequencies (lasers).
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So when fancy quantum physicists claim to have “slowed light” or “stopped
light”, what’s the big deal? If “stopping light” means holding the energy for a while
and then re-releasing it later, then what’s the difference between what they’re doing
in the lab and what hot rocks do when they re-radiate heat (light) from sunlight? If
it’s so difficult, then how is it that you’re doing it right now?101

The answer to those questions, and what makes this experiment important, is that
the process preserves the photons’ information. The rock that absorbs sunlight and
radiates that energy as heat later is scrambling the sunlight’s information completely,
but when light is “stopped” its information is preserved almost perfectly. It’s a little
profound how perfectly.

Not only is it possible to store information; quantum information can be stored
as well. The difference between regular information and quantum information
is a little hard to communicate (the exact definition of “information” is already
plenty technical before lumping on quantum). Quantum information is the backbone
behind things like entanglement and quantum computation. That latter use is the
one that physicists are excited about. “Stopping light” is nothing new, but finding
a way to store quantum information is a big deal. We’re really good at sending
quantum information from place to place, but terrible at storing it. Today’s quantum
technology is in a place similar to where electronic communication was at a hundred
years ago; you can telegraph no problem, but once those signals arrive they’re gone.

Quantum information is the “delicate” part of a thing’s quantum state. When the
outside world interacts with a quantum system, it tends to screw it up. Quantum
information is only useful and different from classical information when the system
(in this case a bunch of light) is allowed to be in superpositions or is entangled with
something else. We can tell that the EIT technique preserves quantum information,
because we can do experiments on the entanglement between a photon that’s
stored, and another that’s not and we find that the entanglement between the two
is preserved. Basically, this kind of storage is so “gentle” that no information about
the light “leaks out”, and all of the quantum state is preserved (quantum information
and all).

Storing light in this way is akin to building an early memory device called a
“delay line memory”. Way back in the day102 computers were built that used tanks
of liquid mercury to store data. Acoustic pulses travel through mercury much slower
than electrical signals travel through wires. The tanks stored tiny chunks of data
by sending sound pulses through the tank, reading those pulses at the far end,
and sending them back electrically to be re-pulsed. The “light storage” technique
could be a similar (although much longer time span) memory system for quantum
computers. Maybe (Figure 2.57).

So, light isn’t being “stopped” it’s “imprinting” on some of the electrons in the
crystal that are in very, very carefully prepared states. This imprint isn’t light (so
it doesn’t have to move), it’s just excited electrons. That imprint lasts for as much

101Nicely done.
1021950 or so.
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Fig. 2.57 The UNIVAC I could store as much as 1000 words with 12 letters each in this tank of
mercury. That’s enough data to store this article (sans pictures) but not much more. This was built
right around when “bits” were first becoming the universal standard for information, but (if you
can believe it) before Steam Punk.

as a minute; slowly accruing errors and fading. After some amount of time that
imprint is turned back into light, and it exits the crystal at exactly the speed you’d
expect. What makes the experiment most exciting is that this experiment has proven
to be an extremely long-term method for storing quantum information, which has
traditionally been a major hurdle. Normally quantum computers (such as they are)
have to get all of their work done in a fraction of a second.
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2.15 What are quasi-particles?

Prefixes like “quasi-”, “pseudo-”, and sometimes “meta-” are basically used to mean
“sorta like. . . but different. . . you know?”. Quasi-particles aren’t particles at all, but
do behave like them in a few fairly important ways. The most important similarities
are that they are: discrete, persistent (stable enough to stick around for at least a little
while), and quantized. “Quantized” is the trickiest requirement; it means that each
quasi-particle of a particular kind is identical. Generally speaking, a quasi-particle
is as small as it can possibly get.

Whirlpools are a good every-day almost-quasi-particle to keep in mind as
an example. While they are generally discrete and persistent (if you have one
whirlpool, then in another second you’ll probably still have one whirlpool), they’re
not quantized because every whirlpool is different. No particle physicist in their
right mind would call a whirlpool a quasi-particle, but the idea is about right
(Figure 2.58).

Quasi-particles show up a lot when there’s some reason for a particular effect
to be conserved and quantized in some strict sense. For example, magnetic vortex
tubes (“flux tubes”) in super conductors aren’t actual things (not particles), but
they are persistent, quantized, and are clearly discrete. They appear in type II
superconductors (which naturally expel magnetic fields) when you turn up the field
high enough to “break through”. Groups of flux tubes can even have solid and liquid
phases, in analogy to regular matter.

Fig. 2.58 Left: Tornadoes and whirlpools are a lot like quasi-particles. They’re not actual
“things”, they’re just “conserved effects”. Right: Magnetic vortices forced into a type II super-
conductor are basically tiny electron tornadoes. These “flux tubes” are legitimate quasi-particles.
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Fig. 2.59 The tiles are real
things, but the vacant square
is just a conserved effect. It
moves and acts a lot like a
particle that can wander
around the grid; a
“quasi-tile”. It’s easier to
keep track of the one
quasi-tile than to keep track
of the 15 real-tiles.

One of the more commonly seen quasi-particles is the “electron hole”, which is
just a notably absent electron (Figure 2.59).

Rather than thinking about a bunch of negatively charged electrons slowly
shouldering past each other in one direction, it’s sometimes useful to think about
a much smaller group of positively charged holes moving quickly in the opposite
direction (think of the tile board above, but much bigger, three dimensional, and
with more vacant tiles). Turns out that a lot of the relevant math works out the
same way. This notion comes up a lot when talking about diodes, transistors, and
semi-conductors in general. “N-type semiconductors” carry electricity with actual
electrons, but “P-type semiconductors” can be thought of as carrying current with
electron holes.

My favorite quasi-particle, the anyon, is a type of tiny electromagnetic vortex
that can only appear in very confined, flat plasma fields. Anyons have properties
that should only be found in two dimensional particles (which of course don’t exist
in our three dimensional universe), but as far as they’re concerned, their flat plasma-
sheet home is two dimensional.

Phonons are one of the more important quasi-particles around. They’re a little
more abstract than tornadoes and vacancies. Phonons are to sound as photons are to
light; they’re the smallest possible unit of sound. The electrons in atoms are stuck
in separate energy levels, and they can only absorb or emit energy corresponding
to differences in those levels. When restricted in the regular lattice of a crystal, the
energy associated with vibrations of entire atoms also has this “ladder” of energy
levels, instead of an effectively continuous set of energy levels as seen in less
organized materials (Figure 2.60).103

103This tendency for energy levels to be discrete and quantized is a big part of where quantum
mechanics gets its name.
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Fig. 2.60 In a crystal (table
salt in this case), every atom
is in the same situation and
has identical energy levels.

So each atom has a ladder of “vibrational energy modes”. The reason it’s
important for them to be in a crystal, is that in a crystal all of the atoms are in
the same situation and will have identical energy-level-ladders. This discrete-and-
identical set of energy levels is part of why crystals are hard and often transparent.104

Now say that an atom is vibrating one level up from the ground state. Since the
only state the energy can drop to is the ground state, this vibration is all-or-nothing.
The atom can’t give away part of the energy and just vibrate a little less. When the
atom does give up its kinetic energy it stops vibrating and an atom next-door picks
up all of that energy and starts oscillating in turn (Figure 2.61).

This one-step-up-from-the-ground-state vibration that passes from place to place
is called a “phonon”. The amount of energy in the levels changes depending on
exactly how the atoms are held together, so different kinds of crystals will host
slightly different phonons, but the basic idea is the same.

“Phonons” were named in analogy to “photons”. The prefix “photo-” means
“light”, and “phono-” means “sound”. The suffix “-on” means “particle”. That one
isn’t Latin, but it is pretty standard. Photons are the smallest possible excited states
of the electromagnetic field and are the smallest unit of light, while phonons are
the smallest possible excited states of the mechanical system made up of atoms in a
crystal and are the smallest possible unit of sound.

Typically there’s lots of sound passing back and forth through everything all the
time, so phonons don’t become either detectable or a nuisance until the material is
very cold (even heat can be a kind of sound) and very still.

104That’s not obvious, just interesting.



2.15 What are quasi-particles? 151

Fig. 2.61 A string of atoms
in their ground states, with
one atom in an “excited
state”. This little packet of
energy can’t be divided
because there are no smaller
energy levels to fall into, so
it’s free to pass, intact, from
one atom to the next.



Chapter 3
In-Between Things

The most exciting phrase to hear in science, the one that heralds new discoveries, is not
‘Eureka!’ but ‘That’s funny. . . ’

—Isaac Asimov, who thought a lot of things were funny
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On grand scales, gravity is practically the only thing worth worrying about.
On small scales, things are wave-like and quantum and simple. The human scale
falls between these extremes, where electromagnetic and gravitational forces play
on roughly equal footing.1 In the narrow range of sizes between viruses and blue
whales, matter is free to explore a realm of staggering complexity.

In the Goldilocks realm we call home,2 we find rain, life, geology, flight,
consciousness, bee hives, and break-dancing. The other planets in our solar system
have their charms, but all of them (and the vast majority, if not all, of the thousands
we’ve detected around other stars) are boring compared to Earth. Our active
biosphere is a tribute to the limitless complexity that matter can attain; nothing else
even comes close to the complementary organization and chaos of living systems
(Figure 3.1).

If you wanted to be born and live in a world of conflicting forces and incompre-
hensible complexity: I’ve got nothing but good news for you.

Part of living with complexity and variety is the chance to regularly peek through
countless windows onto the nature of physical reality. The questions in this chapter
are about the underlying causes of some of the fascinating things we notice at our
privileged scale.

Fig. 3.1 Earth: a lot to consider.

1As you can demonstrate by standing on your feet, in spite of Earth’s gravity.
2Or the “macroscopic scale” if you have no poetry in your soul.
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3.1 Do colors exist?

Colors exist in very much the same way that art and love exist. They can be
perceived, and other people will generally understand you if you talk about them.
But colors don’t really exist as “things in the world”. Although you can make up
objective definitions that make things like “green”, “art”, and “love” more real,
the definitions are pretty ad-hoc. Respectively: “green” is light with a wavelength
between 520 and 570 nanometers, “art” is portraits of Elvis on black velvet, and
“love” is the smell of napalm in the morning.

But these kinds of definitions merely correspond to the experience of those
things, as opposed to actually being those things. There is certainly a set of
wavelengths of light that most people in the world would agree is “green”. However,
that doesn’t mean that the light itself is green, it just means that a human brain
equipped with human eyes will label it as green (Figure 3.2).

Color is fascinating because, unlike love, its subjectiveness can be easily studied.
For example, we can say with certainty that other apes see the world in very much
the same way we do and that dogs see the world very differently (Figure 3.3).

When a photon (light particle) strikes the back of the eye, whether or not it’s
detected depends on what kind of cone cell3 it hits and on the wavelength of the
light. We have three kinds of cone cells, which is pretty good for a mammal.4 Each
of these has a different probability of detecting light at various wavelengths. One of
the consequences of this is that we don’t perceive a “true” spectrum where we see
exactly how much light of any given frequency is around. Instead our brains have
three values to work with and they discern5 color from those (Figure 3.4).

Fig. 3.2 You can create an objective definition for green (right), but that’s not really what you
mean by “green” (left).

3So named because they are cone-shaped (roughly).
4Many species of birds, reptiles, and fish have four cone cells. Apes (including people), some
monkeys, and marsupials have three cones cells, but the vast majority of all other mammals have
only one or two.
5“discern” = “make a good guess at”.
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Fig. 3.3 A dog can’t write a
sonnet about their experience
of color, but they can poke a
button. Here we see Retina
stricken with indecision by
three identical lights. (That’s
really her name. I asked.)

Fig. 3.4 The three cones cells and their sensitivity to light of different wavelengths. The dotted
line corresponds to the sensitivity of rod cells, which are mostly used for low-light vision.

Because our eyes reconstruct the spectrum of incoming light using three values,
our eyes accidentally confuse one color for another all the time. This means that
screens and light sources can create the illusion of any desired color using only a
small selection of actual colors; it isn’t necessary to create the “real color”, only
something that will fool a human eye (Figure 3.5).

There are some cute tricks that come out of the discrepancy between “true color”
and what we see. Screens and pictures don’t need to reconstruct the entire spectrum
of colors, they only need to produce a handful of colors; just enough to fool our eyes.
And since cameras don’t suffer from the same set of illusory colors that we do, we
can create pairs of colors that look the same to us, but look different to machines.
This shows up frequently as a security measure in paper money. If a photocopier
sees it differently, it copies it differently.



3.1 Do colors exist? 157

Fig. 3.5 Different people and animals see color very differently. The right side is more or less the
way most other mammals, as well as red-green colorblind people, see the world.

Fig. 3.6 Left: A black-eyed Susan. Middle: The same flower seen in in the ultraviolet. Since we
can’t see the true colors, this is a false-color image. Right: With those false-color lies removed.

Many animals have different kinds of cone cells that allow them to see colors
differently or see wavelengths of light we don’t see at all. For example, many insects
and birds can see into the near-ultraviolet, which is the color we don’t see beyond
purple. Many birds have ultraviolet plumage (because why wouldn’t they) and many
flowering plants use ultraviolet coloration to stand out and direct insects to their
pollen (Figure 3.6).
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Fig. 3.7 The Mantis Shrimp: evolution run amok.

Since it’s the most obvious follow-up question: yes there are creatures with
more than four kinds of cone cells. The record is held by the mantis shrimp,
which hosts an impressive 16 types of cone cells in each of its thousands of eyes.
The most commonly accepted theory for primate “trichromia”6 is that it helps us
and our cousin species determine whether or not fruit is ripe, a signal that plants
presumably evolved to communicate with birds. What could possibly inspire mantis
shrimp to evolve such spectacular color-sensing specificity is still an open question
(Figure 3.7).

In the deep ocean, most animals are blind or have a very limited range of color
sensitivity.7 But some species, like the Black Dragonfish, have taken advantage of
that by generating red beams of light that they can see but their prey cannot. It has all
the advantages of a spotlight, with none of the disadvantages of everything knowing
exactly where you are (because of the spotlight). Very few fish in the deep ocean
bother to evolve or retain the ability to see red, because water absorbs red light8

(Figure 3.8).
It may seem strange that some creatures are just “missing” big chucks of the light

spectrum, but keep in mind: we’re all in the same boat. The visible spectrum9 is the
brightest part of the Sun’s spectrum. Vision is fantastically useful, so life on Earth
has independently evolved it some 50 or more times. However, since there isn’t a

6Having three cone cells.
7It’s as dark as a witch’s anything-you-could-name; what is there to see?
8And that’s why water’s blue!
9So named because we can see it (visually).
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Fig. 3.8 The Black
Dragonfish cleverly projects
red light, which is invisible to
its prey, from those white
thingies behind its eyes. The
Black Dragonfish is widely
regarded as the world’s
greatest kisser, but its curse is
that it never gets to practice
its craft.

Fig. 3.9 We can see effectively none of the full light spectrum.

lot of light well outside of the visual spectrum here on Earth, no life on Earth has
bothered to evolve to see it. There is a lot more spectrum out there that no living
thing comes close to seeing (Figure 3.9).

The point is, light comes in different wavelengths, but which wavelengths
correspond to which color (and which ones can even be seen) depends entirely on
the eyes of the creature doing the looking. There isn’t any objective “real” color in
the world. The coloring of the rainbow is nothing more than a shared (albeit reliable,
consistent, and pretty) illusion.
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Fig. 3.10 Even though we can’t see them, different colors exist beyond the visible spectrum. In
addition to reflecting green light (which makes them appear green), leaves also reflect near-
infrared light (which, if you could see it, would make them appear near-infrared-colored). This
was taken with film sensitive to infrared.

The lack of objective color is a real pain for the science of photography. Making
a substance that becomes yellow when it’s exposed to yellow light is exactly as
difficult as creating a substance that turns pink or blue when exposed to yellow
light. It’s remarkably difficult to design film that reacts to light in such a way that
we see the colors on the film as “accurate”. But by the same token, there’s nothing
to stop us from creating film that produces colors in response to light that we can’t
even see. You can (were you so motivated) buy infrared or ultraviolet sensitive film
that photographs light just outside of what we can see (Figure 3.10).

In fact, most “science pictures” you see (anything with stars, galaxies, individual
cells, etc.) are “false-color images”. That is, the cameras detect a form of light that
we can’t see (e.g., radio waves), and then “translate” them into a form we can see
(e.g., blue). Which is fine. If they didn’t, then radio astronomy would be stunningly
pointless.
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3.2 Why do wet stones look darker, more colorful,
and polished?

This is surprisingly subtle!
There are two effects that come into play: the way light reflects off of the surface

(surface reflection) and the way light bounces into and then out of the surface
(subsurface reflection).

Surface reflection is responsible for the darkening of wet or polished stones. But
rather than actually making the surface darker, what polishing or wetting a surface
does is “consolidate” the reflecting light into one direction.

If the light hitting a patch of surface is scattered, then you’ll see a little of it
from any angle. That patch will not appear dark, regardless of where your eye is.
However, if the light only reflects in one direction, then you’re either in the right
place to see it or you’re not. So a polished surface looks darker from most angles,
but much brighter from just a few angles. The bottom stone in Figure 3.11 is a good
example. Most of it is relatively dark, but near the bottom of the stone the camera,
surface, and light source align in such a way that a lot of light bounces directly into
the camera.

When a thin film of water is added to a stone it creates a new, second surface
above the stone’s actual surface. The surface of the water film reflects in the same
way that a polished stone reflects because they’re both so smooth; you’re never
going to see water with a “sand-paper rough” surface. Water makes stones shiny
but dark in the same way that lakes and oceans are shiny but dark (Figures 3.12
and 3.13).

Fig. 3.11 Dry stones, wet stones, and a polished dry stone.



162 3 In-Between Things

Fig. 3.12 Rough surfaces scatter light in many directions and smooth surfaces reflect in only one
direction.

Fig. 3.13 Water naturally forms smooth surfaces, which are good at reflecting without scattering
light.

Often the more vibrant colors of stones come from subsurface reflection. Light
penetrates the surface, wanders around for a little bit, and then pops back out again.
By its nature, subsurface reflection is a scattering reflection. While polishing will
cause all of the surface reflecting light to go in the same direction, there isn’t
much you can do to stop light that penetrates the surface from scattering. Different
materials absorb or pass light of different colors, so light that undergoes subsurface
reflection tends to pick up some colors. Technically: pretty colors.

Surface reflected light, on the other hand, tends to retain its lack of color
(assuming you’re not looking at rocks under a heating lamp or something). So,
normally when you look at a rough stone you’ll be seeing the stone’s color, but
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Fig. 3.14 Surface vs.
subsurface reflection.

Fig. 3.15 If you’re not in the
path of the surface reflected
light (white) you’ll only be
seeing subsurface reflected
light (orange).

it will be drowned out by all the white light being scattered off of the surface. With
a polished stone, that white light is reflected away in one direction, so unless you’re
in the path of that white light you’ll just see the more colorful subsurface-reflected
light (Figures 3.14 and 3.15). Polishing doesn’t make a stone more colorful, but it
does “turn up the contrast” on the colors already present.

In the case of water there’s an added effect. A layer of water helps light to
penetrate the surface of a stone, increasing subsurface reflection and adding to
the color. Waves (light in particular) travel at different speeds through different
materials. This speed is described by the “index of refraction”. When a wave hits the
interface between materials with different indexes of refraction some of it reflects
and some of it manages to get through. The greater the difference in the indices, the
more the wave gets reflected. The smaller the difference, the more the wave passes
through (Figure 3.16). This is why you can both look through glass and see your
own reflection.

The difference between the indices of stone or crystal and the index of air is
pretty large. As a result, a lot of light will reflect off the air-to-stone boundary.
However, if there’s a layer of water the index steps up twice: first from air to water
and then again from water to stone. It turns out that a more gradual stepping between
indexes allows more light to make it from the air into stone with less reflecting. This
additional color from a thin water layer isn’t a dramatic effect, especially compared
to the “raised contrast effect” described above, but it’s not zero either.
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Fig. 3.16 When light moves between materials with different indexes of refraction it can either
pass through the boundary or reflect. The smaller the difference in indexes, the less light will
reflect. In this picture both glass beakers and the fluid they contain all have the same index, so
light is free to pass from one substance to the next without any reflection, making the inner beaker
invisible.

So both wet and polished stones have smooth surfaces, which means their surface
reflected light usually bounces off in some direction other than our eye. That leaves
some bright spots, but for most of the stone a large fraction of the light that gets to
our eye is subsurface reflected light. That light has had a chance to briefly wander
around inside of the stone, where it picks up some color.10 Water further enhances
the effect by helping light to make the transition from air to stone and back, but it’s
difficult to notice that level of science with all the pretty pebbles in the world.

10More accurately, it has some colors taken away more than others. Still, what remains is no longer
white light.
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3.3 Why doesn’t the air “sit still” while the Earth turns
under it?

This question has had a lot of forms, from questions about hot air balloons, to “just
hovering in the air”, to weather. But the common thread boils down to “what keeps
the atmosphere moving with the surface of the Earth?”.

The short answer is “the ground has drag”, and the slightly longer answer is
“sometimes it doesn’t completely”.

First, it’s useful to know what the atmosphere is like (as if you haven’t been
breathing it practically all day). It’s a little surprising how much air there isn’t.
Although you’ll hear about the atmosphere extending to a hundred miles or more
above our heads, it becomes so thin, so fast, that almost none of that “counts”. If all
of the atmosphere were as dense as it is at sea level, then it would only be about 7
km tall (Figure 3.17). People in eight countries could literally walk to space!

The point is that the atmosphere, rather than being a heavenly swath of lung-
food, is a tiny puddle of gas, thinly painted on the surface of our world. The Earth,
for its part, is much more massive than the atmosphere and is covered in bumps and
wrinkles, like mountains, valleys, tress, and whatnot (Figure 3.18).

These “bumps” catch the atmosphere and keep it moving with the surface. A
stationary fan is just as good at stopping air as a moving fan is at pushing air. Once
air is moving with the Earth it’s got momentum, and that’s what keeps it moving.
Or “what keeps it still”, if you happen to live on Earth. Even if a stationary, non-
rotating atmosphere were to suddenly replace ours, it would find itself moving with
the Earth in short order.11

It turns out that the overwhelming majority of the movement of the atmosphere
is tied up in rotating with the Earth. The highest wind speed ever verified was 253
mph (that’s gust speed) as measured at Barrow Island, Australia. That immediately

Fig. 3.17 Left: The fluffy
atmosphere as it is, out to 100
km, compared to the Earth.
Right: If our atmosphere had
the same sea-level-density all
the way to the top and was
only 7.3 km thick.

11After the worst storm ever, by far.
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Fig. 3.18 The stuff on the surface of the Earth pushes on the wind exactly as hard as the wind
pushes on it.

Fig. 3.19 Hurricanes: a big swirl of air powered by warm water and pushed into a loop by the
Earth.

sounds less impressive when you consider that the wind was measured relative to
Barrow Island, which at the time was traveling due east at about 940 mph. Still is.

That all said, if you go high enough you find that the surface of the world starts
to look pretty smooth. Mountains and seas all start to look like more or less the
same, smooth surface. As a result, high altitude winds take the turning of the Earth
as more of a strong suggestion than as a rule. High altitude winds routinely blow at
well over 100 mph.

