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Preface

It fills me with a sense of joy and humility to present this book on the eve
of the centenary year of the publication of Albert Einstein’s General Theory
of Relativity. When general relativity arrived, it had an aura of mystery due
to its sophisticated view of space, time and gravitational phenomena. From
the early phase when primary elaboration of the theory was mathematical in
nature, it has evolved into a phase where it is being confronted by increasingly
sophisticated experiments that have been successful so far. Students are often
attracted to the theory and want to know what yet can be done with it.
The book is envisaged as an attempt to familiarize students and prospective
researchers with the basic features of the theory and offer a perspective on its
more advance features.

There are many excellent textbooks from the classics by Misner–Thorne–
Wheeler, Weinberg and Wald to the more recent ones by Sean Carroll, James
Hartle and Thanu Padmanabhan, with differing styles and emphasis and there
are excellent review articles on frontline topics. The idea here is to combine
the ‘textbook’ and ‘the review’. Thus, I have tried to adopt the pedagogical
style of a textbook while avoiding an emphasis on detailed treatments, and at
the same time, tried to present the essential ideas and just enough background
material needed for students to appreciate the issues and current research.

There was also a conscious effort to emphasize the physical ideas and
motivations, contrasting the mathematical idealizations which are important
in appreciating the scope and limitations of the theory. Consequently, requisite
mathematical background of differential geometry is summarized in the last
chapter while the main text emphasizes the physical aspects.

The first five chapters usually form the core of an introductory course
on General Relativity (GR) and constitute the “Basics” part of the book.
The first chapter traces Einstein’s arguments and informally motivates the
mathematical model for space-time. In the second chapter, we first discuss
the basic physical quantities related to space-time measurements and their
relation to a metric in an arbitrary coordinate system. This is followed by
examples of space-times corresponding to different types of gravitational fields.
Some of these are revisited subsequently for further elaboration. Chapter 3
discusses adaptation of dynamics in a Riemannian geometry framework while
the next chapter presents the Einstein equation together with its elementary
properties. The fifth chapter discusses different phenomena either predicted

ix



x Preface

by GR or influenced by GR. This also contains the classic tests of general
relativity.

The “Beyond” part of the book, takes a look at some of the more sophis-
ticated features of GR. Chapter 6 discusses the physical requirements of a
well-defined deterministic framework for non-gravitational dynamics and the
constraints it puts on the global structure of space-times. Surprisingly, the
singular features seen in physically motivated examples turn out to have more
general presence. The structure of the physically acceptable space-times is
such that if certain conditions—such as complete gravitational collapse or an
everywhere expanding universe—are realized in nature, then space-time will
necessarily have regions where GR will cease to be applicable.

Not all physical situations are as grim. There are physical bodies of finite
extent and it becomes necessary to look at the space-time geometry far away
from them. This is especially relevant in the context of energy being carried
away in the form of gravitational waves. Chapter 7 discusses the characteri-
zation of the appropriate asymptotic space-times.

In the next three chapters, we revisit black holes, gravitational waves and
cosmological space-times. Apart from considering the general definition of
black holes, we examine and discuss their quasi-local generalization in terms
of the trapping, isolated and dynamical horizons. In the second look at grav-
itational waves, we trace the issues that were involved in settling the ‘reality’
of gravitational waves and briefly discuss the basic features of the challenge
involved in their direct detection. The cosmological space-times are discussed
primarily to get a glimpse of the possible nature of the space-like singularities.

Chapter 11 discusses the evolutionary interpretation for the class of glob-
ally hyperbolic space-times and reviews the initial value formulation. This
forms a basis for numerical relativity presented in the next chapter. The
Hamiltonian formulation paves a way for canonical quantization of grav-
ity. While the book is focused on classical general relativity, introductory
summaries of the main approaches to a quantum theory of gravity are in-
cluded in Chapter 13. An alternative view of emergent gravity is also briefly
mentioned.

There were many topics I wanted to include in this book, but could not.
These are listed in the fourteenth chapter together with some concluding re-
marks. The Epilogue contains a summary of the requisite differential geometry
and some of the results used in the main text.

There are many people to whom I owe a debt of gratitude. My under-
standing and appreciation of GR have been shaped by many influences over
several years which are hard to demarcate. I must mention Naresh Dadhich
and thank him for the numerous discussions and his generous encouragement.
Within the context of this book, I would like to acknowledge critical feedback
from my former teacher, Arvind Kumar on an earlier draft of Chapter 2 and
my former student Alok Laddha for his comments on Chapter 7. I would also
like to thank Thanu Padmanabhan for his help on the emergent gravity view
and Sudipta Sarkar for a discussion on Jacobson’s work. I must not forget the
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students of my institute who had taken my courses on GR and those from
places other than India who took short-term courses on various occasions un-
der the SERC Schools in Theoretical High Energy Physics (India). The book
has grown out of various lecture notes. I thank all of these students. I thank
my friend and colleague, Gautam Menon, for help proofreading and for his
helpful suggestions. There are times of meeting deadlines where responsibil-
ities get shuffled and prioritized. This cannot be done without support from
the family. I thank Nisha, Aditya, and my parents for it.

Ghanashyam Date
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The Basics
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Chapter 1

From Newton to Einstein: Synthesis of
General Relativity

1.1 Space, Time, Observers

We all have an intuitive sense of what space is and what time is. Space is
something in which ‘bodies move’ and time is something that sequences these
movements. To make these notions quantitative we need to adopt a procedure
to assign numbers to ‘locations’ and put time stamps on events. It is in terms
of these assignments or coordinates that we make the space time explicit and
it is this explicit model that is used in physics. All the tourist maps we use
and the scheduling we struggle to achieve are based on precisely such ‘made
explicit’ space and time. There is no unique way to assign coordinates and
time stamps. Herein enters an observer (= adopted procedure).

With such a procedure at hand, it is possible to formulate the phenomenon
of motion of bodies in terms of kinematics - description of motion and dynam-
ics - laws of motion. The key point to note is that there is always an observer
implicit directly in kinematics and indirectly in dynamics.

Einstein now observes several examples of relationships between classes
of observers and the phenomena being described. Consider the problem of
determining the distance between two points say by laying down meter sticks.
The answer will evidently depend on how the meter sticks are laid. Drawing on
the experience of measuring distances along short straight lines and using the
procedure of assigning the Cartesian coordinates an observer can determine
the distance between two points with Cartesian coordinates (x1, y1, z1) and
(x2, y2, z2) to be given by

Distance2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 .

Now the interesting observation is that all observers assigning Cartesian coor-
dinates will verify that the distance between two given points is numerically
the same (assuming the same units are used!). Hence, as far as the prob-
lem of determining distance between points is concerned, any of this class of
observers will do fine. Mathematically, the coordinates assigned by any two
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4 General Relativity: Basics and Beyond

observers are related by the transformation law:

(x′)i =

3∑
j=1

Aijx
j +Bi, where Aij is a 3-by-3 orthogonal matrix.

These leave the Cartesian nature of coordinates unchanged as well as the
expression for distance invariant. For Bi = 0, Einstein calls this relativity of
orientation.

The next example he considers is the phenomenon of motion of parti-
cles, governed by Newton’s laws formulated in the so-called inertial frames.
The class of observers whose descriptions are equivalent are those who are
in uniform relative motion, possibly differing in the orientation of the axes
of the Cartesian frames and possibly with difference in the ‘zero’ of their
clocks. This is of course Galilean relativity. What is left invariant is the
mass× acceleration.

When phenomenon of motion is extended to include electromagnetic field
and the motion of charges under their influence, a contradiction arises. Analy-
sis of the famous moving magnet and conductor problem in the magnet’s rest
frame and the conductor’s rest frame presents two alternatives. Either have
Galilean transformations among the electric and magnetic fields so as to get
the same force in both the frames or, allow a new transformation law for the
force so as to be consistent with the Lorentz transformations which leave the
Maxwell’s equation invariant. Which one of these is ‘correct’?

On the one hand, confirmation of constancy of speed of light puts Lorentz
transformations on a firmer ground and on the other hand Galilean trans-
formations contain an unwarranted assumption of observer independence of
simultaneity. Einstein chooses Lorentz transformations and we have the theory
of special theory. What two observers in uniform relative motion must agree
on is the same value of the speed of light in vacuum.

This affects the kinematics in a profound manner. We will discuss the
derivations a little later but let us note at this stage that length of a stick
measured by a moving observer is a little less than that measured by an
observer at rest with respect to the stick. Likewise when an observer compares
the successive ticks of a moving clock with a stationary clock, the moving
clock always ticks slower. These consequences of the demand of invariance
of the speed of light go by the names length contraction and time dilation
respectively.

The new kinematics does not leave invariant the other Newtonian law,
namely the law of gravitational force. Once again we face a similar dilemma
as before: Do we limit the applicability of the new kinematics or do we modify
the law of gravitational force?

There is a peculiarity with the law of gravitation. The ‘charge’ that enters
in the force law, the gravitational mass, happens to be numerically equal to the
measure of the inertia of a body, its inertial mass. This makes different bodies
of varied compositions, weights fall to the ground with the same acceleration.
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There is no ‘reason’ for such conceptually widely different quantities to be
numerically equal, except perhaps it is a clue to the nature of gravitational
interaction.

All bodies fall at the same rate also means that an observer does so too
and therefore, relative to the observer, the bodies continue to maintain their
state of uniform motion. In the absence of any force of any other origin, this
just means that the freely falling observer is the Newtonian inertial observer!
The clue of equality of the two masses provides us with a definition of inertial
frames as precisely those in which gravitational field cannot be detected. Fur-
thermore, an observer who detects gravitational field, is accelerated relative
to an inertial frame. Thus we can trade-off a gravitational field, for an ob-
server accelerated relative to an inertial observer. Since relatively accelerated
observers are involved, Lorentzian kinematics is not immediately applicable.
Rotating platforms provide a convenient ‘laboratory’ for a thought experi-
ment.

Imagine determining the circumference and the radius of a rotating plat-
form. The measuring sticks tangential to the circumference will undergo
Lorentz contraction while those along the radial direction will not be con-
tracted. Thus the ratio of the circumference to radius of the rotating plat-
form, obtained by taking the ratio of the number of measuring sticks along
the circumference and the number along the radius, will be greater than 2π [1]
while that of a non-rotating platform will be 2π. Hence, the geometry on a
rotating platform will be non-Euclidean. But by equivalence principle, accel-
eration is equivalent to a gravitational field (locally) and therefore one must
infer that gravity affects the geometry. This gravitational field is of course
inferred by the observer who is co-rotating with the platform. We will return
to the rotating platform later again.

Thus the response (motion) of bodies to a gravitational field is independent
of their masses and the gravitational field also changes the geometry of space.
Since a gravitational field is produced by masses, the spatial geometry is also
influenced by the masses. Thus, geometry of space is changeable. This is quite
a novel inference! Does space-time geometry also change with distribution of
masses?

This could be so if clocks tick at different rates in a gravitational field.
Consider an observer stationed at a height of h from the ground and another
observer freely falling. The freely falling observer will have a speed v = gt
relative to the stationary observer after a time t and will have a fallen through
a distance of s = 1

2gt
2. As per Lorentzian kinematics, the rate of freely falling

clock will be,

∆τfalling = ∆τfixed

√
1− g2t2 = ∆τfixed

√
1− 2gs = ∆τfixed

√
1− 2∆Φgrav

The final expression is depends only on the gravitational potential difference
between the stationary observer and instantaneous position of the freely falling
observer.



6 General Relativity: Basics and Beyond

It is clear from this argument that the gravitational potential affects the
rates of clocks and since gravitational potential changes with the distribution
of masses, so does the clock rates and hence the space-time geometry too is
affected by distribution of masses.

Thus, replacing gravitational field by an accelerated observer and the
Lorentzian kinematics leads us to a space-time geometry which is affected
by presence of gravitational field which in turn depends on distribution of
masses. One puzzle still remains. If gravitational field can be ‘gotten rid off’
as in a freely falling lift, is gravity ‘fictitious’? It can’t be. After all Earth is
freely falling in the gravitational field of the Sun and real tides - which are
effects of Newtonian gravity - do exist! So, while metrical property within a
freely falling lift will be that in the absence of gravitational field, something
else must remain encoded in the geometry that will account for the tides.

From the examples of two-dimensional surfaces, we know that the non-
Euclidean geometries have non-zero curvature. This is most easily seen on the
surface of a sphere. Consider a triangle made up of sides which are portions
of great circles on the sphere. If a triangle is ‘large’, with two points on the
equator and the third one the north pole (say), then the sum of angles is
greater than 1800 degrees. Now bring the two equatorial points closer to the
pole. Note that the generic latitude is not a great circle (the longitudes always
are). So the small triangle will look more and more ‘distorted’, but the sum
of its angles will get closer and closer to 1800. In short, non-zero curvature
is detectable as deviation from Euclidean geometry, only for larger triangles.
The same is true for tidal forces in Newtonian gravity. The differential forces
on two extremes of a body are larger when the separation of the two extremes
is larger. Thus we see a parallel between the effects of curvature in geometry
and the tidal forces of gravity.

At a qualitative level then, we see that effects of gravitational field can be
mimicked by a space-time geometry which has curvature which in turn must
depend on the distribution of masses since Newtonian gravitational potential
does. The observed equality of gravitational mass and inertial mass, combined
with Lorentzian kinematics leads to replacing gravitational interaction as re-
vealing a space-time geometry which is curved in general and is changeable.
Space-time is a dynamical entity. In the process, the principle of relativity also
gets extended to all observers regardless of their state of motion. As Einstein
says [1]: “Theory of relativity is intimately connected with a theory of space
and time ...” In the subsequent chapters we will formalize and make these
arguments precise and quantitative.
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1.2 General Relativity and Space-Time Arenas

We will proceed somewhat informally and heuristically to arrive at the
mathematical model for space-time. The precise details are given in chapter
14.

We have already alluded to the assignment of coordinates (and time
stamps) as the a defining character of an observer. We are quite familiar with
assignment of Cartesian coordinates on a plane: choose a point (origin) and a
pair of orthogonal directions at that point (we use a protractor to determine
orthogonality) call them the x-axis and the y-axis; go ‘x’-units along the x-axis
and then ‘y’-units along the y-direction and assign the coordinates (x, y) to the
point reached, ‘P’. Repeat for other points. For the same choice of origin and
the axes, we may reverse the order of traversal from origin to the same point
i.e. first go ‘y-’-units along the y-axis and then ‘x’-units in the direction of the
x-axis. From experience, we know that we will reach the same point and assign
the same coordinates to it. A different observer may choose the same origin but
a different pair of axes, can still reach the same point, ‘P’, but now with dif-
ferent values for its coordinates. Another observer may even choose a different
origin. Nevertheless, each observer is able to follow this procedure for arbitrary
values of (x, y) and thus label the points on a plane in an unambiguous and
on-to-one manner. We even know how to relate the coordinates assigned by
different observers, namely, x′ = O1,1x+O1,2y+C1, y

′ = O2,1x+O2,2y+C2,
where, the matrix Oij is an orthogonal matrix, OTO = 1. We can see readily
that if we follow the same procedure on the surface of a sphere, then even for
the same choice of an origin and the same pair of axes, the point reached de-
pends on the order of traversal! Secondly, the relation between the coordinates
assigned by two observers not a simple linear one as before. We also recognize
this as a feature of the ‘curved’ nature of the sphere. We can attempt a similar
exercise on the surface of a saddle and discover the same features. Clearly, the
plane surface is rather an exception in the class of two-dimensional surfaces
and therefore the ambiguities in the procedure for assigning coordinates is
quite generic. we may have to be content with (i) any arbitrary procedure of
assigning coordinates - but in a one-to-one manner and (ii) allow arbitrary
(invertible) relations among different coordinates.

Of course labeling the points is only a first step an observer has to un-
dertake. An observer has to observe and describe phenomena in terms of the
reference system of coordinates chosen. How can different observers be sure
that they are describing the same phenomena and compare notes to evolve
a consensus on the laws of nature? Is it possible at all? Let us keep in mind
the surface of the Earth as a concrete example. We know that temperatures
at various locations have their specific values, irrespective of the labeling of
the locations. Likewise, the wind patterns or ocean currents are described by
a field of arrows, again independent of the labeling of the locations. Therefore
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there exist quantities on the sphere which have an existence independent of
the labelling of the location. However, when we want to describe the variations
of these quantities with the locations in quantitative terms, each observer can
only do so using his or her reference system. Clearly, for the same quantity, we
will have multiple descriptions in terms of multiple coordinates systems. Using
the relations among the coordinates, we can transform one description into
another one. Consistency requires that the quantities describing the phenom-
ena must transform in a specific manner reflecting the fact that the quantities
exist independent of the coordinates. For example, if a point P has two sets of
coordinates (x, y) and (x′, y′) and the temperature in the vicinity is described
by two functions T (x, y) and T ′(x′, y′), then we must have, T ′(x′, y′) = T (x, y)
at P. Similarly, if we have two descriptions of wind velocities as (dx/dt, dy/dt)
and (dx′/dt, dy′/dt), then we must have the relations,

dx′

dt
=

∂x′

∂x

dx

dt
+
∂x′

∂y

dy

dt
,

dy′

dt
=

∂y′

∂x

dx

dt
+
∂y′

∂y

dy

dt
.

We have only used the chain rule of differentiation and the assumption that
the relation among different coordinates is not only invertible but also differ-
entiable. In a similar manner, we can see that the gradients of the temperature
distribution must be related as,

∂T ′

∂x′
=

∂x

∂x′
∂T

∂x
+
∂y

∂x′
∂T

∂y
,

∂T ′

∂y′
=

∂x

∂y′
∂T

∂x
+
∂y

∂y′
∂T

∂y

Here we have also used the fact that T ′(x′, y′) = T (x, y) in applying the chain
rule. If we use a more compact notation of denoting the coordinates as xi, the
coordinate relations as x

′i(xj) then we can write the equations as,

T ′(x′) = T (x),
dx′i

dt
=
∂x′i

∂xj

dxj

dt
,

∂T ′

∂x′i
=
∂xj

∂x′i
∂T

∂xj

We have also introduced the Einstein summation convention, namely, repeated
indices in an expression imply summation over the values of the indices. What
we see is the beginning of tensors—sets of quantities that transform in a spe-
cific manner which imply that they represent entities that exist independent
of assignments of coordinates. The temperature is a scalar, the velocities are
contravariant tensor of rank 1 and the gradients are covariant tensor of rank 1.
Generalizations to multi-index quantities and details are given in the chapter
14.

This is similar to the case of special relativity’s 4-tensor notation, except
that the implicit transformations are not the Lorentz transformations but the
general coordinate transformations. This also means that the partial deriva-
tives are evaluated at the same point where two sets of quantities are related
and that these vary from point-to-point, the transformations being non-linear
in general. Hence elementary algebraic operations such as addition, multipli-
cations of tensors can only be defined pointwise.
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One of the first casualty of allowing arbitrary assignment of coordinates
is that the relation between coordinate differences and physically measured
length is more remote. From the example of Cartesian coordinates on a plane,
we know that the distance between two points, measured by using meter sticks
(say) is related to the coordinate differences by the square root of the sum
of their squares. If we were to use the polar coordinates, (r, θ), then the ex-
pression is, (∆s)2 = (∆r)2 + r2(∆θ)2 :=

∑
ij gij(r, θ)(∆x)i(∆x)j . For points

on a sphere, the coordinate differences have to be sufficiently small (ideally
infinitesimal) to match with the length obtained by putting small measuring
sticks along the surface of the sphere. The matching would be necessarily ap-
proximate as no finite length measuring stick can be confined to the curved
surface. Even after restricting to small enough coordinate differences, we need
to ensure that the measured length, ∆s2, is numerically the same if com-
puted using differences from a different coordinate system. This can possibly
be true, if the coefficients gij in the second coordinate system are different in
just the right manner:

∑
ij g
′
ij∆x

′i∆x′j =
∑
ij gij∆x

i∆xj . In the light of the

discussion of tensors, this demand just means that (a) ∆xi transform as the
contravariant rank 1 tensor and (b) gij transform as covariant rank two tensor.
This will make the distance an invariant (coordinate independent) quantity.
Since ∆xi ≈ (dxi/dt)∆t and the velocity is a tensor while ∆t is manifestly
independent of the coordinates, the (a) above is satisfied. The requirement
of ∆xi being sufficiently small comes about because for sufficiently small ∆t,
there is a unique ‘straight’ path along which we may lay the measuring sticks.
The point to note is that we must have an quantity such as gij so that mea-
sured lengths can be computed using coordinate differences. This quantity is
called a metric tensor while the expression (∆s)2 is called the line element.
There are infinitely many possible choices for a metric tensor.

An observer cannot be satisfied by just making observations at one point.
We will want to set up differential equations, ordinary and partial, to make
theoretical predictions. So we need to define derivatives of tensors which
should also be tensors. Differentiation involves comparing values at neigh-
boring points and tensors forbid such comparisons. Suppose we are given
a tensor field, Ai(q), for points q in the vicinity of a point p. If we con-

sider the derivatives, ∂Ai(x)
∂xj , in two different coordinate systems, we see im-

mediately that the derivatives do not transform as a tensor, due to an of-

fending term containing double derivatives of the form ∂2x′i

∂xj∂xk
. For linear

transformations such as Lorentz transformations, we don’t encounter this,
but for general coordinates, we cannot escape it. To construct a tensorial
derivative, called a covariant derivative, we need to introduce a quantity Γijk

with appropriate transformations and define: ∇jAi := ∂Ai

∂xj + ΓijkA
k, with

Γ′ijk(x′) := ∂x′i

∂xl
∂xm

∂x′j
∂xn

∂x′k
Γlmn(x) + ∂x′i

∂xm
∂2xm

∂x′j∂x′k
. This quantity is called an

affine connection. Notice that a choice of Γ is constrained only by the trans-
formation rule and there are infinitely many choices possible. For every choice
we can define covariant derivatives for all tensor fields (see chapter 14). Now,



10 General Relativity: Basics and Beyond

unlike the usual coordinate derivatives, the covariant derivatives do not com-
mute i.e. ∇i∇jAk −∇j∇iAk := Rklij(Γ) Al 6= 0. The 4 index quantity Rklij
is manifestly a tensor (since the left-hand side is) and depends only on Γ and
its first derivatives. This is the famous Riemann Curvature Tensor. We are
thus naturally lead to a framework involving tensors, an arbitrarily chosen
tensor - the metric tensor gij and an arbitrarily chosen affine connection -
Γijk, with the associated Riemann curvature tensor. It turns out that the
arbitrariness in the choice of the connection can be completely removed by
demanding that Γijk = Γikj and ∇kgij = 0 ∀i, j, k. The connection so re-
stricted is called the Riemann–Christoffel connection which is dependent on
the metric tensor and the corresponding Riemann tensor is also determined
by the metric. We now have a model for a space-time: It is a collection of
‘events’, made explicit by arbitrarily assigned coordinates, an arbitrarily cho-
sen metric with a non-vanishing Riemann tensor in general. All determinable
physical quantities of interest being tensors of appropriate ranks satisfying
differential equations involving covariant derivatives. This model is nothing
but a Riemannian manifold, defined more precisely in chapter 14.

To familiarize ourselves, we will discuss several examples of Riemannian
manifolds in the next chapter.



Chapter 2

Examples of Space-Times

We will take a specification of a space-time as a set of coordinates xµ with
a non-singular metric gµν(x) with Lorentzian signature, given as an infinites-
imal invariant interval, also known as line element, and study some of its
properties1. Specifically, we consider,

Minkowski
(No gravity) ∆s2 = −∆t2 + ∆x2 + ∆y2 + ∆z2

Rindler
(Uniform) ∆s2 = −g2

0z
2∆t2 + ∆x2 + ∆y2 + ∆z2, z > 0

Rotating Disk
(Centrifugal) ∆s2 = −f(ρ)∆t2 + 2h(ρ)∆t∆φ+ g(ρ)∆φ2 + ∆ρ2 + ∆z2

f(ρ) := e−ω
2ρ2 − ρ2ω2e+ρ2ω2

,

h(ρ) := −ωg(ρ) , g(ρ) := ρ2e+ρ2ω2

Schwarzschild

(Spherical) ∆s2 = −
(
1− 2GM

r

)
∆t2 +

(
1− 2GM

r

)−1
∆r2 + r2∆Ω2

FRW

(Cosmological) ∆s2 = −∆t2 + a2(t)
{

∆r2

1−κr2 + r2∆Ω2
}

where, ∆Ω2 :=
(
∆θ2 + sin2θ∆φ2

)
Plane wave ∆s2 = (ηµν + hµν)∆xµ∆xν , where,
(Undulating) hµν(x) = εµν(k)eik·x + ε̄(k)µνe

−ik·x and
ηµν = diag (-1, 1, 1, 1) .