Speaking of which, wind is powered mostly by convection: one region of the
world gets warmer, a bubble of hot air rises, nearby air rushes in to take its place,
that sort of thing. Wind isn’t caused by the rotation of the Earth, but it is affected by
it (Figure 3.19).
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Everything in space wants to travel in a straight line, so when air from sunny
Barrow Island (traveling east at 940 mph) drifts south to also-sunny Perth (traveling
east at a mere 850 mph), it finds itself traveling east 90 mph faster than the ground.
Usually by the time air has moved north/south from one place to another, the
difference in eastward speed between two points is unimportant; drag with the
ground keeps the air moving with the Earth. When that speed difference doesn’t
get broken down, usually because the air covered the distance too fast, you get a big
swirl of air. Ultimately wind doesn’t get its energy from the Earth, it gets it from
heat, which comes from the Sun. Hurricanes (and wind in general) are powered by
the Sun, but shaped by the Earth.
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3.4 What is energy? What does E D mc2 mean?

“Energy equals mass times the square of the speed of light”.
That sounds like it’s saying something terribly profound, and it is, but this famous

equation is more subtle than it appears. While it does provide a relationship between
energy and matter, it does not say that they’re equivalent. As with every equation,
context is important. Right off the bat that “E” deserves a little pondering. Whenever
you hear someone talking about something or other being “turned into energy”,
you’re listening to someone who could stand to be more specific. There’s no such
thing as “pure energy” (Figure 3.20).

Energy takes a heck of a lot of forms: kinetic, chemical, electrical, heat,
mechanical, light, sound, nuclear, etc. Each different form has its own equation(s).
For example, the energy stored in a (not overly) stretched or compressed spring is
E D 1

2
kx2 (where k is the “spring constant” and x is how far the spring has been

stretched) and the energy gained or lost by a rising or falling weight is E D mgh
(where m is the mass, g is the acceleration of gravity, and h is the change in height).
Now, these two equations are true insofar as they work (like all “true” equations
in physics). However, neither of them are saying what energy is. Energy is a value
that we can calculate in each separate form (for springs, or heat, or whatever), but
weirdly enough it’s the sum of all of those various values that’s most important.

Fig. 3.20 “Pure energy” shows up a lot in fiction, and most sci-fi/fantasy fans have some notion
of what it’s like, but energy isn’t any kind of actual “stuff” you’ll find in reality.
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Fig. 3.21 Regardless of the
sequence of moves, a bishop
will always stay on the same
color. Conservation of energy
is philosophically similar; no
matter what happens, the
total amount of energy is
fixed.

The useful thing about energy, and the only reason anyone even bothered to name
it, is that energy is conserved. If you add up all of the myriad kinds of energy at one
moment, then wait a while and check back sometime later, you’ll find that you get
the same sum. The individual terms may get bigger and smaller, but the total stays
the same. This fact is called “the conservation of energy”.

Energy is remarkably abstract. It is a quantity, that takes a lot of forms (physical
movement, electromagnetic fields, being physically high in a gravitational well,
chemical potential, etc.). We can measure each of them, and we know that the sum
of all of the values from each of the various forms stays constant. So, just like every
other every constant that can be measured, it gets a name: energy (Figure 3.21).

When you want to explain the heck out of something that’s a little abstract, it’s
best to leave it to professional safe cracker/bongo player,12 and sometimes-physicist,
Richard Feynman:

“There is a fact, or if you wish, a law governing all natural phenomena that are
known to date. There is no known exception to this law—it is exact so far as we know.
The law is called the conservation of energy. It states that there is a certain quantity,
which we call ‘energy’, that does not change in the manifold changes that nature
undergoes. That is a most abstract idea, because it is a mathematical principle; it
says there is a numerical quantity which does not change when something happens.
It is not a description of a mechanism, or anything concrete; it is a strange fact that
when we calculate some number and when we finish watching nature go through
her tricks and calculate the number again, it is the same. (Something like a bishop
on a red square, and after a number of moves—details unknown—it is still on some
red square. It is a law of this nature.)

12Seriously. Feynman did a lot of weird stuff.
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. . . It is important to realize that in physics today, we have no knowledge of what
energy ‘is’. We do not have a picture that energy comes in little blobs of a definite
amount. It is not that way. It is an abstract thing in that it does not tell us the
mechanism or the reason for the various formulas.”—‘Furious’ Dick Feynman

For example, the equation used to describe the energy of a swinging pendulum is

E D
1

2
mv2 C mgh C : : :

Here the variables are mass, velocity, gravitational acceleration, and height of
the pendulum. These two terms, the kinetic and gravitational potential energies, are
included because they change a lot (velocity and height change throughout every
swing) and because however much one changes, the other absorbs the difference
and keeps E fixed. There are more terms that can be included, like the heat of the
pendulum or its chemical potential, but since those don’t change much and the whole
point of energy is to be constant, those other terms can be ignored (as far as the
swinging motion is concerned).

It isn’t obvious that all of these different forms of energy are related at all. Joule
(among many others) had to do all manner of goofy experiments (Figure 3.22) to
demonstrate that, for example, the energy of an elevated weight can be turned into
heat and that the total of the two types of energy never changes. Joule did such
a good job that his name was chosen for the standard unit of energy. This was a
real missed opportunity. In stark contrast, Ben Franklin once stylishly measured
“electric fire” in units of “as great a shock as a man can well bear”, which really
paints a picture.

Around 1900 science was just beginning to notice that Newtonian mechanics had
some subtle inconsistencies; in particular, that the speed of light seemed to be the
same to every observer, regardless of how they were presently moving. But in 1905
Einstein burst onto the scene and proposed a new theory: “hey everybody, what if
the speed of light is the same to every observer, regardless of how they’re presently
moving?”

Staggering genius.

Fig. 3.22 This device of
Joule’s couples the
gravitational potential of the
weight with the thermal
energy of the water in a tank.
As the weight falls, it turns an
agitator that heats the water.
By carefully measuring each
type of energy (with a ruler
and a thermometer), Joule
demonstrated that the sum of
the two always stays constant.
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Based only on that premise and some (fairly) basic math, the ’Stein figured out
exactly how time, distance, and movement are related. Newton’s laws talk about
exactly the same sort of thing, so they were the first on the block. Among his other
predictions, Einstein suggested (with some solid, consistent-with-experiment math)
that the kinetic energy of a moving object should be

E D �mc2 D
mc2q
1 �

�
v
c

�2 D mc2 C
1

2
mv2 C .smaller terms/

The variables here are mass, velocity, and the speed of light (c). � is used as a
shorthand for 1q

1�. vc /
2
, which shows up regularly in the math of relativity. Since it

was proposed, this equation has been tested to hell and back and it works. What’s
bizarre about this new equation for kinetic energy is that even when the velocity is
zero, the energy is still positive.

Up to about 40% of light speed, E D mc2C 1
2
mv2 is a really good approximation

of Einstein’s kinetic energy equation, E D mc2q
1�. vc /

2
. The approximation is good

enough that ye natural philosophers of olde can be forgiven for not noticing the tiny
error terms. They can also be forgiven for not noticing the mc2. Despite being huge
compared to all of the other terms, mc2 never changed in those old experiments. Like
the chemical potential of a pendulum, the mc2 term wasn’t important for describing
anything they were seeing. It’s a little like being on a boat at sea; the tiny rise and
fall of the surface is obvious, but the huge distance to the bottom is not.

Before the ’Stein, the energy of a stationary rock and a missing rock were the
same (zero). After Einstein, the energy of a stationary rock and a missing rock were
extremely different (by mc2 in fact). What this means in terms of energy is that
“removing an object” now violates the conservation of energy. E D mc2 is very
non-specific and, at the time it was written, not super helpful. It merely implies
that if matter were to disappear, you’d need a certain amount of some other kind of
energy to take its place (wound springs, books higher on shelves, warmer tea, any
other kind) and in order for new matter to appear, a prescribed amount of energy
must also disappear. Not in any profound way, but in a “when a pendulum swings
higher, it also slows down” sort of way. Al also didn’t suggest any method for matter
to appear or disappear, just that if it did it would need to follow his new rule.

So, energy is a sort of strict economy where the total never changes, but there
are many different currencies (types of energy). Einstein showed that matter needed
to be included in that “economy” in order for the new physics of relativity to work
correctly. In very much the same way we can say that the energy stored in a spring
is E D 1

2
kx2 and the energy in a blob of hot gas is E D 3

2
NkT , we can now say that

the energy of a piece of matter is E D mc2.
While it is true that the amount of mass in a nuclear weapon decreases during

detonation, that’s also true of every explosive. For that mater, it’s true of everything
that releases energy in any form. When you drain a battery it literally weighs a little
less because of the loss of chemical energy. The total difference for a good D-battery
is about 0.1 nanograms, which is tough to notice when the battery is more than a
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Fig. 3.23 Cloud chamber tracks like these provided some of the earliest evidence of particle
creation and annihilation and have entertained aged nerds for nearly two hundred years.

hundred billion times more massive. About the only folks who regularly worry about
the fact that energy and matter can sometimes be exchanged are particle physicists.

As far as particle physicists are concerned, particles don’t have masses: they
have equivalent energies. If you happen to corner a particle physicist at a party,
ask them the mass of an electron. They’ll probably say “0.5 mega-electronvolts”
which is a unit of energy, not mass. In particle physics, the amount of energy
released/sequestered when a particle is annihilated/created is typically far more
important that the amount that a particle physically weighs. I mean, how hard is
it to pick up a particle? So when particle physicists talk shop, they use energy rather
than mass (Figure 3.23).

For those of us unbothered by creation and annihilation, the fact that rest-mass
energy is a term included among many, many different energy terms is pretty
unimportant. While relativity has literally re-written physics and opened avenues of
scientific and technological advancement that would have been incomprehensible
to 19th century physicists, the advent of this particular tiny result, E D mc2, is
more of a philosophical advance than a practical one. Which is to say, when you’re
dealing with energies so vast that an appreciable amount of matter is being created
or destroyed, you have better things to worry about. For example, when you see a
nuclear weapon in use, the thing you don’t notice is the sudden loss of a few grams
of matter.
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3.5 If you stood in the beam of a particle accelerator what
would happen?

If you took all of the matter that’s being flung around inside an active accelerator,
and collected it into a pellet, it would be so small and light you’d never notice it. A
single grain of sand has on the order of a million times the total mass in the Large
Hadron Collider’s (LHC) proton beams. The danger is the energy.

If you stood in front of the beam you would end up with a very sharp, very thin
line of ultra-irradiated dead tissue going through your body. You may also be one
of the first people in history to get pion13 radiation poisoning, which does the same
thing as regular radiation poisoning, but with exotic particles!

When it’s up and running, there’s enough energy in the LHC beam to flash boil
a fair chunk of person (around 10–100 pounds, depending on the setting of the
accelerator). However, even standing in the beam, most of that energy will pass
right through you. The beam would glance off of atoms in your body, causing the
beam to widen, but most of the energy would be deposited in whatever’s behind you
(Figure 3.24).

Ironically, for massive14 charged particles (the exact kinds of particles used in
accelerators) the amount of energy deposited in a material decreases with speed.
When it hits another particle, a fast particle will keep cruising while a slow particle
will slow down more and change direction until it’s “pin-balling” between atoms
in a small area. As a result, most of a high-speed particle’s energy is deposited in
the region where it is brought to a halt. This obscure piece of particle physics trivia
is now a useful medical trick: proton therapy. Since a high-speed particle deposits
most of its energy where it comes to a halt, and relatively little before then, you can
irradiate tumors without damaging the tissue around it (too much). All you have to
do is tune the energy of your particle accelerator to correspond with the amount of
flesh the protons need to pass through before hitting the tumor.

Fig. 3.24 CERN’s motto, “Don’t be a hero!”, is in reference to the fact that if you see someone in
the beam, stepping in front of them just makes things worse.

13Pronounced “pie on”.
14When a physicist says “massive” they mean “it does not have zero mass” as opposed to the more
common meaning “it has buckets of mass”.
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Fig. 3.25 X-rays, which are
made of massless photons, get
absorbed continuously as
they pass through material, so
most of their energy is
deposited near the surface.
Protons slow down as they
ricochet off of other particles,
but most of their energy gets
deposited in the last moments
of their journey as they come
to a halt.
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This spike in deposited energy at the end of a particle’s journey is called the
“Bragg peak”, named after the guy who discovered it as well as what he did
immediately afterwards (Figure 3.25).

The typical energies in an experimental particle accelerator are substantially
higher than the energies in a medical particle accelerator. The individual protons
used in proton therapy have kinetic energies around 50–250 MeV,15 while the
protons in the Large Hadron Collider (LHC) have energies along the lines of 6.5
TeV, which is tens of thousands of times greater. As a result, the Bragg peak for the
protons at the LHC traveling through flesh would be hundreds of miles behind you.
But of course: you’re not there, so neither is the Bragg peak. Ironically that’s good
(not great), because it means that you wouldn’t bear the brunt of the energy of the
beam. If you were to step into the beam, the protons would barely notice you as they
plowed right on through.

In 1978 Anatoli Bugorski, who at the time was working through his PhD at the
U-70 synchrotron (which has approximately one percent of the LHC’s maximum
power), bravely settled this particular question by accidentally putting his head in
the path of a proton beam. His doctors did the math and decided that Bugorski had
received a fatal dose of radiation which, if you go by the numbers, he probably did.
However, all of that radiation was concentrated in a thin line through his head, which

15When a charge is placed in an electric field it accelerates. An MeV, “Mega Electron Volt”, is the
amount of energy a charged particle (like protons or electrons) will have after being accelerated
through an electric field of one million volts.
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is filled with remarkably forgiving tissue (brain). Over the next few days the flesh
in that line died off, but Bugorski himself came through the incident pretty well,
all things considered. He reported that mental work was more tiring and he’d lost
hearing in his left ear, but he still managed to finish his PhD and now has a “you call
that a scar. . . ” story that can’t be beat.
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3.6 Are there quantum effects in everyday life or do they
only show up in the lab?

Technically speaking, absolutely everything is quantum mechanical. What we
consider to be “classical mechanics” is just a special case of quantum mechanics.
So if you want an example of something quantum mechanical in every day life, look
at anything.

But that’s not the spirit of this question.
The weird effects that show up in quantum mechanics (a lot of them anyway) are

due to the wave-nature of the world making itself more apparent. Often, what we
think of as “particle behavior” is just what happens when the waves you’re talking
about are very small compared to what’s around and are “decoherent”.16 Particleness
has nothing to do with it.

Matter has wave-like behavior, but it’s usually very difficult to notice. The
wavelength of mass, the “de Broglie wavelength”, decreases with increasing mass
and even the lightest particles have fantastically small wavelengths. Electrons,17 the
lightest particle with the largest de Broglie wavelength, typically have a wavelength
on the order of trillionths of a meter.

Light on the other hand wears its quantum behavior proudly. Light can have
wavelengths ranging up to miles long (radio waves). Observing quantum effects in
matter is difficult, but we see it in light so much that we think it’s normal. Which
it is, come to think of it. The wave nature of light is so explicit that it was noticed
centuries ago, so while the wave nature of matter is generally considered “quantum
physics” the wave nature of light is often considered “classical physics”. That said,
the wave nature of both have a lot in common. The quantum/classical divide is
almost impossible to nail down.

So, other than obvious stuff like chemistry or. . . absolutely everything, what
follows are a few of the distinctly wavy and quantumy things that you might come
across while meandering around this big blue world. Among the millions of times
you’ll say “that’s funny. . . ” in your life, some of those will only be explainable by
quantum phenomena.

Technology younger than fifty years old (quantum chemistry)

There are a lot of well-established (old) quantum mechanical effects that are
in use in almost every fancy device devised since the forties. The invention of
semi-conductors, which allowed us to move past vacuum tubes, was a product
of understanding exactly how electrons behave and move between atoms. More
explicit examples include things like lasers (Bose-Einstein statistics), tunnel diodes

16For sound (a form of waves) coherence is the difference between a single clean tone and random
noise.
17It has recently been discovered that neutrinos have mass, which makes them least massive
particles (as of now). However, they’re basically “ghost particles” whipping around the universe
and straight through everything in it at, or very near, the speed of light. So don’t worry about them.
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(quantum tunneling), and of course exotic stuff like quantum computers (entangle-
ment). Unfortunately, the quantumness of modern technology is generally pretty
well hidden and thus: boring. The jump from steam to electricity was a big deal,
but equally so was the jump from classical devices to devices whose functions don’t
make sense without quantum theory.

Basically, if you don’t see it on I Love Lucy,18 then it probably took a more
fundamental (quantum mechanical) understanding of reality to build it.

Light travels in straight lines (except when it doesn’t)

One of the most important principles in physics is “locality”. Every point in the
universe knows what’s going on at that location and nowhere else. So, for example,
if you have a big wave rolling by, you need to able to describe that wave in terms of
each tiny piece of it working independently. That’s important: if something happens
to one side of the wave there’s no reason for it to affect a distant part of the wave (at
least not immediately).

If you let a droplet fall into a pool, that disturbance creates ripples. But every
part of those ripples is itself a disturbance that creates ripples, just like the original
droplet. By describing a wave, at every moment, as a huge collection of tiny new
wave sources you can derive how waves work on a large scale. This is the essential
idea behind the Huygens-Fresnel principle.

Once the ripples have spread out enough, they stop looking like rings and start
looking more like straight lines. Such a flat, propagating wavefront is called a “plane
wave”. Despite being a flat plane, the same rules are in play: every point on the
wavefront creates its own “ripples”. This is true for water ripples, sound, light,
whatever.

Here comes the point. If the size of the wavefront is substantially bigger than the
wavelength, then the plane wave propagates forward in a straight line. The waves
from every point reinforce each other to keep the wave going. But if there’s an
obstruction, such as a gap or a corner, then some of the points on the wavefront
are blocked and can’t contribute. When that happens the wave is free “ripple” in
every direction. This is called “diffraction”. The radio waves transmitted by radio
stations have wavelengths on the scale of hundreds of meters, which is a big part
of why you can still pick up radio stations even when the transmitter is behind a
mountain.19 Radio waves are big enough that they can diffract around huge obstacles
(Figure 3.26).

But visible light has wavelengths around half a micrometer. A gap that’s a few
micrometers across is way to small to see. So if you see light streaming through a
window you won’t see it diffracting around corners, you’ll just see it moving in a
straight line (Figure 3.27).

Considering that moving in straight lines is exactly the sort of behavior you’d
expect from fast particles, scientists of old can be forgiven for making that mistake.

181951–1957.
19Radio waves can also bounce off of the ionosphere.



178 3 In-Between Things

Fig. 3.26 Left: Every point along a wavefront creates a new set of waves that radiate out in all
directions. The sum of all of these waves is a new wavefront parallel to the first and farther away.
In every other direction the waves add up to nothing and cancel each other out. Right: If there’s an
obstacle in the way, part of the wave is removed and the other directions are no longer completely
canceled out.

Fig. 3.27 You don’t need “particleness” to describe why light travels in straight lines. The
projector’s aperture is very large compared to the wavelength of the light (approx. 0.05 m vs.
0.0000005 m). Given enough elbow room, waves propagate in straight lines due to interference
effects.

Pretty colors (thin-film interference)

There’s an optical device called a “Fabry-Pérot interferometer” which uses wave
interference to separate out light of very, very nearly equal frequencies, and
it’s basically just two slightly transparent mirrors placed very close together.
By bouncing light back and forth between them, the mirrors exaggerate subtle
interference effects making the difference between light of different frequencies
more apparent.

As it happens, thin films of transparent material mimic an F-P interferometer.
When light hits the boundary between different media, some of it goes through and
some of it is reflected. If those boundaries are only a few wavelengths apart, then
you’ve got a natural interferometer (Figure 3.28).
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Fig. 3.28 Top Left: Some light will bounce off of both sides of a film. If the extra length
between paths (red dotted line) is a multiple of the light’s wavelength, then you get “constructive
interference” and that wavelength (color) is emphasized over others. Top Right: A green laser and
the glass of a mirror. Bottom Left: “Newton’s rings”. Bottom Right: sunlight and an oil film.

Which of the incoming and outgoing angles experiences constructive interfer-
ence depends on the thickness of the film, the material of the film, and the color
of the light. If the light is “monochromatic” (one color or wavelength, like a laser),
then this leads to dark areas. If the light has many different colors, then the areas
that are dark for some colors may not be dark for others. This frequently gives rise
to prettiness.

It’s sometimes hard to see, but you can see thin-film effects in soap bubbles as
well. In that case the thickness of the film tends to change rapidly, which is why the
colors in soap films tend to swirl and change so fast (Figure 3.29).

True rainbows are formed by another process, refraction, that is also symptomatic
of the wave nature of light. They’re caused by the slightly different velocities of
different frequencies of light in a medium causing each to bend at a slightly different
angle as they pass between different media.

Dark spots on still lakes (Brewster’s angle and polarized light)

This one is pretty hard to notice. In addition to light’s waviness, it also has
polarization (which is a fundamentally not-particle thing to have). The polarization
of light affects how it reflects off of a surface (like water) and how it scatters in a
gas (like air). If you happen to look at the sky reflecting off of a lake these effects
are combined, and at one particular angle they fight each other (Figure 3.30).
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Fig. 3.29 Both the thickness of a soap bubble and the angle to your eye varies, so the colors that
experience constructive interference (the colors you see) changes.

Fig. 3.30 If the angle between the incoming light and the surface of the water is approximately
37ı, then only horizontally polarized light will reflect. The rest passes into the water.

The amount of light that reflects off of a surface depends on the polarization
of that light, which is why polarized glasses cut down on glare and why polarized
lenses can see into water. It so happens that if vertically polarized light hits water at
about 37ı none of it will be reflected. This is called “Brewster’s angle”.

Light is a “transverse wave” meaning that it waves sideways with respect to its
direction of motion.20 When it scatters off of atoms in a gas it prefers to do so in
such a way that its polarization keeps pointing in the same direction. A good way to
picture this is to think of the way a tape measure bends. Imagine drawing a wave on

20This is actually a description of the electric field: the electric field of a photon points sideways
relative to the direction of motion and switches back and forth sinusoidally (like a sine wave!).
Photons don’t actually “wave back and forth”.
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Fig. 3.31 Polarized light prefers to scatter off of air in such a way that it maintains its polarization,
the way the pickets in a picket-fence maintain their direction as the fence itself changes direction.
This causes the blue of the sky (that successfully makes it to your eye) to be polarized at right-
angles to the Sun. If you hold up a polarizer (or look through polarized glasses) you’ll notice the
sky is dark or bright in different regions relative to the Sun.

the tape measure, with the polarization corresponding to the wide direction of the
tape. The way the tape bends is analogous to the way light scatters (Figure 3.31).

Because of the way it scatters in air, if you point your hand at any point in the sky
(other than the Sun), and turn your palm toward the Sun, then the flat of your hand
will be aligned with the polarization of the light coming from that part of the sky.
As a result, right around dawn and dusk the entire sky is polarized in the north-south
direction.

One consequence of this is that if you’re standing at the right angle early or late
in the day, and the sky (not the Sun) is your primary light source, then the face on
your digital watch can appear black. Another is that if you stand on the north or
south shore of a still lake during dawn or dusk and look at the reflection of the sky
about 37ı below level, you’ll find that the sky appears black.

For some reason I really like this example. It must have been deeply confusing
for the early morning fisherfolk who noticed this over the millennia: a mysterious
dark spot on the water in the same place every morning, with no explanation of any
kind for hundreds of thousands of years.

Matter is solid

The fact that two objects can’t be in the same place seems perfectly natural (and it
is), but it didn’t have to be the case. For example, light has no trouble being in the
same place as other light. Both of these are directly caused by quantum effects.

Two particles of any particular type are “interchangeable”, but not merely in the
sense that you can’t tell them apart. If you have a box with two electrons in it you
would describe the situation as an “electron field with particle number two”. That is
to say, it literally doesn’t make sense to talk about two distinct electrons bouncing
around, you have to talk about their collective behavior. If you put an electron in a
box with other electrons, not only can you not tell which was yours, the question
doesn’t even apply.
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Part of the collective behavior of particles is what happens when you swap two
of them. For bosons,21 which includes photons of light, switching two of them has
no impact on their collective wave-function. For fermions,22 which includes all of
the particles matter is made of, switching two particles flips the sign of the wave
function. But here’s the thing: if the two particles were in exactly the same place
and you swap them, then you’ve done nothing at all and yet the sign of the wave
function still flips. The only value the wave function can take in such a situation is
zero, since zero is its own negative.

The square of the wave function is the probability of finding a particle in a given
location/state, so if the wave function is zero when the particles are in the same state,
then they’re never in the same state. This is basic idea behind the “Pauli exclusion
principle” (Figure 3.32).23

Fig. 3.32 Light passes through itself without issue, while matter doesn’t. This comes down to
quantum statistics: the probability of two identical fermions (like the particles that make up matter)
being in the same state must be zero.

21Bosons have “integer spin”.
22Fermions have “half-integer spin”.
23Our experience of the world is that turning around 360ı brings you back to where you started.
Particles like electrons, which have “one half spin” have the bizarre property that they need to turn
all the way around twice. If they turn around once, their wave function flips sign (so doing that
twice brings them back to the original wave function). Feynman had a cute demonstration for why
this has anything to do with exchanging particles. Hold a belt in front of you and, keeping the ends
pointing in the same direction the whole time, switch them between your hands. You’ll find that
the belt now has one full twist in it: exactly what you would have if you just turned one end in a
full circle.
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Every atom is a nucleus surrounded by a big sloppy cloud of electrons. When two
atoms are brought together it’s these clouds of electrons that do all the interacting.
Electrons are fermions, so they can’t be in the same place at the same time. As a
result, there’s a limit to how close atoms can get to each other. There’s a lot more to
that,24 but in a nutshell, the Pauli exclusion principle says that because the particles
that make up matter have half-integer spin, matter can’t just pass through itself.

24See, for example, all of chemistry.
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3.7 What is plasma?

Generally speaking, by the time a gas is hot enough to be seen, it’s a plasma.
The big difference between regular gas and plasma is that in a plasma a fair

fraction of the atoms are ionized. That is, the gas is so hot, and the atoms are
slamming around so hard, that some of the electrons are given enough energy to
escape their host atoms. The most important effect of ionization is that a plasma
gains some electrical properties that a non-ionized gas doesn’t have. It becomes
conductive, responds to electrical and magnetic fields, and scatters light.

Stars are more than hot enough for almost all of their gases to be a plasma. This
is a big part of what makes solar dynamics so complex: in addition to gravity and
convection stirring everything around, you have to take into account the interplay
between the plasma and the electromagnetic fields they create. One of the more
spectacular symptoms of this is the way solar flares are directed along the Sun’s
(generally twisted up and spotty) magnetic fields (Figure 3.33).

Fig. 3.33 A solar flare as seen in the x-ray spectrum. The flare is composed of plasma, so it flows
along the Sun’s magnetic field lines. Normally this brings them back into the surface (which is for
the best), but the magnetic field can also sometimes catapult material into space.
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Fig. 3.34 Jacob’s Ladder: for children of all ages (who enjoy not touching their toys).

We can see the conductance of plasma in toys25 like a Jacob’s Ladder. Spark
gaps have the unusual property that the higher the current, the more ionized the
air in the gap, and the lower the resistance (more plasma = more conductive).26

Basically, in order for a material to be conductive there need to be charges in it
that are free to move around. In metals those charges are freely shared between
atoms and electricity takes the form of electrons moving from one atom to the next.
But in a plasma the material itself is free charges. Conductive almost by definition
(Figure 3.34).

In a Jacob’s Ladder the electricity has an easier time flowing through the long
thread of highly conductive plasma than it does flowing through the tiny gap of
poorly conducting air at the bottom. The plasma, being hot air, rises until the arc
is so long that the electricity would rather jump through the small gap. When that
happens a new arc is generated at the bottom and the cycle repeats.

Fires are a genuine plasma. The coldest gas in the Sun is a stifling 5000ıK, more
than hot enough to knock its electrons lose. Most fires on Earth are much colder are
far less ionized, but they still check off all the important properties. Even small and
relatively cool fires, like candle flames, respond strongly to electric fields and are
even fairly conductive (more than air, less than iron).

25The moment a physicist picks something up, it ceases to be a “toy” and begins its dramatically
shortened life as “research equipment”.
26This remarkable property makes the “spark gap” a useful circuit element, although typically not
in circuits where precision is needed.
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3.8 How does carbon dating know when something died?

As far as carbon dating is concerned, the difference between living things and dead
things is that living things eat and breathe and dead things are busy with other stuff,
like philately and sitting perfectly still forever. Eating and breathing is how fresh
14C (“carbon-14”) gets into the body (Figure 3.35).

The vast majority of carbon is 12C (“carbon-12”) which has six protons and six
neutrons (12 D 6 C 6). 14C on the other hand has six protons and eight neutrons
(14 D 6C8). Those six protons are far more important since they dictate the number
of electrons around the atom (one for each proton), and electrons are responsible
for all of the chemical interactions between atoms. Having six electrons is what
makes carbon act like carbon, and not like oxygen or some other podunk element.
The extra pair of neutrons do two things: they make 14C heavier and they make it
mildly radioactive. Chemically speaking, 14C is almost indistinguishable from 12C.
If you have a 14C atom it has a 50% chance of radioacting27 in the next 5730 years
(regardless of how old it presently is).

That 5730 year “half-life” is what allows science folk to figure out how old things
are, but it’s also relatively short. Which begs the question: why is there any 14C
left? There have been about 1,000,000 half-lives since the Earth first formed, which
means that there should only be about 1

21000000
of the original supply remaining,

which is way too small to be worth mentioning. The answer is that 14C is being
continuously produced in the upper atmosphere.

Fig. 3.35 If you eat recently or presently living things, then you’re eating fresh carbon-14.

27Not a real word.
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Our atmosphere is brimming over with 14N. Nitrogen-14 has seven protons and
seven neutrons and comprises about four fifths of the air you’re breathing right now.
In addition to all the other reasons for not hanging out at the edge of space, there’s
a bunch of high-energy radiation (mostly from the Sun) flying around. Some of this
radiation takes the form of free neutrons, and when nitrogen-14 absorbs a neutron it
sometimes turns into carbon-14 and a spare proton (“spare proton” = “hydrogen”).28

This new 14C gets thoroughly mixed into the rest of the atmosphere pretty
quickly. Since carbon in the atmosphere overwhelmingly appears in the form of
carbon dioxide, it’s here that the brand new 14C enters life’s “carbon cycle”. Living
things use carbon a lot (biochemistry is sometimes called “fun with carbon”) and
this new carbon enters the food chain through plants, which pull carbon dioxide
from the air. Any living plant you’re likely to come across is mostly made of carbon
(and water) it’s absorbed from the air in the last few years, and any living animal
you come across is mostly made of plants (and other animals) that it’s eaten in the
last few years.

With the notable exception of the undead,29 when things die they stop eating or
otherwise absorbing carbon. As a result, the body of something that’s been dead for
around 5730 years (the 14C half-life) will have about half as much 14C as the body
of something that’s alive. Nothing to do with being alive per se, but a lot to do with
eating. By comparing the relative amounts of 14C to 12C you can determine about
how long it’s been since your sample critter last saw the sky and ate stuff growing
under it.

Attempts to measure things that have been dead for more than several half-lives
(many tens of thousands of years) are subject to a lot of statistical noise. So you
can carbon date woolly mammoths (a few half-lives), but dating dinosaurs (tens
of thousands of half-lives) is like measuring the distance to the Moon with a tape
measure; it’s the wrong tool for the job.30 But applied properly, carbon dating is a
decently accurate way of figuring out how long ago a thing recused itself from the
carbon cycle.

28Especially clever readers may have noticed that adding a neutron to 14N (seven protons, seven
neutrons) leaves 15N (seven protons, eight neutrons). But 15N is stable, and will not decay into
14C, or anything else. So why does the reaction n C 14N ! p C 14C happen? The introduced
neutron could be introduced gently or with great gusto. This extra energy can sometimes make the
nucleus “splash”. It’s a little like pouring water into a glass. If you pour the water in slowly, then
nothing spills out and the water-in-glass system is stable. But if you pour the same amount of water
into the glass quickly, then some of it is liable to splash out. Similarly (maybe not that similarly),
introducing a fast neutron to a nucleus can have a different result than introducing a slow neutron.
Dealing with complications like this is why physicists love big computers.
29Dracula is dead, but he’s still part of the carbon cycle since he eats (or drinks at least). Therefore,
we can expect that carbon dating would read him as “still alive”, since he should have about the
same amount of carbon-14 as the people he imbibes.
30There are several different radioactive elements used for dating things. To date really old stuff,
like the Earth itself, we’ve used zircon dating. Zircon crystals will happily incorporate uranium
when they form, but never lead. But when uranium decays, it turns into lead. So, by comparing the
amount of lead to uranium in a fleck of zircon, you can figure how long it’s been since that crystal
formed.
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Fig. 3.36 The number of ways to get particular sums of one, two, and three dice. The more dice
are involved, the more dramatic the clustering around the mean.

Gravy

The reliability of carbon dating is predicated on the predictability of large numbers
of random events. The “law of large numbers” causes the margin of error to be
essentially zero when the number of random things becomes very large.

If you had a bucket of coins and you threw them up in the air, it would be very
strange if they all came down heads. Most people would be weirded out if 75% of the
coins came down heads. This intuition has been taken by mathematicians and carried
to its logical, and more esoteric, extreme. It turns out that the larger the number of
random events, the more the system as a whole will be close to the average. For
very large numbers of coins, atoms, or whatever else, you’ll find that the probability
that the system noticeably deviates from the average becomes vanishingly small
(Figure 3.36).

For example, if you roll one die, there’s an even chance that you’ll roll any
number between 1 and 6. The average is 3.5, but the number you roll doesn’t tend
to be particularly close to that. If you roll two dice, the probabilities start to bunch
up around the average, 7. This isn’t a mysterious force at work, there are just more
ways to get a 7 than, say, a 3 (to wit: f1; 6g; f2; 5g; f3; 4g; f4; 3g; f5; 2g; f6; 1g vs.
f1; 2g; f2; 1g). The more dice that are rolled and added together, the more the sum
will tend to cluster around the average. The law of large numbers just makes this
intuition a bit more mathematically explicit and extends it to any kind of random
thing that’s repeated many times (one might even be tempted to say a large number
of times).

The exact same math applies to radioactive decay, where huge numbers of
randomly decaying atoms collude to produce a fairly steady stream of radiation.
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While you can’t predict when an individual atom will decay any more than
you can predict the roll of a single die, you can predict the average behavior
of huge numbers of atoms. Lucky for us, atoms are small so it’s easy to get
a very large number of them. For example, somewhere in the neighborhood
of 1,000,000,000,000,000,000,000,000,000 of them got together and now call
themselves [your name here].

If you take a radioactive atom and wait for it to decay, the “half-life” is how
long you’d have to wait for there to be a 50% chance that it will have decayed. Very
radioactive isotopes decay all the time, so their half-life is short and logically/luckily
that means there won’t be much of it around for long. We talk about half-lives rather
than lifetimes because we don’t know how long a given atom will last, only how
likely it is to suddenly pop over some time interval. Even worse, atoms themselves
don’t care how old they are; no matter how long you’ve been watching an atom of
14C, there’s always a 50% chance it’ll decay in the next 5730 years.

There’s a 50% chance that after one half-life each individual atom will have
decayed and, if you’ve got a hell of a lot of them, you can be pretty confident in
saying that (by any reasonable measure) exactly half of them have decayed at the
end of one half-life. In fact, by the time you’re dealing with a mere trillion atoms (a
sample of atoms far too small to see), the chance that as much as 51% or as little as
49% of the atoms have decayed after one half-life is effectively zero. If you were to
see a 1% deviation in this situation, then take a picture: you’d have just witnessed
the most monumentally unlikely thing anyone has ever seen. Ever. By a lot.

Using this exact technique (waiting until half of the sample has decayed and then
marking that time as the half-life), doesn’t work for something like 14C, since you’d
have to wait for thousands of years (also: boring). Luckily, math works. The half-
life is usually labeled “	” and after some time T the fraction of the original atoms
remaining is

�
1

2

� T
	

For example, after two half-lives T D 2	 and only
�
1
2

� 2	
	 D

�
1
2

�2
D 1

4
of the

original atoms remain. This equation works even if T isn’t a multiple of the half-
life, which means that if you find some carbon that’s, say, only 95% as radioactive
as fresh fruit, then you can still figure out how long it’s been since that carbon was
mixing with the atmosphere.

The law of large numbers works so well that the main source of error in carbon
dating comes not from the randomness of the decay of 14C, but from the rate at
which it is produced. The vast majority is created by bombarding atmospheric
nitrogen with high-energy neutrons from the Sun, which in turn varies slightly in
intensity over time. More recently, the nuclear tests in the 1950s caused a brief spike
in 14C production. However, by creating a “map” of 14C production rates over time
we can take these difficulties into account. Still, the difficulties aren’t to be found in
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the randomness of decay which are ironed out very effectively by the law of large
numbers.

This works in general, by the way. It’s why, for example, large medical studies
and surveys are more trusted than small ones. The law of large numbers means that
the larger your study, the less likely your results will deviate and give you some
wacky answer. Casinos also rely on the law of large numbers. While the amount
won or lost (mostly lost) by each person can vary wildly, the average amount of
money that a large casino gains is very predictable.
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3.9 How bad would it be if we made a black hole?

Not that bad! Any black hole that humanity might create is very unlikely to harm
anyone who doesn’t try to eat it.

Black holes do two things that make them potentially dangerous: they “eat” and
they “pop”. For the black holes we might reasonably create on Earth, neither of
these is a problem (Figure 3.37).

A black hole “eats” in the sense that if something gets too close, it will fall in
never to return. That includes light. Hence the name: black hole. Typical black holes
in space are ex-stars collapsed to the size of a small town. If there were one inside of
the Earth right now it would very rapidly consume the planet. Already being millions
of times more massive than the Earth, it would barely notice the meal. Fortunately,
here on Earth we don’t have access to millions of times the Earth’s mass,31 so this
isn’t a scenario to worry about.

The recipe for a black hole is literally the simplest recipe possible: “get a bunch
of stuff and put it somewhere”. In practice, the “stuff” is a star at least 3.8 times more

Fig. 3.37 Home-grown black holes: not a concern worth having.

31At most we have access to one Earth mass.
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Fig. 3.38 For a given amount of mass the same amount of gravity “flows” through any surface
that contains it. The large surface contains the same amount of matter before (left) and after
(right) the star collapses, so the strength of gravity at that surface is the same. But when the mass
is concentrated in a tiny place, the same total “flow” through a smaller surface means the strength
of gravity is greater at that smaller surface.

massive than the Sun and the “somewhere” is anywhere smaller than a few dozen
km across. That last bit is important: the defining characteristic of black holes isn’t
their mass, it’s their density (Figure 3.38).

If you’re any given distance away from a conglomeration of matter, it doesn’t
make much difference how that matter is arranged. For example, if the Sun were
to collapse into a black hole,32 all of the planets would continue to orbit around it
in exactly the same way (just colder). The gravitational pull doesn’t start getting
“black-hole-ish” until you’re well within where the surface of the Sun used to be.
Conversely, if the Sun were to swell up and become huge,33 then all of the planets
would continue to orbit it in exactly the same way (just hotter).

To create a new black hole here on Earth, we’d probably use a particle accelerator
to slam particles together and, fingers crossed, get the density of energy and matter
in one extremely small region high enough to collapse under its own gravity. To
be clear, this is wildly unreasonable. But even if we managed to pull it off, the
resulting black hole wouldn’t suddenly start pulling things in any more than the
original matter and energy did.

Just for a sense of scale, if you were to collapse Mt. Everest into a black hole
it would be no more than a few atom-widths across. Its gravity would be as strong
as the gravity on Earth’s surface from ten meters away. If you stood right next to it
you’d be in trouble, but you wouldn’t fall in if you gave it a wide berth. But that’s
only if you can get within ten meters of all of Everest’s mass. Whatever else it
might be, fundamentally Mt. Everest is a big, spread out, pile of stuff. That’s why

32It won’t.
33It probably will.
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mountain climbers aren’t overly worried about Everest’s gravity. Even when you
are literally standing on it, you can’t get within more than a several km of most of
Everest’s mass.

The amount of material used in particle accelerators (or any laboratory for that
matter) is substantially less than the mass of Everest. They’re “particle accelerators”
after all, not “really-big-piles-of-stuff accelerators”. The proton beams at the LHC34

have a total mass of about 0.5 nanograms and when moving at full speed have a
“relativistic mass” of about four micrograms.35 Four micrograms doesn’t have a
scary amount of gravity, and if you turn that into a black hole, it still doesn’t. A black
hole that small probably wouldn’t even be able to eat individual atoms. “Probably”
because we’ve never seen a black hole anywhere near that small, so its hard to say
what a black hole that’s much, much smaller than an electron might do.

The other thing that black holes do is “pop”. Black holes emit Hawking
radiation.36 We have never measured it directly, but there are some good theoretical
reasons to think that they do.37 Paradoxically, the smaller a black hole is, the more
it radiates. “Natural” black holes in space (which are as massive as stars) radiate so
little that they’re completely undetectable. The itty-bitty lab grown black holes we
might create would radiate so fast that they’d be exploding.38 The absolute worst
case39 scenario at CERN would be a “pop” with the energy of a few hundred sticks
of dynamite.

That’s a good sized boom, but not world ending. More to the point, this is exactly
the same amount of energy put into the particle accelerator’s beams in the first place.
This pop isn’t the worst case scenario for black holes, it’s the worst case scenario for
the LHC (cave-ins and eldritch horrors notwithstanding). It is this “pop” that would
make a tiny black hole a hazard. The gravitational pull of a few micrograms of
matter, regardless of how it is arranged, is never dangerous; you wouldn’t get pulled
inside out if you ate it. However, you wouldn’t get the chance, since any black hole
that we could reasonably create would already be mid-explosion. A “tiny” black
hole with a mass of up to around 200,000 tons will radiate all of that mass away in

34The “Large Hadron Collider” near Geneva, Switzerland, which is presently the most powerful
particle accelerator ever built.
35Because they carry about 7,500 times as much kinetic energy as mass.
36This radiation is emitted from the tortured space above the event horizon (a black hole’s “point
of no return”) and not from the black hole itself. This subtle distinction is why Hawking radiation
doesn’t violate the “nothing escapes a black hole” rule.
37Hawking radiation is a prediction of some clever math involving quantum mechanics applied to
the empty space just above the event horizon. The theoretical arguments are convincing enough
(to the physicists who understand them) that frenemies Stephen Hawking and Kip Thorne have
made and settled a series of public bets on the subject, without direct, physical confirmation of the
existence of Hawking radiation.
38Explosion = energy released fast.
39The “worst case” is all of the 115 billion protons in each of the at-most 2,808 groups moving at
full speed are all piled up in the same tiny black hole.
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less than a second.40 A black hole with micrograms of mass would disappear much,
much faster.

A black hole with a mass of a few million tons would blaze with Hawking
radiation so brightly that you wouldn’t want it on the ground or even in low
orbit. It would be “stable” in that it wouldn’t just explode and disappear. This is
one method that science fiction authors use for powering their amazing fictional
scientific devices.

The kind of black holes that we might imagine, that are cold,41 stable, and happily
absorbing material, have a mass comparable to a continent at minimum.42 Even then,
it would be no more than a couple millimeters across. Here on Earth, the real danger
of a black hole of this size isn’t the black hole itself, so much as the process of
creating it. “Listen guys, I’m making a black hole, so I need to crush all of Australia
into a singularity real quick. . . ”

We have no way, even in theory, to compress a mountain of material into a volume
the size of a virus, let alone crush Australia into a BB. Nature’s trick for compressing
matter into a black hole is to park a star on it. That seems to be far and away the
best option, so if we want to create black holes the “easiest” way may be to collect
some stars and throw them in a pile. But by the time you’re running around grabbing
stars, you may as well just find an unclaimed black hole in space and take credit for
it (Figure 3.39).

Fig. 3.39 The easy way to
“make” black holes: find one
and take credit for it.

40That rivals the total output of the Sun for that second, so you wouldn’t want to be nearby.
41Colder than the Sun at least.
42Something like a 200 km ball of stone or bigger.



3.10 Do living things and evolution decrease entropy? 195

3.10 Do living things and evolution decrease entropy?

In very short: nope.
The second law of thermodynamics is sometimes (too succinctly) stated as

“disorder increases over time”. That statement seems to hold true; we see mountains
wearing down, machines breaking, and the inevitable, crushing march of time.
But living things seem to be an exception. Plants can turn disordered dirt into
more ordered plant material. On a larger scale, life has evolved from individual
complicated cells to big complicated critters with trillions of very highly ordered,
cooperating cells.

There are a couple of important ideas missing from the statement “disorder
increases over time”. In particular, it’s missing the often dropped stipulation that the
second law of thermodynamics only applies to “closed systems”. Clearly entropy
can drop in some situations (for example: refrigerators work), but when everything
is taken into account, and the total is tallied up, entropy always increases.

Creatures, both in the context of growing and reproducing and in the context of
evolution, are definitely not closed systems. Doing those things certainly involves
an increase in order locally (within bodies), but at the expense of a much greater
increase in disorder elsewhere. When we breathe, we’re tapping into Earth’s oxygen
bath, which is brimming over with so much chemical energy that things exposed
to air can literally be set on fire.43 The food we eat is chemically complex as well
as packed with chemical energy. Our innards sort through it to find useful bits and
pieces to build and repair ourselves.

However, in the process we also produce a lot of lower-energy, less-ordered
material. We exhale carbon dioxide, slough off dead skin, sweat, and. . . whatnot.
The continuous flow of material and heat into and out of our bodies makes us “open
systems” (Figure 3.40).

Fig. 3.40 “Whatnot”

43That’s more remarkable than it sounds: matches won’t work anywhere else in the known-so-far
universe.
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If a creature could take, say, a kilogram of non-living, highly disordered material
and turn it into a kilogram of highly ordered flesh, that would certainly be a big
violation of the second law of thermodynamics. However, people (for example)
consume along the lines of 30 to 50 tons of food during the course of a lifetime.
Some of that goes into building a fine and foxy body, but most of it goes into
powering that body and replacing bits that wear out. Only about 0.15% (give or
take) of the food a person eats is used to build a person. Around 99.85% is used
for power and to fight the entropy drop involved in construction and temporarily
holding back the horrifying ravages of time.