In order to appreciate interpretation of physical consequences of the space-
time model, we will focus on familiar quantities such as physical lengths,
elapsed times measured by clocks, local speed (‘speedometer reading’), local
acceleration (‘acceleration due to gravity’). We take as given, a line element

1Our notation: space-time coordinates are indexed by Greek letters, µ, ν, . . . taking values
0, 1, 2, 3; space coordinates are indexed by Roman letters, i, j, . . . taking values 1, 2, 3. The
invariant interval ∆s2 = gµν∆xµ∆xν . The metric signature is − + ++ and speed of light
c = 1.

11
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and its physical interpretation. We view the given coordinate system as a
‘map’ on the space-time with the metric coefficients as giving the rule to link
coordinate intervals with physical quantities.

On a pseudo–Riemannian manifold, an infinitesimal invariant interval can
be positive (space-like), negative (time-like) or null (light-like). Time-like in-
tervals are given by elapsed time on a physical clock while space-like intervals
are the lengths measured by a physical measuring stick. This could be deduced
from the principle of equivalence applied to a freely falling lift [2], but we
will simply take it as part of the interpretational scheme. We can classify
smooth curves in the manifold into time-like, space-like and light-like accord-
ing as the nature of infinitesimal intervals along the curves. Motion of small
bodies (‘point particles’) in space is represented by time-like curves (or world
lines) while propagation of light, in the geometrical optics approximation, is
represented by light-like curves in the space-time manifold.

Elapsed Times: Any small physical clock is represented by a time-like

curve. Define the clock’s coordinate velocity, V i := ∆xi

∆t . Consider two events
on the clock’s world-line defined by two consecutive ‘ticks’ of the clock. Let
the coordinate intervals for these two events be (∆t,∆xi := V i∆t). The cor-
responding invariant interval is given by,

∆τ2
~V

:= −∆s2 = −g00∆t2
(

1 +
2g0iV

i

g00
+
gijV

iV j

g00

)
(2.1)

By definition, the invariant interval is the elapsed time measured by this clock.
Notice that for a clock ‘at rest’ (V i = 0), ∆τ2 > 0 implies that g00 < 0 and
then for V i 6= 0, the expression in parenthesis must be positive.

For a clock at rest, V i = 0, we get ∆τ~0 =
√
−g00∆t and this provides the

interpretation of the coordinate interval: it is the elapsed time as measured by
a clock at rest, divided by

√
−g00. It has a dependence on the location of the

clock, through the metric coefficient. It follows,

∆τ~V = ∆τ~0

[
1 +

2g0iV
i

g00
+
gijV

iV j

g00

] 1
2

(2.2)

For the Minkowski line element, g00 = −1, g0i = 0, gij = δij , and we infer the
special relativistic time dilation by noting that ∆τ~V is the time measured by
the moving clock while ∆τ~0 is the time measured by the stationary clock.

This appears to be ‘opposite’ to the usual special relativistic time dilation.
It is not. The two events whose invariant interval is given by ∆τ~V are defined
by the two consecutive ticks of the moving clock. This would usually be de-
noted by ‘∆τ0’ (‘proper time’). The same interval as measured by a clock at
rest, would usually be denoted by ∆t and we have denoted it by ∆τ~0. Thus the
time dilation derived above is the same one as obtained in special relativity
when the metric is Minkowskian.

Next, consider two clocks A and B, both with coordinate velocities zero.
Choose two events A and B on their respective world-lines such that the co-
ordinates are (t, xiA) and (t, xiB) respectively. Consider two subsequent points
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A′ and B′ on their world-lines with the same time coordinate t′ = t + ∆t.
The spatial coordinates will remain the same since the coordinate velocities
are zero. The elapsed physical times are then related as,

∆τA =

√
g00|A
g00|B

∆τB (2.3)

Notice that for Minkowski line element (and the FRW line element), g00 = −1
at both locations and hence the two elapsed times are the same. This ratio
gives the gravitational time dilation. Taking the invariant time intervals to
define inverses of frequencies, we get the prediction that frequencies undergo
a change in a gravitational field. This was indeed first measured and verified
by Pound and Rebka in 1959 [3–5]. The quantitative estimate is obtained using
the Schwarzschild line element. The choice of pairs of events with the same
coordinate interval, can be achieved in practice by clock A sending consecutive
pulses to clock B. The coordinate time intervals at both clocks will be the same
when the coordinate velocities are the same and the metric is assumed to be
almost time independent over the flight time interval. This is of course realized
in the near Earth space-time. We discuss the general case of frequency shifts
in section 3.2.

Physical Lengths: Similar considerations apply to spatial invariant inter-
vals (∆s2 > 0) as well, in particular physical length intervals are also ‘observer
dependent’. To see this, recall an argument in the context of special relativity.

Imagine two events A and B defined by a car crossing two ends of a road.
The coordinates assigned by a road observer will be (0,~0), (∆t, Lroad~n). The
coordinates assigned by the car observer will be (0,~0), (∆t′, 0). Let the speed
of the car relative to road be βcar so that Lroad = βcar∆t. Let the speed of
the road relative to the car be βroad (in the opposite direction of course) so
that Lcar = βroad∆t

′. Since the two events are the same, the invariant interval
must be the same i.e.

−∆t2 + L2
road = −∆t′2

L2
road(1− β−2

car) = −L2
carβ

−2
road

∴ Lcar = Lroad
√

1− β2
car

(
βroad
βcar

)
(2.4)

The usual length contraction formula results when we assert that βroad = βcar
i.e. speed of road measured by car observer is the same as the speed of car
measured by the road observer. Had we insisted on the lengths Lcar, Lroad, of
the road as measured by the two observer are same, we would have got the
two speeds to be different, with the βroad being not bounded by 1. Clearly,
we should interpret the above equation (2.4) as implying that the physical
lengths measured by two observers can be different while the two speeds are
the same: βroad = βcar < 1. Notice that this identification makes the velocity
truly relative.
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The necessity of length contraction can also be seen in the explanation
of the observation of muons at the ground level after traversing the atmo-
sphere even though, naively, the rest-frame-life-time of 2.2 µsec would not be
sufficient to travel through the thickness of the atmosphere. The ground ob-
server explains this by invoking time dilation to stretch the half life while the
muon-rest-frame observer gets the simplest explanation by invoking length
contraction to squeeze the thickness of the atmosphere.

We have discussed length contraction using the Minkowski metric. Its gen-
eralization to general space-times is given below by a different argument using
the definition of local speed.

Local Speed: Imagine a spaceship going from a location A to another one
B. The duration of the journey can be measured by an on-board clock and
we can ask for an average speed for the journey. How is this to be determined
in terms of the arbitrary local coordinates (and the metric coefficients)? For
the everyday experience of going in a car the speed shown by speedometer
denotes the physical distance traversed in a time shown by a clock, either on
board or on the ground. The natural definition of speed would thus be the
ratio of a physical distance to a proper time. The problem is to identify, for a
given time-like curve, the spatial distance covered in some physical time - we
need a definition of splitting the space-time into space and time.

Recall that space-time coordinates are just labels and it is only in con-
junction with metric coefficients that physical meanings are ascribed. Thus to
properly identify a split as space and time, we have to specify a form of metric
as well, apart from simply labelling t := x0. This is achieved by taking a form
for the metric as,

∆s2 = −N2∆t2 + ḡij(∆x
i +N i∆t)(∆xj +N j∆t) where, (2.5)

ḡij is positive definite with inverse ḡij . As matrices,

gµν =

(
−N2 + ḡijN

iN j ḡijN
i

ḡijN
j ḡij

)
↔

gµν =

(
−N−2 N−2N j

N−2N i ḡij −N−2N iN j

)
(2.6)

Such a form can always be taken locally and serves to identify time-like direc-
tions.

And now, for a given coordinate system, we define ‘space’ to be the ‘t
= constant’ hypersurface. We had already deduced g00 < 0 just below eq.
(2.1) and g00 is manifestly negative. The unit (time-like) normal to such a
hypersurface is given by nµ = 1√

−g00
(1, 0, 0, 0) and the corresponding nµ =

gµ0/
√
−g00. Define the associated projector, Pµν := δµν+nµnν which projects

any vector to a space-like vector. Consider two points on the world line of the
spaceship, with coordinate interval: ∆xµ := vµ∆τ , v · v := gµνv

µvν = −1.
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Let ∆xµ‖ := Pµν∆xν = ∆τ(vµ− gµ0

g00 v
0). The spatial physical interval is then,

∆`2 := gµν∆xµ‖∆x
ν
‖ = −∆τ2

(
1 +

(v0)2

g00

)
= ∆τ2(v0)2

(
g00 + 2g0i

vi

v0
+ gij

vi

v0

vj

v0
− 1

g00

)
(2.7)

= ∆t2
(
g00 + 2g0iV

i + gijV
iV j − 1

g00

)
V i :=

vi

v0
=

∆xi

∆t

Likewise, let ∆xµ⊥ := nµnν∆xν = nµ∆t√
−g00

and the corresponding physical

time-like interval is,

∆T 2 := − gµν∆xµ⊥∆xν⊥ = − ∆t2

g00
(2.8)

∆`2 > 0, together with g00 < 0, implies,

g00(g00 + 2g0iV
i + gijV

iV j) ≤ 1.

A physical, local four velocity can now be defined as βµ := ∆xµ‖/∆T with

the corresponding physical, local speed given by β2 = gµνβ
µβν . Explicitly,

βµ :=
√
−g00

∆τ

∆t

(
vµ − gµ0

g00
v0

)
=⇒ β0 = 0 and (2.9)

βi = V i
√
−g00 +

g0i√
−g00

←→ V i =
βi√
−g00

+
gi0

g00
, (2.10)

β2 :=
∆`2

∆T 2
= g00

(
1

g00
− g00 − 2g0iV

i − gijV iV j
)

= 1−
(
g00g00

)(
1 +

2g0iV
i

g00
+
gijV

iV j

g00

)
≥ 0 (2.11)

∴ β =
√

1− g00(g00 + 2g0iV i + gijV iV j) < 1. (2.12)

That β2 < 1 follows because, v · v = −1 and g00 < 0, ensure that the second
term under the square root is positive. Thus the physical speed is less than
the speed of light.

We also have an explicit relation between the physical velocity βi and the
coordinate velocity V i. For Minkowski line element in particular, both the
speeds are equal. In fact for all the line elements listed above, except the
rotating platform case, g00g00 = 1, g0i = 0 and β2 = −gijV iV j/g00.

Observe that the local speed vanishes with the coordinate speed only if g0i =
0, which also implies g00g00 = 1. Conversely, when the physical speed vanishes,
the coordinate speed equals gi0/g00. These are special world-lines which are
orthogonal to a local t = constant hypersurface i.e. PµνV

ν = 0. Non-zero
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g0i (and g0i) arises naturally in the context of the space-times near steadily
rotating bodies or black holes. There these observers are known as locally
non-rotating observers, (see section 2.3). We may call them generally locally
pinned observers.

We have thus obtained a definition of a physical, local speed relative to an
arbitrary coordinate system. By integrating the spatial invariant ∆` and the
temporal invariant ∆T along the world line of the spaceship, we can also obtain
the average speed. These are speeds determined by the observer associated
with the local coordinates - roughly the ‘on-road observer’. What about speed
determined by the ‘on board observer’, e.g. the speedometer reading?

The elapsed time on the on-board clock is just the proper time ∆τ . The
spatial distance travelled needs to be defined. If we were to use the same
physical distance defined by the ‘on-road’ observer, ∆`2, we would get,

β2
speedometer :=

∆`2

∆τ2
=

(
1
g00 − g00 − 2g0iV

i − gijV iV j
)

(g00 + 2g0iV i + gijV iV j)
⇒

β2
speedometer =

β2

1− β2
←→ β2 =

β2
speedometer

1 + β2
speedometer

(2.13)

We see that the speedometer speed can be larger than the speed of light. This
however is not a correct definition because it ignores the ‘length contraction
effect’ - we used the same spatial distance in both the definitions. From the
discussion of length contraction, we should demand that the speedometer read-
ing is the same as the speed β defined in (2.12). As a consequence, we obtain
the on-board odometer reading or the physical distance travelled as measured
by the on-board observer, namely,

∆`odometer := β∆τ =
∆`

∆T
∆τ

= ∆`

√
g00g00

(
1 + 2

g0iV i

g00
+
gijV iV j

g00

)
(2.14)

= ∆`
√

1− gijβiβj in terms of physical speed.

In the last equation we used the relation between V i and βi and also used
the metric form (2.6), with gij = ḡij . This is the generalization of the length
contraction formula for a general space-time.

Local Gravity: We would like to identify a quantity which can be in-
terpreted as the local acceleration due to gravity, the analogue of the familiar
g = 981.0cm/sec2 on Earth. A freely falling object has no weight, so we have
to consider an object which is ‘held in place’ and find the ‘force’ needed to
achieve this. Thus, the world-line of such an object should be a time-like curve
which is not a geodesic (not freely falling). The idea of holding in place would
be captured naively by requiring that the spatial coordinates along the world-
line do not change. However, as observed in the discussion of local speed,
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coordinate speed can be different from the physical speed for a generic metric.
It turns out to be more appropriate to use vanishing local speed as the char-
acterization of ‘holding-in-place’. Once again, we need to identify the spatial
coordinates which we take to be the coordinates on the t = constant surfaces.
Such a world-line with zero local speed, is normal to the t = constant surfaces
i.e. vµ = nµ.

For any time-like curve, we have its absolute acceleration defined as: aµ :=
vν∇νvµ , vµ := dxµ/dτ , gµνv

µvν = −1. Observe that gµνa
µvν = 0. Hence,

aµ is space-like and for vµ = nµ, aµ = Pµνa
ν also holds. For such a curve we

have, vµ = g0µ/
√
−g00 and a · v = 0 implies a0 = 0. The spatial components

of the acceleration are obtained as,

ai =
g0ν√
−g00

∂ν
g0i√
−g00

+ Γiµν
g0µ√
−g00

g0ν√
−g00

(2.15)

=
1

2

(
giµg00 − gi0g0µ

)
∂µ

1

g00
=

1

2

(
gijg00 − gi0g0j

)
∂j

1

g00

=
1

2
g00ḡij∂j

1

g00
= − 1

2
ḡij∂j ln | − g00 + ḡijN

iN j |

= −1

2
ḡij∂j ln | − g00 + ḡijV

iV j | (2.16)

In the first line, we have used the definition of the covariant derivative, in
the second line the definition of the Γ and in the last equation we have used
the inverse metric coefficients from eqn.(2.6) and also used the relation N i =
− g0i/g00 = −V i, the coordinate velocity of the ‘locally pinned’ world-line.

Notice that the acceleration of these special class of observers is determined
entirely by the metric and its derivatives (in the given coordinate system). Spe-
cialising to the Schwarzschild metric (2.24), we see that ar = GM/(r2). This
is directed radially outward while force of gravity is radially inward. There-
fore we define the local acceleration due to gravity as the spatial components
of minus the absolute acceleration of the normalized normal to the constant
time foliation. In equation,

gi := −ai = −1

2

(
gijg00 − gi0g0j

)
∂j

1

g00
(2.17)

= +
1

2
ḡij∂j ln | − g00 + ḡijV

iV j |, V i := g0i/g00.

Although we used the locally pinned worldlines to motivate the defini-
tion, the final expression for local gravity is in terms of the metric and its
derivatives. Applying the definition to the Minkowski and the cosmological
line elements, we see that local gravity vanishes in both cases.

The definition of local gravity is not a coordinate independent characteri-
zation and is not an intrinsic property of the space-time. Nevertheless, under
purely spatial coordinate transformations, t→ t, xi → x̃i(x), which preserves
the identification of space, the components gi transform as a three-dimensional
vector.
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2.1 No Gravity (Minkowski Space-Time)

This is the space-time of special relativity i.e. in the absence of gravity.
As a manifold, it is R4 and thus a single chart suffices. Let the coordinates be
denoted as (t, x, y, z), each ranging over R. The metric on it is then given by,

∆s2 := −∆t2 + ∆x2 + ∆y2 + ∆z2 ↔ ηµν := diag (−1, 1, 1, 1) .

As the metric is independent of the coordinates, the Riemann–Christoffel
connection vanishes everywhere and the space-time is Riemann flat. We can
choose another set of global coordinates x′µ in terms of which the line element
remains invariant, related to xµ as, x′µ = Λµνx

ν , where the Λ’s are indepen-
dent of the coordinates and additionally satisfy: ΛµαΛνβη

αβ = ηµν . These are
the Lorentz transformations forming the matrix group, O(1, 3). We will refer
to these coordinates in which metric is constant as defining Lorentz frames.

Since the Riemann–Christoffel connection vanishes in all Lorentz frames,
the geodesics of Minkowski space-time are just straight lines: xµ(λ) = aµλ+
bµ, λ ∈ R, and aµ, bµ are constants. They are time-like, space-like, light-like
according as aµaνηµν =: a2 is negative, positive, zero respectively. Evidently,
for any two points along a geodesic, the invariant interval is given by a2(λ2−
λ1)2. Since between any two pints there is a unique geodesic up to orientation,
we can divide up the space-time relative to any point, P , into time-like region,
space-like region and light-like region. The light-like region is called the light
cone with the vertex of the cone at P . It is a cone because it is defined
by (t − tP )2 = (x − xP )2 + (y − yP )2 + (z − zP )2. The points, Q, inside
or on a light cone are said to be causally connected to P , since these can
be connected by a time-like or a light-like curve which physically represents
world-line of a material particle or a ‘massless particle’. Observe that the
light cones and the divisions into causal and space-like regions, is preserved
by Lorentz transformations.

Can we arbitrarily restrict to a sub-region, say each coordinate in some
interval, and take it as a space-time? Mathematically, it certainly defines a
Riemann-flat space-time, still has geodesics which are straight lines and still
has divisions into time-like, space-like and light-like regions relative to any
point. However, now all geodesics will be ‘incomplete’ - their affine parameter
λ will be limited to an interval. Furthermore, the region will not be preserved
by Lorentz transformations. In other words, restriction to any bounded region
is observer-dependent.

The fact that curves could have tangent vectors which are causal or space-
like makes the approach to asymptotic regions more complex, indeed the na-
ture of asymptotic region itself is more complex. This will be discussed later
in chapter 7.

There is another natural coordinate system for Minkowski space-time,
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namely the usual spherical polar coordinates for the spatial metric:

∆s2 := −∆t2 + ∆r2 + r2∆θ2 + r2sin2θ∆φ2

In terms of these of course, the Lorentz group does not act linearly.
We have already discussed time dilation, length contraction, physical speed

in the general context. The definition of local gravity applied to the Minkowski
line element, immediately gives the local gravity to be zero. We will see in the
next section that with a different choice of coordinates, the local gravity will
not be zero even though the Riemann tensor vanishes.

2.2 Uniform Gravity (Rindler Space-Time)

Freely falling lifts is an important laboratory in the thought experiments in
Einstein’s arguments. Near the surface of Earth, the (Newtonian) gravitational
field is uniform and the freely falling lifts are seen as uniformly accelerated
frames or observers. We ask the question: what is the appropriate metric
which will describe the uniform gravitational field of Newton?

Let us assume that the uniform gravitational field is along z axis and is time
independent. Furthermore, we may introduce coordinates x, y labelling the
points of constant t, constant z plane which may be taken mutually orthogonal
as well as orthogonal to the t, z directions. The metric then takes a diagonal
form with metric coefficients being function of z only [6, 7], i.e.,

∆s2 := − F (z)∆t2 +G(z)∆z2 +A(z)∆x2 +B(z)∆y2, (2.18)

where, F,G,A,B are all positive for the implicit spatial and temporal nature
of the coordinates. Observe that by redefining the coordinate z → z′ as dz′ :=√
G(z)dz, we can absorb away G(z), but we will not do so at this stage for

reasons that will be clear later. Since, a Newtonian uniform gravitational field
does not produce any tidal forces and in general relativity absence of tidal
forces implies vanishing Riemann tensor, we require the metric to have zero
Riemann tensor. A straightforward calculation [6] then shows that by constant
rescaling of coordinates, we can take

A(z) = B(z) = 1, and G(z) =
(F ′(z)))2

4g2
0F (z)

, F ′(z) :=
dF (z)

dz
,

and g0 > 0 (say) is a constant. In the above, it has been assumed that
F ′(z), g0 6= 0. For the special case of F ′ = 0, we go back to the line ele-
ment, set F = 1 and then redefine z to set G = 1. This gives the Minkowski
metric with no restrictions on the coordinates.

We have thus Riemann flat space-time modelling a Newtonian uniform
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gravitational field, parametrized by one free function F (z) > 0. Our defini-
tion of local gravity gives it to be directed along the negative z-axis with a
magnitude, g(z) = | − 2g2

0/F
′(z)|.

A coordinate transformation of the form (x′ = x, y′ = y),

g0z
′ :=

√
F (z) cosh(g0t)

g0t
′ :=

√
F (z) sinh(g0t)

}
↔

{
F (z) := g2

0(z′2 − t′2)

tanh(g0t) := t′

z′

implies,
∆s2 = −∆t′2 + ∆z′2 + ∆x′2 + ∆y′2

The restriction F (z) > 0 implies a region of the Minkowski chart (t′, z′, x′, y′).
Thus the freedom contained in the function F (z) corresponds to picking out
different, proper subsets of the full Minkowski space-time of the previous sec-
tion. The full Minkowski space-time is recovered only by the special case of
F ′ = 0.

There are two natural choices for the F (z) namely, (a) F (z) = (1 + g0z)
2

and (b) F (z) = 1 + 2g0z. The choice (a) gives G(z) = 1 corresponding to the
possibility of redefining z to absorb G(z) as mentioned before. For this choice,
z 6= −g−1

0 must hold and the local gravity is not uniform. It will even change
sign across z = − g−1

0 and we may restrict to z > −g−1
0 . For the choice (b),

G(z) = F−1(z) and the local gravity is precisely −g0. The z is now restricted
to be larger than −(2g0)−1. We will stick to the choice (b).

Notice that an observer at rest relative to the uniform gravitational field
(i.e. with respect to the (t, z, x, y) coordinates), will have a hyperbolic trajec-
tory with respect to the (t′, z′, x′, y′) coordinates which are inertial since the
metric is the Minkowskian metric.

A freely falling observer will be a geodesic of the line element (2.18) and
depends on the choice of F (z). To find the geodesics, we have to compute
the Riemann–Christoffel connection defined in eq. (14.9), using the metric.
For the special class of lifts which fall only along the z-axis, the relevant non-
zero connection components are: Γttz = F ′/(2F ) , Γzzz = G′/(2G) , Γztt =
−F ′/(2G). The geodesics equations then become (over-dot denotes derivative
with respect to proper time),

ẗ+
F ′

F
ṫż = 0, z̈ +

G′

2G
ż2 − F ′

2G
ṫ2 = 0. (2.19)

The first equation gives ṫF =a constant which can be taken to be 1. Using
this, we can convert the derivatives with respect to the proper time to those
with respect to t. The solution of the second equation, z(t) is then obtained
from [6],

1√
F

= cosh(g0(t− t0)), F (t0) = 1

where we have made a convenient choice for integration constants.
Thus we know how the trajectory of an observer at rest in the un-primed
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coordinate system (say S), looks in the inertial coordinate system (say S’ –
it is hyperbolic), and we also know the trajectory of a freely falling observer
in the un-primed coordinate system. The former is a Rindler observer which
is uniformly accelerated relative to the inertial observer. The Rindler line
element, given at the beginning of the chapter, corresponds to the choice,
F (z) = g2

0z
2, giving G(z) = 1 and the restriction of excluding the z = 0

plane.
The equivalence of uniform gravitational field and uniformly accelerated

frame, poses a puzzle for radiation from an electric charge. A charge at rest
in a gravitational field, is accelerated relative to an observer who sees no
gravitational field (i.e. a freely falling or inertial observer) and thus must
radiate as per Maxwell theory valid in the inertial frame. But the observer in
the gravitational field sees a stationary charge and is led to conclude that the
charge should not radiate. What is the correct conclusion?

Briefly, the answer is that both statements are correct and there is no
contradiction. It is always true that an observer will not detect any radiation
from an electric charge if the charge is at rest relative to the observer and
conversely, if a charge is accelerated relative to an observer, that observer will
detect radiation. This is true for both cases where the observer is at rest relative
to the gravitational field (i.e. charge at rest relative to a gravitational field) or
it is freely falling in the gravitational field. These statements are checked by
using the Maxwell theory in the inertial frame, S

′
and transforming the fields

to the S frame. There is no contradiction here since radiation is not a general
relativistically invariant notion. The details may be seen in [6, 7].

2.3 Centrifugal Gravity (Uniformly Rotating Platform)

Uniformly rotating platform has played an important role in Einstein’s
argument for linking accelerated observers, gravity and geometry. Recall that
an inertial observer infers that the geometry on a rotating platform is non-
Euclidean in that the ratio of circumference to diameter is greater than
π. Equivalently, the geometry described by a co-rotating observer is non-
Euclidean. With the general framework that we have developed, we ask: what
is the explicit metric description of the geometry to be used by the co-rotating
observer?

To arrive at such a metric, we consider two observers, both located at the
center of a platform which is rotating with respect to one of them - the inertial
observer and the other is co-rotating with the platform (i.e. ‘spinning about
the z-axis’). Both the observers use same coordinate labels (t, φ, ρ, z) but of
course different metric coefficients. The platform has z = 0 which will play no
role and hence will be suppressed. The inertial observer uses the line element,
∆s2 = −∆T 2+ρ2∆φ2+∆ρ2 which is the Minkowski line element in cylindrical
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coordinates. Because of the circular symmetry of the system and the fact
that apart from rotation, no other change is taking place in time, we assume
the metric used by the co-rotating observer is time independent and angle
independent but may depend on ρ. However, sense of rotation distinguishes
motion of test particles, so the line element should not be time symmetric i.e.
invariant under t↔ −t.

The general form of metric can then be written as,

∆s2 := −f(ρ)∆t2 + 2h(ρ)∆t∆φ+ g(ρ)∆φ2 + ∆ρ2, f(ρ), g(ρ) > 0. (2.20)

Our task is to determine the functions f, g, h appropriately. We have set the
possible gρρ = 1 invoking the freedom to choose the label ρ. This is also
convenient because the physical radial length inferred by co-rotating observer
is just ρ consistent with the inertial observer’s expectation that radial direction
suffers no length contraction. As ρ→ 0 we expect the rotation to have no effect
and therefore require that as ρ → 0, the functions f → 1 and g → ρ2 while
h→ 0. This also means that the t, ρ, φ used by the co-rotating observer, match
with the inertial coordinates.

We require that the elapsed time and length contractions inferred by the
inertial observer are precisely also inferred by the co-rotating observer using
the metric above. We have to input the information that the metric above
corresponds to a platform rotating with an angular velocity, ω, relative to the
inertial observer. Lastly, we have to accommodate the possibility that, even
for the inertial observer, the tangential speed v(ρ) of a clock or a rod, may
not be related to the angular speed as v(ρ) = ρω, but could be a more general
form so that the light speed limit is not violated.

This is the first case where we have a non-zero gtφ. Such space times admit
a class of observers called locally non-rotating observers. These are defined by
the property that their 4-velocity, uµ(ρ) is orthogonal to the local, t =constant
hypersurface. This means that for such an observer at some ρ, φ, its 4-velocity
is given by uµ = αgµt, α determined by requiring u2 = −1. Notice that
Ω := dφ

dt = dφ
dτ /

dt
dτ = uφ/ut = gtφ/gtt = −gtφ/gφφ. The last equality follows

from the form of the inverse metric (2.6).
These observers have an angular (coordinate) velocity Ω relative to the

inertial observer at the origin. The physical speed as defined in (2.12) also
turns out to be zero, implying that this observer is ‘at rest relative to the local
geometry’. It is thus appropriate to set the angular velocity, Ω(ρ) = ω, ∀ ρ.
This determines h(ρ) = −ωg(ρ).

Consider next the ratio of circumference to radius as inferred by the inertial
observer and the co-rotating observer. By Einstein’s argument, the inertial
observer gets the ratio to be 2πρ√

1−v2(ρ)
ρ−1. The co-rotating observer obtains

the ratio as 2π
√
g(ρ)ρ−1. Equating the two ratios, determines g(ρ) = ρ2/(1−

v2(ρ)).
To determine f(ρ) we use the time elapsed computation. According to the

inertial observer a clock at ρ will have tangential speed v(ρ) and will give
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∆τρ = ∆τρ=0

√
1− v2(ρ). The co-rotating observer on the other hand will use

the eqn. (2.1) to get,

∆τ(ρ) = ∆t
√
−gtt − 2gtφω − gφφω2 = ∆τρ=0

√
−gtt + ω2gφφ

Equating ∆τρ = ∆τ(ρ) we get,

gtt − ω2gφφ = −1 + v2(ρ) =⇒ f(ρ) =
(1− v2(ρ))2 − ω2ρ2

(1− v2)
(2.21)

We have thus determined all three metric coefficients in terms of an unknown
function v2(ρ). To deduce this function we use the local gravity expression for
the locally non-rotating observers and equate it to the Newtonian centrifugal
acceleration: ρω2. The absolute acceleration is computed easily.

aµ := uν∇νuµ = u · ∂uµ + Γµνλu
νuλ

∴ gρ = −1

2

∂ρ(gtt − ω2gφφ)

gtt − ω2gφφ
= − 1

2

d

dρ
ln(1− v2(ρ)) (2.22)

This is the only non-vanishing component of the acceleration. Equating it
to the centrifugal acceleration, gρ = ρω2, determines the function v2(ρ) =

1 − e−ρ
2ω2

. We have chosen the constant of integration so that v(0) = 0.
Observe that for small ρω we recover the non-relativistic relation v = ρω. For
large ρω though, this relation is modified such that the speed is always less
than the speed of light.

In summary, we have determined,

f(ρ) = e−ω
2ρ2 − ω2ρ2e+ω2ρ2 ,

g(ρ) = ρ2e+ρ2ω2

, (2.23)

h(ρ) = −ρ(ρω)e+ρ2ω2

.

This space-time may be used to model a centrifugal gravity attributable
to a rotation relative to an inertial, non-rotating observer.

2.4 Spherical Gravity (The Schwarzschild Space-Time)

To get glimpses of the refined theory of gravity, let us take an example of
the space-time corresponding to an idealized solar system in which the Sun is
viewed as a massive, spherically symmetric, non-rotating body. We know the
Newtonian gravitational field out side the body, Φ(r) = −GMr . We would like
to know the geometry i.e. the appropriate metric tensor. To obtain this we
must first choose suitable coordinates. Most natural choice, also close to the
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Newtonian picture, is to imagine concentric spheres surrounding the body.
The sphere’s themselves are labelled by a label r while the points on each
sphere is labelled by the usual spherical polar angles, θ, φ. We also choose
some time label t.

Since the body is non-rotating (and not moving i.e. t is such that the
body does not move) we expect the geometry to be time independent. Further
spherical symmetry implies that the metric should not depend on the angles
except for the ‘metric’ on the spheres. This leads to the line element2,

∆s2 = −f(r)∆t2 + g(r)∆r2 + r2(∆θ2 + sin2θ∆φ2)

f(r) = 1− Rs
r
, g(r) = f(r)−1. (2.24)

The particular choice, f(r) = 1 − RS/r, g(r) = f−1(r) is known as the
Schwarzschild space-time. This is not Riemann flat but its Ricci tensor is
zero. The Rs is a parameter having dimensions of length and can be related
to the mass, M of the spherical body as: RS := 2GM

c2 and is known as the
Schwarzschild radius of the body. This is completely determined by its mass.

On the two-dimensional surfaces defined by t = constant, r = constant,
the line element gives to the induced metric which is the standard metric on
a sphere. The area of such a sphere is given by,

Area =

∫
√
ginddθdφ =

∫ √
r4sin2θdθdφ = 4πr2 (2.25)

The label r can thus be defined as: r :=
√

area
4π and is called the ‘areal radial

coordinate’.
On the three-dimensional space defined by t = constant, the induced metric

is similar to the standard Euclidean metric expressed in the spherical polar
coordinates. It would be exactly so, if g(r) = 1 and then r also gives the radius
of the sphere. However g(r) is yet to be determined, so we cannot interpret r
as the usual radius.

There is another length scale, namely, the size of the spherical body. We
denote it by r = R. The region r ≥ R defines the exterior Schwarzschild
space-time and is the arena for the solar system tests of general relativity. For
r � RS , the line element takes the form,

∆s2 = −
(

1− RS
r

)
∆t2 +

(
1 +

RS
r

+
R2
S

r2
+ · · ·

)
∆r2 + r2∆Ω2

=
[
−∆t2 + ∆r2 + r2∆Ω2

]
+

[
Rs
r

(
∆t2 + ∆r2

)
+ o

((
RS
r

)2
)]

= Minkowski metric + deviations (2.26)

The deviations are controlled by the small parameter RS/r. This feature of

2We will see later, in section 5.1, that this form can always be chosen for spherically
symmetric, static space-times.
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the space-time, particularly the leading fall-off o(Rs/r), illustrates the idea of
asymptotically flat space-time which is discussed in more details in chapter 7.

To get a feel, let us put in some numbers. For our Sun:

RS ≈
2× (6.67× 10−8)× (2× 1033)

(3× 1010)2
≈ 3 km (2.27)

For contrast, the physical radius of the Sun is about 6,95,500 km. Thus
already just outside the Sun, the deviation from Minkowskian geometry is of
the order of 1 part in 105. For Earth the deviation is about 1 part in 109.
General relativistic corrections are thus very small. No wonder Newtonian
gravity worked so well. For more compact objects such as white dwarfs and
neutron stars the deviation factors are about 10−3 and 0.5.

Extending the domain of validity of the line element inward to smaller
r, we notice that for r = RS , f = 0 while g is infinite. The determinant of
the metric however continues to be non-zero. Although some of the metric
coefficients vanish/blow up, it turns out that the curvature components and
hence the tidal forces, remain perfectly finite as r → RS . This particular 2-
sphere turns out to be a ‘coordinate singularity’ or failure of the coordinates
to describe the geometry. It marks the location of a horizon and is the first
example of a black hole space-time. The region r ≤ RS is discussed further in
the section 5.4.

The exterior Schwarzschild space-time is the arena for the solar system
tests of general relativity, discussed in section 5.1.

2.5 Cosmological Gravity (Robertson–Walker Space-
Times)

The Schwarzschild space-time of the previous section was static and spher-
ically symmetric and was a prototype for an isolated, highly idealized body.
Another prototype is a spatially homogeneous and isotropic space-time which
is an idealisation for our universe.

A spatially homogeneous space-time can be viewed as a stack of three
dimensional spatial slices. Homogeneity means the geometry does not vary
from point-to-point on any of the slices and isotropy at a point means that
it ‘looks the same’ in every direction or equivalently has no distinguished
direction. The absence of distinguished direction implies that the Riemann
tensor must be a multiple of the combination of the metric consistent with its
symmetries while homogeneity requires that the multiple must be constant
over the slice. Thus, the spatial Riemann tensor must have the form: Rijkl =

λ(δikgjl − δilgjk) ⇒ R = 6λ. Here λ can vary from slice-to-slice. Such three
dimensional Riemannian spaces are completely classified and come in three
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varieties depending on the sign of the λ. Labelling each of the slices by a time
coordinate, τ , and denoting the normalized constant curvature by k = ±1, 0,
one can write the form of the metric for the universe as:

∆s2 = −∆τ2 + a2(τ)

 ∆ψ2 + sin2ψ∆Ω2 Spherical, k = 1
∆ψ2 + ψ2∆Ω2 Euclidean, k = 0
∆ψ2 + sinh2ψ∆Ω2 Hyperbolic, k = −1

 ,

dΩ2 := ∆θ2 + sin2θ∆φ2 (2.28)

∆s2 = −∆τ2 + a2(τ)

(
∆r2

1− kr2
+ r2∆Ω2

)
( Alternative form ) (2.29)

∆s2 := −∆τ2 + a2(τ)∆s2
3 (2.30)

There is no terms of the form gτi∆τ∆xi, because such gτi coefficients will dis-
tinguish a spatial direction which is disallowed by isotropy. The spatial metric
with normalized constant curvature is called the comoving spatial metric while
with the a2(τ) factor included, it is the physical spatial metric.

The a2(τ) determines the value of the constant spatial curvature and is ac-
cordingly called the scale factor. It is allowed to depend on τ . The space-times
with the above form for the metric are called Robertson–Walker geometries.
Generically, these are neither Riemann flat nor Ricci flat. Most of modern
cosmography – mapping of the cosmos – is based on these geometries. Dy-
namics of this idealized universe is encoded in the evolution of the scale factor
which will be discussed in the section 5.2.

The points on any particular slice are supposed to represent galaxies (or
clusters of galaxies) at a cosmic time, τ . The physical distance between two
such galaxies is the scale factor a(τ) times the comoving distance - the distance
computed from the comoving metric. As we change the slice, the physical dis-
tance changes just by the scale factor evolution and thus the ratio of physical
distance at two times is the same as the ratio of the scale factors at those two
times.

Consider now the physical distance, R(τ) between two galaxies at the same
value of τ . Its change with τ can be obtained as:

v(τ) :=
dR(τ)

dτ
=
R(τ0)

a(τ0)

da(τ)

dτ
=
R(τ)

a(τ)
ȧ =: H(τ)R(τ) (2.31)

Thus, the relative speeds of galaxies is proportional to their separation.
The scale factor although multiplying only the spatial comoving metric,

also affects the frequency of light pulses received from distant galaxies. Imagine
a galaxy at a point p on a slice at time τem emitting successive pulses of
light with period Tem and a galaxy at point Q on a slice at a later time
τre receiving them at intervals Tre. Since the comoving distance between the
galaxies remains the same and invariant interval along a light path is zero,
∆τ = a(τ)∆s3, we get,∫ τre

τem

dτ

a(τ)
=

∫ τre+Tre

τem+Tem

dτ

a(τ)
⇒ Tem

a(τem)
=

Tre
a(τre)

⇒ (2.32)



Examples of Space-Times 27

a(τre)

a(τem)
=

νem
νre

:= 1 + z ⇒ z =
a(τre)− a(τem)

a(τre)
≈ ȧ(τem)

a(τre)
(τre − τem)

∴ z =

[
ȧ(τem)

a(τre)

]
R(τem) := H(τem)R(τem) (2.33)

Here we have replaced the periods T by ν−1 and have assumed that the
difference of the τ labels is small. Speed of light being 1, this difference equals
the physical distance between the galaxies.

Thus, in Robertson–Walker space-times, there is a frequency shift in the
light exchanged between two galaxies thanks to the time dependent scale
factor and the shift is proportional to the physical separation between them.

This matches naturally with the famous conclusion drawn by Hubble from
observation of spectra from distant galaxies. He consistently observed a red-
shift which was also proportional to their distance from us, now known as the
Hubble Law. Putting the two equations (2.31, 2.33) together, he concluded
that our universe must be expanding.

2.6 Undulating Gravity (Gravitational Waves)

Consider a small ripple of geometry on the background of the Minkowski
space-time. By this we mean a metric of the form gµν(x) := ηµν + hµν(x)
where h is treated as a first order quantity i.e. raising/lowering of indices is
done by the background metric and only the leading, non-vanishing terms
are kept. The coordinates denote the standard Cartesian coordinates of the
Minkowski space-time so that the background metric takes the form ηµν :=
diag(−1, 1, 1, 1). As an example, we take,

hµν(x) = εµν(k)eik·x + ε̄µνe
−ik·x, (2.34)

k2 := kµkνηµν = 0, εµνη
µν = 0, kµεµν = 0;

The conditions on the εµν and k2 = 0 are equivalent to hµν(x) satisfying the
equations: ηµν∂µ∂νhαβ = 0 , hµνη

µν = 0 , and ∂µh
µν = 0. The hµν(x)

thus represents a plane wave propagating along a direction ~k with frequency
ω := |k0| = |~k| and the (complex) polarization tensor, εµν satisfying those
conditions. The polarization tensor is said to be transverse, traceless.

It is easy to verify that these conditions do not determine the polarization
tensor completely: two sets satisfying the conditions can differ as, ε′µν − εµν =
ikµζν + ikνζµ , k · ζ = 0. The 10 components of the polarization tensor satisfy
5 conditions and have a further freedom worth 3 parameters (since k · ζ = 0).
This leaves two independent components of polarization tensor.

Given the wave 4-vector k, we can define a set of 4, complex, linearly
independent null (light-like) vectors: k, `,m, m̄ with non-zero scalar products
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k · ` = −1,m · m̄ = 1. Using this basis of null vectors, we can write εµν :=
Φabe

a
µe
b
ν , {ea} = (k, `,m, m̄). Using the 5 conditions on the polarization

tensor as well as the exploiting the 3 parameter freedom, all Φab can be chosen
to be zero except Φmm,Φm̄m̄. We will thus work with,

hµν(x) = eik·x(Φmmmµmν + Φm̄m̄m̄µm̄ν)

Following properties are immediately verified: (a) these waves are trans-
verse i.e. the polarization tensor is orthogonal to the wave vector (k · m =
0 = k · m̄); (b) if we perform a rotation through an angle θ, in the plane

transverse to ~k, then the Φmm amplitude changes by e−2iθ while the other
amplitude changes by e2iθ. The waves are then said to have helicities ±2. The
Riemann–Christoffel connection and the Riemann tensor, to first order in h,
are given by,

Γλµν =
i

2
eik·x

(
kµε

λ
ν + kνε

λ
µ − kλεµν

)
+ Complex Conjugate (2.35)

Rαλµν =
1

2
eik·x

{
kα(ελνkµ − ελµkν)− kλ(εανkµ − εαµkν)

}
+ C.C. (2.36)

The see how such a wave may affect test particles, we can use the geodesic
deviation equation. The relative acceleration between two neighboring time-
like geodesics is given by (14.11),

aα = −RαλµνuλXµuν

where, uλ is a reference geodesic while Xµ is a deviation vector (u · X =
0) to a nearby geodesic. In the rest frame of the reference geodesic, u0 =
1/
√
−g00, u

i = 0, we get u ·m = 0 = u · m̄. Substituting for our polarization
tensors and using ω := k · u, the frequency of the wave as measured by the
freely falling observer u, we get,

aα = − 1

2
ω2 {Φmm(m ·X)mα + Φm̄m̄(m̄ ·X)m̄α} eik·x + C.C.

Notice that the relative acceleration is in the plane transverse to the wave
vector, ~k. Furthermore, if a deviation vector is along ~k, then there is no tidal
acceleration. Taking a ring of test masses in the plane perpendicular to the
direction of the wave, one can develop a detailed picture of how these masses
respond to a passing gravitational wave [8].

This is our second example of a time varying geometry. It describes a ripple
of curvature. It has a characteristic effect on test bodies implied by its helicity
2 nature.



Chapter 3

Dynamics in Space-Time

In this chapter, we will consider motions of test objects i.e. objects which will
carry mass, energy etc. whose influence on the space-time geometry however
can be neglected. We take as given, some space-time and study some generic
properties of motion of point particles, small rotating objects and wave motion.
These equations are generically obtained by appealing to Principle of general
covariance and Principle of equivalence.

3.1 Particle Motion Including Spin

Having gotten a more general framework for a space-time, a natural ques-
tion is: how are the (classical) non-gravitational laws of physics to be adapted
to this generalized framework?. The laws of physics here, refer to the laws
of point particle mechanics and laws of dynamics of fields. We already made
such an adaptation while going from the Newtonian framework to the special
relativistic one: the kinematical quantities associated with a particle e.g. its
position, velocity, acceleration are to be described as 4-vectors, its intrinsic
attributes are to be the rest-mass (for a massive particle) - a scalar, its intrin-
sic angular momentum - a space-like 4-vector and force to be a 4-vector. The
Newton’s laws of motion are to be expressed as a Lorentz-covariant equations.
In going to the general relativistic adaptation, the Lorentz tensors are pro-
moted to general tensors and so are the equations. The position of a particle
ceases to be a vector. Wherever there are derivatives, these are to be replaced
by covariant derivatives. This procedure is taken as a statement of Princi-
ple of General Covariance. Since the covariant derivatives reduce to ordinary
derivatives in a locally inertial coordinate system, the procedure amounts to
stipulating that Laws of physics should take the special relativistic form in a lo-
cal inertial coordinate system. This formulation is sometimes referred to as the
Principle of Equivalence. By contrast, the assumed equality of gravitational
and inertial masses is referred to as the weak principle of equivalence. There
are caveats to the procedure of replacing coordinate derivatives by covariant
derivatives when higher order derivatives are involved. These stem from the
fact that while coordinate derivatives commute, the covariant derivatives do
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not and different orderings differ by curvature terms via the Ricci identity.
More on this below.

Free Motion: In special relativity (and in Newtonian theory too), all free
particles follow straight line trajectories (world lines) regardless of their non-
zero mass i.e. in a locally inertial coordinate system, its trajectory satisfies

the equation: d2xµ

dτ2 = 0. This can be manipulated as,

0 =
d2xµ

dτ2
= vν∂νv

µ (vµ :=
dxµ

dτ
is used)

= vν∇νvµ (general covariance)

= vν∂νv
µ + vνΓµ νλX

λ (definition of covariant derivative)

=
d2xµ

dτ2
+ Γµ νλ

dxν

dτ

dxλ

dτ
(the geodesic equation!). (3.1)

Thus a trajectory of a free particle is described by a geodesic.
In special relativity, the invariant interval on a world line of a massive

particle is time-like while that on a massless particle (light) is light-like or
null. This is equivalent to their velocities being time-like or null vectors. The
same distinction holds for general space-time by general covariance. Since the
norm of velocity, gµνv

µvν is constant along a geodesic, the entire geodesic can
be labelled as being time-like or null. Thus, both massive and massless, free
particles follow time-like (respectively null) geodesics in any space-time.

What if a particle has an ‘intrinsic spin’? This would be a model for a
small gyroscope having spin angular momentum. In special relativity, such a
spin will be described by a 4-vector which is space-like. This is because, in the
rest frame of a particle (necessarily massive)1, the spin is a 3-vector pointing
in some direction and having some magnitude

√
~s · ~s. Its 4-norm is positive

and hence space-like. The velocity in the same frame is a time-like vector
with no spatial component i.e. ηµνv

µSν = 0. In a torque-free, free motion,
this 4-vector will be preserved along the time-like geodesic: dSµ

dτ = 0, which
generalizes into the equation,

dSµ

dτ
= 0 = vν∂νS

µ + Γµ νλv
νSλ, gµνv

µSν = 0, s2 := gµνS
µSν . (3.2)

For a non-free motion with a force being Fµ, the equations of motion for
a single, non-spinning particle then take the form,

m0v
ν∇νvµ = Fµ, gµνFµvν = 0 ; (3.3)

An example of such a force, for a charged particle, is the Lorentz force
Fµ := qFµνvν . Another example would be Fµ ∼ Aµαβvαvβ where the
third rank tensor A, is symmetric in the last two indices and anti-symmetric
in the first two indices.

1For a massless particle, there is no notion of a spin, but one has the notion of helicity.
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If the body is spinning as well, then the force may act with/without gen-
erating a torque. In such a case of torque-free, accelerated motion of a small
spinning body, we write dSµ

dτ = ξvµ since in the rest frame, the spin should not
change its direction. Preservation of S · v = 0 then determines, ξ = S · F/m0

and we get,

vν∇νSµ = (Sαv · ∇vα) vµ =

(
S · F
m0

)
vµ. (3.4)

Thus under torque-free, accelerated motion, the spin vector satisfies an equa-
tion (the first equality) known as the Fermi Transport Equation. For geodesic
motion, (Fµ = 0) it reduces to the parallel transport equation for the spin
vector.

For a small spinning body or an idealized point spin, we may have only
torque-free motion.