The entropy of most animals (by weight) is all about the same. A person and
a mountain lion have about the same entropy simply because we have about the
same amount of flesh. The newest versions of a species (babies) initially take the
form of a handful of carefully constructed cells, the “germ line”, which grow into
new, slightly modified versions of the previous generation. Compared to the entropy
involved with turning food into the many, many bodies that make up a species,
the entropy tied up in evolution is barely an afterthought. Evolution isn’t about
creatures becoming more complex, it’s about some fraction of an incomprehensibly
huge number of living things passing their genetics on to future generations. It
turns out that complexity can help make that happen. Although, given the stunning
success and diversity of bacteria in every environment, the argument can be made
that “higher life” is a little full of itself.

If you want to get a single grain of sand to land and stay on the top of a flagpole,
you don’t craft the perfect single grain of sand, you get a fistful of dirt and throw
it. Most of it misses by a mile, but at least a few grains will end up where you had
hoped. The entropy of those rare grains of sand is much lower44 than their Earthen
brethren, but the process that brought them there still produced a lot of higher-
entropy stuff (i.e., the sand goes everywhere).

Evolution works the same way, with the added benefit of replication; once a
good change is made, it tends to get copied and distributed more effectively than
bad changes. But like the few fortuitous grains of sand, every potentially positive
change in an individual member of a species is a rare exception amidst countless
negative changes. The one advantage life has is replication; those positive traits are
copied more (with each individual copy eating, breathing, and increasing the entropy
of the universe) while negative traits are copied less.45

The big exception is photosynthesizing plants. They really can turn a kilogram of
high-disorder dirt, carbon dioxide, and water into a kilogram of low-disorder plant

44They’re in a specific, unlikely, and therefore low-entropy state: on top of a flagpole.
45It’s easy to get caught up in thinking that “positive” and “negative” have some objective meaning
here. Evolution is not “survival of the fittest”, it is more accurately “whatever works, works”.
Turtles move slowly so that they require less food and cheetahs move quickly so that they can
get more food. One is not necessarily “fitter” than the other (although, given the option, being a
cheetah seems like more fun).
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Fig. 3.41 There’s a huge increase in entropy between the incoming sunlight and the outgoing heat
that’s radiated away from the Earth.

matter and oxygen.46 But, once again, they’re working with an open system. The
system planets work with is much bigger than just the “plant/dirt/air/water” system.

Sunlight is a bunch of high-energy photons coming from one direction: it has
very little entropy. Some time later that energy is re-radiated from the Earth as heat.
The same amount of energy is spread over substantially more photons and a wider
range of directions, which entails a lot more entropy (Figure 3.41).

The Earth has an effective temperature47 of about 252ıK (�21ıC) while the Sun
has an effective temperature of 5777ıK. That means that for every one photon that
comes from the Sun, the Earth scatters on the order of 5777

252
� 23 photons in every

direction. This huge increase in entropy is the “entropy sink” that makes all life on
Earth possible.48

The fact that the Sun is very hot and very small in the sky is important. It makes
sunlight an excellent source of low-entropy energy. The fact that the rest of the sky
is very cold and very big is just as important. It makes space an excellent place to

46Technically, most plants need certain single-celled symbiotic critters to help them break stuff
down around their roots, so this isn’t just a plants-only effort. No species is an island.
47Having an “effective temperature” of �21ıC means that the Earth radiates heat into space at the
same rate as a �21ıC black-body sphere (something simpler and without air) of comparable size.
The actual surface temperature is greater because we have the greenhouse effect, which is good
when it keeps the Earth from being frozen, but is best in moderation.
48There are tiny oases surrounding “black smokers” (volcanic vents) on the ocean floor that include
some organisms that can subsist on the “chemosynthesis” of materials from within the Earth.
Technically, those few critters don’t necessarily need the Sun. In spite of that, not even anaerobic
chemosynthesizing creatures are islands.
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dump all of our high-entropy waste heat. A waterwheel can be powered with water
in a river as it flows downhill, but not with water in the ocean since it’s already
“at the bottom of the hill”. Similarly, a plant can “eat” light from the Sun, but not
the ambient light and heat around it. The difference is in the entropy of the energy
sources.

Green plants take a tiny amount of the sunlight that hits the Earth and use it
to create sugars and other useful plant-ey material. Other plants and animals take
the plant’s sugars and building blocks and rearrange a tiny fraction of them into
other animals and plants and a large bulk of it into. . . leftovers. Eventually, all of the
energy that was originally sunlight turns into heat and radiates away. A rock does
this quickly: it sits in the Sun, gets hot, and radiates that energy away as heat. The
trick to life is in shedding heat and increasing entropy slowly, through several links
in the food chain, instead of immediately, the way a rock does it.

The end result is always the same, re-radiating the Sun’s heat into space, but the
journey in between is literally life itself.
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3.11 What are the equations of electromagnetism?
What do they actually say?

Electromagnetism and all the involved math are surprisingly visual sciences.
Understanding Maxwell’s equations (the equations of electromagnetism) is difficult
if you come at them from a strictly mathematical standpoint, but the pictures they
describe are remarkably straightforward. The totality of electromagnetism can be
summed up in four equations:

i/ r � E D �

"0

ii/ r � B D 0

iii/ r � B D �0J C �0"0
@E
@t

iv/ r � E D � @B
@t

In these equations �0 and "049 are physical constants that dictate how strong the
electric and magnetic forces are, but when doing calculations (or really whenever)
they’re a pain to keep track of. So from now on we’ll ignore them50:

i/ r � E D �

ii/ r � B D 0

iii/ r � B D J C @E
@t

iv/ r � E D � @B
@t

where:

E is the electric field

B is the magnetic field

J is the electrical current

� is the density of electric charge

49"0 D 8:854� 10�12 C2s2

kg m3 and �0 D 4� � 10�7 kg m
C2 .

50This is safer than it sounds. Because of all those units, you’ll be reminded that you need to put
some combination of "0 and �0 back when you’re done mathing, because otherwise your answer
will have the wrong combination of Coulombs, meters, seconds, and kilograms.
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Fig. 3.42 Positive divergence means the field is flowing out of a region, negative divergence means
the field is flowing into a region, and zero divergence means the amount that flows in equals the
amount that flows out.

The electric and magnetic fields, “E” and “B”,51 are like wind or flowing water;
at every location they point in some direction, with some strength.52

There are two strange symbols (operations) in these equations: “r�” and “r�”.
The first is called “divergence” and the second is called “curl”. Here’s what they
mean.

Divergence, r�, is a measure of how much a field comes together or flies apart.
In what follows “W” is the flow of water or wind (Figure 3.42).

Curl is how much the field “twists”. For some idea of what curl does to a field;
in a whirlpool or a tornado all of the curl is in the center funnel and the field (wind)
wraps around where the curl is. An absolutely beautiful example of this can be seen
in a draining bathtub. If you happen to have a duck or boat in the water when you
pull the plug, you’ll notice that it moves in circles around the drain but always stays
pointed in more or less the same direction until it’s directly over the drain, at which
point it does rotate. This is because there is no curl in the water of a draining tub

51You’d expect “M” to be used for the magnetic field, but it’s already used for mass, so some genius
decided “B” was a good letter for magnets and the notation stuck.
52In fact, that’s exactly what a mathematician means when they say “vector field”.
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Fig. 3.43 If W is the way the wind is blowing, then the tornado is the curl of W. Curl is the
“twistiness” of the field. Although wind points around the tornado, all of the twisting happens only
at the tornado itself.

except above the drain. The same thing holds true for tornados and hurricanes: no
curl (no “twistiness”) except at the center (Figure 3.43).

i) r � E D �

You can picture magnetic and electric fields in terms of “field lines”. The more field
lines, the stronger the field. You can use this metaphor, for example, to picture why
the fields lose strength as you get farther away from their source; the farther out, the
more the lines spread out.

This first equation simply states that electric field lines, E, only start at positive
charges, � > 0, and only end at negative charges, � < 0 (Figure 3.44).

If a region contains no charges, then the number of field lines entering it is the
same as the number of field lines exiting it. Again, “field lines” don’t exist. They’re
just a really useful metaphor.

ii) r � B D 0

This is the magnetic version of the electric equation above. This states that magnetic
field lines never begin or end. Instead, they must always form closed loops.
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Fig. 3.44 Electric field lines
only begin and end at
charges. Any region that
contains no charges (or an
equal number of positive and
negative charges) will have
the same amount of field lines
entering it as exiting.

If somehow magnetic monopoles (“magnetic charges”) existed, then this equa-
tion would look exactly like (i). However, there are no magnetic monopoles.53 One
less thing to worry about.

iii) r � B D J C @E
@t

First the “J” part: r � B D J. This equation says that electrical currents are to
magnetic fields as tornados are to wind.54 Magnetic fields, B, literally curl around
electrical currents, J (Figure 3.45).

This works in both directions, so equivalently “if there’s a magnetic field running
around a loop, then there must be a current running through that loop”.

Say you have a farm and it’s completely enclosed by a fence. Then this statement
is equivalent to saying “if there’s wind blowing in the same direction all the way
around the fence, then there must be a tornado in my farm”. Basically, if the wind is
moving in circles, it must be twisting around at some point, and that’s the curl. This
is why it’s possible to detect current in a wire without touching it.

Notice that the word “through” was underlined (for emphasis!). When a scientist
talks about going through a loop, it’s important to have a rigorous definition. After
all, what if the loop is a really weird shape and doesn’t lay flat? The way you deal
with this is to find a “spanning surface”. A spanning surface is any surface that has
the loop as a boundary (Figure 3.46).

53Not for lack of trying. After a couple centuries of false hope and dead ends, it is now reasonable
to say that “magnetic charges” do not exist in the way that electrical charges exist.
54You won’t see that on the SAT.
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Fig. 3.45 “Magnetic fields curl around current”. Iron filings have the convenient property that
they tend to line up with magnetic fields, so a current-carrying wire going through a piece of paper
covered with iron fillings will arrange them thusly.

Fig. 3.46 An example of a
arbitrary loop and an equally
arbitrary spanning surface. A
string that passes through the
bubble exactly once must also
pass through the bubble
wand.
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The current is defined to be “going through the loop” if it passes through that
loop’s spanning surface. This may seem like an ad-hoc, weirdly over-specific way
of defining “through”, but the math likes it.55 What will be very important in a
moment is that the current needs to be passing through any spanning surface.

Now for the “ @E
@t part”: r � B D @E

@t .
There’s an issue. What if your wire has a capacitor in it? A capacitor (at its most

basic) is a wire going to a plate, then a gap, then another plate, then more wire. A
current causes charges to build up on one side (and the opposite charge to build up
on the other side), but no actual charge moves from one plate to the other.

If you were cruel enough to pick a spanning surface that goes through the
capacitor, where there’s no current (middle of Figure 3.47), instead of through the
wire, where there is a current (top of Figure 3.47), you’d get a new and contradictory
result. Since the situation itself hasn’t changed, no matter what surface you pick, the
magnetic field around the loop must be the same. It can’t be just current that makes
the magnetic field curl around. What’s going on in the capacitor?

Well, as current flows into one side a positive charge builds up, and as current
flows out of the other side a negative charge builds up. As a result, an increasing
electric field appears between the plates of the capacitor pointing from the positive
charges to the negative charges (bottom of Figure 3.47).

Fig. 3.47 Pick a loop in
space. If a current goes
through a surface that spans
that loop (any surface), then
the current causes a magnetic
field to run around that loop.
But in a capacitor a changing
electric field takes the place
of the current.

55In particular: “Stokes theorem” which, along with “Gauss’ integral theorem”, is one of
the indispensable rules of vector calculus and, because they’re practically one and the same,
electromagnetism as well.



3.11 What are the equations of electromagnetism? What do they actually say? 205

Fig. 3.48 A changing
magnetic field (blue) creates
curl in the electric field. So if
you increase the magnetic
field through a loop of wire,
there will be an electric field
along the wire (a tornado in
the farm pushes wind along
the fence). When an electric
field points along a wire, it
pushes charges along it (red).
This is induced current!

The conclusion is that both current, J, and changing electric fields, @E
@t , create curl

in magnetic fields. In other words, r � B D J C @E
@t

iv) r � E D � @B
@t

Similar to the last equation, this equation states that a changing magnetic field
creates curl in the electric field. In terms of modern society, this is arguably the most
important equation, since it dictates the behavior of electrical turbines. If you have
an electric field that curls in a circle, then you can generate current and electrical
power.

Say what you want about human beings; we love ourselves some electricity. In
order to generate electricity, you need an electric field to get charges moving.56

“r � E D �” says that electric fields radiate out of charges, so if you just get a big,
highly charged object, you can generate electricity. But not for long, because the
first thing that electricity would do is flow into or away from your big charged thing
to neutralize it. Fortunately, you can also generate electric fields in a loop using a
changing magnetic field; no big charged things involved (Figure 3.48).

So if you’ve got a loop of wire and you move a magnet near it, then the magnetic
field through the loop changes and an “induced current” runs through the wire
(Figure 3.49).

Most power plants (hydro, nuclear, gas, coal, wind) simply spin generators which
(basically) move big magnets back and forth, changing the magnetic field through
loops of wire and creating current. In fact, those generators change the magnetic
field through those loops 60 times a second, which is why the electrical power from
your outlet, in turn, also switches 60 times every second (alternating current).57

56“Moving electrical charges”=“current”.
57Here I’ve made the presumption that you live in the Americas. Generally speaking, electricity in
the Americas is distributed at 60Hz and distributed at 50Hz everywhere else.
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Fig. 3.49 The coils in a
generator. When a magnet is
spun in the center it
repeatedly changes the
magnetic field through those
(many) loops of wire,
generating current.

Solar panels are a glaring exception, but other than that, effectively all of our
electricity is made the same way: r � E D � @B

@t
Notice, by the way, that unlike equation (iii), there’s no “J” term. J is moving

electric charge. If there were such a thing as “magnetic charge”, then you could
have “magnetic current” and there would be a magnetic current term in equation
(iv). But there’s not, so there isn’t.

Mostly unrelated tangent: the speed of light

In the 1860s Maxwell, the titular author of Maxwell’s equations, noticed something
odd. While his equations talk about how electric and magnetic fields are created
and shaped by charges and currents, they also say something very profound in
the absence of charge. They say that changing electric fields create magnetic fields
equation (iii) and that changing magnetic fields created electric fields equation (iv).
It turns out that continuously changing electric and magnetic fields can produce each
other indefinitely. These self-sustaining electromagnetic fields have a more common
name: light. Isn’t that weird?

So when you see a chunk of sunlight, what you’re seeing is just a moving charge
on the surface of the sun, which created a changing electric field, which created a
changing magnetic field, which created a changing electric field, and so on. . . until
those fields interact with the chemicals in your eye and register as “light”, 93 million
miles later.

This requires some vector calculus. Take Maxwell’s equations in vacuum. In a
vacuum there are no charges and no currents, so � D 0 and J D 0:

i/ r � E D 0

ii/ r � B D 0

iii/ r � B D �0"0
@E
@t

iv/ r � E D � @B
@t
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We’re going to solve for the electric field, so taking the time derivative of
equation (iii) and then plugging in equation (iv) yields:

�0"0
@E
@t D r � B

�0"0
@2E
@t2

D r � @B
@t

�0"0
@2E
@t2

D r � .�r � E/

�0"0
@2E
@t2

D �r � .r � E/

Vector calculus is one of those corners of mathematics resplendent with an
amazing array of identities that you pretend to memorize, but secretly look up in the
book three minutes before you’re tested. Here’s one such identity that your professor
also pretends to remember: r � .r � A/ D r.r � A/ � r2A

If you know exactly what these symbols mean (mathematically) and you’re
patient, then you can prove this yourself. Literally you just plug everything in and
do the math with no cleverness of any kind. Pretty soon you’ll be saying to yourself:
“Hey, it works! I wonder how long I’ll remember this?”. Back to the point:

�0"0
@2E
@t2

D �r � .r � E/

�0"0
@2E
@t2

D �r.r � E/C r2E

�0"0
@2E
@t2

D �r.0/C r2E

�0"0
@2E
@t2

D r2E

@2E
@t2

D 1
�0"0

r2E

@2E
@t2

D
�

1p
�0"0

�2
r2E

r � E D 0 because there are no charges.
This last equation seems to be written in a very strange way, but check it! The

general wave equation is written

@2A
@t2

D v2r2A

where A is a wave, and v is the propagation speed of that wave. So, the electric field,
E, propagates as a wave at v D 1p

�0"0
D 2:99�108m=s which, not coincidentally, is

the speed of light.58 I suspect that when Maxwell first did this math he cartwheeled
all the way back to Edinburgh.

58We could just as easily have solved for the magnetic field and gotten the same result. But since
one determines the other in a vacuum, that would be redundant.
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For a couple of centuries, “Galilean invariance” had been a well established and
understood staple of physics. It says that no experiment can differentiate between
moving at a constant speed and being stationary. Maxwell derived the speed of light
from equations based on experiments that you can physically do. This created a
tickling suspicion in the physics community that there was something deeply bizarre
about reality.

That is to say, electromagnetism experiments work in exactly the same way
whether you’re on a train, or standing by the tracks, or even just whipping through
space on some classy blue planet. So light always moves toward or away from you as
though you were sitting still. Strange. It took another forty years, but this weirdness
eventually blossomed into special relativity, Einstein’s not-titular theory of how time
and space are put together. In fact, Einstein’s first paper on the topic was “Zur
Elektrodynamik bewegter Körper” (“On the Electrodynamics of Moving Bodies”).

Who knew that playing around with wires and sparks would lead to an under-
standing of the fundamental nature of existence itself? Life is funny.
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3.12 Why is hitting water from a great height like hitting
concrete?

There’s nothing terribly special about water. Surface tension is important for insects
and raindrops, but when it comes to slamming into water at high speed, the problem
with water is that it’s made of matter and it’s there. Even hitting a gas fast enough
“feels like concrete”. For example, when meteors hit the atmosphere they generally
shatter immediately (Figure 3.50).

A good way to think about high velocity impacts is not in terms of fluids acting
more solid, but in terms of solids acting more fluid. The more energy that’s involved
in a collision, the less the binding energy (the energy required to pull a thing apart)
plays a role. A general, hand-wavy rule of thumb is: if the random kinetic energy of
a piece of material is greater than the binding energy, then the material will behave
like a fluid. “Random” is important there. If you’re in an airplane you’re probably
moving around 500 mph, more than enough to make anything feel like concrete, but
you don’t notice it because all of you is moving in the same direction. You have a
huge amount of kinetic energy, but it isn’t working to pull you apart (Figure 3.51).

Fig. 3.50 The Jules Verne Automated Transfer Vehicle impacting the atmosphere as it returned to
Earth.

Fig. 3.51 Left: Whipped cream standing up like a solid at low speed. Right: Steel (recently)
splashing like a liquid at high speed.
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This shows up very clearly on a small scale. For example, the difference between
water and ice is that the random kinetic energy of water (better known as “heat”) is
greater than the binding energy between the molecules in ice. Once there’s enough
kinetic energy in the system, the forces that would otherwise hold the water together
as ice are overwhelmed.

So, when you fall from a great height and land in water there’s a bunch of kinetic
energy going every which way. On impact the water needs to get out of your way,
but you also have to get out of the water’s way. The water continues to behave like
water, but if the kinetic energy in different parts of your body are greater than the
binding energy59 keeping them connected, then your body as a whole will act more
like a fluid. That is, it’ll “splash” in the grossest sense.

Clearly there’s a big difference between something breaking into chunks vs.
liquifying, but that difference is mostly just a matter of energy. It takes more energy
to make sawdust than wood chips, but the process is more or less the same. The
take-away here is that there are many different kinds of binding energy (molecular,
structural, etc.), but that they all do the same basic job: ensure that an object remains
an object.

59I’m stretching the analogy a bit. There is an amount of kinetic energy that you can give, say, your
arm, beyond which your shoulder will tear apart before it’s able to bring your arm to a halt. That’s
the “binding energy” of your shoulder.
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How wonderful that we have met with a paradox. Now we have some hope of making
progress.

—Niels Bohr, optimist first and quantum physicist second
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The laws of mathematics are not based on anything that physically exists. Which
math we prefer to use goes hand-in-hand with what’s useful, but ultimately math is
as inherently human as love or the rules of poker. That said, logic alone produces a
world of remarkable structure and certainty.

Every mathematician (that is, everyone who has done math) has had the
experience of discovering something unexpected, unprompted, and irrevocably true.
This is a very profound experience. To wander through the world of logic and to
come across an unshakable fact on a blank sheet of paper or a quiet moment of
contemplation is to experience, briefly, enlightenment.

Maybe you’ve noticed that when you multiply a number by 9, the sum of the
digits in the result is 9 (e.g., 2 � 9 D 18, 3 � 9 D 27, 4 � 9 D 36, etc.). Maybe you
noticed that, without lifting your pen, you can draw every connection between an
odd number of dots without repeating lines, but not an even number.1 Maybe you
noticed that if you fold a strip of paper in half in the same direction many times and
then open all the folds to 90ı, the resulting path2 never intersects itself (Figure 4.1).

There are absolute, true things in the universe and, for each of the ones that
are presently known, somebody somewhere had to realize it. Often, that person is
you. Maybe you’re understanding something for the first time in history and maybe
you’re the ten-thousandth person that day. The experience is exactly the same.3

Fig. 4.1 Left: A dawning realization that the path of a strip of paper folded and then unfolded in
a particular way never intersects itself. Middle: A small fraction of the author’s vain attempt to
understand why. Right: A little help from a computer which raised more questions than it answered.

1Except 2.
2This path is called “the Dragon Curve”.
3Unfortunately so. It would be really nice to know if you’re the first or not.
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Math is a scaffold that allows our mind’s reach to exceed its grasp. Tiny, precise,
simple facts and rules grant our finite, simian minds the power to work with ideas
we can’t possibly fit in our heads all at once.

Ultimately, math isn’t about finding answers, it’s about understanding. Once
you’re comfortable with a piece of math, the machinery of it fades into the back-
ground. With mathematical experience4 you’re free to explore, to allow yourself to
be distracted by the patterns that inevitably arise, and to learn unexpected things
without constantly staring at your feet to be sure that they’re under you.

It is these patterns, and the insights they furnish, that are important. Through
observation, we can learn the rules of the universe. But it is through reasoning and
mathematics that we can comprehend their meaning. This chapter steps away from
the shackles of physical reality and considers inquiries into the nature of math and
logic alone.

4“Math experience” doesn’t mean studying double-super-calculus in your third PhD. Even if you
practice arithmetic, there are provably innumerable things to find.
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4.1 Can sheets be tied in knots in higher dimensions the way
strings can be tied in knots in three dimensions?

Yes!
Mathematicians are pretty good at talking about things in spaces with any number

of dimensions. Sometimes that math is fairly easy and even intuitive. For example,
a line has two sides (ends), a square has four sides, a cube has six sides, and a
hypercube has sides.5

Ordinary knots, those that you can tie with string, can only exist in exactly three
dimensions (Figure 4.2). It’s impossible to create a knot in two dimensions since
every knot involves some amount of “over-and-under-ing” and in two dimensional
space there’s none of that. Because it makes the math more robust, mathematicians
always talk about knots being tied in closed loops rather than on a bight.6 Once
you’ve connected the ends of your string the knot you’ve got is the knot you’ve got.
That invariance is very attractive to math folk (Figure 4.3).

Fig. 4.2 Just to be clear,
we’re not talking about
“sheets tied in knots” like
this. This is cheating.

5Eight sides.
6A “bight” is a segment in the middle of a rope.
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Fig. 4.3 Left: In two
dimensions, no matter how
complicated and convoluted
your string is, it can never be
tied in a knot. Right: The
simplest knot, the “trefoil
knot”, requires at least three
over-under excursions into
three dimensional space to
get around self-intersections.

Fig. 4.4 In two dimensions, a dot can be stuck inside of a circle, but if we have the option to
“lift” part of the circle in a new direction, then the dot can get out. For the flat denizens of two
dimensional space this looks like part of the circle being removed.

In two dimensions, if you have a dot inside of a circle, it’s stuck. But if you have
access to another dimension (“dimension” basically means “direction”), then you
can get the dot out. In exactly the same way, if you can “lift” part of a regular three
dimensional knot into a fourth dimension it’s like opening the loop and you’re free
to untie your knot in the same way you’d untangle/untie anything. Afterwards you
just “lower” the segment of the string back so that it all sits in three dimensional
space and you’re left with a loop of unknotted string. Very creatively, this is called
an “unknot”. So, you can untie any knot without worrying about self-intersections
and all it takes is an extra dimension (Figure 4.4).

All that was just to say: be excited, the way you tie your shoes is only possible
in universes with exactly three dimensions. You can’t tie a knot in a string in two
dimensions and a knotted string in four (or more) dimensions isn’t really knotted at
all, because you can use the “lift trick” to untie them.

The way we talk about ordinary knots is in the context of a loop (tie your knot
and then splice the loose ends together). A loop is the “surface” of a disk (a 1-
sphere) and the generalization of a loop to higher dimensions is first the surface of
a regular sphere (a 2-sphere), then the surface of a hyper-sphere (a 3-sphere) and so
on (Figure 4.5). It turns out that:

An N-sphere can be tied in a knot in N C 2 dimensional space.

If you have an ordinary knot, you can use it to create a higher dimensional knot.
There are a several ways to do this, the easiest of which is “spinning”.

To create a “spun knot” you rotate it in a higher dimensional space and collect
all of the points that it sweeps through. Figure 4.6 is more symbolic than applicable.
Here a knot in three dimensions is spun to create a sphere that’s still in three
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Fig. 4.5 1-spheres can be
tied in knots in three
dimensions (these are known
colloquially as “knots”),
which means that they can
actually be created. 2-spheres
(the surface of a ball) can be
tied in knots in four
dimensions. The image here is
a cross-section of such a knot
(you can’t actually draw a
picture of four dimensional
objects).

Fig. 4.6 The basic idea
behind spun knots.

dimensional space, but with a funky-shaped tube running around its equator. That’s
not a knot (knot at all). This process needs to be done in four dimensions, where
the added direction allows you to get around the self-intersection problem, but the
basic idea is the same. So for every knot that you can tie with a loop of rope in three
dimensions, there’s a knot you can tie with a hollow sphere in four dimensions.

And yes: you can keep going into higher and higher dimensions using the same
idea. Not every higher-dimensional knot can be created by “spinning” a lower
dimensional knot, but there are plenty of ordinary knots, so there are plenty of knots
possible in every dimension (higher than two).
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4.2 What is a Fourier transform? What is it used for?

Almost every imaginable7 signal can be broken down into a combination of simple
waves. This fact is the central philosophy behind Fourier transforms. Fourier was
very French, so his name is pronounced Frenchly: “4 E yay”.

Fourier transforms (FT) take a signal and express it in terms of the frequencies of
the waves that make up that signal (Figure 4.7). Sound is probably the easiest thing
to think about when talking about Fourier transforms. If you could see sound, you
would see air molecules oscillating back and forth very quickly. But oddly enough,
when you hear sound you’re not perceiving the air moving back and forth, you hear
sound in terms of its frequencies. For example, when somebody plays middle C on
a piano, you don’t feel your ear being buffeted 262 times a second8 you just hear
a single tone. The physical movement of the air is the signal and the tone is the
Fourier transform of that signal.

Fig. 4.7 A complicated signal can be broken down into simple waves. This break down, and how
much of each wave is needed, is the Fourier Transform.

7Mathematicians excel at coming up with worst-case examples to force other mathematicians to
be mildly paranoid and over-cautious in their theorems. Physicists, by and large, don’t suffer from
this affliction. I say “every imaginable signal”, because if you’re imagining an example right now
(without knowing one of the weird counter-examples), then you’re almost certainly imagining a
signal that can be broken down into simple waves.
8Middle C = 261.6 Hz.
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The Fourier transform of a sound wave is such a natural way to think about sound,
that it’s kinda difficult to think about it in any other way. When you imagine a sound
or play an instrument it’s much easier to consider the notes and the tone of the sound
than the physical back-and-forth movement of the air.

In fact, when sound is recorded digitally the strength of the sound wave itself can
be recorded (this is what a “.wav” file is), but more often the Fourier transform is
recorded instead. Tens of thousands of times a second a list of the strengths of the
various frequencies, like those shown in Figure 4.8, is “written down”. This is more
or less what an mp3 is. It’s not until a speaker has to physically play it that the FT
is turned back into a regular sound signal (Figure 4.9).

Once in the form of a FT it’s easy to filter sound. For example, when you adjust
the bass or treble on a sound system, what you’re really doing is telling the device
to multiply the different frequencies by different amounts before sending the signal
to the speakers. So when the base is turned up the lower frequencies get multiplied
by a bigger value than the higher frequencies.

Fig. 4.8 An example of a Fourier transform as seen on the front of a sound system.

Fig. 4.9 Left: the actual back-and-forth movement of music is recorded on vinyl records. Right:
the notes (frequencies) of the music are recorded on player piano sheets. This is essentially a
recording of the FT of the music.
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Acoustics are just the tip of the FT iceberg. An image is another kind of signal,
but unlike sound an image is a “two dimensional” signal. Fortunately, there’s an
analogous form of the Fourier Transform for any number of dimensions; two is no
big deal. When this was first done on computers it was found that, for pretty much
any picture that isn’t random static, most of the FT is concentrated around the lower
frequencies. In a nutshell, this is because the kinds of pictures people bother to look
at don’t change quickly over small distances.9 Even when they do, our eyes tend
to ignore it, so the higher frequencies aren’t as important. This is the basic idea
behind “.jpeg” encoding and compression, although there are lots of other clever
tricks involved (Figure 4.10).10

Fig. 4.10 Because most images worth seeing don’t involve a lot of higher frequencies, we can use
Fourier transforms to save memory. Top Left: Rear Admiral Grace Hopper, pioneer of computer
science and affirmed forgoer of nonsense. Top Right: The magnitude of the FT of “Amazing
Grace”. Bottom Right: The FT with the higher frequencies erased. Bottom Left: The image created
by using only those low frequencies.

9Something like “Where’s Waldo?” would be an exception.
10“What people won’t notice” is a guiding principle behind data compression in digital media. By
taking advantage of auditory and visual illusions and weaknesses in human perception, we can
dramatically reduce the amount of data required to make sound and pictures that are practically
perfect... as far as humans can tell.
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While digital technology has ushered in an explosion of uses for Fourier
transforms, it’s a long way from being the only use. In both math and physics
you’ll find that FTs are floating around behind the scenes in freaking everything.
Any time waves are involved in something (which is often), you can be sure that
Fourier transforms won’t be far behind. It’s easy to describe a single, simple wave,
like pendulums or a single bouncing ball or an actual wave. Often (but certainly not
always) it’s possible to break down complex systems into simple waves, look at how
those waves behave individually, and then to reconstruct the behavior of the system
as a whole. Basically, it’s easier to deal with “sin.x/” than a completely arbitrary
function “f .x/”.

Physicists jump between talking about functions and their Fourier transforms
so often that they barely see the difference. For example, for not-terribly-obvious
reasons, in quantum mechanics the Fourier transform of the position of an object is
the momentum of that object. This fact (and some clever math) is one of the most
direct ways to derive the infamous Heisenberg Uncertainty principle! FTs even show
up in quantum computers.11

Mathematicians tend to be more excited by the abstract mathematical properties
of Fourier transforms than by the more intuitive properties. A lot of problems
that are difficult/nearly impossible to solve directly become easy after a Fourier
transform. Mathematical operations, like derivatives or convolutions, become much
more manageable on the far side of a Fourier transform (although, just as often,
taking the FT just makes everything worse).

Gravy

Fourier transforms are, of course, profoundly mathematical. If you have a function,
f , that repeats itself every 2� , then you can express it as a sum of sine and cosine
waves like this:

f .x/ D

1X
nD0

An sin .nx/C Bn cos .nx/

It turns out that those A’s and B’s are fairly easy to find because sines and cosines
have a property called “orthogonality” (Figure 4.11).

The orthogonality of sines and cosines boils down to this set of rules. For any
positive integers n and m:

R 2�
0

cos .nx/ sin .mx/dx D 0

R 2�
0

cos .nx/ cos .mx/dx D

�
� ;m D n
0 ;m ¤ nR 2�

0
sin .nx/ sin .mx/dx D

�
� ;m D n
0 ;m ¤ n

11One such example can be found in Section 2.5.
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Fig. 4.11 Left: sin.x/ cos.2x/. “Orthogonality” is a statement about the fact that multiplying sines
and cosines of different frequencies creates functions that are positive exactly as often as they are
negative (zero on average). Right: sin.x/ sin.x/. When squared, sine or cosine is always positive.

Now, say that you want to figure out the value of B3, the amount that cos.3x/
contributes to f .x/. Just multiply both sides by cos.3x/ and integrate from 0 to 2� .

f .x/ D
P1

nD0 An sin .nx/C Bn cos .nx/

f .x/ cos .3x/ D
P1

nD0 An sin .nx/ cos .3x/C Bn cos .nx/ cos .3x/R 2�
0

f .x/ cos .3x/ dx D
R 2�
0

�P1
nD0 An sin .nx/ cos .3x/C Bn cos .nx/ cos .3x/

	
dxR 2�

0
f .x/ cos .3x/ dx D

P1
nD0 An

R 2�
0

sin .nx/ cos .3x/ dx

CBn
R 2�
0

cos .nx/ cos .3x/ dxR 2�
0

f .x/ cos .3x/ dx D B3
R 2�
0

cos .3x/ cos .3x/ dxR 2�
0

f .x/ cos .3x/ dx D �B3

1
�

R 2�
0

f .x/ cos .3x/ dx D B3

You can do the same thing for all of those A’s and B’s:

An D
1

�

Z 2�

0

f .x/ sin .nx/ dx Bn D
1

�

Z 2�

0

f .x/ cos .nx/ dx

Taking advantage of Euler’s equation, eix D cos.x/C i sin.x/, you can compress
this into one equation:

f .x/ D

1X
nD0

Cneinx Cn D
1

�

Z 2�

0

f .x/einxdx

The C’s are complex numbers, a C bi, so they carry the same amount of
information as two real numbers. This new form, while more succinct, says the
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same thing. There are some important details behind this next bit, but if you expand
the size of the interval from Œ0; 2�� to .�1;1/ you get:

f .x/ D

Z 1

�1

Of .n/ei2�nx dn Of .n/ D

Z 1

�1

f .x/e�i2�nx dx

Here, instead of a discrete set of Cn you have a continuous function Of .n/ and
instead of a summation you have an integral, but the essential idea is the same. Of .n/
is the honest-to-god actual Fourier transform of f .

Now here’s one of a dozen reasons why mathematicians love Fourier transforms
so much that they want to have billions of their babies, naming them in turn,
“baby sub naught, baby sub one, ..., baby sub n”. If you’re looking at a differential
equation, then you can solve many of them fairly quickly using FTs. Derivatives,
d
dx f .x/, become multiplication by a variable when passed through a FT. Watch what
happens when we take the FT of a derivative of a function, d

dx f .x/.12

R
d
dx Œf .x/� e

�2� inx dx

D �
R

f .x/ d
dx

�
e�2� inx

	
dx C f .x/e�2� inxj1�1

D �
R

f .x/ d
dx

�
e�2� inx

	
dx

D �
R

f .x/.�2� in/
�
e�2� inx

	
dx

D 2� in
R

f .x/e�2� inx dx

D 2� inOf .n/

The FT can be more succinctly written as Of .n/ D F Œf .x/�, so this last fact can be
written .2� in/k Of .n/ D F

�
f .k/.x/

	
Suddenly your differential equation becomes a polynomial! This may seem a bit

terse, but to cover Fourier transforms with any kind of generality is a losing battle:
it’s a huge subject with endless applications, many of which are pretty complicated.
Math is a big field after all.

12There are a couple of subtle requirements on f .x/ in order to ensure that it has a Fourier
Transform. In particular, f .x/ must be “integrable”, which means that

R
f .x/ dx is equal to some

finite number. That forces f .x/ to go to zero as x goes to ˙1, which is why f .x/e�2� inxj1
�1

D 0.
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4.3 What is chaos? Can something be completely chaotic?

Chaos theory, despite what Jurassic Park may lead you to believe, has almost
nothing to do with making actual predictions and is instead concerned with trying
to figure out how much we can expect our predictions to fail.

“Pure chaos” and “infinite randomness”, where absolutely anything of any kind
can happen, is the sort of thing you might want to argue about in a philosophy
class,13 but it’s not something to worry about in reality. Randomly selecting a
number between 1 and 10 isn’t as chaotic as randomly selecting a number between
1 and 20, so you’d be forgiven for thinking that the “most random” way to
select numbers is to select between �1 and 1 with an equal chance for each.
Unfortunately, this sort of reasoning spawns paradoxes14 like kicking a bee hive
spawns bad days. Point is: “pure chaos” and “infinitely random” aren’t actually
things.

“Chaos” means something very particular to its clever and pimply practitioners.
Things like dice rolls or coin flips may be random, but they’re not chaotic. A
chaotic system is one that has well-understood dynamics, but that also has strong
dependence on its initial conditions. For example, if you roll a stone down a rocky
hill, there’s no mystery behind why it rolls or how it bounces off of things in its
path. Given enough time, coffee, information, and slide rulers, any physicist would
be able to calculate how each impact will affect the course of the tumbling stone
(Figure 4.12).

Fig. 4.12 Although the exact physics may be known and predictable, tiny errors compound until
trajectories that start similarly end differently. Chaos!

13Or, more likely, a bar.
14Such as every individual number being just as likely as every collection of numbers.
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But there’s the problem: no one can have access to all of the information, there’s
a diminishing return for putting more time into calculations, and slide rulers haven’t
really been in production since the late 70s.

Say you want to roll two stones down a hill in exactly the same way. If you pick
very similar rocks and push them in very similar ways, they’ll follow roughly the
same path for a while; they’ll hit the same boulders, roll down the same troughs, etc.
But eventually the second stone will hit the ground a couple of inches away from
where the last stone hit it, and that means that it gets kicked off at a slightly different
angle, and then the next place it hits is even more different, and so on. Even if the
hill manages to stay exactly the same during their ill-fated rolls, there’s always some
error with respect to how/where each stone starts. That small error means that the
next time it hits the ground there’s even more error, then even more, ... This effect
(initially small errors turning into huge errors eventually) is called “the butterfly
effect”. In short order there’s nothing that can meaningfully be predicted about the
stone. A world class stone-chucking expert would have no more to say than “it’ll
end up at the bottom of the hill”.

The position of the planets, being non-chaotic,15 can be predicted accurately
millennia in advance. If you manage to get more accurate information, your
predictions become more accurate. Even better, trajectories in space tend to get
closer together, not farther apart. Which is to say, even things that are far apart
will tend to fall onto the nearest, biggest thing.16

Weather on the other hand is famously chaotic. A couple of days is about the best
we can reasonably do. Despite massive computers, buckets of satellites, and more
math than anyone really wants to hear about, the “trajectory” of the world’s weather
diverges substantially from our best computer simulations in typically less than a
week. Doubling the quality of our information or simulations doesn’t come close to
doubling how far into the future we can predict.

When you’re modeling a system in time you talk about its “trajectory”. That
trajectory can be through a real space, like in the case of a stone rolling down a hill
or a leaf on a river, or the space can be abstract, like “the space of stock market
prices” or “the space of every possible weather pattern”. With a rock rolling down
a hill you just need to keep track of things like its velocity and its position. That’s
six variables (three for position and three for velocity) at minimum. As the rock
falls down the hill it spits out different values for all six variables and traces out
a trajectory (if you restrict your attention to just its position, it’s easy to actually
draw a picture like Figure 4.12). For something like weather you’d need to keep
track of a hell of a lot more. A good weather simulator can keep track of pressure,
temperature, humidity, wind speed and direction, for a dozen layers of atmosphere

15Technically, the gravitational interaction of more than three object is chaotic (this is called the
“three-body problem”), it’s just that the Sun’s gravity is so much more important to each planet
than all the other planets, that everything is more-or-less in a two-body system with the Sun. The
time scales on which the chaotic nature of our solar system is important is on the order of billions
of years.
16Which is why there’s a lot of Sun and a little of Jupiter and practically nothing of anything else.
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over every ten mile square patch of ground on the planet. So, at least 100,000,000
variables. You can think of changing weather patterns around the world as tracing
out a path through the 100 million dimensional “weather space”.

The important thing here is not that weather prediction involves a lot of
variables,17 but that you can describe weather as a “path through space”.

Chaos theory attempts to describe how quickly trajectories diverge using “Lya-
punov exponents”. Exponents are used because, in general, trajectories diverge
exponentially fast. You can think of different regions of the “space” as either
expanding or contracting by some factor. In a very hand-wavy way, if things are
a distance D apart, then in a time-step they’ll be Dh apart. In another time-step
they’ll be .Dh/h D Dh2 apart. Then Dh3, then Dh4, and so on. Exponential!

Because mathematicians love the number e � 2:71828 so much that they want
to marry it and have dozens of smaller e’s,18 they write the distance between
trajectories as D.t/ D D0e	t, where D.t/ is the separation between (very nearby)
trajectories at time t, and D0 is the initial separation. 	 is the Lyapunov exponent
which describes how fast nearby trajectories fly apart or come together. This math
only applies when the trajectories are close enough together that they’re more
or less experiencing the same thing. Generally speaking, at about the same time
that trajectories are no longer diverging exponentially (which is when Lyapunov
exponents become useless) the predicting power of the model goes to pot, and the
initially close trajectories become essentially unrelated.

Notice that if 	 is negative, then the separation between trajectories will actually
decrease. This is another pretty good definition of chaos: a positive Lyapunov
exponent (Figure 4.13). In other words, if you’ve got a system where initially tiny
errors get exponentially worse over time, until guessing wildly is just as effective

Fig. 4.13 Not chaotic: Pick
two points that are close
together, then run time
forward and you’ll find they
get closer to each other (and,
incidentally, the drain). This
is what 	 < 0 describes.

17Hats off to the brave climatologists and meteorologists who wade through it all the same.
18This is a love born of e’s utility in calculus, but if you don’t know calculus, then it really does
seem totally arbitrary.
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as thousands of hours of computer time, then you’ve got genuine chaos on your
hands.

Gravy

A beautiful, and more importantly fairly simple, example of chaos is the “Logistic
Map”. You start with the function

f .x/ D rx.1 � x/

and any random initial point x0 between 0 and 1. Feed x0 into f .x/, then take
what you get out, and feed it back in, over and over. That is; x1 D f .x0/, x2 D f .x1/,
x3 D f .x2/, and on and on. This is written “recursively” as

xnC1 D rxn.1 � xn/

The reason this is a good model to toy around with is that you can change r and
get wildly different behaviors. For small values of r we can predict where xn will
end up and for large values we can’t (Figure 4.14).

For 0 < r < 1, xn converges to 0, regardless of the initial value, x0. So, nearby
initial points just get closer together, and 	 < 0. You can think of this as rolling
a stone into a canyon; different initial trajectories converge to the same trajectory
(rolling along the bottom).

For 1 < r < 3, xn converges to one point19 regardless of x0. So, again, 	 < 0.
For 3 < r < 3:57, xn oscillates between several values. Regardless of the initial

condition, the values of xn settle into the same set of values. For r < 3:57 the
behavior of the system is not chaotic, because different trajectories converge to the

Fig. 4.14 Many iterations of the Logistic Map with initial point x0 D 0:2. Bouncing back and
forth between the diagonal, y D x, and the parabola, y D rx.1 � x/, is a good way to visualize
iterating f .x/ D rx.1 � x/. For r < 3:57 the Logistic Map is non-chaotic and xn converges to
one value (left, r D 2:6) or oscillates between a few fixed values (middle, r D 3:3). But for larger
values of r the Logistic Map is chaotic and xn never settles down to a specific value (right, r D 3:9).

19Specifically, xn ! r�1
r .
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same one. Regardless of where you start, you can predict with high accuracy where
you’ll end up.

But, for 3:57 < r, the Logistic Map becomes chaotic. xn bounces around and
never converges to any particular value or set of values. When you pick two initial
values close to each other, they stay close for a while, but soon end up bouncing
between completely unrelated values. Their trajectories diverge exponentially at
first, and eventually are just completely different. No matter how close your initial
points are to each other, they end up taking completely different paths. That means
that no matter how carefully you specify your initial points, if there’s any error
involved, that error eventually gets out of hand and reduces the predictive power to
nothing. Not immediately, but after some finite amount of time determined by 	 and
the amount of error. This is the “chaotic regime” where 	 > 0 (Figure 4.15).

Long story short, chaos theory is less about the study of chaos itself, and more
about how long you should trust what your computer says before you should ignore
it and just keep an umbrella by the door.

Fig. 4.15 Bottom: The value(s) that xn converges to for various values of r. The blue lines
correspond to the values considered in Figure 4.14 (r D 2.6, 3.3, and 3.9). The non-chaotic
behavior and chaotic behavior are fairly distinct. Top: The Lyapunov exponent for various values
of r. Notice that the value is always zero or negative until the system becomes chaotic.
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4.4 If we find the “Theory of Everything” will science finally
be finished?

Not even close.
In fact, you could argue that finding the theory of everything is just the start of

the real science. The theory of everything (whatever it is) will finally tie together all
of the fundamental forces, describe the behavior and interactions of every type of
particle, and explain in fine detail how space and time behave in all cases.

We’ve seen unifying theories before (just not the unifying theory). They don’t
generally answer questions on their own, but merely provide tools to explain things
later on down the line. For example; in several strokes of the quill Newton unified the
“make apples fall” force with the “swing planets around” force under the umbrella
of “universal gravitation”.

With universal gravitation, which says that gravitational force is F D GMm
R2

,20

you can quickly explain why the Moon goes around the Earth, why all orbits are
elliptical, and even why planets, stars, moons, and the Earth are round. Each of these
profound facts come from solutions to Newton’s equations of motion and gravity,
but they are not directly described by it. While the Universal Law of Gravitation
(along with the Conservation of Angular Momentum) is enough to prove that orbits
are elliptical, that fact isn’t remotely obvious from just looking at F D GMm

R2
.