Even for the free fall motion, we should appreciate that the spin vector
will ‘precess’ in general even though it is non-precessing in the rest frame.
This precession - or change of direction of the spin - is defined relative to
some fixed direction defined by a distant star or quasar. This can be computed
by solving the parallel transport equation for Sµ [2] and is sensitive to the
curvature2 (‘geodetic precession/De Sitter precession’) as well as the spin of
the rotating body (‘frame dragging effect/Lense-Thirring effect’) warping the
space-time geometry. An experiment to detect these precessions in the near
Earth geometry, thereby testing general relativity was proposed by Pugh and
Schiff in 1959 [9] and was realized some 45 years later by the Gravity Probe
B mission [10].

For an extended body though, a torque will in general be induced due to
the differential forces on parts of the extended body and these can be obtained
from the deviation equation (14.11). For instance, even though Earth’s motion
around the Sun may be well approximated as a free fall (geodesic), there is a
torque induced on the Earth’s spin by the tidal forces causing precession of
the equinoxes [8]. For analysis of general motion of an extended body, please
see [11–15].

3.2 Wave Motion

Electromagnetic waves, especially light, forms an important means of
probing and learning about nature. In Minkowski space-time, their propa-
gation is governed by the wave equation, ηµν∂µ∂νFαβ = 0 which follows from
the Bianchi identity and vacuum equation. The generalization of source free

2Even in the absence of curvature i.e. in special relativity, the spin does precess relative
to the distant stars and is know as the Thomas precession.
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Maxwell equations to general space-time is obtained by replacing the coordi-
nate derivatives by covariant derivatives:

∇µFµν = 0, ∇λFµν +∇µFνλ +∇νFλµ = 0 (3.5)

In the second equation, the Bianchi identity, the covariant derivative is re-
dundant in our space-times with zero torsion. It can be solved identically by
Fµν := ∇µAν −∇νAµ, with Aµ defined to within an addition of a term ∇µΛ
for an arbitrary scalar Λ. This is the usual gauge freedom of electromagnetism.
Substitution in the first equation leads to,

�Aµ −RµαAα −∇µ(∇ ·A) = 0, � := gµν∇µ∇ν (3.6)

and we have used the Ricci identity in getting the last two terms. Fixing
the gauge by imposing ∇ · A = 0, the equation reduces to an inhomogeneous
wave equation with the Ricci tensor of the background space-time serving as
a non-electromagnetic source.

We can also derive a wave equation directly for the gauge invariant Fµν by
operating on the Bianchi identity by ∇µ and using the first equation together
with the Ricci identity to get,

�Fµν −RµαFαν +RναF
α
µ +RµναβF

αβ = 0. (3.7)

For typical applications in observational astronomy, one uses the geometri-
cal optics approximation which is developed assuming a form of solution whose
amplitude varies very slowly compared to the variation of its phase. The scale
of variation of the geometry e.g. inverse of square root of non-zero curvature
components, is also assumed large compared to the scale of variation of the
phase. Thus, if λ denotes the scale of variation of the phase and L denotes the
smaller of the scales of variations of the geometry, the amplitude and polar-
ization, then λ � L. The approximation is developed as a formal expansion
in the parameter ε := λ/L assuming that the phase Φ(x) has no ‘correction
terms’ while the amplitude has an expansion in power series in ε. Thus, we
consider solution of the form,

Fµν(x) =
{
ε0µν(x) + ε ε1µν(x) + o(ε2)

}
sin(ε−1Φ(x)) := εµνsin(ε−1Φ) (3.8)

It is more common to take the ansatz as a (complex amplitude)× exp(iΦ) and
then take real parts. We have taken a real form directly and choice of sine vs
the cosine form does not matter. Substituting in the (3.5, 3.7) and denoting
kµ := ∇µΦ, we get,

0 = ε−1cos(ε−1Φ)(
∑

(λµν)

kλεµν) + sin(ε−1Φ)(
∑

(λµν)

∇λεµν) (3.9)

0 = ε−1cos(ε−1Φ)(kµεµν) + sin(ε−1Φ)(∇µεµν) (3.10)

0 = −ε−2sin(ε−1Φ)((k · k)εµν (3.11)

+ ε−1cos(ε−1Φ)(2k·∇εµν + εµν∇ · k ) (3.12)

+ sin(ε−1Φ)( �εµν − Rµαε
α
ν +Rναε

α
µ +Rµναβε

αβ ) (3.13)
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Equating terms singular as ε → 0 and noting that the sine and cosine
dependences have to vanish separately, we get the defining equations of the
geometrical optics approximation:∑

(λµν)

kλε
0
µν = 0, kµε0µν = 0, k · k = 0 (3.14)

2k·∇ε0µν + ε0µν∇ · k = 0. (3.15)

The first of these equations can be solved identically by taking ε0µν :=
kµεν − kνεµ with εµ being defined to within kµζ. The second equation then
gives k · ε = 0 (transversality) and this is preserved under the ζkµ addition.
The transversality implies that εµ cannot be time-like and must be space-
like modulo addition of ζkµ. Evidently, the norm ε · ε =: a2 is preserved
under the shift and is positive for a non-trivial solution. It is called the scalar
amplitude [8]. Substituting ε0µν in the last equation leads to

{(2k · ∇kµ)εν + kµ(2k · ∇εν + εν∇ · k)} − {(µ↔ ν)} = 0 (3.16)

The first term is zero because k ·∇kµ = kν∇ν∇µΦ = kν∇µ∇νΦ = 1
2∇µ(k ·

k) = 0. Hence kµ is tangent to a null geodesic. Putting εµ := aEµ, E · E = 1
and substituting in (3.16) leads to

2k · ∇a+ a∇ · k = 0, k · ∇Eµ = 0. (3.17)

In getting the second equation we observe that kµk ·∇Eν −µ↔ ν = 0 implies

that k · ∇Eν = ηkν and exploiting the freedom to change Eµ → Eµ + ζ
akµ, we

can arrange η = 0. The resultant Eµ is called the polarization vector.
To summarize, the geometrical optics approximation applied to Maxwell

equations and the wave equation imply that the wave propagates along a null
geodesic with its scalar amplitude satisfying the transport equation and its
polarization vector parallelly transported along the geodesic. This forms a basic
ingredient in astronomical observations. One of the main applications is the
computation of red-shifts.

Application to frequency shifts: Consider a source following a time-like
trajectory, emits light at a point P which propagates along a null geodesic. It
is received by an detector, following its own time-like trajectory, at a point Q.
The frequencies at the emission and reception points are in general different
and we would like to know the relation between them.

Let Sµ, Dµ and kµ denote the 4-velocities of the source, detector and the
light respectively. We have S2 = −1, D2 = −1, k2 = 0. Furthermore the
frequencies of the light, measured at P,Q are given by, ωP := k · S and
ωQ := k ·D. The light vector satisfies k · ∇kµ = 0.

We have have already noted while discussing local speed, for time-like
world-lines, that the local (physical) velocity βi and the coordinate ve-

locity V i are related by V i = βi/
√
−g00 − g0i/(−g00). Defining γ :=

1/
√

1− β2, β2 := gijβ
iβj , we can express a normalized, time-like 4-vector
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as: vµ = γ
√
−g00(1, V i). In a similar manner, for a light-like world-line, we

define Ki := ki/k0 and introduce k̂i :=
√
−g00Ki + g0i/

√
−g00 ↔ Ki =

k̂i/
√
−g00 − g0i/(−g00). It follows that k · k = 0 ⇒ k̂2 := k̂ik̂jgij = 1.

This allows us to write: kµ = k0(1,Ki). It is straight forward to obtain,

ω := k · v = − γk0√
−g00

(1−βcosθ) where, β :=
√
β2 and cosθ is defined through

gij k̂
iβj := βk̂cosθ, k̂ :=

√
k̂2. With these, we now write,

ω(P ) := k · S = −k
0 γS(1− βScosθkS)√

−g00

∣∣∣∣∣
P

(3.18)

ω(Q) := k ·D = −k
0 γD(1− βDcosθkD)√

−g00

∣∣∣∣∣
Q

(3.19)

ω(Q)

ω(P )
=

(
k0(Q)

k0(P )

)[
γD(1− βDcosθkD)(Q)

γS(1− βScosθkS)(P )

] [√
−g00(P )√
−g00(Q)

]
(3.20)

The first factor is the ratio of the k0 which are defined up to a constant
scaling due to the affine parametrization of the null geodesic. This constant
drops out in the ratio. It is the geodesic equation satisfied by the light ray
that will determine this ratio. The second factor involves the direction of the
light ray as well as the physical local speed of the source and the detector and
corresponds in the special relativistic context, to the Doppler shifts due to
motions of the source and the detector relative to their local coordinates. The
last factor is the ratio of the metric coefficients and denotes the contribution
of the gravitational shift.

We will consider three specific types of space-times and obtain the general
frequency shifts. These are (i) static space-times, relevant for stellar scale red-
shifts, (ii) cosmological space-times which are spatially homogeneous, isotropic
and non-stationary, and (iii) stationary but non-static space-times, specifically
the Kerr black hole. For these, we will obtain the first factor by using the
geodesic equation: k · ∂k0 + Γ0

µνk
µkν = 0. Special case of Minkowski space-

time will reproduce the special relativistic frequency shifts.
Static space-times: These have ∂0gµν and g0i = 0. This immediately gives

Γ0
00 = 0 = Γ0

ij and Γ0
0i = 1

2∂i ln |g00|. We have used g00 = 1/g00 when
g0i = 0. Therefore,

0 = k · ∂k0 + k0ki∂i ln |g00|
= k · ∂

{
ln k0 + ln |g00|

}
, ∵ ki∂i = k · ∂ − k0∂0 (3.21)

∴
k0(Q)

k0(P )
=

g00(P )

g00(Q)
and

ω(Q)

ω(P )
=

[
γD(1− βDcosθkD)(Q)

γS(1− βScosθkS)(P )

][√
−g00(P )√
−g00(Q)

]
(3.22)

Cosmological space-times: We choose the form of the metric as, ∆s2 =
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−∆t2 + a2(t)ḡij∆x
i∆xj where the 3-metric ḡ is independent of t and is ho-

mogeneous. a(t) is the scale factor and g0i = 0. This leads to Γ0
ij = aȧḡij =

ȧ
a (k0)2gij k̂

ik̂j = (k0)2∂0 ln(a).

0 = k · ∂k0 + k0k0∂0 ln a(t)

= k · ∂
{

ln k0 + ln a(t)
}
, ∵ k0∂0 = k · ∂ − ki∂i (3.23)

∴
k0(Q)

k0(P )
=

a(P )

a(Q)
and

ω(Q)

ω(P )
=

[
γD(1− βDcosθkD)(Q)

γS(1− βScosθkS)(P )

] [
a(P )

a(Q)

]
(3.24)

In the cosmological context, the light originates (and is observed) in a cluster
of galaxies and there is no sense in ascribing a local speed to the source or a
detector. Consequently the Doppler factor is one and the second factor is a
new type of frequency shift called the cosmological frequency shift. We have
seen a different derivation of it in the section 2.5.

Rotating black hole: This case is little involved for a direct computation as
above, because the geodesic equation for k0 does not de-couple from the other
components, notably the kφ component. However, we can exploit the available
isometries of the Kerr black hole, namely stationarity which is synonymous
with existence of a time-like Killing vector field, ξµ, which provides a natural
time coordinate and that of axisymmetry which implies existence of a space-
like Killing vector field, ψµ, which provides the angular coordinate φ. It is a
simple result that given a Killing vector field ξµ (i.e. satisfying ∇αξβ+∇βξα =
0 ) and a geodesic k · ∇kµ = 0, the quantity k · ξ is constant along the
geodesic: k ·∇(k ·ξ) = 0. Thus, for the Kerr space-time, we have the constants,
E := kµξνgµν and ` := k ·ψ. Using the space-time metric for the Kerr solution,
given in equation (5.110) with Q = 0, we get,

E := kµgµt = k0gtt + kφgtφ, ` := kµgµφ = k0gtφ + kφgφφ. (3.25)

We can evaluate both the equations at the source point P and the observation
point Q to eliminate the two constants and obtain the (k0, kφ)(Q) in terms of
(k0, kφ)(P ). Simple algebra gives,

k0(Q)

k0(P )
=

{
gφφ(Q)gtt(P )− gtφ(Q)gtφ(P )

(gttgφφ − g2
tφ)(Q)

}
(3.26)

+

{
gφφ(Q)gtφ(P )− gtφ(Q)gφφ(P )

(gttgφφ − g2
tφ)(Q)

}
Ω(P )

where, Ω(P ) :=
kφ(P )

k0(P )
is the local angular velocity of the light ray.

Substitution in the general red-shift equation (3.20), gives the desired expres-
sion.
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We could have derived the previous two cases in the same manner as
well. Specializing to staticity, gtφ = 0 immediately reproduces the previous
expression.

For the cosmological example, we have only ‘spatial homogeneity’ and
isotropy which has 6 space-like Killing vectors whose time components are all
zero. Thanks to isotropy about every point, we can choose three of the Killing
vectors to vanish at any given point leaving us with three non-trivial constants
from the remaining Killing vectors e.g. CA := (kiξjAḡij)a

2, A = 1, 2, 3. We have
used the fact that the Killing vectors have no time component and ḡ is the time
independent comoving metric. Since the Killing vectors are determined by the
comoving metric, they too are independent of time and hence we deduce that
ki = a−2(t)ki(CA). Now k2 = 0 gives the relation derived earlier. Another
derivation using a ‘Killing tensor’ may be seen in [16].



Chapter 4

Dynamics of Space-Time

In the last chapter we saw how equations determining motion of matter are
adapted to any given space-time. We do not know yet how to determine the
space-time consistent with a distribution of matter. This link is provided by
the Einstein equation whose heuristic derivation and elementary properties
are discussed below.

4.1 Einstein Equation

Although there is need to modify Newton’s gravity, the modification has
to be such as to make small refinements in the predictions since Newton’s
theory has been enormously successful. So we have to be able to reproduce
the equations,

d2xi

dt2
= − ∂

∂xi
Φ (4.1)

∇2Φ = 4πGρ (4.2)

when a suitable ‘limit’ is taken. Suitable limit means when we identify a
space- time appropriate for describing motion of a non-relativistically moving
test particle in the gravitational field of an essentially static body. Since this
situation corresponds to the Galilean picture of space and time, we may expect
that the geometry be time independent and very close to the Minkowskian
geometry, i.e. gµν ≈ ηµν + hµν .

Let us then imagine a large body producing Newtonian gravitational po-
tential in which a test particle is ‘freely falling’. Let (t, xi) denote a coordinate
system in the vicinity of the large body which is at rest. Let xµ(λ) denote the
trajectory of the freely falling particle. Clearly it satisfies the geodesic equa-
tion. Now,

Non-relativistic test particle ⇒
∣∣∣∣dxidλ

∣∣∣∣ << ∣∣∣∣ dtdλ
∣∣∣∣ ⇒

Γµαβ
dxα

dλ

dxβ

dλ
≈ Γµ00

(
dt

dλ

)2

37
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time independence of geometry ⇒

Γµ00 = −1

2
gµρ∂ρg00

Close to Minkowskian geometry ⇒ gµν ≈ ηµν − hµν ⇒

Γµ00 ≈ −
1

2
ηµρ∂ρh00 (4.3)

The µ = 0 geodesic equation then implies that t = aλ+b and by eliminating
λ in favour of t the remaining equations become,

d2xi

dt2
=

1

2
ηij∂jh00 = + δij∂j

(
1

2
h00

)
(4.4)

Comparing with the Newtonian equation (4.1), we see that the metric compo-
nent g00 gets identified with −1− 2Φ/c2. Note that the Newtonian equations
have usual units while in the metric we have used c = 1 units which is the
reason for the c2 factor in the denominator. Thus we obtain a relation between
metric and the Newtonian potential. Newton’s theory determines the poten-
tial given a mass density ρ via the Poisson equation. Using special relativity,
the energy density is ρc2, which we know, again using special relativity, to be
the 00 component of the energy-momentum tensor Tµν . Thus the Newtonian
equation can be expressed as,

∇2g00 = − 8πG

c4
T00 (4.5)

This is a highly suggestive form and appealing to covariance one can expect
an equation relating matter distribution and geometry to be of the form,

Fµν(g) = − 8πG

c4
Tµν (4.6)

where, Fµν is a tensor constructed from the metric and should satisfy the
following properties [2]:

1. Fµν is a symmetric tensor built from the metric and its derivatives and
is covariantly conserved, Fµν ;ν = 0;

2. It has at the most second derivative of the metric and is linear in the
second derivative;

3. For gµν ≈ ηµν + hµν the equation should match with the Newtonian
form of the equation (4.2).

These are very natural and reasonable demands. The first one is just con-
sistency with the known general properties of the energy-momentum tensor
(appeal to special relativity and principle of general covariance). The last one
is where we expect Newtonian gravity to be recovered. The second one is a
technical demand that could be justified on the basis of simplicity and the
Newtonian form of the equation.



Dynamics of Space-Time 39

Recall that the Riemann–Christoffel connection is defined via the equations
gµν;λ = 0. This allows us to express first (ordinary) derivatives of the metric
in terms of the connection and metric. Likewise, the second derivatives of the
metric can be expressed in terms of the first derivatives of the connection,
the connection and the metric. We need not go beyond due to the second
requirement. The linearity in the second derivative of the metric implies that
F should be built out of a 4th rank tensor involving first derivatives of the
connection and products of connections. But, mathematically, the only such
tensor is the Riemann curvature tensor! From this we also have the Ricci tensor
and the Ricci scalar. This leads to the form, Fµν = aRµν + bRgµν + Λgµν .

Now we impose the conservation requirement. Conveniently, the Riemann
tensor already satisfies the differential Bianchi identity:

Rρσµν;λ +Rρσνλ;µ +Rρσλµ;ν = 0 ⇒

R ν
µ ;ν =

1

2
R;µ (4.7)

Conservation condition thus implies (a/2 + b)R;µ = 0. If we take gradient
of the Ricci scalar to be zero, then the proposed equation will imply gradient
of the trace of the energy-momentum tensor to be zero. This is not generally
true and so would be an undue restriction on the matter properties. So we
must have b = −a/2. This leads to the proposed equation of the form,

a(Rµν −
1

2
Rgµν) + Λgµν = − 8πG

c4
Tµν (4.8)

We have not yet used the third requirement. For metric close to the
Minkowskian metric, the curvature terms are all order h while the Λ term
is order h0 and so will dominate. For large static body (or non-relativistic
matter) the spatial components of Tµν are much much smaller than the time-
time component. This is inconsistent with dominating Λ term. So if we are to
recover the Newtonian limit, Λ = 0 should hold (or it should be exceedingly
small to have escaped detection in Newtonian gravity, in which case we may
continue to neglect it.) All that remains now is to determine a. The spatial
components of Tµν being very small implies that Rij ≈ 1

2Rgij . This implies∑
Rii = (R/2)

∑
gii ≈ (R/2)

∑
ηii = +(3/2)R. Furthermore the Ricci scalar

can be likewise simplified as R ≈ −R00 +
∑
Rii ⇒ R ≈ 2R00. The equation

then approximates to aR00 ≈ −4πG
c4 T00. By substituting the metric in the

definitions, a straightforward calculation yields R00 ≈ −(1/2)δij∂i∂jh00 ≈
−(1/2)∇2h00. Comparison then gives a = −1. Thus we finally arrive at the
Einstein field equations as:

Gµν := Rµν −
1

2
Rgµν =

8πG

c4
Tµν (4.9)

A number of remarks are in order.
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4.2 Elementary Properties and Peculiarities

(1) The coefficient in front of Tµν is about 2×10−48cm−1.gm−1.sec2. From
cosmology, the estimate of the possible cosmological constant, Λ, is about
10−56cm−2. So although strict Newtonian limit would rule out Λ, Newtonian
gravity it self is not tested to the extent of detecting presence of Λ. Thus
logically the Λ term is admissible. In fact exactly the same logic can be applied
to seek more general field equations. Our second requirement was based on
the form of the Newtonian limit and simplicity. Simplicity is a matter of taste
and level of accuracy of Newtonian gravity could permit higher derivatives of
the metric and hence more general equations that could nonetheless show the
same Newtonian limit. In this sense, to propose the above equation as ‘the’
equation governing determination of space-time metric is a postulation and
not a ‘derivation’.

(2) The derivation above follows Weinberg [2]. There are other alternative
heuristic derivations of the Einstein equations. One is based on the comparison
of ‘tidal forces’ as understood in the context of geometry. In the Newtonian
picture, tidal forces imply relative acceleration between two nearby bodies,
both moving in the same inhomogeneous gravitational field. This is given
by the gradient of the force or double derivatives of the potential. In the
geometrical context, one represents the free fall of the nearby bodies by two
neighboring geodesics and obtains an expression for their relative motion in
terms of the Riemann tensor. Identifying the two expressions and referring to
the Poisson equation, leads one to try Rµν = 4πG

c4 Tµν . This in fact was the
equation first considered by Einstein. But contracted Bianchi identity then
implies that trace of Tµν must be constant which is an unphysical demand on
matter. The correction is of course replacing the Ricci tensor by the Einstein
tensor. This still retains the identification of the tidal accelerations with the
geodesic deviation at least for non-relativistically moving sources of Newtonian
gravity. Details may be seen in Wald’s book [17]. Weinberg [2] also has yet
another derivation allowing the Fµν to be not just dependent on metric and
its derivatives. We will now accept the Einstein equations as a law of nature
and turn to study its properties and implications.

(3) Mathematically, the Einstein tensor is an expression involving double
derivatives of the metric. The equations are thus a system of 10 non-linear,
partial differential equations for the 10 unknown functions of 4 coordinates,
gµν(xα). However the equations are not independent. They satisfy 4 differ-
ential identities implied by contracted Bianchi identities. There is also the
freedom to make arbitrary coordinate transformations. To specify a solution
therefore one has to specify coordinates either by explicit choice/procedure or
implicitly by some ‘coordinate conditions’. In this regards, the equations are
similar to the Maxwell equations for the gauge potential.

Being partial differential equations, these are necessarily local determina-
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tions. The solutions thus admit the notion of ‘extension’ as well as ‘matching’
solutions found in different local regions. We will see examples of this in the
context of the Schwarzschild solution.

(4) The equations, on the gravitational side, involve only the Ricci tensor
and the Ricci scalar and not the full Riemann tensor. Likewise, on the mat-
ter side, only Tµν is involved and not always the other details of the matter
constituents. For example, we may have a perfect fluid made up of whatever
types of ‘fluid particles’ but the form of the stress-tensor is still the same –
different fluids being distinguished by different ‘equations of states’. When
taking a gas of photons as a source, one needs only to use the Tµν described
in terms of pressure and density without any reference to the underlying elec-
tromagnetic fields satisfying Maxwell equations. In particular this means that
even if the stress tensor is zero in a region, the geometry in the same region
is only Ricci-flat but non necessarily Riemann-flat. Empty space-time does
not necessarily mean Minkowski space-time (which is Riemann- flat). This is
good because it permits non-flat space-times in the vicinity of a body even in
the region not occupied by the body. As an aside we note that the Riemann
tensor for n-dimensional geometry has 1

12n
2(n2− 1) independent components

(see section 14.6). For n = 2 this equals 1 which can be taken to be the Ricci
scalar. Indeed the Einstein tensor vanishes identically for n = 2. For n = 3 the
independent components are 6 in number and can be conveniently taken to
the components of the Ricci tensor. In this case, Ricci-flat implies Riemann-
flat. For n ≥ 4, Riemann tensor has more components than the Ricci tensor
and hence Ricci-flat does not imply Riemann-flat.

(5) Newtonian gravity was described in terms of a single function satisfying
a time independent Poisson equation. Time dependent gravitational fields are
thus possible only due to the time variation of the matter density. In Einstein’s
theory, gravity is much richer and equations are dynamical. Thus even in the
absence of sources one can have propagating gravitational disturbances – the
gravitational waves which have been inferred indirectly by observations of
binary pulsars but direct detection is still awaited.