What you can’t explain, without buckets of math (and as often as not: computer
power), are things like phase lock, Lagrange points (Figure 4.16), and why many

Fig. 4.16 The Trojan
Asteroids have bizarre, twisty
“Lissajous orbits” and are
found near two of Jupiter’s
Lagrange points (L4 and L5).
This is completely described
by the Law of Universal
Gravitation and Newton’s
Laws of Motion, but it still
took a lot of work to figure
out what was going on. Even
with a full understanding of
all of the underlying laws, it
was not at all obvious why the
Trojan Asteroids are where
they are. It was figured out
eventually, not surprisingly,
by Lagrange.

20Here M and m are the different masses involved, R is the distance between them, and G is the
gravitational constant that describes how strong gravity is in our universe.
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galaxies have spiral arms. Even worse, you can’t actually solve problems involving
three or more objects. You can write down exactly how two objects will orbit
each other (elliptically), but as soon as there are three, the best you can do is
approximation. This is called the “three body problem” and it’s provably unsolvable
in general.21

Even when we (supposedly) know everything there is to know about a given
physical process, often all that we can do with that knowledge is figure out the
limits of our predictive powers. This is because many processes are fundamentally
random or, just as bad, chaotic.22 The three body problem is one example of a
chaotic system. In a chaotic system, tiny errors or uncertainties compound over time
to become huge errors. There’s no mystery behind how gravity works, and yet the
extreme long term future of any set of three or more bodies in space is ultimately
unpredictable.23

A theory of everything, while it would be able to describe the details of how
all forces and particles and spacetime interact on all levels, would still only be a
set of equations. Having some equations is miles from having solutions to those
equations and farther still from understanding the implications of those solutions
(Figure 4.17).

Fig. 4.17 The equations required to describe the motion of a particle according to Quantum
Electrodynamics (a fantastically accurate theory). Solving these equations is left as an exercise
for the reader.

21There are solutions, such as three equal-massed planets orbiting in a figure-eight “juggling
pattern”, but they are generally unstable and physically unrealistic.
22Questions about the limits of science have come up a lot. Section 2.2 talks about fundamental
randomness and Section 4.3 talks about chaos.
23That’s not to say that we can’t say anything. For example, a set of three objects may be
“gravitationally bound”, meaning that there isn’t enough kinetic energy to fling any one of the
bodies away. In that case we could rule out the system falling apart, but still be unable to say
exactly where each object will be in a couple thousand years.
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4.5 What is the size of infinity? Are all infinities the same
size?

Infinity is an entirely abstract idea. In a nutshell, infinity is a value that’s bigger than
any number. Because of that, you can’t specify how big infinity is by using numbers,
so it’s tricky to effectively describe it.

When you have two finite sets it’s easy to say which one has more things in it.
You count up the number of things in each, compare the numbers, and which ever is
more... is more. However, with an infinite set you can’t do that. First, because you’ll
never be done counting and second, because infinity isn’t a number (Figure 4.18).

So now you need to come up with a more rigorous definition of “same size”, that
reduces to “same number of elements” in the finite case, but continues to work in
the infinite case.

And here it is: instead of counting up the number of elements, and facing the
possibility that you’ll never finish, take elements from each set one at a time and
pair them up. If you can pair up every element from one set with every element
from another set (without doubling up and without leaving anything out), then the
sets must be the same size. Mathematicians, who enjoy sounding smart as much or
more than they enjoy being smart, would call this “establishing a bijective mapping
between sets” (Figure 4.19).

But in infinite sets, that isn’t entirely straightforward; it’s always possible to leave
some elements out. For example, in the right side of Figure 4.19 you could have
chosen to pair up every element in the left column with the element below and to
the right forever, leaving one element loose. So the requirement for two sets to have
the same size is that some pairing of their elements exists that doesn’t leave any out
(Figure 4.20).

Fig. 4.18 With finite sets you
just compare the number of
elements in each set to see
which has more (left), but
with infinite sets that’s not an
option (right). Questions like
“how many elements are in
the set?” don’t apply.
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Fig. 4.19 By pairing up
elements you can establish
whether or not the sets have
the same number of elements.
The sets on the left have an
unequal number of elements,
and the sets on the right
(somewhat surprisingly) have
the same “number” of
elements.

Fig. 4.20 If you rearrange
the pairing for finite sets
you’ll find it has no effect:
there will be the same number
of unpaired elements. Infinite
sets are not subject to such
intuitive and obvious rules.
Literally, 1 C 1 D 1.

To add insult to injury, you can show that two sets that have “obviously” different
sizes are in reality the same size. For example, the counting numbers (1, 2, 3, ...) and
the integers (..., �2 , �1, 0, 1, 2, 3, ...):

Counting numbers: 1 2 3 4 5 6 7 8 � � �

Integers: 0 1 �1 2 �2 3 �3 4 � � �

Despite the fact that there seem to be twice as many integers as counting numbers,
it’s easy to pair up elements from each set. Given any integer you can uniquely
specify a single counting number and vice versa, so these sets must be the same
“size”.

One of the classic “thought experiments” of logic is similar to this. Imagine
you’re the proprietor of a hotel with infinite rooms and no vacancies (busy weekend).
Suddenly an infinite tour bus with infinite tourists rolls up (Figure 4.21). What do
you do? What... do you do?
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Fig. 4.21 The first vanguard of a never waning flood of tourists.

Easy! Ask everyone in your hotel to double their room number and move to that
room, to be greeted by a gratis cheese basket with a note that reads “Sorry you
had to move what was most likely24 an inconceivably vast distance, please enjoy
this camembert.” So now you’ve gone from having no vacancies to having infinite,
odd-numbered, vacancies. Another way to look at this is: 1 C 1 D 1.

Here’s something even worse. There are an infinite number of primes and you
can pair them up with the counting numbers:

Counting numbers: 1 2 3 4 5 6 7 � � �

Prime numbers: 2 3 5 7 11 13 17 � � �

There are also an infinite number of rational numbers, and you can pair them up
with the counting numbers (Figure 4.22).

Counting numbers: 1 2 3 4 5 6 7 � � �

Rational numbers: 1
1

1
2

2
1

1
3

2
2

3
1

1
4

� � �

24A finite number of people will travel less than any given distance, while an infinite number will
travel farther.
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Fig. 4.22 Arrange the
rational numbers in a grid,
then count diagonally such
that when you reach an edge
you wrap around:
1=1; 1=2; 2=1; 1=3; 2=2; : : :

This is the traditional way to
“enumerate” the rational
numbers. It over-counts (e.g.,
1/1, 2/2, 3/3, etc. are all the
same number) but you can get
around that by just skipping
duplicates.

You can also include the negative rationals by doing the same kind of trick that
was done to pair up the counting numbers and integers. Now you can construct a
pairing between the rational numbers and the primes:

Prime numbers: 2 3 5 7 11 13 17 � � �

Rational numbers: 1
1

1
2

2
1

1
3

2
2

3
1

1
4

� � �

For those of you considering a career in professional mathing, be warned: from
time to time you may be called upon to say something as categorically insane as
“there are exactly as many prime numbers as rational numbers”.

There are infinities objectively bigger than the infinities so far. All of the infinities
so far have been “countably infinite”, because they’re the same “size” as the
counting numbers. Larger infinities can’t be paired, term by term, with smaller
infinities. Set theorists would call countable infinity “@0” (read “aleph naught”)
which, strange as it sounds to say, is the “smallest” type of infinity.

While rational numbers can be found everywhere on the number line, they leave
a lot of gaps. If you went stab-crazy on a piece of paper with an infinitely thin pin,
you’d make a lot of holes, but you’d never destroy the paper. Similarly, the rational
numbers are pin pricks on the number line; there are an infinite number of them, but
they still take up no room. Using a countable infinity you can’t construct any kind
of “continuous” set (like the real numbers). You need a bigger infinity.

The number line itself, the real numbers, is a larger kind of infinity. There’s no
way to pair the real numbers up with the counting numbers. You can prove that by
assuming that it’s possible to write a list of the real numbers and then construct a
number that isn’t on that list.
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Here we have the beginning of a list that (purportedly) contains all real numbers.
But we can create a new number that differs from the first number in the first digit,
differs from the second number in the second digit, and so on.

1 2:71828 : : :

2 3:14159 : : :

3 1:41421 : : :

4 1:61803 : : :
:::
:::

X D 0:6339 : : :

This new number is different from every number already on the list in at least one
decimal place, and is therefore not on the list.25 Even if you add this new number to
the top of the list, you can repeat the procedure. Therefore, it is impossible to write
a list of all of the real numbers, so the set of real numbers is bigger than the set of
counting numbers (and rational numbers and primes) in a very fundamental sense.
The kind of infinity that’s the size of the set of real numbers is called “@1” (“aleph
one”).

Before you ask: yes! There is an @2, @3, and so forth, but these are more difficult
to picture. For a given set A, the power set (written 2A for silly reasons) is the set
of every possible subset. For example, if A D f1; 2; 3g, then the power set of A is
2A D f;; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg. To get from one infinite set to
an infinite set the next size up, all you have to do is take the power set. So the set
of real numbers is the same size as the set of every possible random list of counting
numbers (including all the infinitely long lists). A good way to see that is to write
down a real number using a binary expansion. For example, in base 2:

4

7
D 0:1001001001 : : :

We can represent the 1s in this number as a subset of the counting numbers by
just writing down their positions:

f1; 4; 7; 10; : : :g

You can write any real number in binary, and write any binary number as a subset
of the counting numbers, which means that the set of real numbers is the same size
as the power set of the counting numbers.

25This is subtle, but you cannot apply this same argument to rational numbers because the decimal
expansion of rational numbers is far more restricted than those of real numbers. In particular,
rational numbers have a “repetend”, a series of digits that it (eventually) repeats forever. For
example, 3

11
D 0:2727272727 : : : Section 4.6 goes into more detail.
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Strangely enough, there don’t seem to be infinities in between these sizes. That
is, there doesn’t seem to be an “@1:5” (e.g., something bigger than @1 and smaller
than @2). Instead we find that @j sets are the power sets of @j�1 sets (or are the
same size at least) and that all infinite sets are one of these sizes: @0;@1;@2; : : : This
is called the “continuum hypothesis”, and (as of writing this) why it’s true is one
of the great unsolved mysteries in mathematics. In fact, it has been proven (using
the generally accepted axioms of mathematics) that the continuum hypothesis can
neither be proven nor dis-proven.

Heavy stuff.
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4.6 How do we know that � never repeats?

Although it isn’t obvious, the decimal expansion of �26 never repeats. This rather
profound fact was suspected, but not known for certain until 1761. There’s a long
and esteemed history of using approximations of � rather than its exact value, which
is entirely fair. For twelve hundred years the blue ribbon for “best �” was held by
fifth century mathematician Zu Chongzhi, who showed that � � 3:1415926. That
is far beyond good enough for any application he could have imagined. With �
known to eight digits you could take the diameter of the Earth and calculate the
circumference to within less than a meter; that’s more accuracy than (almost) anyone
needs. We’ll never know all of the digits in � because it’s unending. As of today27

we only know a modest 22 trillion digits. It hasn’t started repeating so far, but we
don’t expect it to. Even without knowing all of the digits in � we can prove, based
on its defining property28 and a little math, that it doesn’t repeat. There are always
open questions in math and science, but this isn’t one of them.

In physical sciences we catalog information gained through observation (“what’s
that?”), then a model is created (“I bet it works like this!”), and then we try to
disprove that model with experiments (“if we’re wrong, then we should see stuff like
this happening!”). In the physical sciences the aim is to disprove, because proofs
are always out of reach. As sure as you are, there’s always the possibility that you’re
missing something.29

Mathematics is completely different. In math (and really, only in math) we have
the power to prove things. The fact that � never repeats isn’t something that we’ve
observed, and it’s not something that’s merely likely given that we’ve never observed
a repeating pattern in the first however-many digits we’ve seen so far. The digits of
� never repeat because it can be proven that � is an irrational number and irrational
numbers don’t repeat forever.

If you write out the decimal expansion of any irrational number (not just �) you’ll
find that it never repeats. In that respect, there’s nothing particularly special about � .
In fact, almost all numbers are irrational numbers. So, proving that � never repeats
is just a matter of proving that it can’t be a rational number. Rather than talking
vaguely about math, the rest of this will be a little more direct than the casual reader
might normally appreciate. For those of you who just flipped forward a couple of
pages and threw up a little, here’s a very short argument (not a proof):

It turns out that

� D 4

�
1 �

1

3
C
1

5
�
1

7
C
1

9
� � � �

�

26� D 3:1415926535897932384626433832795028841971693993751 : : :
27“Today” = 2017.
28� is defined to be the ratio of the circumference to the diameter of any given circle.
29It’s a big, complicated universe after all.
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This string of numbers includes all of the prime numbers (other than 2) in the
denominator and, since there are an infinite number of primes, there can be no
common denominator. Therefore this can’t be pulled together into a single fraction,
therefore � is irrational, and therefore � never repeats. The difference between an
“argument” and a “proof” is that a proof ends debates, whereas an argument just
gives folk’s skepticism time to foment. The math-blizzard that follows is a genuine
proof. But first...

Numbers with repeating decimal expansions are always rational

If a number can be written as the D digit number “N” repeating forever, then it can
be expressed as N �10�D CN �10�2D CN �10�3D C : : : For example, for N D 123

and D D 3:

0:123123123123123 : : :

D 0:123C 0:000123C 0:000000123C : : :

D 123 � 10�3 C 123 � 10�6 C 123 � 10�9 C : : :

Luckily, this can be figured out exactly using some very old math tricks. It’s a
geometric series,30 and N � 10�D C N � 10�2D C N � 10�3D C � � � D N 10�D

1�10�D D

N 1
10D�1

. With this in hand we can turn repeating decimals into fractions.

0:123123123123123 : : : D 123
1

103 � 1
D
123

999
D

41

333

Even if the decimal starts out a little funny and then settles down into a pattern, it
doesn’t make any difference. The “funny part” can be treated as a separate rational
number. For example,

5:412123123123 : : : D 5:289C 0:123123 : : : D
5289

1000
C

41

333

and the sum of any rational numbers is always a rational number. In this example,

5289

1000
C

41

333
D
5289 � 333C 41 � 1000

1000 � 333
D
1802237

333000

So, if something has a forever-repeating decimal expansion, then it is a rational
number. Equivalently,31 if something is an irrational number, then it does not have a
repeating decimal. For example...

30A “geometric series” is a never-ending sum of the powers of a number. As luck would have it,
this is an easy thing to calculate. r C r2 C r3 C : : : D r

1�r as long as jrj < 1.
31This is “the equivalence of the contrapositive”: “P implies Q” is logically equivalent to “not Q
implies not P”. For example, “if it is raining, then it is wet” is logically equivalent to “if it is not
wet, then it is not raining”. In this case, “if a number has a repeating decimal, then it is rational”
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p
2 is an irrational number

In order to prove that a number doesn’t repeat forever, you need to prove that it is
irrational. A number is irrational if it cannot be expressed in the form a

b , where a and

b are integers.
p
2 was the first number shown conclusively to be irrational (about

2500 years ago). The proof of the irrationality of � is a little tricky, so this part is
just to convey the flavor of one of these proofs-of-irrationality.

Assume that
p
2 D a

b where a and b are integers with no common factors. We
can safely assume that they don’t have common factors, because any fraction (that
actually exists) can be “reduced”.32

If
p
2 D a

b , then 2b2 D a2. Therefore, a2 is an even number. And if a2 is even,

then a is even too. But if a
2

is an integer, then we can write: 2b2 D 4
�

a
2

�2
and

therefore b2 D 2
�

a
2

�2
. But that means that b is an even number too.

This is a contradiction, since we assumed that a and b have no common factors.
In other words,

p
2 cannot be written down as a simple reduced fraction; it is not a

rational number.
So,

p
2 is irrational, and therefore its decimal expansion

p
2 D 1:4142135623730950488016887242096980785696 : : :

never repeats. That isn’t just some experimental observation, it’s an absolute fact.
That’s why it’s useful to prove, rather than just observe, that...

� is an irrational number

The earliest known proof of this was written in 1761. However, what follows is a
much simpler proof written in 1946. If you don’t dig calculus, then you won’t dig
this. Here’s what’s about to happen:

We’ll define a family of functions, f1.x/; f2.x/; f3.x/; : : :, that will seem point-
lessly arbitrary. These functions will be based on a hypothetical rational value of
� D a

b . Some clever properties common to all of these functions will be found.
Eventually we will see that, for any particular a

b , these properties are contradictory
for all but the first few functions. But since they must always be true, there can be
no particular a

b . Therefore � is irrational. Therefore it doesn’t repeat forever.
This is a classic technique in mathematics: define a completely bizarre function

and then talk about it until a proof falls out.
Assume that � D a

b where a and b are integers. Now define a family of functions

fn.x/ D
xn.a � bx/n

nŠ

is equivalent to “if a number is irrational, then it does not have a repeating decimal”. This sort of
logical judo is a mathematician’s bread and butter.
32E.g., 18

12
D 3

2
.
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There’s a different function for every positive integer n and the arguments that
follow apply to all of them. In what follows we’ll drop that n subscript because it
really clutters up the notation. So, f .x/ D fn.x/. The fact that we can choose n to be
as large as we like is important in the last step of the proof, but until then it may as
well be “5” (or any other particular number). That excited n, nŠ, is “n factorial”.

f .x/ has exactly two important properties: all of its derivatives taken at x D 0 and
x D � are integers, and f .x/ > 0 between x D 0 and x D � . Let’s prove it!

By the binomial expansion theorem,33

f .x/ D
xn.a � bx/n

nŠ
D

xn

nŠ

nX
jD0

nŠ

jŠ.n � j/Š
an�j.�b/jxj D

nX
jD0

an�j.�b/j

jŠ.n � j/Š
xnCj

which means that the kth derivative34 is

f .k/.x/ D
Pn

jD0
an�j.�b/j

jŠ.n�j/Š .n C j/.n C j � 1/ � � � .n C j � k C 1/xnCj�k

D
Pn

jD0
an�j.�b/j

jŠ.n�j/Š
.nCj/Š
.nCj�k/Šx

nCj�k

D
Pn

jD0 an�j.�b/j .nCj/Š
jŠ.n�j/Š.nCj�k/Šx

nCj�k

Showing that f .k/.0/ is an integer is a little tricky and needs to be broken down
into three cases: k < n, n � k � 2n, and 2n < k.

If k < n, then there is no constant term (an x0 term). So when you plug in x D 0

every term in the sum becomes zero and f .k/.0/ D 0.
If n � k � 2n, then there is a constant term, but f .k/.0/ is still an integer. The

j D k � n term is the constant term, so:

f .k/.0/ D
Pn

jDk�n an�j.�b/j .nCj/Š
jŠ.n�j/Š.nCj�k/Š 0

nCj�k

D an�.k�n/.�b/k�n .nC.k�n//Š
jŠ.n�.k�n//Š.nC.k�n/�k/Š

D a2n�k.�b/k�n kŠ
.k�n/Š.2n�k/Š0Š

D a2n�k.�b/k�n kŠ
.k�n/Š.2n�k/Š

a and b are integers already, so their powers are still integers. kŠ
.k�n/Š.2n�k/Š is also

an integer since kŠ
.k�n/Š.2n�k/Š D kŠ

.k�n/ŠnŠ
nŠ

.2n�k/Š D
�k

n

�
nŠ

.2n�k/Š . “k choose n”35 is always

33The binomial expansion theorem is: .c C d/n D
Pn

jD0
nŠ

jŠ.n�j/Š c
jdn�j.

34The first, second, and third derivatives are normally written as f 0.x/, f 00.x/, and f 000.x/. For the
sake of clarity we’ll write these as f .1/.x/, f .2/.x/, and f .3/.x/ and just so that nobody has to count
k hash marks the kth derivative is f .k/.x/.
35
�

k
n

�
D kŠ

.k�n/ŠnŠ is the number of ways to choose n objects out of a set of k objects. For example,

there are 3 ways to choose one object out of three:
�
3
1

�
D 3Š

.3�1/Š1Š
D 1�2�3

1�2�1
D 6

2
D 3. Since it’s

literally just counting permutations, the choose function is never anything other than an integer.
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an integer, and nŠ
.2n�k/Š D n.n � 1/.n � 2/ � � � .2n � k C 1/, which is just a string of

integers multiplied together. So, the derivatives at zero, f .k/.0/, are all integers.
Finally, for k > 2n, f .k/.x/ D 0, because f .x/ is a 2n-degree polynomial, so 2n or

more derivatives leaves 0.
By symmetry, f .k/.�/, are also all integers. This is because f .x/ D .a�bx/nxn

nŠ and
we’re assuming that � D a

b and therefore

f .� � x/ D f
�

a
b � x

�
D
. a

b �x/
n
.a�b. a

b �x//n

nŠ

D
. a

b �x/
n
.a�.a�bx//n

nŠ

D
. a

b �x/
n
.bx/n

nŠ

D
.a�bx/n. 1b /

n
.bx/n

nŠ

D .a�bx/nxn

nŠ

D f .x/

This is the same function, so the arguments about the derivatives at x D 0 being
integers also apply to x D � .36

After all that thrashing around with f .x/, a function which should seem totally
arbitrary, we now introduce a new seemingly arbitrary function, g.x/, constructed
from an alternating sum of derivatives of f .x/.

g.x/ D f .x/ � f .2/.x/C f .4/.x/ � � � � C .�1/nf .2n/.x/

g.0/ and g.�/ are sums of integers, so they are also integers. Using the usual
product rule,37 and the derivative of sines and cosines, it follows that

d
dx Œg

0.x/ sin.x/ � g.x/ cos.x/�

D g.2/.x/ sin.x/C g0.x/ cos.x/ � g0.x/ cos.x/C g.x/ sin.x/

D sin.x/
�
g.x/C g.2/.x/

	
D sin.x/

��
f .x/ � f .2/.x/C f .4/.x/ � � � � C .�1/nf .2n/.x/

�
C
�
f .2/.x/ � f .4/.x/C f .6/.x/ � � � � C .�1/nf .2nC2/.x/

�	

36The odd-numbered derivatives have a different sign, but the fact that they’re integers isn’t
changed by that.
37The product rule is Œc.x/d.x/�0 D c0.x/d.x/C c.x/d0.x/.
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D sin.x/
�
f .x/C

�
f .2/.x/ � f .2/.x/

�
C
�
f .4/.x/ � f .4/.x/

�
C � � � C .�1/n

�
f .2n/.x/ � f .2n/.x/

�
C .�1/nf .2nC2/.x/

	
D sin.x/

�
f .x/C .�1/nf .2nC2/.x/

	
D sin.x/f .x/

sin.x/f .x/ is positive between 0 and � , since xn > 0 when x > 0 and both
sin.x/ > 0 and .a � bx/n > 0 when 0 < x < a

b D � . When you integrate something
positive, the result is something positive, so 0 <

R �
0

f .x/ sin.x/ dx. Finally, using the
fundamental theorem of calculus,

R �
0

f .x/ sin.x/ dx

D
R �
0

d
dx Œg

0.x/ sin.x/ � g.x/ cos.x/� dx

D .g0.�/ sin.�/ � g.�/ cos.�// � .g0.0/ sin.0/ � g.0/ cos.0//

D g0.�/.0/ � g.�/.�1/ � g0.0/.0/C g.0/.1/

D g.�/C g.0/

g.0/ and g.�/ are integers, so g.0/ C g.�/ is also an integer. Because
f .x/ sin.x/ > 0, it follows that

R �
0

f .x/ sin.x/ dx > 0. So, g.0/ C g.�/ is an
integer that’s greater than zero; that means it must be at least 1. So we’ve got that

Z �

0

f .x/ sin.x/ dx � 1

But check this out: if 0 < x < � D a
b , then

sin.x/f .x/ D sin.x/
xn.a � bx/n

nŠ
�

xn.a � bx/n

nŠ
<
�n.a � bx/n

nŠ
<
�nan

nŠ

and thereforeZ �

0

f .x/ sin.x/ dx <
Z �

0

�nan

nŠ
dx D

�nan

nŠ

Z �

0

1 dx D
�nC1an

nŠ

We now have two definite facts:Z �

0

f .x/ sin.x/ dx � 1 and
Z �

0

f .x/ sin.x/ dx <
�nC1an

nŠ

But here’s the thing; we can choose n to be any positive integer we’d like. Each
one creates a slightly different version of f .x/, but everything up to this point works
the same for each of them. The assumption that � D a

b doesn’t care about n. While
the numerator, �.�a/n, grows exponentially fast, the denominator, nŠ, grows much
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much faster for large values of n. This is because each time n increases by one, the
numerator is multiplied by �a (which is always the same), but the denominator is
multiplied by n (which keeps getting bigger). Therefore, by choosing a large enough
value of n we can always force this integral to be smaller and smaller. In particular,
for n large enough,

Z �

0

f .x/ sin.x/ dx <
�nC1an

nŠ
< 1

Last step! If � can be written as � D a
b , then a function, f .x/, can be constructed

such that
R �
0

f .x/ sin.x/ dx � 1 and at the same time
R �
0

f .x/ sin.x/ dx < 1. But
that’s a contradiction. Therefore, � cannot be written as the ratio of two integers, so
it must be irrational, and irrational numbers have non-repeating decimal expansions.