(6) There is another aspect of the equations related to the conserva-
tion property. Bianchi identities imply that covariant divergence of the Ein-
stein tensor is zero that in turn implies that the covariant divergence of
the stress tensor is zero. From our experience with flat space-time, we are
used to inferring a conservation law from a divergence-free ‘current’ e.g.
∂µJ

µ = 0 ⇒
∫
vol
∂µJ

µ =
∫
surf

JµdSµ = 0 where Gauss’s theorem has been
used. However, if one has a covariant divergence of a higher rank tensor to be
zero, one does not get a corresponding (integrated) conservation law except
in some special cases. This happens essentially because an integration on an
n-dimensional manifold can be defined only for n-forms whenever arbitrary
change of integration variables is permitted (as on a manifold), see section
(14.6). When a metric is available, one has a natural invariant volume ele-
ment available and one can also define integration of 0-forms (scalars) on an
n-dimensional manifold. This fact underlies Stoke’s theorem that implies the
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Gauss’s theorem that is used in deducing a conservation law from a divergence
equation. One can check easily that invariant volume times the covariant di-
vergence of a contravariant vector can be expressed as ordinary divergence of
a vector density and for this the Stoke’s theorem can be applied. In equations:

√
g∇µJµ =

√
g∂µJ

µ +
√
gΓµµνJ

ν

=
√
g∂µJ

µ +
√
g(∂ν`n

√
g)Jν

= ∂µ(
√
gJµ)

= ∂µ(
√
gεµν1···νn−1ων1···νn−1

)

= Eν1···νn∂ν1ων2···νn
= dω (4.10)

Here, E is the Levi–Civita symbol (section (14.6).
For the stress tensor, however, these manipulations do not go through

and hence the divergence equation does not lead to a conservation law. How
did one get the usual conservation laws for special relativity? Recall that
in the special relativistic context, the stress tensor is a tensor only relative
to Lorentz transformations. Hence the only changes of integration variables
permitted are the (constant) Lorentz transformations. For these restricted
change of variables, the integration is well defined. Furthermore the space-
time is flat and so in the Minkowskian coordinates the connection is zero.
Covariant divergence is then same as the ordinary divergence.

A physical way of stating this lack of conservation law is to note that
the connection term is like a gravitational force (since metric is analogous to
the gravitational potential). Presence of these terms implies that tidal forces
can always do work on the matter and thus one cannot expect a separate
conservation for matter.

There are cases where the divergence equation does lead to conservation
equation. If we have a space-time with a symmetry i.e. transformations gen-
erated by a Killing vector which leaves the metric invariant, then one can
define a conserved quantity. For instance, if ξµ is a Killing vector field, i.e.
satisfies ξµ;ν + ξν;µ = 0, then one can define Jµ := Tµνξν . Its covariant di-
vergence is zero and because of the argument presented above, the quantity
Q(Σ) :=

∫
Σ
Jµξµ where Σ is a hypersurface orthogonal to the Killing vector,

is conserved. However, generic space-times do not admit any Killing vectors.

4.3 The Stress Tensor and Fluids

Let us consider the right-hand side of the Einstein equation – the Stress
Tensor, Tµν . Only two properties are stipulated, namely, it is a symmetric
tensor and it is covariantly conserved. One more property is implicit: if vari-
ables representing matter are ‘set to zero’, the stress tensor vanishes. Hence,
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Tµν is more accurately called as the matter stress tensor. Coupling of matter
to the metric is only through its ‘energy’ and its ‘strength’ is determined by
appealing to the Newtonian limit and has the specific 8πG coefficient. How is
the Tµν to be determined for a given type of matter?

It is postulated ab initio as in the case of a perfect fluid and is derived for
matter which can be described by an action containing the metric. The precise
coefficients of coupling are a matter of convention in the sense, it depends on
the coefficients in front of the Einstein–Hilbert action. These coefficients are
chosen so that the equations of motion derived give the Einstein equation. Let
us note some examples.

Perfect fluid: A perfect fluid is characterized by a fluid velocity, vµ(x)
(time-like), and two functions, P (x) and ρ(x), representing pressure and en-
ergy density respectively. Its stress tensor is given by,

Tµν := ρvµvν + P (gµν + vµvν) (4.11)

This is the same form as in special relativistic formulation.
For matter which can be described by an action, It is most naturally de-

rived from an action functional including matter denoted generically by Φ,

coupled to a metric, via the definition: Tµν(Φ, g) := − 2√
|g|

δSmatter(Φ,gµν)
δgµν . The

specific sign and the factor of 2 are chosen so that for the standard nor-
malization for actions on Minkowski space-time, the definition matches with
the special relativistic definitions1. Thus, in using this definition, we assume
standard normalization of the flat space-time actions2.

Here are some examples.
Free scalar field: The action is taken as

S[g, φ] =

∫
d4x
√
|g|L :=

∫
d4x
√
|g|
(
−1

2
gµν∂µφ∂νφ−

1

2
mφ2

)
⇒

Tµν := − 2√
|g

δS

δgµν
= ∂µφ∂νφ+ gµνL (4.12)

Electrodynamics:

Fµν(A) := ∂µAν − ∂νAµ,

S[g,A] =

∫
d4x
√
|g|L :=

∫
d4x
√
|g|
(
−1

4
gµαgνβFµνFαβ

)
⇒

Tµν := − 2√
|g

δS

δgµν
= FµαFνβg

αβ + gµνL . (4.13)

Let uµ, a time-like unit vector, represent an observer. Let E µ
I , I = 0, 1, 2, 3,

1Recall, our metric signature is (−,+,+,+).
2The action for metric and matter together will be written as: αgSGravity +

αmSmatter(Φ, g), the constant coefficients are chosen so that Einstein equation results. The

gravitational action is taken to be:
∫
d4x

√
|g|R(g). This implies, αm = 16πGαg .
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Eµ0 := uµ denote an orthonormal basis, so that gµν = ηIJE µ
I E

ν
J . Then

E := Tµνu
µuν(=: T00) is the energy density measured by the observer in

his/her rest frame. For the three examples above, we get,

Escalar = (E0 · ∇φ)2 +
1

2

{
−(E0 · ∇φ)2 + (Ei · ∇φ)2 +m2φ2

}
=

1

2

{
(E0 · ∇φ)2 + (Ei · ∇φ)2 +m2φ2

}
(4.14)

Eem = F0IF0Jη
IJ +

1

4
FIKFJLη

IJηKL, FIJ := E α
I FαβE

β
J ,

=
1

2

(
~E · ~E + ~B · ~B

)
, Ei := F0i, Bi :=

1

2
E jk
i Fjk (4.15)

Efluid = ρ (4.16)

The example of electrodynamics also shows that T0i := Tµνu
µE ν

i = E jk
i EjBk

which is the Poynting vector representing the flux of electromagnetic field
energy.

Not every stress tensor which is symmetric and covariantly conserved need
represent physical matter. For instance, we expect all physical matter to have
positive energy density as measured by any observer in his/her rest frame. In
our experience with Newtonian gravity, it is an attractive force only among
two positive masses and we have never seen it being repulsive. This suggests
that in the physical world, masses are only positive.

Since the Ricci tensor is determined by the matter stress tensor through
the Einstein equation, the properties of stress tensor have a direct bearing on
the geometrical properties manifested through the Ricci tensor. Even though
we can have very complicated physical stress tensor arising out of different
species of matter, we expect certain general properties to be satisfied by any
such tensor. These stipulations go under the name of energy conditions. Below
are commonly used energy conditions [17].

Weak Tµνv
µvν ≥ 0 ∀ v · v < 0

Strong Tµνv
µvν ≥ − 1

2Tαβg
αβ ∀ v · v = −1

Dominant −Tµνvν is future directed causal ∀ v future directed causal.

There is also the Null energy condition which replaces the time-like vµ by
a light-like kµ.

To appreciate their implications, it is useful to have an algebraic classifi-
cation of the stress tensor, which allows us to put the stress tensor in some
canonical forms. The classification holds point-wise in the space-time. Math-
ematically, one considers the eigenvalue equation: TµνX

ν = λXµ or equiva-
lently, TµνX

ν = λgµνX
ν . Note that Tµν = gµαTαν is not a symmetric matrix,

only Tµν = Tνµ. Hence, diagonalizability of Tµν is not assured. Secondly, the
metric is Lorentzian which means that eigenvectors Xµ can be time-like and
light-like as well. Nevertheless, symmetric nature of the stress tensor implies
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that eigenvectors corresponding to distinct eigenvalues are necessarily orthog-
onal. This implies that among the eigenvectors, there can be at the most only
one time-like eigenvector. Likewise, since no two distinct light-like vectors can
be orthogonal, if they are eigenvectors, they must have the same eigenvalue.
The classification is now arranged according to number of distinct eigenval-
ues [18].

Type I: Four distinct eigenvalues. This implies 4 orthogonal eigenvectors.
If one of these is light-like, then the remaining three must be space-like and
this is impossible. Hence the eigenvectors must form a (pseudo-)orthonormal
basis, Eaµ, a = 0, 1, 2, 3, Ea · Eb = ηab. The Tµν is diagonalizable and can be
expressed as,

Tµν = −ρE0
µE

0
ν +

3∑
i=1

piE
i
µE

i
ν .

The pi are called principle pressures and ρ is called the rest energy density.
Stress tensors of all observed massive and massless fields are of type-I, except
for a very special case below.

Type II: Three distinct eigenvalues. So one eigenvalue is repeated once.
The eigenspace of the repeated eigenvalue is two-dimensional. If every vector
in this space is space-like or if one of these vectors is time-like, then we are
back to the previous case. So a new case arises when the eigenvector for the
repeated eigenvalue is light-like and with no other eigenvector in the subspace.
This case thus has a double light-like eigenvector and two space-like ones.

Two get a canonical form, let kµ be the double light-like eigenvector with
eigenvalue λ and let E2

µ, E
3
µ be the remaining two eigenvectors. Introduce

another light-like vector `µ which is orthogonal to E2, E3 and k · ` = 2. Then
the stress tensor can be written as,

Tµν = σkµkν +
λ

2
(kµ`ν + kν`µ) + p2E

2
µE

2
ν + p3E

3
µE

3
ν , σ 6= 0 is arbitrary.

Only known situation is a massless field with radiation going along kµ (all
eigenvalues are zero i.e. λ, p2, p3 = 0) This is said to represent ‘null fluids’.

Type III: Two distinct eigenvalues. By similar argument as above, a new
case arises when the repeated eigenvalue has a triple, light-like eigenvector and
of course one space-like one. Let kµ be the triple light-like eigenvector with
eigenvalue λ. Introduce ` as before and another orthogonal vector eµ which is
space-like and is also orthogonal to E3

µ. The canonical form is then expressed
as,

Tµν =
λ

2
(kµ`ν + kν`µ) + (kµeν + kνeµ) + λe2

µe
2
ν + p3E

3
µE

3
ν .

This ensures that only kµ and E3
µ are the eigenvectors.

There are no physical examples of this type.
Type IV: There is no time-like or light-like eigenvector at all. There are

no physical examples of this type either. This happens when there is a pair of
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complex conjugate eigenvalues. This cannot happen in the space-like subspaces
hence it suffices to have the canonical form as,

Tµν = (σ−ρ)kµkν−(σ+ρ)`µ`ν−ρ(kµ`ν+kν`µ)+p2E
2
µE

2
ν+p3E

3
µE

3
ν , ρ

2 < σ2

Note that if all eigenvalues are equal, then Tµν = Λgµν and this falls in the
type I of diagonalizable stress tensors.

For diagonalizable stress tensor, the energy conditions take the form:

Weak ρ ≥ 0, ρ+ pi ≥ 0 ;
Strong ρ+

∑
pi ≥ 0, ρ+ pi ≥ 0 ;

Dominant ρ ≥ |pi|

These energy conditions play a role in the discussion of singularity theorems.

4.4 Operational Determination of the Metric

Is it possible to operationally determine the metric tensor? It is and as
follows [18]:

Let us assume that we have a procedure to determine which events, lo-
cation and time stamps, can be physically connected so that it is possible to
empirically determine a local light cone. From a given location and a time
stamp, send out a light wave and after a while assign the same time label to
all the spatial locations on the wave front. Having identified the local light
cone in space-time, we infer the light-like directions in the tangent space at
the given event.

Choose a time-like vector X and a space-like vector Y in the tangent space
and consider the equation,

(X + λY ) · (X + λY ) = 0 = X ·X + 2λX · Y + λ2Y · Y.

We know the roots of this equation and from their product we find the ratio
of the magnitudes of X and Y , λ+λ− = X ·X/Y ·Y . Thus, we know the ratio
of magnitudes of a space-like and a time-like vector.

Next, for any two non-light-like vectors, Z,W such that Z + W is not
light-like, we can use,

− Z ·W =
1

2
[Z · Z +W ·W − (Z +W ) · (Z +W )]

The magnitudes on the right-hand side can be expressed in terms of magnitude
of X or Y . Therefore, we know Z ·W in terms of magnitude of Y say. If Z+W
is light-like, use the magnitude of Z + 2W to get Z ·W . We see that we can
determine the ‘·’ product and hence the metric in terms of magnitude of one
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vector i.e. up to a scale. Evidently, we can repeat this process for each point
and therefore determine the metric up-to a space-time dependent conformal
factor. However, we also have the requirement of conservation of the stress
tensor, ∇µTµν = 0 and this equation is not invariant under conformal scaling.
Hence the demand of conservation fixes the conformal factor up to a space-
time constant and this is dependent on the units chosen.

Thus, experimental determination of local light cone and the covariant con-
servation of the stress tensor determine the space-time metric modulo choice
of units.





Chapter 5

Elementary Phenomenology

General relativity brought in a huge conceptual change regarding the nature
of gravitation. It introduced a sophisticated model for possible space-times, re-
quired it to be dynamical and provided a specific equation determining space-
times appropriate in various physical contexts. Within this model, the motion
of test bodies under Newtonian gravitational force is understood as geodesics
of corresponding space-time. This forms the basis for the solar system tests
of general relativity. As we saw in the discussion of wave motion in geomet-
rical optics approximation, light too responds to gravity following light-like
geodesics. Apart from these test bodies implications, general relativity impacts
compact stars and their stability, strongly suggests new types of objects called
black holes, points to the possibility of a ‘singular’ beginning for an expand-
ing universe and makes a brand new prediction of gravitational waves. This
chapter is arranged according to these different implications of the theory.

In the following, we use the geometrized units: c = 1, G = 1 and the
Einstein equation is taken in the form,

Rµν −
1

2
Rgµν + Λgµν = 8πTµν . (5.1)

5.1 Geodesics and the Classic Tests

The first set of predictions were in the context of solar system where the
Newtonian theory was applied and tested extensively. To make new predictions
based on the idea of planetary motions being geodesics, we have to first choose
a space-time appropriate for our solar system. In the section 2.4 we have
already introduced the idealized solar system. We noted that the appropriate
space-time should be time independent, spherically symmetric and should
satisfy the source-free Einstein equation in the region exterior to the Sun.

Since the coordinates are arbitrary and have no particular physical inter-
pretation, the notion of a symmetry cannot be based on specific coordinate
transformation unless suitable coordinates can be singled out. It is convenient
to consider first infinitesimal symmetries.

Consider a vector field ξµ(x) which enables us to make an infinitesimal
coordinate transformation, xµ → x′µ(x) := xµ+εξµ(x). Under this, the metric

49
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transforms as

g′µν(x+ εξ) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x)

∴ δgµν := g′µν(x)− gµν(x) ≈ −ε(ξα∂αgµν + ∂µξ
α gαν + ∂νξ

α gαµ)

= −ε(∇µξν +∇νξµ) =: − εLξgµν (5.2)

If it so happens that δgµν = 0 under the infinitesimal transformation, then
we say that the vector field is a Killing vector field and satisfies the Killing
equation ∇µξν +∇νξµ = 0. The infinitesimal transformation is said to be an
infinitesimal isometry. The calculation says that if we move along an infinites-
imal curve from a point p, in the direction given by ξµ(p), then the metric does
not change. It also means that the metric is independent of the parameter,

s, labelling points on the integral curve of ξ, defined by dxµ(s)
ds = ξµ(x(s)).

This equation being an ordinary differential equation, it always has a lo-
cal solution and thus integral curves always exist for smooth vector fields.
It however is not always possible to find a hypersurface Σ (a surface of n
−1 dimension in an n-dimensional manifold), to which a given vector field
is orthogonal. The condition for a vector field ξµ to be hypersurface orthog-
onal is that 0 = ξλ(∇µξν − ∇νξµ) + cyclic permutations of (λµν). This is
a form of the Frobinius theorem [17]. We note that linear combinations of
Killing vectors is a Killing vector and the commutator of two Killing vectors
[ξµ∂µ, η

ν∂ν ] = (ξ · ∇ηα − η · ∇ξα)∂α, is also a Killing vector. We are now
ready to characterize static, spherically symmetric space-times.

A space-time is said to be stationary if there exists a time-like Killing
vector, ξ. It is static, if the vector field is hypersurface orthogonal. It is said
to be spherically symmetric if there exist three space-like Killing vectors, ξa
such that [ξa, ξb] = ε c

ab ξc and the set of points reached from a given point
by all possible shifts along the Killing vectors ξa (i.e. an orbit of SO(3)) is a
2-sphere.

Let t be the parameter along the stationary Killing vector. Staticity im-
plies there is a Σ which is orthogonal to ξ and therefore Σ is space-like. For
an arbitrary choice of coordinates xi on Σ, label integral curve of ξ passing
through p ∈ Σ, by the spatial coordinates of p and assign the same value, t
to all points of Σ. For points q on the integral curve through p, assign the
coordinates (t′, xi) where t′ is the value of the Killing parameter and xi are
the same spatial coordinates of p. ξ being a Killing vector implies the metric
gµν is independent of t. The staticity implies that gti(x

j) = 0. The metric is
now invariant also under t→ −t.

The orbit spheres of spherical isometries lie within Σ and each sphere
has an induced metric on it which much be proportional to the standard
metric on an S2. Label an orbit sphere by its areal radial coordinate, r :=√

area/(4π). Choose an orbit sphere and introduce the standard spherical
polar coordinates (θ, φ) on it. On this, the metric takes the form ∆s2

2 =
r2(∆θ2 + sin2θ∆φ2). Consider space-like geodesics emanating orthogonally
from this sphere and and carry the angular coordinates of the point along the
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geodesics. This introduces the spatial coordinates r, θ, φ throughout Σ. The
spatial metric then takes the form ∆s2

3 = g(r)∆r2 +∆s2
2. The orthogonality of

geodesics implies that grθ = 0 = grφ. This procedure of setting up a coordinate
system using the availability of the Killing vectors restricts the form of the
metric to [17],

∆s2 = − f(r)∆t2 + g(r)∆r2 + r2(∆θ2 + sin2θ∆φ2).

The coordinates themselves are called the Schwarzschild coordinates. Note
that there is freedom to scale the time coordinate by a constant which may be
absorbed in f . This freedom will be used below. The two unknown functions
f, g are determined by the Einstein equation, Rµν = 0 since exterior to the
Sun, there is no matter.

Straight forward application of the definitions (see section 14.5) leads to
(′ denotes d

dr ):

Γαβγ t r θ φ

tt 0 1
2g
−1f ′ 0 0

tr 1
2f
−1f ′ 0 0 0

tθ 0 0 0 0
tφ 0 0 0 0
rr 0 1

2g
−1g′ 0 0

rθ 0 0 r−1 0
rφ 0 0 0 r−1

θθ 0 −rg−1 0 0
θφ 0 0 0 cotθ
φφ 0 −g−1rsin2θ −sinθcosθ 0

Rtt =
f ′′

2g
− 1

4

(
f ′

g

)(
g′

g
+
f ′

f

)
+
f ′

rg
;

Rrr = −f
′′

2f
+

1

4

(
f ′

f

)(
g′

g
+
f ′

f

)
+
g′

rg
;

Rθθ = 1− r

2g

(
−g
′

g
+
f ′

f

)
− g−1;

Rφφ = sin2θ Rθθ; all other components are zero. (5.3)

The condition of Ricci flatness implies, g−1Rrr + f−1Rtt = 0 ⇒ fg =
constant. In view of the scaling freedom in the definition of t we can take
this constant to be equal to 1 so that the metric approaches the standard
Minkowski metric for r tending to infinity. The Rθθ = 0 implies rf ′ = 1 − f
which can be immediately integrated to give f(r) = 1−RSr−1 where RS is an
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integration constant. If we appeal to the Newtonian limit (see section 4.1) for
large r, we see that f(r) = − gtt = 1 + 2Φ(r) which gives the identification,
RS = 2M (or R = 2GM

c2 ). Thus we have the famous Schwarzschild solution
(1916). RS is the Schwarzschild radius.

5.1.1 Geodesics

The first aspects to study are the geodesics. Let (t(λ), r(λ), θ(λ), φ(λ))
denote a geodesic. Using over-dot to denote derivative with respect to λ and
′ to denote derivative w.r.t. r and using the table of Γ’s, we see that,

0 = ẗ+
f ′

f
ṙ ṫ (5.4)

0 = r̈ +
f ′

2g
ṫ2 +

g′

2g
ṙ2 − r

g
θ̇2 − rsin2θ

g
φ̇2 (5.5)

0 = θ̈ +
2

r
ṙθ̇ − sinθ cosθ φ̇2 (5.6)

0 = φ̈+
2

r
ṙφ̇+ 2cotθ θ̇φ̇ (5.7)

It is clear that θ = constant is possible only for θ = π/2. These are the
equatorial geodesics. The equations simplify to:

0 = ẗ+
f ′

f
ṙ ṫ ⇒ ṫf =: E ( a positive constant ) (5.8)

0 = r̈ +
f ′

2g
ṫ2 +

g′

2g
ṙ2 − r

g
φ̇2 (5.9)

0 = φ̈+
2

r
ṙφ̇ ⇒ r2φ̇ =: EL ( a constant. ) (5.10)

The radial equation can be integrated once to yield,

gṙ2 + E2

(
L2

r2
− 1

f

)
=: −E2κ ( κ is a constant. ) (5.11)

It is easy to see by substitution that,(
ds

dλ

)2

= − E2κ ( ≤ 0 ) (5.12)

κ is positive for time-like geodesics (material test bodies such as planets)
and is zero for light-like geodesics. One can eliminate λ in favor of t by using
dλ = fdt/E to get,

r2 dφ

dt
= Lf (5.13)

g

f2

(
dr

dt

)2

− 1

f
+
L2

r2
= −κ (5.14)(

ds

dt

)2

= −κf2 (5.15)
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Notice that these equations are independent of E. The relevant constants
of integration are κ and L. To get the orbit equation, we eliminate t in favor

of φ using dt = r2

Lf dφ to get,

0 =
g

r4

(
dr

dφ

)2

+
1

r2
+

1

L2

(
κ− 1

f

)
or (5.16)

φ(r) = ±
∫
dr

√
g

r2

(
1

L2
(f−1 − κ)− 1

r2

)− 1
2

(5.17)

These are the general set of equations for geodesics. The geodesics are es-
sentially characterized by two constants, κ, L. We can now distinguished two
types of orbits, bounded and unbounded (scattering). The relevant orbit pa-
rameters for bounded orbits are the maximum and the minimum values, r±
and relevant question is whether the orbit precesses or not. For unbounded or-
bits the relevant parameters are asymptotic speed (or energy) and the impact
parameter or the distance of closest approach and the important question is
to obtain the scattering angle.

5.1.2 Deflection of Light

α  =  φ −    φ (r)

α

r b0

∆ φ

(r)φ

b = r sin α  r α

φ

FIGURE 5.1: Deflection of light by a massive body.

Let us consider the scattering problem first. The geometry is shown in the
figure (5.1). Asymptotically r is very large and thus f, g ≈ 1. The incoming
radial speed v, defined as v := −drcosαdt is given by v ≈ −drdt . Radial equation
then implies κ = 1 − v2. Likewise the impact parameter b := rsinα ≈ rα.
Differentiating w.r.t. t and using the angular equation one finds L = bv. It is
convenient to further eliminate L in favor the distance of closest approach, r0,
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defined by dr
dφ = 0. This yields (dφdr > 0),

|L| = r0

√
f(r0)−1 − 1 + v2 and the φ integral becomes, (5.18)

φ(r) = φ∞ +

∫ r

∞
dr

√
g

r2

[
1

r2
0

f(r)−1 − 1 + v2

f(r0)−1 − 1 + v2
− 1

r2

]− 1
2

(5.19)

We have obtained the expression in terms of directly observable param-
eters, v and r0. The scattering or deflection angle is defined as ∆φ :=
2|φ(r0)− φ∞| − π.

For scattering of light, we have to take v2 = 1 (recall that we are using
units in which c = 1). The integral still needs to be done numerically.

Observe that so far we have used only the spherical symmetry and staticity
of the metric and not the particular f, g of the Schwarzschild solution. If we
only use the qualitative fact that the Schwarzschild solution is asymptotically
flat i.e. approaches the Minkowskian metric for r >> RS , then we can use a
general form for f, g as an expansion in terms of the ratio RS/r. We can now
use the fact that for solar system objects RS

r << 1 even for grazing scattering

and can thus evaluate the integral to first order in RS
r . It is convenient to use

the so-called Robertson expansion for the f, g function instead of the exact
expression. This is parameterized as:

f(r) =

(
1− RS

r
+ · · ·

)
g(r) =

(
1 + γ

RS
r

+ · · ·
)

(5.20)

For the Schwarzschild solution, i.e. for GR, γ = 1. Then to first order one
computes,

∆φ =
2RS
r0

(
1 + γ

2

)
=

(
R�
r0

)(
2RS
R�

)(
1 + γ

2

)
(5.21)

Putting in the values for the solar radius, R� ≈ 7 × 105 km and RS ≈ 3
km one gets,

∆φ� ≈ 1.75′′
(

1 + γ

2

)(
R�
r0

)
(5.22)

This prediction was first confirmed by Eddington during the total solar
eclipse in 1919. It has since been tested many times with improved accuracies.
Current limits on γ put γ = 1 to within 10−4 [19].

This phenomenon of phenomenon of ‘bending of light’, leads to gravita-
tional lensing. Light from distant sources would get distorted due to interven-
ing matter distribution producing multiple images and/or distorted images
of the same source. The first identification of lensing was in 1979 by Dennis
Walsh, Robert F. Carswell and Ray J. Weymann who identified two quasars as
two images of the same quasar. Subsequently many examples were discovered
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including the famous Einstein cross, 4 images, in 1985 and the Einstein ring
in 1988. There is interesting history of the prediction of gravitational lens-
ing [20] and more aspects of it such as micro-lensing and weak lensing have
been identified and are used as observational probes [21,22].

5.1.3 Precession of Perihelia

Now let us consider bounded orbits. Clearly any such orbit will have some
maximum and minimum values of r, possibly equal in case of a circular orbit.
These are easily determined from the orbit equation by setting dr

dφ = 0. This
is a cubic equation in r and so has either 1 or 3 real roots. The case where
there is only one root corresponds to an unbounded orbit with a single rmin.
The case of three roots is the one that admits bounded orbits. The maximum
(r+) and the minimum (r−) are determined by,

0 =
1

r2
±
− 1

L2f±
+

κ

L2
, f± := f(r±) , ⇒ (5.23)

κ =

r2+
f+
− r2−

f−

r2
+ − r2

−
; (5.24)

L2 =

1
f+
− 1

f−
1
r2+
− 1

r2−

; also, (5.25)

φ(r) = φ(r−) +

∫ r

r−

dr

r2

√
g

{
1

L2f
− κ

L2
− 1

r2

}− 1
2

(5.26)

The orbit is said to be non-precessing if the accumulated change in φ as
one makes one traversal r− → r+ → r− equals 2π. Otherwise the orbit is said
to be precessing with a rate,

Precession per revolution ≡ ∆φ := 2|φ(r+)− φ(r−)| − 2π. (5.27)

Now one substitutes for κ, L2 in terms of the orbit characteristics, r±
and evaluates the integrals. This again has to be done numerically. For solar
system objects, one can compute the precession to first order in RS . Using
the Robertson parameterization (γ = 1, β = 1 for Schwarzschild),

g(r) = 1 + γ
RS
r

+ · · ·

f(r) = 1− RS
r

+
(β − γ)

2

(
RS
r

)2

+ · · · ⇒

f−1(r) = 1 +
RS
r

+
(2− β + γ)

2

(
RS
r

)2

+ · · · , (5.28)

leads to the formula [2],

∆φ = (2 + 2γ − β)πRS

[
1

2

(
1

r+
+

1

r−

)]
(5.29)
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The quantity in the square brackets is called the semi-latus-rectum. Usu-
ally astronomers specify an orbit in terms of the semi-major axis a, and the
eccentricity e, defined by r± = (1 ± e)a. The semi-latus rectum, `, is then
obtained as ` = a(1− e2) and the precession per revolution is given by,

∆φ = 3π
2GM

c2
1

`
(5.30)

The precession will be largest for largest RS and smallest ` and in our
solar system the obvious candidates are Sun and Mercury. For Mercury ` ≈
5.53× 107 km while RS for the Sun is about 3 km. Mercury makes about 415
revolutions per century. These lead to general relativistic precession of Mercury
per century to be about 43′′. This has also been confirmed. Observationally,
determining the precession is tricky since many effects such as perturbation
due to other planets, non-sphericity (quadrupole moment) of the Sun also
cause precession. Further discussion may be seen in Weinberg’s book [2].

5.2 Relativistic Cosmology

Let us now leave the context of compact, isolated bodies and the space-
times in their vicinity and turn our attention to the space-time appropriate to
the whole universe. We can make no progress by piecing together space-times
of individual compact objects such as stars, galaxies etc., since we will have to
know all of them! Instead we want to look at the universe at the largest scale.
Since our observations are necessarily finite (that there are other galaxies was
discovered only about 90 years ago!), we have to make certain assumptions
and explore their implications. These assumptions go under the lofty names
of ‘cosmological principles’.

One fact that we do know with reasonable assurance is that the universe is
‘isotropic on a large scale’. What this means is the following. If we observe our
solar system from any planet, then we do notice its structure, namely, other
planets. If we observe the same from the nearest star (alpha centauri, about 4
light years), we will just notice the Sun. Likewise is we observe distant galaxies,
they appear as structure less point sources (which is why it took so long to
discover them). If we look still farther away then even clusters of galaxies
appear as points. We can plot such sources at distances in excess of about a
couple of hundred mega-parsecs on the celestial sphere. What one observes is
that the sources are to a great extent distributed uniformly in all directions.
We summarize this by saying that the universe on the large scale is isotropic
about us. We appear to occupy a special vantage point! One may accept this
as a fact and ponder about what is special about our position and why we
occupy it. An alternative is to reject the idea that there is anything special
about our location in the universe and propose instead that the universe must
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look isotropic from all locations (clusters of galaxies). Since universe appears
isotropic to us at present, we assume that the same must be true for other
observers elsewhere i.e. there is a common ‘present’ at which isotropic picture
hold for all observers. Denial of privileged position also amounts to assuming
that the universe is spatially homogeneous i.e. at each instant there is a spatial
hypersurface (space at time t) on which all points are equivalent. Isotropy
about each point means that there must be observers (time-like world line)
who will not be able to detect any distinguished direction. The statement that
on large scale the universe is spatially homogeneous and isotropic is called the
cosmological principle1. The so-called standard cosmology is based on spatial
homogeneity and isotropy and this is what is discussed below.

In order to arrive at a suitable form of the metric, we need to characterize
precisely what is meant by spatially homogeneous and isotropic in the context
of geometry. The first task is to be able to identify a spatial slicing of the space-
time. This is achieved by stipulating that there exist a one parameter family of
space-like hypersurfaces, Στ , foliating the space-time. A space-time is said to
be spatially homogeneous if there is a transitive action of a group of isometries
on each of the spatial slices. Here, transitive action means that given any two
points on a Στ , there is a diffeomorphism of Στ on to itself. This being an
isometry means that the metric remains the same. There can be more than
one such isometries connecting two points.

Isotropy is a stipulation associated with observers. Let xµ(t) be a time-
like curve representing worldline of an observer. The observer is said to be an
isotropic observer if at any point p ∈ xµ(t) and for a pair of space-like tangent
vectors in the tangent space at p, there exists an isometry which leaves p
and the tangent vector uµ := dxµ

dt |p unchanged but maps one direction to the
other. A space-time is said to be isotropic at every point if there exist a space-
time filling congruence of isotropic observers i.e. a time-like vector field, uµ,
whose integral curves represent isotropic observers, variously called as cosmic
observers or fundamental observers.

Isotropy implies that the vector field must be orthogonal to surfaces of
homogeneity. For if it were not, its projection on the tangent space to Στ
will give a distinguished direction which is disallowed by isotropy. If there are
more than one family of hypersurfaces of homogeneity, then isotropy implies
that at least one of these must be orthogonal to the vector field. Note that,
isotropy at each point does not imply/require spatial homogeneity, nor does
spatial homogeneity imply isotropy. However, if we have both of these, then
the isotropy vector field is orthogonal with the surfaces for homogeneity. We
can choose the label τ of the family of hypersurfaces as a time coordinate
and given any choice of spatial coordinates, xi, on a Στ0 carry them along the
world lines of the isotropic observers. This immediately gives a block diagonal

1There is a stronger version, the so-called perfect cosmological principle that asserts that
not only we do not have special position, we are also not in any special epoch. Universe
is homogeneous in time as well. It is eternal and unchanging. This principle leads to the
steady state cosmologies. For a discussion of alternative cosmologies, see [2].
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form of the matric with gτi = 0. We can also relabel the surfaces so that the
metric coefficient gττ = −1.

Isotropy restricts the form of the spatial metric severely. The Riemann
tensor Rijkl of the spatial metric can be regarded as a symmetric 6×6 matrix
in the antisymmetrized pairs of indices [ij] and [kl]. If it has distinct eigenval-
ues, then the corresponding eigenvectors can be uniquely distinguished and
these will be 2-forms. From these, we can uniquely obtain a distinguished
dual 1-form or equivalently, a tangent vector. This would contradict isotropy.
Hence all eigenvalues must be equal i.e. the spatial Riemann tensor must have
constant curvature: Rijkl = λ(gikgjl − gilgjk). As noted in section 2.5, such
constant curvature space are completely classified and lead to the line-elements
given in (2.28).

Computation of the Einstein tensor, proceeds as in the case of the
Schwarzschild metric, and leads to the non-vanishing components,

Γτij =
ȧ

a
gij , Γiτj =

ȧ

a
δij , Γijk = Γ̂ijk (5.31)

Rττ = −3
ä

a
, Rij = gij

(
ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)
(5.32)

Here the hatted Γ denotes the connection corresponding to the comoving
metric which is normalized so that the Ricci scalar, R̂ = 6k, k = ±1, 0.

5.2.1 Friedmann–Lamaitre–Robertson–Walker Cosmologies

The universe is of course not empty. The stress tensor must also be con-
sistent with the assumptions of homogeneity and isotropy. This turns out to
be of the form of a perfect fluid:

Tµν = ρ(τ)uµuν + P (τ)(uµuν + gµν), (5.33)

where P is the pressure, ρ is the energy density and uµ is the normalized
velocity of the observers, orthogonal to the spatial slices. Our system of equa-
tions now have 3 unknown functions, a, ρ, P of a single variable τ for each
choice of the spatial curvature, k. The Einstein equations reduce to2:

3
ä

a
= −4π(ρ+ 3P ) (Raychaudhuri equation) (5.34)

3
ȧ2

a2
= 8πρ− 3

a2 k k = ±1, 0 ; (Friedmann equation) (5.35)

ρ̇ = − 3(ρ+ P ) ȧa (Conservation equation) (5.36)

The first striking implication is that if ρ, P are both positive, as they are for
normal matter, then we can not have a static universe, a = constant, for any

2The equations are with zero cosmological constant. Cosmological constant may be in-
cluded by the replacements: ρ→ ρ+ Λ

8π
, P → P − Λ

8π
.
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choice of k. Further, ä < 0 implies ȧ must be monotonically decreasing implies
that it cannot change sign. Hence the universe is always expanding or always
contracting except possibly when there is a change over from expanding to
contracting phase. Note that the scale factor affects all length measurements
in a given slice in the same manner.

The observed fact of expanding universe immediately implies that the uni-
verse must have been extremely small a finite time ago and ä < 0 implies that
it must have been expanding at a faster rate in the past. If it were expand-
ing at today’s rate, H0 := ȧ0

a0
, then the scale factor would have been zero at

τ = H−1
0 . Calling τ = 0 when a = 0 held, one says that the universe began

in a ‘big bang’, from a highly singular geometry. All these are consequences
of the Robertson–Walker geometry and qualitative properties of the pressure
and density. This is a very striking prediction of GR, which is consistent with
observation. Let us return to the equations again.

Our equations are still under-determined. One can verify that the first or-
der equations (5.35) and (5.36) imply the second order equation (5.34 Thus we
have two equations for three unknown functions. We need a relation between
the density and the pressure. Such a relation is usually postulated in the form
P = P (ρ) and is called an equation of state for the matter represented by
the stress tensor. It characterizes internal dynamical properties of matter at
a phenomenological level There are two popular and well-motivated choices,
namely, P = 0 (dust) and P = 1

3ρ (radiation). Once this additional input is
specified, one can solve the conservation equation to obtain a as a function of ρ
(or vice a versa). Plugging this in the 2nd equation gives a differential equation
for ρ(τ). This way one can determine both the scale factor and the matter evo-
lutions. The different cases are referred to as Friedmann–Robertson–Walker
(FRW) cosmologies and are summarized as [17],

Dust, P = 0 Radiation, P = 1
3ρ

ρa3 = constant ρa4 = constant

k = 1
a = (C/2)(1− cosη)
τ = (C/2)(η − sinη)

a =
√
C ′

√{
1−

(
1− τ√

C′

)2
}

k = 0 a = ( 9C
4 )1/3τ2/3 a = (4C ′)1/4

√
τ

k = − 1
a = (C/2)(coshη − 1)
τ = (C/2)(sinhη − η)

a =
√
C ′

√{(
1 + τ√

C′

)2

− 1

}

Explicit computations may be seen in [16].
One can get this far with just cosmological principle, general relativity
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and some assumptions about the matter. There are two separate issues to
be addressed now. Firstly, we need to make some physically well motivated
assumptions regarding the composition of the universe i.e. components of den-
sity and pressure together with their equations of state, to obtain a sufficiently
general solution of the equations. Secondly, we need to identify suitable pa-
rameters which can be determined from observations. Let us consider the first
aspect.

We can divide up the matter contents in to three classes: (i) non-relativistic
matter (dust) which is characterized by constituents such as galaxies moving
with non-relativistic speeds there by exerting negligible pressure (PNR = 0)
and energy density ρNR, (ii) relativistic matter such as radiation (photons,
neutrinos and other highly relativistic particles) with equation of state PR =
1
3ρR and (iii) a possible cosmological constant term with equation of state
PΛ = −ρΛ = −Λ, with the factor of (8π)−1 understood to be absorbed in
Λ. The total energy density and pressure are the sum of these three types.
On physical grounds (since earlier universe was smaller it must have been
hotter), we expect the non-relativist matter to be dominant during the epoch
through which the galaxies etc. have existed and the relativistic matter to
be dominant in the earlier phase of evolution when the universe was hotter.
The Λ component would have to be estimated in comparison with the others.
In reality of course all three components are present all through but during
specific era we can concentrate only one component and neglect the others.
Our model now consists of P = 1

3ρR − Λ, ρ = ρNR + ρR + Λ.

As noted above, the conservation equation immediately gives ρR ∝ a−4,
ρNR ∝ a−3 and of course ρΛ = constant. Thus a non-zero values of the
cosmological constant is overwhelmed by the other sources of pressure and
energy density in the early universe but can be significant in the late epochs.
It is now assumed that these behaviours of the energy densities continues to
hold generally to a very good approximation and only the Friedmann equation
remains to be solved.

Since there are unknown constants of proportionality in the behaviour
of the densities, we still cannot obtain a general solution for the scale factor
evolution. Also, more than explicit form of a(τ), we are interested in obtaining
evolutions of observable quantities.

There are three convenient quantities chosen for this purpose: (1) the Hub-
ble parameter H(τ) := ȧ

a , (2) the deceleration parameter q(τ) := − aä
ȧ2 and

(3) the critical density ρc(τ) := 3H2

8πG . The densities are traded for in terms of
Ωi := ρi

ρc
, i = R,NR,Λ. The same quantities evaluated at present epoch are

suffixed by 0.

The Friedmann and the Raychaudhuri equations can be rewritten as

Ω = 1 +
κ

a2H2
(5.37)

P =
H2

8πG
(2q − Ω) = − 1

8πG

( κ
a2

+ (1− 2q)H2
)

(5.38)
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We can eliminate the constants of proportionality in the densities by taking

ratios with their present epoch values, e.g. ρNR = ρNR,0
a30
a3 etc. Dividing the

Friedmann equation by a2
0 leads to(

ȧ

a0

)2

=
8πG

3

a2

a2
0

(
ρNR,0

(a0

a

)3

+ ρR,0

(a0

a

)4

+ Λ

)
− κ

a2
0

(5.39)

= H2
0

[
ΩNR,0

(a0

a

)
+ ΩR,0

(a0

a

)2

+ ΩΛ,0

(
a

a0

)2

−ΩNR,0 − ΩR,0 − ΩΛ,0 + 1 ] (5.40)

Here we have used equation (5.37) at present epoch, in going to the second
equation above. Putting a = a0x gives,

ẋ2 = H2
0

[
ΩNR,0x

−1 + ΩR,0x
−2 + ΩΛ,0x

2 + 1− Ω0

]
(5.41)

The right-hand side of this equation involves the present values of the den-
sity parameters. If these are determined observationally, the equation can be
integrated to obtain evolution of the scale factor normalized to a0 = 1 (say).

Noting that ẋ = Hx, we can eliminate the ẋ2 to directly obtain H(x) as,

H2(x) = H2
0

[
ΩNR,0x

−3 + ΩR,0x
−4 + ΩΛ,0 + (1− Ω0)x−2

]
(5.42)

Using equation (5.37) and its present epoch version (for κ 6= 0), we can
eliminate the Hubble parameter in favour the total energy density to get,

Ω(x)− 1 =
Ω0 − 1

[ΩNR,0x−1 + ΩR,0x−2 + ΩΛ,0x2 − (Ω0 − 1)]
(5.43)

These expressions can also be written in terms of the red shift by noting that
x = a

a0
= (1 + z)−1. Notice that x→ 0 as z →∞ and x = 1 for z = 0.

If the total energy density is exactly equal to 1 at any epoch (which im-
plies spatially flat universe), then it must remain so for all epochs. In the
early epochs corresponding to x → 0, we see that Ω(x) → 1, independent
of the contribution of cosmological constant. The Hubble parameter is also
independent of Λ in the early universe.

We have succeeded in determining the general evolutions of the scale fac-
tor, Hubble parameter and the density parameter in terms of observationally
determinable present epoch values. The crucial assumption has been the de-
pendence of various density components on the scale factor. This may be
construed as characterizing the FLRW cosmologies.

One can obtain relations among the present epoch density parameters,
Hubble parameter and the deceleration parameter by simply writing the equa-
tions (5.37, 5.38) at the present epoch. Since the present day universe is
matter dominated, we may neglect the contributions of radiation and write
Ω0 ≈ ΩNR,0 + ΩΛ,0 and P0 ≈ −ΩΛ,0ρc,0. The equations then imply,

ΩNR,0 + ΩΛ,0 = 1 +
κ

a2
0H

2
0

, ΩNR,0 − 2ΩΛ,0 = 2q0, (5.44)
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Thus, if we could determine q0 and a0H0 by some means, we could also de-
termine the two density parameters. The radiation density parameter is to be
determined separately.

The two parameters, H0, q0 are determined from a distance-red-shift plot
for various sources3. The distance typically involves the comoving path length,
`, which is defined as,

` :=

∫ τo

τe

dτ

a(τ)
=

∫
da

ȧa
=

1

a0

∫
dx

xẋ
, (5.45)

and we have the equation (5.41) for ẋ, we can directly obtain the luminosity
distance as a function of the red shift and of course the density parameters.
Thus, in an FLRW model, we do have a distance-red shift relation expressed
in terms of the density parameters. Making observational determination of
such a relation therefore determines the density parameters. Further using
x = (1 + z)−1 one obtains,

DL(z) =
(1 + z)

H0

∫ z

0

dz × (5.46)

[
ΩNR,0(1 + z)3 + ΩR,0(1 + z)4 + ΩΛ,0 + (1− Ω0)(1 + z)2

]− 1
2

Until recently, the observations of sources was limited to small red shifts (< 1)
and one can evaluate the integral approximately to read off the parameters
from a plot. With supernovae observations (SNa), the red-shifts have gone to
about 2 in the distance-red-shift plot.

5.2.2 Digression on Big-Bang Cosmology: Thermal History

So far we have sketched qualitative evolution of the gross features of the
universe according to the FLRW models, notably the finiteness of the age of
the universe and attendant divergence of densities at the beginning of the
universe. We also note another observed fact: the matter in the universe is
built up from more elementary constituents. The stars are made up of atoms
which are made up of protons, neutrons and electrons. The nucleons have a
further substructure in terms of quarks, gluons etc. This substructures get
revealed as the structures collide and are broken. The standard model of
particle physics summarizes the most elementary constituents (as of today)
and their elementary interactions.

It stands to reason that as we go back in time, the universe contracts and
heats up. The current constituents then increase their average motion, begin
to collide and break apart. Further back in time it is conceivable that we will

3There are various measures of distances in cosmology - the luminosity distance inferred
from the apparent brightness of sources, the angular diameter distance inferred from the
apparent sizes of sources etc. They all involve ` multiplied by suitable scale factor and
various powers of the red-shift factor (1 + z) [2].
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end up with a hot soup of elementary particles of the standard model. Con-
versely, we can imagine the universe to have begun as a hot soup of elementary
particles which kept combining into larger structures thanks to the universal
expansion. The current constituents (at least some of these) notably various
nuclei and atoms can thus be thought of as being made up during the evolu-
tion of the universe. The idea is also attractive from another point of view. If
we assume the components of the soup to be in thermal equilibrium, then we
can understand how the matter distribution came to be largely homogeneous
and isotropic. Can we build a detail picture of this cooking process? Amaz-
ingly, the answer turns out to be YES and we obtain a Thermal History of
the universe.

We begin by assuming that at some early epoch, the universe consisted of
(anti) nucleons, (anti) leptons and photons at some high temperature T . We
know that current universe has atoms of various elements and photons. We
are assuming that these (at least some of lighter elements) got formed during
the expansion of the universe. The question we want to understand is: What
determines the products and their abundances during the formation process?
For this we must note a few points.

The abundances of various products will be correlated and possibly fixed
if the products were in thermal equilibrium at some epoch. To realize and
maintain an equilibrium, there must be processes (interactions) among these
different species of matter. These have some reaction rates typically propor-
tional to the average speed, the total cross-section and the number densities
(just from the definition of a cross-section). These quantities are also functions
of the equilibrium temperature and the chemical potentials of the species.
However, the universe expands at a certain rate making the temperature fall
at some rate making the reaction rates also to fall at some rate. As long as
the reaction rate is higher that the expansion rate, thermal contact will be
present and equilibrium will be maintained. If however reaction rate falls be-
low the expansion rate, the reaction effectively ceases and thermal contact
between the species is broken. As the universe decelerates, the reaction rates
fall faster than the expansion rate thereby switching off some reactions. The
number densities (or abundances) of the participants are thus frozen at the
values at this cross over time (temperature). Starting with certain number of
species with mutual interactions of different types, it is possible that different
species will freeze out at different epochs generating different abundances. We
thus see a mechanism of generating different products as well as their relative
abundances. The task is to determine the details.

Let us note another qualitative feature that can be expected. At suffi-
ciently high temperature, we expect a gas of interacting charged (+ neutral)
particles together with photons. Let us momentarily call all particles other
that photons as ‘matter’ and imagine an epoch wherein there was an equi-
librium between matter and photons. As the universe cooled, at some stage
the charged particles would combine to form neutral atoms. From this stage
onwards the photons would be mostly decoupled and stream freely and we can
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expect to see a left over distribution of photons. What sort of spectrum can
be expected for such radiation today? It is not automatic that the spectrum
will be black body spectrum, it depends on duration over which decoupling
takes place and the matter temperature variation with time. If the decou-
pling is fast, then one obtains the black body spectrum with a temperature
Tγ,0 := Tmatter(t∗)a(t∗)/a0. Here t∗ is the time at which decoupling takes
place sharply. Note that the time of decoupling is determined by details of the
thermal history of matter prior to decoupling and hence the photon temper-
ature today is dependent on this thermal history [2].