Boom. That’s a proof.
If you’re still reading,38 it may occur to you to ask “wait... where did the

properties of � get into that at all?”. The proof required that sine and cosine be
derivatives of each other, and that’s only true when using radians. For example,
d
dx sin.x/ D �

180
cos.x/ when x is in degrees. The proof requires that d

dx sin.x/ D

cos.x/ and d
dx cos.x/ D � sin.x/, and that requires that the angle is given in radians.

Radians are defined geometrically so that the angle is described by the length of
the arc it traces out, divided by the radius39 (Figure 4.23).

This defines the angle of a full circle as 2� radians (instead of the completely ad
hoc measure of 360ı). It is a result of geometry and the definitions of sine and cosine
that forces sin.�/ D 0, cos.�/ D �1, d

dx sin.x/ D cos.x/, and d
dx cos.x/ D � sin.x/

and that’s what was needed for the proof!
It’s subtle, but behind all of that algebra is a bedrock of geometry.

Fig. 4.23 One radian. Take
the length of the radius and
lay it out along the side of the
circle (red curve). The angle
this sweeps out is how you
define one radian.

38And bravo to you.
39Incidentally, this definition is equivalent to declaring the small angle approximation: sin.x/ � x.
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4.7 Is there a formula for finding primes? Do primes follow a
pattern?

Primes are, for many purposes, essentially random. It’s not easy to “find the next
prime” or determine if a given number is prime, but there are tricks. Which to use
depends on the size of the number. Some of the more obvious tricks are things like
“no even primes after two” and “the last digit of a prime bigger than five can’t be
five”; but those just eliminate possibilities instead of confirming them. Confirming
that a number is prime is a lot more difficult.

The counting numbers (1, 2, 3, ...) come in three flavors: composites, primes, and
one. Primes are only divisible by themselves and one, while composites are divisible
by more than just themselves and one.

Every counting number (other than one) can be factored into a unique set of
primes,40 but for large numbers it’s difficult to figure out what those prime factors
are or (and this is what this whole article is about) whether or not there are any prime
factors. What follows are some of the more standard tricks.

Small (� 10)

“The Sieve of Eratosthenes” finds primes and also does a decent job demonstrating
the “pattern” that they form. First, write a list of all the numbers.41 2 is the first
prime and all subsequent multiples of 2 are composite. Circle 2 and cross off all the
evens. Circle the first open number and cross off all its multiples. Repeat forever,
and you’ll have circled all the primes.

This creates a list of all the primes. Most people are mortal and only have time
to find all the primes up to some number N. Every composite number has at least
one factor less than or equal to its square root, so you only need to check up to

p
N.

After that, all of the remaining blanks are primes (Figure 4.24).
This algorithm is great for people (as opposed to computers) because it rapidly

finds lots of primes. However, like most by-hand algorithms it’s slow (by computer

Fig. 4.24 Starting with 2, circle the first unmarked number, cross off every multiple, and repeat
until bored or the end of time.

40This is why one is given a special status. For example, 12 can be factored into 12 D 2 � 2 � 3 or
12 D 2 � 2 � 3 � 1 or 12 D 2 � 2 � 3 � 1 � 1 and so on. The prime factors (2, 2, and 3) are unique, but
you can toss in as many ones as you like.
41I’ll wait.
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standards). It’s fine for N D 10 or 100 or, if you have an afternoon free, 1000,
but you wouldn’t want to use it to check all the numbers up to, say, N D

158; 936; 621; 358.
Eratosthenes is a fantastic example of the power of a name. The Sieve of

Eratosthenes is an algorithm so simple and reasonable that people tend to find it on
their own, almost by accident, once they know what a prime is. Although nameless
thousands found the algorithm before him, Eratosthenes was the last famous person
to bother writing it down. In a completely unrelated project, he also accurately
calculated the circumference of the Earth around 2200 years ago using nothing
more than the Sun, a little trigonometry, and some dude willing to walk the 900 km
between Alexandria and Syene. This marks one of the earliest recorded instances of
grad student abuse.

Medium (� 1010)

Fermat’s Little Theorem or AKS.
Fermat’s Little Theorem (not to be confused with Fermat’s Last Theorem42)

works like this: if N is the number you want to test and A is any number such
that 1 < A < N � 1, then

�
AN�1

	
N ¤ 1 ) N is definitely composite�

AN�1
	

N D 1 ) N is probably prime

This notation, ŒX�N , read “X mod N”, means every time you have a value bigger
than N, you subtract multiples of N until your number is less than N. Equivalently,
it’s the remainder after division by N.43 For example, Œ24�5 D Œ16�5 D 1.

This test has no false negatives, but it does sometimes have false positives. These
false positives are the “Carmichael numbers”44 and they’re very rare compared to
primes (especially for large numbers). However, because of their existence we can’t
use FLT with impunity. For most purposes (such as generating encryption keys) FLT
is more than good enough.

42Fermat’s Last Theorem says that if a, b, c, and n are counting numbers, then an C bn D cn has
solutions in a, b, and c only when n D 1 or n D 2.
43This is not the standard notation for the modulus. The established notation is to actually write
“X mod N”, but I find that arduous. The defining characteristic of mathematicians is sloth, so
occasionally writing some of an extra word is basically torture. Many alternatives have been
proposed.
44Far more common than the Carmichael numbers are “Fermat pseudoprimes”, so named because
they sometimes pass Fermat’s Little Theorem but are not prime. For example,

�
2340

	
341

D 1

says that 341 might be prime and
�
3340

	
341

D 56 says 341 definitely isn’t. Here 2 is called a
“Fermat liar” and 3 is called a “Fermat witness”. Fermat pseudoprimes can be caught by trying out
a few different “bases” until a Fermat witness is found. It almost never takes more than two tests.
Carmichael numbers are Fermat pseudoprimes where every base is a Fermat liar. At least, every
base that shares no factors in common with the Carmichael number is a Fermat liar. But by the
time you’ve accidentally picked a base with a factor in common with the N you’re testing, you’re
already done: N isn’t prime.
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For a very long time (millennia) there was no way to verify with certainty that
a number is prime in an efficient way. Fermat’s Little Theorem works effectively
every time, but for mathematicians “works effectively every time” or even “works
every time but we don’t know why” may as well be “doesn’t work”.45 Fortuitously,
in 2002 “Primes is in P”46 was published, introducing AKS (the Agrawal-Kayal-
Saxena primality test); an algorithm that can determine whether or not a number
is prime with absolute certainty. The time it takes for both FTL and AKS to work
scales with the log of N (which means they’re fast enough to be useful).

Bonkers Big (� 1010
10

)

Even if you have a fantastically fast technique for determining primality, you can
render it useless by giving it a large enough number. The largest prime found to
date47 is N D 274;207;281 � 1. At 22.3 million digits, this number is around six times
longer than the Lord of the Rings Trilogy and about twice as interesting as the
Silmarillion (Figure 4.25).

Fig. 4.25 Number of digits in the largest known prime vs. the year it was verified.

45This level of pedantic paranoia is not without precedent. For example, the Pólya Conjecture says
that more than half of the numbers less than any given N have an odd number of prime factors.
Empirically, this would appear to be true, since the first counterexample doesn’t show up until
N D 906; 150; 257. Just because something works the first few hundred million times isn’t a good
enough reason to say that it always works.
46“Primes is in P” means that the problem of determining whether or not a number is prime can be
solved in “polynomial-log time”. The log of N is roughly proportional to the number of digits in
N, so you can describe the running time of AKS as O

�
Œnumber of digits in N�21=2

�
.

47“To date” = January 2016.
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To check that a number this big is prime you need to pick the number carefully.
The reason that 274;207;281�1 can be written so succinctly (just a power of two minus
one) is that it’s one of the “Mersenne primes”, which have a couple nice properties
that make them easy to check.

A Mersenne number is of the form Mn D 2n � 1. It turns out that if n isn’t prime,
then neither is Mn, but if n is prime, then Mn may be as well. Just like FLT there are
false positives; for example M11 D 211�1 D 23�89, which is clearly composite even
though 11 is prime. Fortunately, there’s yet another cute trick. Create the sequence
of numbers, Sk, defined recursively as Sk D S2k�1 � 2 with S0 D 4. If

�
Sp�2

	
Mp

D 0,
then Mp is prime. This is really, really not obvious, so don’t sweat.

With enough computer power this is a thing that can be done, but it typically
requires more computing power than can reasonably be found in one place. GIMPS,
the brilliantly named “Great Internet Mersenne Prime Search”, is a distributed
computing project to find new Mersenne primes. Their ultimate goal: bragging
rights.

Gravy

Fermat’s little theorem is pretty easy to use, but it helps to see an example. An
example like...

N D 7 (a prime)

We need a random number, A, between 1 and 6. Why not A D 3?

�
37�1

	
7

D
�
36
	
7

D Œ729�7 D 1

7 is mostly likely prime according to this test and is in fact prime according to
reality.

N D 9 (a composite)

Once again a random number is needed: A D 5.

�
59�1

	
9

D
�
58
	
9

D Œ390625�9 D 7

Astute readers will note that 7 is different from 1, so 9 is definitely not prime.

N D 561 (the first Carmichael number)

Why not A D 2?

�
2561�1

	
561

D
�
2560

	
561

D Œa big number�561 D 1

561 is most likely prime, but in fact isn’t since 561 D 3 � 11 � 17. To give you an
idea of how often Fermat’s Little Theorem works, 561 is the first of the Carmichael
numbers (first number that gives false-positives) which become rarer and rarer for
large numbers.
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4.8 How good is “Enigma” compared to modern
cryptography?

Enigma was great for its time, but even by the end of World War 2 the computers
of the time were getting good enough to break its codes within hours. Today’s
computers, given enough encoded material to analyze, can crack Enigma codes
faster than you can say “Warum benutzen wir diese Dinge immer noch?”.48 Properly
implemented, today’s encryption systems would take essentially forever to crack
with modern computers.

In both cases however, the big weakness is the human component (picking easy to
remember passwords/settings, defecting to the enemy, rubber hose attacks,49 etc.).

The Enigma machine used a “rolling substitution cipher” which means that it was
essentially a (much more complicated) version of “A D 1, B D 2, C D 3, ...”. The
problem with substitution ciphers is that if parts of several messages are the same,
then you can compare their similarities to break the code. Even worse, since some
letters are more common than others (e.g., “e” and “g”) you can make progress by
just counting up how often letters show up in the code. Often, you can even tell what
language the code is written in without breaking it!

Rolling substitution ciphers are a bit slicker. They use a set of several encoding
schemes and cycle through which code is used or make the scheme dependent on the
previous letter, but this merely makes the code breaking more difficult. Ultimately,
all substitution ciphers suffer from the same flaw: similar messages produce similar
looking codes (Figure 4.26).

Modern cryptography doesn’t have that problem. If any part of a message is
different at all, then the entire resulting code is completely different from beginning
to end. That is, when you encrypt a message you get ciphertext (the encoded
message) and if you were to encrypt the exact same message but misspelled a single
word, then the ciphertext would be completely different.

If your messages were “Hello A”, “Hello B”, and “Hello C”, then a substitution
cipher might produce “Tjvvw L”, “Tjvvw C”, and “Tjvvw S” while RSA (the
most common modern encryption) might produce “idkrn7shd”, “62hmcpgue”, and
“nchhd8pdq”. In the first case you can tell that the messages are nearly the same,
but in the second you get no such hint.

Enigma was very clever, but is shockingly primitive compared to modern crypto
techniques. Modern RSA was invented in the 1970s, which is lucky for the Allies.50

48“Why are we still using these things?”
49When analyzing crypto systems, different “attacks” are considered. For example, a “man in the
middle attack” involves hijacking a communication channel in order to pose as one or more of
the parties involved. A “rubber hose attack” is an actual term of art meaning “grab someone who
knows the password and beat it out of them”.
50Ron Rivest, Adi Shamir, and Leonard Adleman invented RSA in April of 1977 at MIT.
Recognizing its power and the potential for its abuse, they quietly mailed the algorithm to Martin
Gardner. Gardner published it in his column “Mathematical Games” in the August 1977 issue of
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Fig. 4.26 Enigma used three rotors (later increased to five) which rotated after each letter was
pressed allowing them to generate a huge number of different substitution ciphers, using a different
one for each letter. Still: what your cellphone uses is much, much better.

If anyone in World War 2 had been using modern encryption, then there is no way
that anyone would have been able to break those codes. Alan Turing would have to
settle for being famous for everything else he did.51

There are several algorithms for modern public-key encryption, but all of them
are based on “trap-door encryption”. Each requires some kind of mathematical
process that’s easy to run forward, but effectively impossible to run backward unless
you know a trick (which you keep secret). It’s likened to a trapdoor because, as every
super-villain knows, it’s easy to fall through a trapdoor, but difficult to climb back
out. In this metaphor, every super-villain also includes a secret to getting back out.52

This is fundamentally different from substitution ciphers or Igpay Atinlay.53 If
you know how a substitution cipher is done, then you also know how to reverse

Scientific American. By the time American intelligence agencies knew what was happening, it was
way to late to classify RSA.
51Including: the theoretical and philosophical backbone of modern computer theory (“Turing
Machines”), one of the most widely accepted goal posts for artificial intelligence (“the Turing
Test”), and even an early excursion into mathematical biology (“The Chemical Basis of Mor-
phogenesis”) wherein he described how a wide variety of surprisingly complex patterns, such as
a leopard’s spots or the leopard’s skin itself, can form spontaneously under the right chemical
conditions.
52Presumably so that they can dress up as a fellow prisoner to help intrepid (but gullible) heroes
escape, only for those heroes to find themselves in a trap of a more devious nature!
53To “encode” a word into Pig Latin you put all the consonants before the first vowel at the end and
add an “-ay”. If the word begins with a vowel you leave it and add “-way”. This is done relentlessly
until someone in earshot can’t stand it any more.
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Fig. 4.27 The essential characteristic of public-key cryptography: every message can be posted
publicly and yet securely.

it. With a substitution cipher, giving someone the ability to encode a message also
entails giving them the power to decode. However with encryption, even if you know
everything about how to encrypt a message, you will still be unable to decrypt it.
Even with messages that you encrypted yourself, the only way you can know what
your original message was is to say “well... I know what it is because I wrote it”.

The idea is this. You tell everybody how to do the forward operation, the “public
key”, allowing them to encrypt a message. Meanwhile, you keep the secret to the
reverse operation to yourself, the “private key”, so that only you can decrypt the
messages. You can think of it as like distributing identical open safes, while keeping
the only key to yourself. Anyone can lock whatever they want in a safe, and the
exchange of open and closed safes is all done out in the open, but only you can open
any of the safes (Figure 4.27).

So if you want to talk to a particular person, you use their particular public key.
The central idea of encryption is that you can set up a system where other people
can talk to you, perfectly securely, while sending all of their messages through a
completely open and public channel. Were you and a friend so inclined, you could
communicate with each other entirely through a sign in Times Square, and no one
would ever know what you were saying.
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Fig. 4.28 To encrypt, start at your message, T, and turn the wheel a prescribed amount.
Decryption is just turning the wheel the rest of the way. Since every possible message of a
given length or shorter “gets its own car” (in a scrambled order), the “wheels” used in modern
encryption typically have substantially more cars than there are atoms in the observable universe
(of which there are a mere 1080, give or take).

By far the most common encryption method in use today is RSA. You can
think of RSA as a huge wheel with a different number written on each spoke in
a scrambled order.54 These numbers correspond to every possible string of letters
or numbers of a particular length. If you rotate the wheel all the way around (or a
multiple of all the way around) you get your message back, but if you only rotate
part of the way you get another random number (Figure 4.28).55

The public key turns the wheel a certain amount (not all the way), and the private
key turns the wheel the rest of the way. In order to find the secret key you need
to know how many “spokes” the wheel has. RSA encryption is secure because the
“wheel” involved typically has at least 10150 “spokes”. Even with full knowledge of
the public key, the “size of the wheel” is really hard to pin down.

If you want to send a message that’s too big to encrypt all at once, you just chop it
up into smaller pieces and encrypt them one at a time. This technique is not entirely

54Or you can read through the Gravy below and think of it as exactly what it is.
55Technically, a “pseudo-random” number. In fact, this is one method for producing lots of random-
enough numbers without using actual randomness.
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Fig. 4.29 If you encrypt a message with your private key, then other people can decrypt it using
your public key. This is a “signature”, demonstrating that you (the holder of the private key) must
have written the message. Combined with encryption using other people’s public keys, you can
both “sign” and securely send messages.

dissimilar to the most common means by which one eats something larger than one’s
face.

The security of RSA is based on the fact that it’s easy to multiply two big prime
numbers, but effectively impossible to factor the gargantuan result. This is the “trap
door” operation; easy to multiply, hard to un-multiply.

Beyond RSA, if you want to create a new form of encryption (there are many
kinds), you just hire a mathematician who studies some obscure branch of number
theory and wait for a while. Based only on the “exchanging already-open safes”
view of encryption and some cute logic tricks, there are a lot of things that can
be done with encryption beyond merely sending messages. There’s shared random
secret distribution (agreeing on the same random number without ever saying what
it is), e-cash (anonymously verifying that you can pay for something), e-signatures
(proving you have a secret key without revealing it), secure voting (anonymously,
verifiably, expressing an opinion), all kinds of entirely awesome stuff (Figure 4.29).

RSA encryption is based on the infeasibility of factoring large numbers. But
quantum computers are capable of factoring huge numbers in very little time (see
Section 2.5). So, if quantum computing advances enough (and not even that much),
then we’ll have to move to another form of encryption: elliptic-curve, quantum key
distribution, or just wholesome conversation.

Gravy

First, anything you can write with words you can turn into a number. For example,
what you’re reading now is being stored somewhere in the form of a bucket of
1’s and 0’s. Any discussion of codes and encryption can always be reduced to a
discussion of numbers. That’s good news to mathematicians.

The mathematical machinery behind RSA encryption are modular math and
some interesting consequences from group theory. Modular arithmetic is what
you’re doing when you try to figure out what time it will be in more than 12 hours.
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For example, if it’s 9:00 now, then in 5 hours it will be 2:00. This is “mod 12”
arithmetic. Every time a number is larger than 12 you subtract 12 until it’s smaller.
This “9:00 + 5” example can be written Œ9C 5�12 D Œ14�12 D Œ2�12 D 2.56

One of the very nice things about modular math is that it’s “transparent” to
addition and multiplication.

Œa C b�m D Œ Œa�m C Œb�m �m Œa � b�m D Œ Œa�m � Œb�m �m

In other words, as long as you’re doing multiplication or division, you can apply
the mod even in the middle of an operation. For example, for multiplication you
can do either Œ6 � 7�5 D Œ42�5 D Œ2�5 or Œ6 � 7�5 D Œ1 � 2�5 D Œ2�5. For addition
you can do either Œ6 C 7�5 D Œ13�5 D Œ3�5 or Œ6 C 7�5 D Œ1 C 2�5 D Œ3�5. This
is tremendously useful because it means that you never have to deal with numbers
substantially bigger than the mod. I mention it here, because otherwise RSA would
be impossible. If you raise a fifty digit number to a fifty digit power, you get a
number so big that it cannot physically be written down.

There’s a function called the Euler phi, “'.n/”, which is defined to be the number
of positive integers less than n that have no prime factors in common with n (this
is called being “coprime” to n). For example, the factors of 10 are 2 and 5 and if
you remove all the numbers that don’t have either of them as a factor you’re left
with 1, 3, 7, and 9. Evidently there are four numbers less than and coprime to 10, so
'.10/ D 4.

It so happens that for any x that’s coprime to m (which, for our purposes here, is
effectively all values of x)57:

�
x'.m/

	
m D 1

For example,
�
3'.10/

	
10

D
�
34
	
10

D Œ81�10 D Œ1�10 D 1 or
�
7'.10/

	
10

D
�
74
	
10

D

Œ2401�10 D Œ1�10 D 1. Notice what happens when you raise a number to the
“j'.m/C 1” power:

56This isn’t the standard notation for modular arithmetic. That would be: 9 C 5mod 12 	
14mod 12 	 2mod 12. The standard notation is awkward enough that a lot of mathematicians
just make up their own. Case in point.
57A common question that comes up at this point is “what if you pick an x that isn’t coprime to m?”
There are two answers. First, the primes used to create an encryption modulus are so ludicrously
large that it is extremely unlikely in the time since RSA was invented that any message has ever
accidentally been a multiple of one of the prime factors. If you want something to worry about,
worry about lightning striking your computer just as you hit “send”. Second, it doesn’t matter.�
xj'.m/C1

	
m D x is always true, for any x, when the prime decomposition of m has no square or

higher powers (e.g., m D 30 D 2 � 3 � 5 but not m D 12 D 22 � 3), which is exactly the case for
the moduli used in encryption, m D pq. So, for example,

�
2'.10/

	
10

D
�
24
	
10

D Œ16�10 D Œ6�10 D

6 ¤ 1, but
�
2'.10/C1

	
10

D
�
25
	
10

D Œ32�10 D Œ2�10 D 2.