If however we assume that thermal history of matter was such that its
temperature during the thermal contact period relaxed as Tmatter(t) = A/a(t)
where A is some constant, then the photon distribution through out thermal
contact and decoupling will be the black body distribution at temperature
Tγ(t) = A/a(t). Since the black body distribution form is preserved during
expansion as a consequence of Robertson–Walker geometry independent of
dynamics4, we can determine the constant A as Tγ,0a0. Notice that this fixes
the assumed relaxation of matter temperature as well. A determination of
the present temperature of the photons would thus give information not only
about the decoupling era but even before that.

But can such an assumption be true? For this we have to look at matter-
photon equilibrium a little more closely [2]. We know the densities and pres-
sures of matter and photons at temperature T ,

ρ(T ) = bT 4 +mn+
nkBT

γ − 1
, P (T ) =

1

3
bT 4 + nkBT,

b :=
8π5k4

B

15h3c3
∼ 7.6× 10−15(cgs), (5.47)

where, m is the mass of matter particles (assumed to be a single species), n
is their number density and γ is the specific heat ratio. The particle number
conservation implies n(τ)a3(τ)) is constant while conservation equation (5.36)

leads to ad(ρa3)
da = −3Pa3. Computing the left-hand side and using (5.47) leads

to,

a

T

dT

da
= −

[
σ + 1

σ + 1
3(γ−1)

]
, σ :=

4bT 3

3nkB
(5.48)

If σ � 1 then T ∝ a−3(γ−1) while if σ � 1 then T ∝ a−1. Furthermore, for
very large σ the scale factor dependence cancels between that of temperature
and the number density making σ a constant preserving its large value. This
case is said to define a hot big bang. In a hot big bang soup, one can also relate

4At equilibrium, the number of photons of frequency ν per unit volume per unit frequency
interval is proportional to ν2 divided by the Planck factor which depends on hν/KT . Con-
servation of number of photons during free streaming, means that the number is preserved
and therefore the density at a later time scales as (alater/ainitial)

2. In the Planck formula,
the ν2 dependence also scales the same way, thus cancelling the scaling factor. The net result
of the expansion is then to retain the shape but scale the temperature by ainitial/alater [23].
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the large constant value of σ to the ratio of the present photon density and
matter density. So in a hot big bang our assumption would hold. But is our
universe a hot big bang universe?

For this we appeal to Gamow’s theory of assuming that various nuclei are
cooked from the soup. If so, there should have been a production of deuterium,
n+ p 
 D + γ. This can take place if the temperature is of the order of 109

(dissociation temperature of deuterium, from nuclear physics) and the density
of nucleons of the order of 1018 per cm3 so that about 50 per cent of nucleons
can fuse to form deuterium. This immediately gives σ ∼ 1011 � 1! So we
see that we do live in a hot big bang universe. Since the present density of
baryons, estimated from visible matter, is of the order of 10−6 per cm3, we
also obtain the ratio of the two scale factors as the cube root of the ratio of
the densities of baryons, to be about 108 and so the present temperature of
the photons should be about the same factor dividing 109, i.e. about 10. More
detailed numbers give Tγ,0 ∼ 50K. This was the prediction of Gamow in the
late 1940s! The photons present in this epoch will eventually constitute the
cosmic microwave background radiation (CMBR).

Let us return to an illustration of how thermal history is constructed. The
logical steps in the calculations are the following.

1. For a thermodynamic system consisting of several interacting species of
constituents in equilibrium, the number densities ni are determined by
the temperature T and the chemical potentials µi (from grand canoni-
cal ensemble of statistical mechanics). The chemical potentials are con-
strained by conservation laws obeyed by the interactions. If the chemical
potentials are assumed to be zero to begin with, the number densities,
pressures etc. depend only on the temperature and of course intrinsic
properties such as masses, couplings etc. This is commonly assumed.

2. The conservation equation (5.36) can be written as,

d{a3(P + ρ)}
dτ

= a3 dP

dτ
= a3 dT

dτ

dP

dT
(5.49)

3. The equilibrium condition implies existence of the entropy function and
the first law of thermodynamics gives integrability conditions among
densities and pressures, namely,

dS(T, V ) =
1

T
(P (T ) + ρ(T ))dV +

V

T

∂ρ

∂T
dT ⇒

dP

dT
=

P + ρ

T
(5.50)

These two equations together give the conserved quantity,

d

dτ

[
a3

T
(P (T ) + ρ(T ))

]
= 0 =:

d(a3s(T ))

dτ
, (5.51)
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where s(T ) is the entropy density. This in turn allows us to relate the
time variation of the temperature to the entropy production:

ȧ

a
= − 1

3s

ds

dT

dT

dτ
=

√
8πρ

3
(5.52)

Here we used the Friedmann equation in the last equality.

4. Vanishing (or negligible) chemical potentials also imply that at any given
temperature, only those species whose mass-energy is less that kBT
will participate in the equilibrium system. This allows us to combine
particle physics knowledge to determine the species present significantly
at any temperature. Particle physics also tells us possible and dominant
interactions and their cross-sections thereby determining the reaction
rates. The Friedmann equation on the other hand gives the expansion
rate H(τ).

5. Equating these two rates determines the temperature at which the reac-
tion under consideration terminate. If this is the only reaction respon-
sible for coupling between two species, then termination of the reaction
implies decoupling of the species. Their number densities are then fixed
by this decoupling temperature and the densities subsequently fall as
a−3. This determines the relative abundances.

6. The conserved quantity together with the decoupling temperature allows
us to determine the ratios of the scale factor which in turn determines
the ratios of the times. This gives us the time scales of various epochs.

Steps 4 and 5 above are where the specific composition of the universe enters.
For example consider the epoch wherein the temperature has dropped so much
that we have only protons (left over from earlier epochs) and electrons together
with photons in equilibrium. With further decrease of temperature, it becomes
possible for protons and electrons to form neutral atoms. These however can
again be broken apart by the photons. In general then we expect to have some
atoms as well. Now we have two reactions to consider: p+ + e− → H + γ and
H + γ → p+ + e−. The dissociation energy of the hydrogen atom is 13.6 eV
corresponding to an equivalent temperature of about 105K. The photons must
have this much energy to cause dissociation. The rate of dissociation reaction
however also depends on the densities of photons (with energy higher than
13.6 eV) and the hydrogen atoms. For the forward reaction, the rate depends
on the densities of protons and electrons. At equilibrium, the rates of both
the reactions are exactly matched with certain equilibrium densities of all the
four species. The relevant photon density falls faster than the other densities
thereby lowering the dissociation rate eventually switching off this reaction.
This temperature is about 4000◦K, roughly a tenth of the temperature equiv-
alent of the dissociation energy. Thus a switch-off temperature is less that the
temperature indicated by energy considerations. Details of these computations
may be seen in many of the standard cosmology text books e.g. [2, 23].
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Here is a summary of the thermal history of the universe, broadly divided
into four epochs. It is convenient to describe the epochs in terms of the age
(seconds), typical energy scale (GeV/MeV/eV) and corresponding tempera-
ture (◦K) with 1◦K ∼ 10−4eV . As mentioned above, the temperature scales
inversely with the scale factor. The age is then inferred from the evolution of
the scale factor appropriate in the epochs.

The Very Early Epoch: (10−42 − 10−4 seconds) The first and the earliest
epoch which is also the least understood. The birth moment of the classical
universe (FLRW space-time) is set at the Planck time. The temperature was
about 1031 ◦K. This is supposed to be followed up by a period of exponential
expansion or inflation. The main need for postulating inflation comes from
the remarkable observed isotropy of the CMBR, discussed in the next section,
and the corresponding Horizon Problem. The currently favoured amount of
inflation is about 70 e-folds or expansion by a factor of about 1030 while the
temperature falls by a factor of about 10−5. The various candidate mechanisms
of inflation also suggest a period of reheating following the inflationary phase,
during which the energy is transferred from the presumed ‘inflaton’ field to
other matter species which we eventually observe. This period is also supposed
to set the conditions for the hot big bang e.g. the ratio of photon to baryon
number densities being very large. The energy scale drops from the Planck
scale (1019GeV ) to GUT scale (1015GeV ) to Electro-Weak scale (102GeV ) to
Hadronic scale(10−1GeV ). By this time, hadrons have formed and hence this
era is also known as the Hadron era.

The Lepton Era: (10−2−100 seconds) Thanks to the electro-weak breaking,
the soup has baryons, leptons and photons in approximate equilibrium. By the
end of this era, the weak interactions effectively switch off and the neutrinos
decouple. The energy scale is a few MeVs and the temperature has fallen to
about 1010 ◦K.

The Plasma Era: (102 seconds−105 years) This is perhaps the best under-
stood epoch. The temperature is now low enough (∼ 109 ◦K) for the protons
and neutrons to begin forming the light nuclei such as deuterium, helium
and lithium. This is called the primordial nucleo-synthesis and their observed
abundances tell us that the big bang has been ‘hot’. Following this phase, the
nuclear interactions are no longer relevant and subsequent slower cooking is
dominated by the electromagnetic interactions. By about 104 years (104 ◦K),
the photons, electrons and protons (the plasma) are in equilibrium and with
a further fall of temperature, the photons decouple constituting the CMBR.

The Post-Recombination Era: (109 years− now) The universe is cool
enough to permit gravity to start binding the first structures. The first stars
are supposed to have been formed around 250 million years after the big bang.
These once again heat matter, locally, to produce ionization and generating
light ending the so-called ‘Dark Ages’. The subsequent formation of large
scale structures such as galaxies began only after a billion years or so. The
subsequent variety of structures at various scales are amenable to more direct
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observations allowing us to look for patterns in their distributions. These then
provide constraints on models of the very early universe.

5.2.3 Cosmic Microwave Background Radiation

In building up our knowledge of the universe, we used several different
kinds of observations in conjunction with certain theoretical models. One
class of observations is the observations of structures in the universe i.e. (su-
per) clusters of galaxies, voids, filaments etc. and their statistics. From the
summary of thermal history discussed above, all these correspond to matter
dominated era and our current observations go back to about z ∼ 10 (about
billion years after the big bang). Clearly, there is a huge range (essentially
infinite) of red shift values that are still to be subjected to observations. One
of the crucial tool for these observations is the Cosmic Microwave Background
Radiation (CMBR) alluded to earlier.

According to the Big Bang model, the universe would have gone through an
epoch where protons, electrons, photons and neutral atoms (hydrogen) would
have been in equilibrium. After a drop of temperature to about 40000K, the
photons would decouple and stream freely carrying with them the informa-
tion at the decoupling epoch. These photons constitute the CMBR. Observe
that we cannot get a direct snapshot of period prior to decoupling by elec-
tromagnetic observations since during the plasma epoch all prior information
would have been washed out. If we could observe the analogously predicted
neutrino background, then we could have a similar snapshot of a much earlier
epoch. But this is beyond our means. It turns out that the angular distribution
of CMBR photons contains a wealth of information allowing us to constrain
models of much earlier era. This is what we will discuss briefly.

The CMBR was first predicted by George Gamow and his collaborators
in the late 40’s when they were trying to obtain the abundance of chemical
elements via the hot big bang. Their prediction remained unnoticed since their
main goal of chemical abundances did not work out. It could not have worked
out since we now know that except the very light nuclei, all others are produced
in the interiors of stars where not only are the temperatures high but also
the densities. The prediction of CMBR was effectively forgotten until it was
discovered accidentally by Wilson and Penzias in 1965 [24]. Penzias and Wilson
in fact were testing an antenna built to observe echo satellite and they observe
a background ‘hiss’ not attributable to any particular direction in the sky.
They reported an equivalent temperature (at wave length of 7.35 cm) of 3.5±
1◦K. Its theoretical significance (identification with CMBR) was provided by
Dicke, Peebles, Roll and Wilkinson [25]. This was of course observation at one
frequency. Since then CMBR has been observed at wavelengths ranging from
about 100 cm down to about 0.05 cm. The lower wavelengths are observed from
balloon, rocket borne instruments and finally from the COsmic Background
Experiment satellite. These ranges cover both sides of the Planck distribution
curve and the current value of the photon temperature is 2.725± 0.0010K.
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One of the striking feature of CMBR is its isotropy. Only at a level of
about 1 part in 105, there are deviations from isotropy. Both the observed
black body spectrum and isotropy provide a very strong corroboration of
both the cosmological principle and the hot big bang model. For any other
cosmological theory, these gross features of CMBR put stringent restrictions.

However, although small, there are anisotropies! Establishing their reality
also took almost 25 years. Note that isotropy of a distribution is an observer
dependent statement. Suppose in one frame we find a distribution which is
isotropic. The same distribution as seen by an observer moving relative to the
first one, will have a ‘dipole component’. The radiation received from the front
direction will be blue shifted while that from the back direction will be red
shifted. The radiation from other directions will also be shifted with shift de-
termined by the component of the velocity in that direction. This will change
the equivalent temperature thereby inducing an anisotropy in the angular dis-
tribution of temperature. This is expected and in fact gives our velocity rela-
tive to the isotropy frame. Conversely, if one observes only a dipole anisotropy,
it implies that there exist a frame in which the distribution is isotropic. Ad-
ditional anisotropies cannot be so removed by going to a different frame. The
dipole anisotropy was found in the late seventies - early eighties. There were
hints of ‘quadrupole’ anisotropies which were not conclusive. Finally by 1992,
COBE established presence of anisotropies to l = 30 multipole. The decade
old Wilkinson Microwave Anisotropy Probe (WMAP) made measurements to
about l ∼ 600. The most recent Planck Mission has measured anisotropies to
l ∼ 2000.

There is a further bit to the story. The photon decoupling does not take
place at the same time i.e. the Last Scatter Surface (LSS) is not a sharp surface
but has a thickness. It is at a red shift of about 1100 with a thickness of about
80. This also has implications for the anisotropies.

The anisotropy data is presented in the following form. The basic observ-
able quantity is the temperature in the direction n̂: T (n̂) := T̄ (1 + ∆T (n̂)).
Here T̄ is the temperature averaged over the directions and ∆T

T̄
(n̂) is taken as

the definition of the measured anisotropy. This is expanded in the spherical
harmonics as,

∆(n̂) := ∆T
T̄

(n̂) =
∑
`,m

a`,mY`,m(n̂) (5.53)

The anisotropies are now encoded in the coefficients a`,m. In principle, from
the observed temperature distribution, one can infer the multipole coefficients
a`,m. However, what is relevant is not particular values of these coefficients,
but rather their statistical properties.

We do not know the precise origin of the anisotropies. In principle they
would be determined from some initial conditions in the plasma generating
the CMB. We can make assumptions about the statistical distribution of these
initial conditions and treat them as fluctuations. Averaging over the fluctu-
ations is called ensemble average and we simply postulate the properties of
these averages. For instance, we assume that the ensemble average of prod-
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ucts of ∆(n̂) is isotropic and thus depend only on the rotational invariants
constructed from the directions n̂’s. This assumption is known as statistical
isotropy. Furthermore, the fluctuations are generally assumed to be Gaussian
so that all n-point correlations are reducible to products of the two point
correlations.

Consider the two point angular correlation function which depends only
on the cosine of the angle between the two directions by statistical isotropy.
This can be expanded in terms of the Legendre polynomials [23],

〈∆(n̂)∆(n̂′)〉ens :=
∑
`

C`
2`+ 1

4π
P`(n̂ · n̂′) ⇒ (5.54)

C` =
1

4π

∫ ∫
dΩ(n̂)dΩ(n̂′)P`(n̂ · n̂′)〈∆(n̂)∆(n̂′)〉ens (5.55)

The statistical isotropy is equivalently characterized by the stipulation,

< a∗`,ma`′,m′ >ensemble = C`δ`,`′δm,m′ (5.56)

Obviously we cannot perform an ensemble average, but assuming ergod-
icity, we replace the ensemble average by the manifestation of the particular
initial condition realized in our universe i.e. the observed data! Substitute the
expansion of the anisotropy, eqn. 5.53, in the expression for the C` in eqn. 5.55
and use the addition theorem backwards to replace P` in terms of the spheri-
cal harmonics. Without performing the averaging, and using orthogonality of
the spherical harmonics leads to,

C` =
1

2`+ 1

∑
m

|a`m|2

and a theory is supposed to give a prediction for the C`’s.
A representative plot of measured C` against ` is shown in the figure (5.2).

It turns out that the location of the peaks as well as their heights are sensitive
to the parameters of the theoretical models and the data is able to constrain
these severely. The theoretical models go way back before nucleo-synthesis and
thus CMBR is able to indirectly give information about much earlier epochs.
Furthermore, relating the CMBR fluctuations to matter fluctuations one is
able to infer the possible seeds for subsequent structure formation. Measuring
the polarization of the CMBR photons and analyzing their anisotropies gives
further information including detection of the first star formation.

In summary, CMBR is first a confirmation of the Big Bang model, its
anisotropies contain on the one hand clues about earlier era and also a corre-
lation with seeds for structure in much later era. The precise measurements
of the anisotropies of CMBR is regarded as heralding the age of precision
(observational) cosmology.

The beautiful isotropy of CMBR however poses a problem. Consider an-
tipodal points in the sky at which the temperatures are equal to within 1 part
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FIGURE 5.2: Sample Power Spectrum C` vs `. The temperature fluctu-
ation on the y-axis is proportional to the C`. The angular size is also
shown. Credit: NASA / WMAP Science Team, http://map.gsfc.nasa.gov/
media/111133/index.html

in 105. These regions of the plasma must have been in causal contact to have
such a high correlation. However, the finite age of the universe in the FLRW
models makes this impossible. Given that the current concordance model of
cosmology favours spatially flat universe in which the scale factor vanishes as
τ1/2 (radiation dominated era) and the present value of the Hubble parameter
imply that regions with angular separation of more than about a degree could
not have been in causal contact! This is the so-called Horizon Problem and was
one of the primary motivation for Alan Guth’s proposal of inflation according
to which in the early universe there existed a period of accelerated expansion.
With this, it is possible to solve the horizon problem. More than just solving
the traditional problems of standard big bang cosmology, inflationary phase
provides a mechanism for quantum fluctuations in the very early universe
to be amplified and provide the seeds for subsequent structure formations.
However interesting, it is well beyond the scope of this monograph. Interested
readers may begin from [26].

This is an arena where General Relativity, particle physics and possibly
quantum gravity have to come together in synthesizing a comprehensive pic-
ture.
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5.3 Gravitational Waves

One of the distinctive features of GR is the existence of ‘propagating so-
lutions’ of Einstein equation, known as gravitational waves.

This concept has been quite tricky to define because of the general covari-
ance. Naively one could think of it as the metric varying in a region of the
manifold which ‘moves’ to another region of the manifold. However, this could
be just be effected by a diffeomorphism. To define a localized configuration of
geometry and its propagation we need to have a reference geometry and/or a
reference defined by some matter distribution.

In this first introduction, we will simply look at the linearized theory, iden-
tify the wave solutions, study their properties and also obtain the quadrupole
formula of Einstein. In the part II of the book, we will return to the conceptual
issues in section 10.1.

The linearisation of general relativity begins by postulating existence of a
coordinate system in which the metric can be taken to be gµν = ηµν + hµν
with |hµν | � 1 and deriving all relevant equation to first non-trivial order in
h. In particular, gµν = ηµν − hµν and the indices are raised/lowered with the
background Minkowskian metric ηµν/ηµν . Under an infinitesimal coordinate
change, x′µ := xµ + ξµ(x), the metric transforms as,

g′µν(x′) = (δµα + ∂αξ
µ)(δνβ + ∂βξ

ν)gαβ(x)

the form of the metric is again preserved to first order in h, provided h and
the infinitesimal transformation parameter, ξ are both taken to be of the same
order and the h is transformed as,

hµν(x′) = hµν(x)− ∂νξµ − ∂µξν ,
hµν(x′) = hµν(x)− ∂νξµ − ∂µξν (5.57)

To first order in h, the connection, the Ricci tensor and the Einstein tensor
are given by,

Γλµν =
1

2
ηλα (hαµ,ν + hαν,µ − hµν,α) + o(h2) (5.58)

Rµν = Rλµλν = ∂λΓλνµ − ∂νΓλλµ + o(h2)

=
1

2
ηλα (hαµ,νλ + hαν,µλ − hµν,αλ − hλα,µν)

=
1

2

(
−�hµν − ∂µ∂νhλλ + ∂2

µλh
λ
ν + ∂2

νλh
λ
µ

)
(5.59)

R = −�hαα + ∂2
µνh

µν

Gµν = −1

2

(
�h̃µν − ∂2

λµh̃
λ
ν − ∂2

λν h̃
λ
µ + ηµν∂

2
αβh̃

αβ
)

where,

h̃µν := hµν −
1

2
ηµνh

α
α (5.60)
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Since the Einstein tensor is o(h), we treat the stress tensor also to be of the
same order. Consequently, its trace is taken with η. Explicitly, the linearized
Einstein equation takes the form (G = 1 is taken),

− �h̃µν + ∂2
µλh̃

λ
ν + ∂2

νλh̃
λ
µ − ηµν∂2

αβh̃
αβ = 16πTµν , (5.61)

Notice that the divergence (∂µ) of the linearized Einstein tensor is identically
zero just as the covariant divergence is for the full Einstein tensor. Therefore
conservation of the stress tensor also holds, ∂µT

µ
ν = 0.

A couple of properties of this equation are noteworthy, namely, (a) δh̃µν :=
−(∂µξν +∂νξµ−ηµν∂ ·ξ) is always a solution for every ξµ and (b) if we further

stipulate that h̃µν satisfy: ∂µh̃
µ
ν = 0, then the linearized equation simplifies to

an inhomogeneous wave equation, �h̃µν = − 16πTµν . In view of the equation
(5.57), which is the linearized form of infinitesimal general covariance of the
Einstein equation, we stipulate that two solutions h̃′µν , h̃µν are to be regarded
as physically the same if they differ by ∂µξν + ∂νξµ − ηµν∂ · ξ. This follows

from the equation (5.57). In the context of the linearized theory, we view δh̃µν
defined in the property (a) above as an infinitesimal gauge transformation
while the condition in (b) is viewed as a gauge fixing condition. This gauge
condition, is said to specify the so called harmonic gauge. The terminology
arises from the harmonic coordinate condition, ∇µ∇µxα = 0 which translates
into gµνΓλµν = 0 and upon linearization, leads to the gauge condition. The
harmonic gauge condition, still does not fix the gauge freedom completely: a
gauge transformation with �ξµ = 0 leaves both the wave equation and the
gauge condition, invariant.

Our aim is to explore the physical solutions of this linearized theory.

5.3.1 Plane Waves

Let us consider now the homogeneous wave equation and look for plane
wave solutions of the form,

h̃µν(x) = εµνe
ik·x + ε̄µνe

−ik·x, over-bar denoting complex conjugate.

Substituting in the linearized equations together with the harmonic gauge
conditions implies that the wave vector kµ and the (complex) polarization
tensor, εµν must satisfy: k · k = 0, kµε

µ
ν = 0,. The gauge transformations

of hµν implies a gauge transformation on the polarization tensor as: δεµν =
−ikµξν − ikνξµ + iηµνk · ξ. Notice that the gauge condition is preserved by
these residual gauge transformations. Thus, for a given null vector k, we have
10 components of the polarization tensor, the 4 conditions of the harmonic
gauge and a 4 parameter worth of freedom of gauge transformations. This
leaves us with two physical polarization parameters only.
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For the source-free situation we are discussing, The harmonic gauge condi-
tion may be specialized further by stipulating that the trace of h̃ be zero5. This
implies, ε := εαα = 0 and in view of the transversality condition, kµε

µν = 0,
this further restricted gauge is referred to as the transverse, traceless gauge or
TT gauge for short. The extra condition of tracelessness, reduces the gauge
freedom to those ξµ which satisfy k · ξ = 0. Note that in the TT-gauge,

h̃µν = hµν .

To make the physical polarizations explicit, it is convenient to introduce
an orthonormal tetrad, eµI , I = 0, 1, 2, 3, ηµνe

µ
I e
ν
J = ηIJ and further allow

complex linear combinations to get a null tetrad as: k± := (e0±e1)/
√

2, m :=
(e2 + ie3)/

√
2, m̄ := (e2 − ie3)/

√
2. All these are null vectors and the only

non-zero dot products are k+ ·k− = −1,m ·m̄ = 1. For a given plane wave, we
choose an adapted null tetrad so that k+ := k and denote the corresponding
k− =: `. The null tetrad is denoted as ea, a = k, `,m, m̄. Using the null tetrad,
we can write the polarization tensor as: εµν(k) := Φabe

a
µe
b
ν and the gauge

transformation parameter as ξµ := ζaeµa . The gauge transformations in terms
of Φ and ζ are: Φ′ab = Φab − i(δkaζb + δkb ζa).