4.8 How good is “Enigma” compared to modern cryptography? 253

�
xj'.m/C1

	
m

D
�
xj'.m/x

	
m

D
h�

x'.m/
�j

x
i

m

D
�
.1/j x

	
m

D Œx�m

So, if you raise any x to one of these powers (j'.m/C1 for any j) mod m, it cycles
around and you get x again. The process of encrypting something is nothing more
than getting x part of the way through the cycle, and decryption is just completing
the cycle and coming back to x. This is where the awkward wheel metaphor from
earlier fits into the math. The “size” of the wheel is '.m/.

Now, say you’ve got a pair of numbers, k and `, such that

k` D j'.m/C 1

To get from the original text, T , to the ciphertext, C, you just raise T to the kth
power:

�
Tk
	

m D C

k is the public key.
To recover the original text just raise C to the `th power:

�
C`
	

m D
h�

Tk
�`i

m
D
�
Tk`
	

m D
�
Tj'.m/C1

	
m D T

` is the private key. That’s basically all there is to RSA encryption.
m D pq is the product of two large, random primes, p and q. To find large primes

you pick a big odd number and use something like Fermat’s Little Theorem,58 or
a more foolproof modern variant, to test whether or not your pick is in fact prime.
Once you have both you can produce m D pq and '.m/ D .p � 1/.q � 1/. Without
knowing p and q, '.m/ can’t feasibly be found.

To create k you just need a random number that’s coprime to '.m/, and
determining that is easy enough: you use Euclid’s algorithm.59 By solving kx C

58Pick a candidate number, p, and any random number a such that 1 < a < p � 1. If Œap�1�p ¤ 1,
then p is not prime. But if Œap�1�p D 1, then p is very likely to be prime (especially if it’s large).
59Starting with A and B you subtract smaller and smaller combinations of A and B from each other
until you find the smallest possible combination. This is the greatest common divisor and if it’s 1,
then A and B are coprime.
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'.m/y D 1 for x and y (this is what Euclid’s algorithm does), you find ` D Œx�'.m/
at the same time that you demonstrate that k and '.m/ are coprime.60

Once you’ve gotten all your number-ducks in a row, you make m and k public.
This means everybody can encrypt. But you keep `, '.m/, p, and q private. Without
p and q, there’s no (easy) way to find '.m/, and without '.m/ there’s no (easy) way
to find `.

To date, there’s no way to break encryption keys (that is, to find ` given m and
k) in general using ordinary computers. There are lots of cute tricks for finding
solutions assuming that the public key has some particular properties,61 but for
absolutely any public key, the only known method is the Shor algorithm. The
drawback of the Shor algorithm is that it needs a quantum computer to function
and quantum computers rapidly become bogged down with errors as the complexity
of the operation and the necessary size of the computer increases. As of 2017 the
record for the largest number factored using Shor’s algorithm (set in 2012) is 21.
It’s 3 times 7. For now at least, your encryption secured privacy is safe.

Example

It’s worth seeing at least one example of RSA in action. The numbers here are far
too modest to be useful in practice, but the idea is there. First pick some nice prime
numbers, like 5 and 11. Then m D 5 � 11 D 55 and '.m/ D .5 � 1/.11 � 1/ D 40.
Picking k D 23 (out of a hat) we try to find a combination of x and y such that
xk C y'.m/ D 1. This is done by applying Euclid’s algorithm to k D 23 and
'.m/ D 40.

40 � 23 D 17

23 � .40 � 23/ D 23 � 17

�40C 2 � 23 D 6

.40 � 23/ � 2.�40C 2 � 23/ D 17 � 2 � 6

3 � 40 � 5 � 23 D 5

.�40C 2 � 23/ � .3 � 40 � 5 � 23/ D 6 � 5

�4 � 40C 7 � 23 D 1

60Alternatively you can use ` D
�
k'.'.m//�1

	
'.m/. However, in order to calculate '.n/, you need to

know the prime factors of n. The factors of m are known, because m D pq, but the factors of '.m/
may not be known so '.'.m// may not be easily calculable.
61There is a huge body of work dedicated to these special cases. Suffice it to say: there are lots of
weird special cases where breaking the encryption can be done, but they don’t show up accidentally
very often and those that are known are usually avoided when generating new encryption keys.
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Since we have a linear combination62 of 40 and 23 equal to one, their greatest
common divisor must be one, so they’re coprime. 23 is a permissible choice for k.
Moreover, ` D Œ7�40 D 7. If you make m D 55 and k D 23 public, then other people
can encrypt messages and send them to you.

Say their message is T D 2 (the most succinct secret message ever written). The
encrypted ciphertext is:

C D
�
Tk
	

m D
�
223
	
55

D Œ8388608�55 D 8

When you receive “8” you can decrypt it because you know the secret key, `.

T D
�
C`
	

m D
�
87
	
55

D Œ2097152�55 D 2

Even if you know exactly how it works, this sort of thing really feels like
haphazardly throwing a bunch of sticks in the air and accidentally building a tool
shed.

62A “linear combination” of A and B is any sum of the form xA C yB.
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4.9 Can you fix the “1/0 problem” by defining 1/0 as a new
number?

If that worked it would be extremely useful. However, treating “ 1
0
” as though it were

a number or variable just doesn’t jive with the axioms of arithmetic.
The problem with 1

0
is that division is the inverse of multiplication and in the

case of zero multiplication can’t be inverted. “ 1
3
” is defined to be that number which

when multiplied by 3 gives you 1 and similarly 1
5

� 5 D 1 and � � 1
�

D 1. 1
3
, 1
5
,

and 1
�

are the “multiplicative inverses” of 3, 5, and � . But zero times anything is
zero, so there is no number that you can multiply by zero to give you 1 and that
is exactly what 1

0
is claiming to be. Therefore it isn’t a thing; a state of being that

mathematicians call “undefined”.
But merely being completely insane or impossible has no impact on whether or

not you can throw math at a thing. Math, despite is vaunted status as “the language
of the universe”, is just a bunch of rules some people made up. You want to change
them? Change them. Of course, you run the immediate risk that your new rules will
be incompatible with each other and that no one else will understand your broken
math anyway.

Making up a new number isn’t as unprecedented as it may sound. People in the
math biz are always making up place holders for things that aren’t known or, in some
cases, can’t exist. Euler63 wanted to come up with a number system that included
a solution to x2 C 1 D 0. He called that solution “i ”, for “Imaginary number” or
possibly “Incredibly awesome number” (Figure 4.30).

Fig. 4.30 Leonard Euler:
arguably the greatest
mathematical mind ever to
live and the Saint Petersburg
Staring Contest champion
four years running.

63Pronounced “Oiler”, as in “one who oils”.
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As it happens, there are no problems involved with defining i. In fact, it really
cleans up a lot of math. For example, if you only use real numbers, an Nth degree
polynomial64 could have anywhere from zero to N solutions, but if you allow for
complex numbers65 it will always have exactly N solutions (including repeats). This
is such an important fact that it’s called the “Fundamental Theorem of Algebra” and
it’s fundamentally about using i. “1/0” on the other hand is kind of a train wreck.

Define Q (for “Quite a bit more awesome than i”) as the solution to 0x D 1.
That is, define Q as the multiplicative inverse of 0. Clearly, we have to ignore the
defining property of zero that “zero times anything is zero”. Right off the bat there’s
a problem:

1 D Q � 0

1 D Q � .1 � 1/

1 D Q � Q
1 D 0

This is because zero is defined as “x � x” for any number or variable x. So by
assuming 1 D Q �0 (and the laws of arithmetic) you reach an impossible conclusion!

You could try to patch this problem, for example by declaring that Q � Q ¤ 0.
Even so:

1 D Q � 0

1 � 0 D .Q � 0/0

0 D Q � 02

0 D Q � 0

0 D 1

Again, by defining 1 D Q � 0 to be true, you’re led to a contradiction. Mo’ logic,
mo’ problems. You could fix this problem by declaring that associativity66 doesn’t
apply to Q. That is, .Q�0/�0 ¤ Q�.0�0/. But losing associativity is a big deal; without
it you can barely do anything. You basically lose to power to get rid of parentheses
and being stuck with parentheses is a bleak (seriously (in fact, very seriously) bleak)
way to live.

But fine! Drop associativity!

64For example, “x5 � 2x4 C 3x3 C �x2 � 57x C 1” is a “5th degree polynomial”.
65Complex numbers include an i. For example, 3C 2i or �5i.
66a.bc/ D .ab/c.
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1 D Q � 0

1 � 1 D Q � 0 � 1

1 � 1 D Q � 0 � Q � 0

0 D Q � 0 � Q � 0

0 D Q.0 � 0/

0 D Q � 0

0 D 1

And there goes the distributive law.67

You can keep going, finding more problems, declaring more “fixes”, and
plugging every hole in the dike. By the time you’re done you’ll have abandoned all
of the underlying axioms of arithmetic and your new math system will have more
problems, exceptions, and caveats than an anxious lawyer’s fifth-marriage prenup.

There are strange, seemingly impossible mathematical objects that can be woven
into the existing mathematical laws, but this isn’t one of them. Best to keep just the
one weird exception: leave 1

0
undefined.

67a.b C c/ D ab C ac.
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4.10 Is there such a thing as half a derivative?

There is! In fact, there are many.
The derivative of a function, f 0.x/, is the slope at every point along a function,

f .x/; it tells you how fast that function is changing. The “second derivative”,
f 00.x/, is the derivative of the derivative; it tells you how fast the slope is changing
(Figure 4.31).

Strictly speaking, the derivative only makes sense in integer increments. But
that’s never stopped mathematicians from generalizing. Heck, non-integer expo-
nentiation doesn’t make much sense, but with a little effort we can move past that.
Generalizing something like this means “connecting the dots” between those cases
where the math makes sense in order to deal with those cases where it doesn’t.
For exponentiation by non-integers there’s is a “correct” answer, but for fractional
derivatives there isn’t.

When exponentiating to a power that’s a fraction, the bit in the denominator is a
root, e.g., 8

1
3 D 2. Since xAB D

�
xA
�B

you can exponentiate to any rational power,

e.g. 8
2
3 D

�
8
1
3

�2
D 22 D 4. Irrational numbers are a little trickier, but dealing with

Fig. 4.31 f .x/ D x2 is a
parabola. f 0.x/ D 2x shows
that as you move to the right
the parabola’s slope
increases. A negative slope
means “down hill”.
f 00.x/ D 2 describes the slope
of f 0.x/, which is constant.
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them comes down to approximating them with better and better rational numbers
until the result is as accurate as you like. For example,

p
2 D 1:41421 : : : is an

irrational number. So if you wanted to calculate, say, 3
p
2 the best option is use an

series of approximations using rational exponents. The decimal expansion makes
this easy:

31 D 3

31:4 D 3
14
10 D 4:65554 : : :

31:41 D 3
141
100 D 4:70697 : : :

31:414 D 3
1414
1000 D 4:72770 : : :

31:4142 D 3
14142
10000 D 4:72873 : : :

Mathematicians prefer to go forever, while people with jobs just go a dozen
decimal places out and stop. If you do continue forever you find that these
approximations get closer and closer to a single number, the “correct” answer:
3

p
2 D 4:72880 : : : So, despite the fact that you can’t directly define exponentiating

to irrational powers, you can still do it. By carefully considering how exponentiation
works for rational numbers we can extrapolate to how it works for irrational
numbers.

Figuring out how non-integer derivatives work comes down to choosing the
“best” option from the short list of options that aren’t terrible.68 It’s a bit more
involved than the exponent example, but the idea of “connecting the dots” between
cases that work (whether it makes sense to or not) is still the guiding philosophy.

Gravy

When you integrate or “take the anti-derivative” of a function the result is more
continuous and more smooth.69 In order to integrate something and get a result that’s
discontinuous at a given point, the original function needs to be infinitely nasty at
that point (technically, it has to be so nasty it’s not even a function). This smoothing
property makes integrals a good candidate for “connecting the dots”.

68Fourier transforms (Section 4.2) provide another good option. FTs change derivatives into
multiplication by a variable, so if you write the FT as Of .k/ D FTŒf .x/� and the inverse FT as

f .x/ D FT�1
h
Of .k/

i
, then .2� ik/nOf .k/ D FT

�
f .n/.x/

	
and f .n/.x/ D FT�1

h
.2� ik/nOf .k/

i
.

69When a mathematician says a function is “smooth”, they mean that it is differentiable; usually
many times or infinitely differentiable. After integrating, the resulting function is always at least
once differentiable.
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Fig. 4.32 � .N C1/ is a fairly natural way of generalizing N! to non-natural numbers. The dotted
lines correspond to 1!=1, 2!=2, and 3!=6.

To get the idea, take a look at NŠ. That excited looking N is “N factorial” and it’s
defined as

NŠ D 1 � 2 � 3 � � � .N � 1/ � N

For example, 3Š D 1 � 2 � 3 D 6 and 4Š D 1 � 2 � 3 � 4 D 24. Clearly, it doesn’t
make a lot of sense to write “3:5Š” or, even worse, “�Š”. And yet there’s a cute way
to smoothly connect the dots between 3Š and 4Š (Figure 4.32).

Euler’s Gamma function, � .N/, is defined as:

� .N C 1/ D

Z 1

0

tNe�t dt

Before you ask, I don’t know why Euler decided to use “N C 1” instead of “N”.
Sometimes decent folk have good reasons for doing confusing things. Now, if you
do a quick integration by parts, a pattern emerges:

� .N C 1/

D
R1

0
tNe�t dt

D
�
�tNe�t

	1
0

C N
R1

0
tN�1e�t dt

D N
R1

0
tN�1e�t dt

D N � � .N/
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So, � .N C 1/ has the same defining property that N! has:

� .N C 1/ D N � � .N/ NŠ D N � .N � 1/Š

Even better, � .1/ D
R1

0
e�t dt D �e�t

ˇ̌1
0

D 0 � .�1/ D 1, which is the other
defining property of NŠ, 0Š D 1. We now have a bizarre new way of writing NŠ. For
all natural numbers70 N,

NŠ D � .N C 1/

Unlike NŠ, which only makes sense for natural numbers, you can plug in any
positive N you like into � .N C 1/ D

R1

0
tNe�t dt. Even better, this formulation

is “analytic” which means it not only works for any positive real number, it works
for any complex number as well.71 Analytic functions act a lot like soap films: if
you know what they’re doing along their boundaries and where their “spikes”72 are
located, then the way the function “pulls taut” is easy to figure out (Figure 4.33).73

Long story short, with that integral formulation you can connect the dots between
the integer values of N, where NŠ makes sense, to figure out the values between,
where NŠ doesn’t make sense.

With that in hand, here comes a pretty decent way to talk about fractional
derivatives: fractional integrals.

If “f 0.x/ D f .1/.x/” is the derivative of f and “f .N/.x/” is the Nth derivative of
f , then “f .�1/.x/” is the perfect notation for the anti-derivative. The fundamental
theorem of calculus says d

dx

�R x
0

f .t/ dt
	

D f .x/. Since we want to define f .�1/.x/ so
that d

dx

�
f .�1/.x/

	
D f .x/ we have

f .�1/.x/ D

Z x

0

f .t/ dt

Following the same philosophy recurrently,74 so that f .�N�1/.x/ D
R x
0

f .�N/.t/ dt,
we have a more general equation:

f .�N/.x/ D
1

.N � 1/Š

Z x

0

.x � t/N�1f .t/ dt

70The natural numbers are: 0, 1, 2, 3, ...
71With the exception of the poles at each negative integer, where � .N/ jumps to infinity.
72The “poles” are (usually) locations where there’s a division by zero and the function jumps to
infinity.
73“Analytic continuation” is a process where you look at a little region of an analytic function,
figure out how that region of “soap film” is behaving, and use that to figure out what the rest of the
function is. Often this is easier than it sounds: the “analytic continuation” of f .x/ D x (where x is
a real number) is f .z/ D z (where z is any complex number).
74This will be done below.
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Fig. 4.33 j� .N/j, where N can now take values in the complex plane.

That is to say, if you take the anti-derivative N times, 1
.N�1/Š

R x
0
.x � t/N�1f .t/ dt

is exactly what you’ll get. x � t runs over strictly non-negative values, so there’s no
issue with N � 1 not being an integer,75 and it just so happens that we already have
a cute way of dealing with non-integer factorials. Dealing with that factorial cutely:

f .�N/.x/ D
1

� .N/

Z x

0

.x � t/N�1f .t/ dt

Huzzah! We now have a way to describe fractional integrals that works generally.
Astute calcuscenti76 may notice that .x � t/N�1 briefly “blows up” at t D x when
N < 1. While the function does jump to infinity there, the area under the function
(which is what the integral ultimately measures) is still finite as long as N > 0.

75When you take the root of a negative number, there are suddenly difficulties in defining the
“principal solution”. For example, 4

1
2 D

p
4 D 2;�2 with the principal solution typically chosen

to be the positive one: 2. On the other hand, .�4/
1
2 D

p
�4 D 2i;�2i; these are both just as “far”

from the positive numbers, so which should be the principal solution?
76People who know calculus.
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No problem! Just remember not to use negative values of N. Sticking to positive
values of N also keeps you from accidentally stumbling into one of the singularities
in � .N/.

Finally, after all that, we’re ready to take half a derivative. First take half an
integral and then do a full derivative of the result:

f .
1
2 /.x/ D

d

dx

h
f .�

1
2 /.x/

i
D

d

dx

"
1

�
�
1
2

� Z x

0

1
p

x � t
f .t/ dt

#

If you want to do, say, a third of a derivative, then you can first find f .�2=3/.x/
and then differentiate that. Just to be clear, this isn’t the one and only “correct” way
to do fractional derivatives, this is just something that works while: 1) satisfying a
short wish list of properties77 and 2) re-creating regular derivatives without making
a big deal about it.

For those of you who really don’t want to miss a thing

You can show that f .�N/.x/ D 1
� .N/

R x
0
.x � t/N�1f .t/ dt through induction. The

base case is f .�1/.x/ D 1
.1�1/Š

R x
0
.x � t/1�1f .t/ dt D

R x
0

f .t/ dt. This is true by
the fundamental theorem of calculus, which says that the anti-derivative (the “�1”
derivative) is just the integral. So... check.

To show the equation in general, you use the Nth case to prove the .N C 1/th
case.

f .�N�1/.x/

D
R x
0

f .�N/.t/ dt

D
R x
0

h
1

� .N/

R t
0
.t � u/N�1f .u/ du

i
dt

D 1
� .N/

R x
0

R t
0
.t � u/N�1f .u/ du dt

D 1
� .N/

R x
0

R x
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D 1
� .N/
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f .u/
R x

u .t � u/N�1 dt du

D 1
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�
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	x
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D 1
� .N/
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f .u/
�
1
N .x � u/N � 1
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du

D 1
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R x
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f .u/ 1N .x � u/N du

D 1
� .NC1/

R x
0

f .u/.x � u/N du

Using the formula for f .�N/.x/ we get the formula for f .�N�1/.x/: that’s inductive
reasoning!

77In particular, being analytic which basically means that it “smoothly connects the dots”.
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4.11 Why does 0.999... = 1?

When we write 0.9, 0.99, 0.999, 0.9999, etc. we’re writing a sequence of numbers
that gets closer and closer to 1. Specifically, if there are N 9’s, then

1 � 0: 9 : : : 9„ƒ‚…
N nines

D
1

10N

What this means is that no matter how close you want to get to 1, you can get
closer than that with enough 9’s. If the 9’s never end, then the difference between
1 and 0:999 : : : is zero. “The difference is zero” is a good way to define “equal”.
In the language of mathematics there are “dialects” (sets of axioms) and in the
most standard, commonly used dialect this is how you prove that 0:999 : : : D 1.
The system taught today78 is used because it’s profoundly useful, without too many
logical issues (Figure 4.34).

But there are other math systems. If you want to do math where " D 1
1

is a
definable and non-zero value, you can. " is an “infinitesimal”, something bigger
than zero, but smaller than any other number. Infinitesimals are interesting to talk
about, but they make most math unnecessarily complicated (Figure 4.35).

In the standard system, the real numbers are defined such that (very long story
short) 1

1
D 0 and there isn’t a “next number” for any number. That is, if you think

you’ve found a number, x, that’s closer to 1 than any other number, then I can find
a number half way between it and 1, 1Cx

2
, that’s even closer. That’s not a trivial

Fig. 4.34 It is a fact,
immutable and true, that
every rook is safe for the next
move according to the most
widely accepted rules for
chess. In other games that
may not be the case. Math is
like this: a bunch of rules we
agree on.

78Zermelo-Fraenkel set theory.
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Fig. 4.35 An “infinitesimal”, ", is an abstract mathematical object that’s bigger than zero but
smaller than any normal number. And yes, you can define infinitesimals of infinitesimals (if you
like).

statement. For integer numbers there is a next number (e.g., the number after 3 is 4).
For real numbers every number can be added, subtracted, multiplied, and divided
without “leaving” the real numbers.

Because of this, we can squeeze a new number between any two different
numbers. In particular, there’s no greatest number less than one. If there were, then
you couldn’t fit another number between it and one, and that would make it a big
weird exception. Point is: it’s tempting to say that 0:999 : : : is the “first number
below 1”, but that’s not a thing.

All real numbers can be defined as the limit of the decimal expansion taken one
digit at a time. For example, the number “2” is79

2 	 f2; 2:0; 2:00; 2:000; : : :g

The “square root of 2” is

p
2 	 f1; 1:4; 1:41; 1:414; 1:4142; : : :g

The number and everything you might ever want to do with it can be done
with this sequence of ever-longer decimals.80 These sequences are “equivalent”,
and describe the same number, if they get closer and closer to that same number
forever. Two sequences don’t need to be identical to be equivalent. For example,

�
�1;�

1

2
;�
1

3
;�
1

4
;�
1

5
; : : :


D

�
1;
1

10
;
1

100
;
1

1000
;

1

10000
; : : :



79“	” means “is defined as”.
80Nobody actually does this, but it is important when you’re thinking about defining how things
should work. Rational exponents, a

b , can be defined as “the bth root of the ath power", such as
91:5 D 27. But to define irrational exponents you need a construction for numbers like the one
discussed. For example, the limit 2� 	

˚
23; 23:1; 23:14; 23:141; 23:1415; : : :

�
tells you anything you’re

likely to want to know about 2� .
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are both equivalent to zero, since both get closer and closer to zero forever. The first
finite number of terms aren’t important; it’s the number that the sequence is getting
closer to that’s important. When a mathematician declares that 1 D 0:999 : : :,
they’re using this notion of “limits” to define how infinite decimals work.

f1:0; 1:00; 1:000; 1:0000; : : :g D f0:9; 0:99; 0:999; 0:9999; : : :g

These two, seemingly different, sequences get closer and closer to each other
and to the value “1” forever, so they’re equivalent. In every way that counts, the
number “0:999 : : :” and the number “1” or “1:000 : : :” are exactly the same. It does
seem very bizarre that two numbers that look different can be the same, but there it
is. This is basically the only case. You can write things like “0:5 D 0:49999 : : :”,
where the same thing is going on.

Numbers, and math in general, aren’t handed down from on high. They’re like
a language in that they’re made up by people and only make sense when we agree
on what things mean. Ultimately 1 D 0:999 : : : because in every context “1” and
“0:999 : : :” mean the same thing and do the same thing.
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