The transversality condition on polarizations, kµεµν = 0, implies Φ`` =
Φ`k = Φ`m = Φ`m̄ = 0. The tracelessness condition implies, Φ`k = Φmm̄ which
in turn gives, Φmm̄ = 0. We are left with 5 non-zero Φ’s. The gauge parameter
is restricted by k · ξ = 0 and therefore has only ζk, ζm, ζm̄ components. These
can be exhausted by setting Φkk = Φkm = Φkm̄ = 0 and we are left with two
non-zero components, φmm,Φm̄m̄ and no gauge freedom.

The physical plane wave solutions are thus,

h(x)TTµν = eik·x {Φmmmµmµ + Φm̄m̄m̄µm̄ν}+ complex conjugate

The adapted tetrad has the plane wave propagating in the x1 direction
with the x2 − x3 plane being transverse to it. A rotation through an angle θ
in the transverse plane, induces a phase change in the transverse null vectors:
m′ = e−iθm, m̄′ = e+iθm̄. The null vectors are then said to have helicity
−1 and +1 respectively. Clearly then, the Φmm represents the amplitude of
helicity −2 and Φm̄m̄ represents helicity +2.

There is an alternative way of identifying the independent, physical waves.
From the null tetrad basis, we constructed the the corresponding basis for the
second rank, symmetric tensors, namely, Eabµν := 1

2 (ea ⊗ eb + eb ⊗ ea)µν .
This may be called the helicity basis, since each term has a definite helicity -
0,±1,±2. A basis analogous to the ‘plane polarizations’ of electromagnetism,
is defined as:

E+ := m⊗m+ m̄⊗ m̄, E× := − i(m⊗m− m̄⊗ m̄).

5The transversality condition can always be imposed even in presence of source thanks
to the conservation of the stress tensor. The trace-free condition can be imposed only in
the source free situation or when the stress tensor is itself traceless. This however does not
change the counting of the physical polarizations.
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These are referred to as the ‘plus’ and the ‘cross’ polarizations. Under rota-
tions, these transform as,

E ′+ = cos2θ E+ + sin2θ E×, E ′× = − sin2θ E+ + cos2θ E×.

We have already computed the corresponding Riemann tensor as well as
the geodesic deviation equation in section (2.6). The linearized, plane gravi-
tational waves thus propagate with the speed of light (k2 = 0), are transverse
(k · ε = 0) and induce displacements of test masses only in the transverse
direction (from the deviation equation). They have helicities ±2. Commonly,
these are referred to as gravitons as they precisely correspond to the massless,
helicity 2 irreducible representation of the Poincare group.

5.3.2 Gravitational Radiation

The plane wave solutions correspond to a source free case whereas waves
due to a ‘source’ confined to a compact region of the space-time will typically
be ‘spherical’ and will fall off with the distance from the source. We look at
this case now.

The Green functions for the Minkowski d’Alembertian are well known and
choosing the retarded Green function, the particular solution of the inhomo-
geneous equation is written down as,

h̃µν(t, ~x) = 4

∫
source

d3x′
Tµν(t− |~x− ~x′|, ~x′)

|~x− ~x′|
, or (5.62)

h̃µν(t, ~x) :=
1√
2π

∫ ∞
−∞

dωh̃µν(ω, ~x)eiωt,

Tµν(t, ~x) :=
1√
2π

∫ ∞
−∞

dωTµν(ω, ~x)eiωt ,

h̃µν(ω, ~x) = 4

∫
source

d3x′
Tµν(ω, ~x′)

|~x− ~x′|
e−iω|~x−

~x′| (5.63)

≈ 4

∫
source

d3x′
Tµν(ω, ~x′)

r(1− r̂·~x′
r )

e−iωr(1−
r̂· ~x′
r ), r := |~x| � |~x′|,

≈ 4
e−iωr

r

∫
source

d3x′Tµν(ω, ~x′) + o(r−2) (5.64)

In the last but one line we have used the property that the source is confined
to a compact spatial region and taken the observation point far away from the
source. In the last line we have obtained a spherical wave with a source integral
over a compact region. The solution of course has to satisfy the transversality
condition.
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The 4 equations of the transversality condition allows us to eliminate 4
components of the h̃µν in favour of h̃ij .

∂µh̃
µν = 0 ⇒ ∂0h̃

0ν + ∂ih̃
iν = 0 ∀ ν (5.65)

∴ ∂0h̃
00 = −∂ih̃i0 , ∂0h̃

0j = −∂ih̃ij

∴ h̃00 = − 1

ω2
∂i∂j h̃

ij , h̃0i =
i

ω
∂j h̃

ij (5.66)

It therefore suffices to determine only h̃ij(ω, ~x). To manipulate the source
integral, we use the conservation of the stress tensor.

∂µT
µν = 0 ⇒ ∂0T

0ν + ∂iT
iν = 0 ∀ ν (5.67)

∴ ∂0T
00 = −∂iT i0 and ∂0T

0j = −∂iT ij

∴ T 00 = − 1

ω2
∂i∂jT

ij and (5.68)

− ω2

∫
xmxnT 00(ω, ~x) =

∫
xmxn∂i∂jT

ij(ω, ~x) (5.69)

⇒
∫
source

T ij(ω, ~x) = −ω
2

2

∫
source

xixjT 00 (5.70)

∴ h̃ij = −2
e−iωr

r
ω2qij , qij(ω) :=

∫
source

xixjT 00(ω, ~x) (5.71)

The qij is called the quadrupole moment of the source distribution. There are
different conventions for its definition e.g. [8], we will continue with the defi-
nition above. In the equation (5.69), we have done partial integration and the
integration is taken just out side the source so that the surface terms vanish.

Some remarks are in order. From the (5.68) equation, it follows imme-
diately that the double time derivative of (remember the ω2 factor) the 0th

moment of the energy density,
∫
T 00 and of the 1st moment,

∫
xiT 00, both

vanish. The first is just the statement that if there is no net matter energy
flux across the boundary of a region surrounding the source (the source is
assumed to remain confined to a bounded region), then the total energy con-
tent of that region does not change. For the 1st moment (‘mass dipole’), the
first time derivative gives the ‘momentum’ of the source while the second time
derivative vanishes due to momentum conservation (the total source momen-
tum is conserved). Consequently, the first non-vanishing contribution to the
radiation field comes from the quadrupole moment.

We have obtained the radiation field. We have to find out the energy,
momentum, angular momentum etc. carried by the radiation field.

The metric tensor field or its linearized version are not like other fields
whose energy contents can be related to their magnitudes or amplitudes.
Thanks to the equivalence principle or the general covariance, any space-time
metric or even a spatial metric can be made to vanish at any given point.
Consequently, the energy content of the field cannot possibly be related to
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the value of the field at any given point and one does not expect to have a
local, tensorial definition of gravitational energy.

Can we at least identify a suitable quantity which can be a satisfactory
measure of energy, momentum, angular momentum etc. for the linearized the-
ory? A natural way is to appeal to an action principle and deduce a con-
served stress tensor via the Noether procedure. For this, we should expand
the Einstein–Hilbert action to the quadratic order in hµν . The Noether pro-
cedure will then give us a conserved quantity which is quadratic in hµν . Here
we will work at the level of Einstein equations themselves.

We have solutions of the linearized equation - both the homogeneous so-
lution and the particular solution. Since the hµν is not just any symmetric
tensor field in Minkowski space-time, but is part of the metric, we expect it to
back react and modify the Minkowski background. We will consider a general
decomposition of a metric into a background piece and a ripple, in the next
subsection. Here we continue to take the background to be Minkowski metric.
We can however incorporate the non-linearities in a perturbative manner. For
this, let us substitute gµν = ηµν + hµν in the exact equation and obtain the
hµν in an iterated manner [17].

Substitution of gµν = ηµν + hµν in the Einstein equation leads to a power
series expansion in h which can be grouped in the form,

G(1)
µν := R(1)

µν −
1

2
ηµνR

(1)
αβη

αβ := 8π(Tµν + tµν) =: 8πτµν where

tµν := − 1

8π

[
Gµν −G(1)

µν

]
(‘gravitational stress tensor’); (5.72)

The above equations hold exactly but is to be solved in a perturbative manner.
Since the first order Einstein tensor is divergence-free, we get a conserva-

tion law and corresponding conserved quantities. Defining τµν := ηµαηνβτµν ,

∂µτ
µν = 0, Conservation equation (5.73)

Pµ :=

∫
vol

d3xτ0µ, Conserved energy momentum (5.74)

∂µM
µνλ = 0, Mµνλ := τµλxν − τµνxλ ,

Jµν :=

∫
vol

d3xτ0µν , Conserved angular momentum (5.75)

Note that the metric used for raising/lowering indices is the flat metric η.
It is an identity that,

G(1)
µν = ∂λQ

λ
µν , where , (5.76)

Qλµν := −1

2

{
(∂µhηλν − ∂αhαµηλν + ∂λhµν)− (λ↔ µ)

}
(5.77)

∴ τµν =
1

8π
∂λQ

λµν which implies, (5.78)

Pµ =
1

8π

∫
vol

d3x∂λQ
λ0ν =

1

8π

∫
vol

d3x∂iQ
i0ν
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=
1

8π

∫
∂vol

d2s niQ
i0µ (5.79)

The expression (5.77) does not look symmetric in µν, however it actually is,
as can be checked by computing the divergence.

The last expression involves only the linearized gravitational field, that too
only the linear power. As such this could be expected to be valid far away from
compact sources or isolated bodies, where we physically expect the space-time
metric to be approximately Minkowskian. Provided the asymptotic behaviour
of the h field is such that finite and non-zero integrals result, we could interpret
the Pµ as the energy-momentum of the matter plus gravity system. We will
return to the issue of energy-momentum of matter plus gravity system in the
context of asymptotically flat space-times in chapter 7.

For the plane gravitational waves discussed earlier, which corresponds to
exact solution to the linearized, source-free equation, τµν = 0 and we expect
the above energy-momentum integral to be zero. It is easy to check that the
Q vanishes for the plane wave solution using the TT-gauge and the equation
of motion. If we do not take hµν to be a solution of the exact linearized
equation, then the Q is non-zero and we can obtain total energy, momentum
of the space-time from the equation (5.79), provided the solution has the
appropriate asymptotic behaviour.

There are a couple of points to note. The conserved stress tensor τµν
defined above is not generally covariant and is not uniquely defined. It is a
Lorentz tensor though. This is to be expected since the split of the metric into
the flat background and a small deviation is not generally covariant. Secondly,
for an extended object like a wave, we need to average over a region larger
than the wave length and average over a time larger than the period, when
computing the energy-momentum carried by the wave.

In the next subsection, we perform a scale dependent split of the metric
into a ‘background’ and a ‘ripple’. Using a suitable averaging, a satisfactory
computational definition of a gravitational stress ‘tensor’ is arrived at using
which we obtain the quadrupole formula for radiated power.

5.3.3 Radiated Energy and the Quadrupole Formula

In any given coordinate system, say a lab frame, we can look for the spatial
or temporal variation of the metric. Consider those metrics which have two
well separated scales which could be spatial or temporal. Let LB and fB
denote a length scale and a frequency scale. For such metrics, we can write
the metric as a sum of a background metric and a ripple [27],

gµν(x) = ḡµν + hµν , such that

(a) length scale of variation of ḡ � LB while that of h� LB or (b) frequency
of time variation of the background metric is much smaller while that of the
ripple is much larger and |hµν | � |ḡµν |. These conditions justify h being re-
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ferred to as a ripple6. To filter out the fast or short length scales, we perform
the corresponding temporal or spatial average over slower or longer length
scales. In either case, the average will be denoted by sandwiching the expres-
sion between angle brackets. For definiteness, we will do temporal averages.
The background geometry has a low frequency variation while the ripple is
of high frequency and low frequency part of an expression is obtained by a
temporal averaging7 i.e. [ ]low ⇔ 〈[ ]〉 .

Expanding Einstein equation in powers of h, we write,

Rµν(g) := R̄µν(ḡ) +R(1)
µν (ḡ, h) +R(2)

µν (ḡ, h) + . . .

= 8π(Tµν −
1

2
gµνTαβg

αβ) (5.80)

Hence,

R̄µν +
[
R(2)
µν

]
low

= 8π

[
Tµν −

1

2
gµνTαβg

αβ

]
low

(5.81)

R(1)
µν +

[
R(2)
µν

]
high

= 8π

[
Tµν −

1

2
gµνTαβg

αβ

]
high

(5.82)

The first equation can be written as

R̄µν = − 〈R(2)
µν 〉+ 8π

(
T̄µ −

1

2
ḡµν T̄

)
where we have denoted the averaged stress tensor and its trace by the over-
bars. Define the averaged quantity,

tµν := − 1

8π
〈R(2)

µν −
1

2
ḡµνR

(2)
αβ ḡ

αβ〉 ⇒ t := ḡµνtµν =
1

8π
〈R(2)〉. (5.83)

Therefore −〈R(2)
µν 〉 = 8π(tµν − 1

2 ḡµνt) and putting back in the low frequency
equation we rearrange the equation as,

R̄µν −
1

2
ḡµνR̄ = 8π(T̄µν + tµν) =: 8πτµν (5.84)

Evidently, the tµν defined in equation (5.83), is our candidate gravitational

6The gravitational waves that could be detected by Earth based instruments correspond
to a reduced wavelengths ranging from about 50 km to 500 km which correspond to a
frequency range from 100 Hz to 1000 Hz. The ‘size’ of Newtonian potential is of the order of
about 10−9 ∼ 2GM/(c2R) while expected wave amplitude is only about 10−21. Thus, the
metric corresponding to the Newtonian gravity will play the role of the background metric
and since it is essentially static, we can always satisfy the condition f � fB .

7For f(t) possessing a Fourier transform, f(ω), let its average be defined by 〈fT 〉(t) :=
1

2T

∫ T
−T dt

′f(t+t′). Then, 〈fT 〉(ω) = sinωT
ωT

f(ω). Thus, for lower frequencies, ω � T−1, the
Fourier transforms are preserved by the averaging while for higher frequencies the averaged
function has vanishing Fourier components.
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stress tensor. It serves as a source for the background metric due to the ripple
and is quadratic in the ripple, h. Although the ripple has high frequency
modes, the quadratic expression contains slow modes as well due to ‘beating’
and are picked-up under averaging. The combined tensor, τµν is covariantly
conserved. It is not a tensor since the identification of the ripple itself is frame
dependent and there is an averaging involved. Nevertheless, it provides an
algorithm to construct a gravitational stress ‘tensor’ which is quadratic in the
ripple, covariantly conserved and serves as a source for the background.

Far away from isolated sources, on physical grounds, we assume the ex-
istence of a frame in which the above identification can be applied with the
background metric approximating the Minkowskian metric. Then τµν reduces
to tµν , the covariant derivative reduces to an ordinary derivative and we obtain
∂µt

µν = 0. Far away from the sources, we get,

R(2)
µν ≈ 1

2
hαβ

{
∂2
µνhαβ − ∂2

ναhµβ − ∂2
µβhνα + ∂2

αβhµν
}

(5.85)

−1

4

{
2∂αh

α
β − ∂βhαα

}{
∂µh

β
ν + ∂νh

β
µ − ∂βhµν

}
+

1

4
{∂αhβν + ∂νhαβ − ∂βhνα}

{
∂αhβµ + ∂µh

αβ − ∂βhαµ
}

Since we are far away from the source, we can choose the transverse, trace-
less gauge. We can do spatial average over a length scale much larger than
the relevant wavelength. Under the integral sign, we can drop the ‘boundary
terms’ which are down by inverse powers of the length scale. Using this spatial
averaging, the TT-gauge and equation of motion in the asymptotic region, we
get,

〈R(2)
µν 〉 = − 1

4
〈∂µhαβ∂νhαβ〉TT =⇒ tµν =

1

32π
〈∂µhαβ∂νhαβ〉TT (5.86)

The trace of tµν vanishes due to the equation of motion and the TT gauge.
Note that in the TT gauge we can use the residual gauge freedom to set

h00 = 0 = h0i which allows us to replace hαβ by hij in the sum in the above
equation. For the plane gravitational wave solution, we note that

tµν =
1

16π
kµkν

(
|Φmm|2 + |Φm̄m̄|2

)
.

Using the conservation equation for this gravitational stress tensor, we
derive the flux formula. Taking two concentric shells in the asymptotic region,
we see that,∫

vol

∂0t
00 = −

∫
vol

∂it
i0 = −

[
−
∫
S1

dΩ r2
1 r̂it

i0 +

∫
S2

dΩ r2
2 r̂it

i0

]
(5.87)

This suggests that we define flux of gravitational energy through a surface as
(ni is the outward normal),

fluxS :=

∫
S

ds ni t
i0. (5.88)



Elementary Phenomenology 81

We can quickly see that the flux of the plane gravitational waves (solution
of the homogeneous equation), through a sphere at large r, vanishes. What
about the flux of radiation (solution of the inhomogeneous equation), given
in equation (5.62)?

To the leading approximation for r large compared to the source size (r �
r′), in the TT-gauge, the solution is of the form, hTTij (t, r) ∼ r−1fij(t − r).
Clearly ∂rfij = −∂tfij and this leads to ∂rh

TT
ij ≈ −∂0h

TT
ij − o(r−1). Using

this in the flux expression (5.88), we get,

r2

32π

∫
dΩ〈∂0hTTij ∂

rhijTT 〉 =
∂E

∂t
(5.89)

= − r2

32π

∫
dΩ〈∂0hTTij ∂0h

ij
TT 〉

∴
1

r2

dE

dtdΩ
=

1

32π
〈ḣTTij ḣ

ij
TT 〉 (Radiated power) (5.90)

and this is non-zero as long as in the TT-gauge, the ripple has time-
dependence.

In equation (5.71), we have obtained the leading order solution related
to the quadrupole moment of the source without imposing the TT-gauge.
The formula for radiated power however uses h field in the TT-gauge. We
can extract the TT-gauge parts of h̃ij as follows. For a wave going in the n̂
direction, introduce a projection operator, Pij(n̂) := δij − ninj . This projects
onto the transverse plane. Define, Λij,kl(n̂) := PikPjl− 1

2PijPkl. This is also a
projection operator: Λij,klΛkl,mn = Λij,mn and contraction with n in any of the
indices, gives zero. It is also traceless in each pair of indices (ij) and (kl). For
any tensor Xmn(n̂), we can get its TT-projection as, XTT

ij (n̂) = Λij,klXkl(n̂).

Noting that in the TT-gauge, h̃ij = hij , we get,

hTTij (t, r) = Λij,kl

∫
dω√
2π
hkl(ω, r)e

iωt

= Λij,kl

∫
dω√
2π

(
− 2

r
e−iωrω2qkl(ω)

)
eiωt)

=
2

r
Λij,kl

∫
dω√
2π

∂2

∂t2
eiω(t−r)qkl(ω)

∴ hTTij (t, r) =
2

r
Λij,klQ̈kl(t− r),where,

Qij := qij −
1

3
δijqmnδ

mn (5.91)

With these, we relate the radiated power to the source quadrupole (in the
leading order in 1/r) as,

d2E

dΩdt
= r2 1

32π

4

r2
Λij,klΛij,mn〈

...
Qkl

...
Qmn〉 and
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Ptotal(t, r) =

[
1

8π

∫
dΩΛkl,mn(r̂)

]
〈
...
Qkl

...
Qmn〉(t− r) (5.92)

=
1

8π

2π

15
(11δikδjl − 4δijδkl + δilδjk) 〈

...
Qij

...
Qij〉

∴ Pquadrupole =

(
G

c5

)
1

5
〈
...
Qij

...
Qkl〉(t− r) (5.93)

This is the famous Einstein quadrupole formula. We note, without proof,
some special cases which provide a feeling for orders of magnitude and are
practically useful.

Rotating rod: For a rod of mass M , length L and rotating about its mid-
point with a angular frequency of Ω, the quadrupole formula becomes,

Pquadrupole =
2

45

G

c5
M2 L4 Ω6 ∼ 1.2× 10−54 M2L4Ω6 Watts (5.94)

Binary stars: For a binary system of stars or stellar mass black holes,
L ∼ 1012 meters (about 10 Earth-Sun distance), M ∼ 1030 kg and angular
speed from Kepler’s law is Ω ∼ 10−8 which gives the power to be about 10−4

Watts. A tighter binary with compact bodies could have L ∼ 109 meters with
angular speed of about 10−4 and radiate gravitational energy at 1018 watts. A
millisecond pulsar would have M ∼ 1030, L ∼ 104, Ω ∼ 104 leading to power
rate of 1046 watts. Actually, this is an over-estimate. Although the neutron
star radius is about 104 meters, it also almost spherical and hence would have
very small quadrupole moment e.g. due to some irregularity on the surface.
Taking into account this factor, the effective length scale for a neutron star
could be reduced by about a factor of 10−3 or even smaller. This would reduce
the power by a factor of at least a million [28].

Indirect evidence: A binary system will shrink in size due to loss of energy
and speed-up its orbital period which is detectable. The rate of decrease of
radius per revolution can be deduced from the power.

∆R ∼ −R∆E

E
= −R

E

2πP

Ω
∼ 2R2

GM2

P

Ω
∼ 10−43R6Ω5 meters.

This rate of decrease of radius is correlated to decrease in the period by,
∆T/T = (3/2)(∆R/R). The relevant parameters for the Hulse–Taylor binary
pulsar (PSR B1913+16) are: R ∼ 109, M ∼ 1030, T ∼ 104 in MKS units. This
gives ∆T ∼ 10−14. There are many corrections that need to be applied [28]
after which it increases by two orders of magnitude. The observation of the
orbital decay of the Hulse–Taylor binary pulsar (PSR B1913+16) over a 30-
year period (1975–2005) matches with the loss by the quadrupole formula to
within 1/2 percent [19].

Direct detection efforts: Direct detection methods do not rely on the energy
loss but on the amplitude of the waves which causes tidal distortions. There
is a large scale world-wide effort. It is discussed briefly in the section 10.2.
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5.4 Black Holes—Elementary Aspects

5.4.1 Static Black Holes

We return to the implication of general relativity in the context of com-
pact objects. We will take a first look at the vacuum solutions representing
compact objects, namely, the black hole solutions, study their basic properties
and briefly look at their observational status. We will consider them in more
generality in the part II. We will also consider ‘stars’ (non-vacuum solutions)
to see what general relativity has to say about them.

5.4.1.1 Schwarzschild Black Hole

We looked at the exterior Schwarzschild solution in the previous sec-
tions. Imagine now that the gravitational collapse has proceeded so far that
the candidate ‘surface of a star’ is inside the sphere of radius equal to the
Schwarzschild radius. The exterior Schwarzschild solution is thus now valid
also for R� ≤ r ≤ RS . Here we meet the famous Schwarzschild singular-
ity that caused confusion in the early history. Quite simply, for r = RS , gtt
vanishes and grr blows up. However if one computes the Riemann curvature
components, then they are perfectly well behaved at r = RS . Hence physical
effects of gravity such as tidal forces are all finite. The apparent singularity
is thus a computational artifact, more precisely it signals breakdown of the
coordinate system. How do we see this?

Consider for instance the flat Euclidean plane and express the Euclidean
metric of Cartesian system in terms of the (r, θ) coordinates, then grr =
1, gθθ = r. Now the inverse metric is singular at the origin, r = 0. We know
this is artificial because we know that (r, θ) is not a good coordinate system at
the origin. For every r > 0, 0 ≤ θ < 2π, one has a one-to-one correspondence
with points in the plane, but as r → 0 no unique θ can be assigned to the origin
in a continuous manner. One has to take the precise definitions of coordinate
systems (charts) seriously.

Let us recall that given a vector field one has its integral curves defined by
Xµ = dxµ

dλ . If it is a Killing vector field, then taking the parameter λ itself as
one of the local coordinates ensures that the metric is manifestly independent
of this coordinate. Returning to our plane, we observe that ξi∂i := ∂θ =
−y∂x + x∂y is a Killing vector (expressing the rotational symmetry of the
Euclidean metric). This is easiest to see in the Cartesian system where the
connection is zero and ξi,j + ξj,i = 0 follows. Its (norm)2 is r2 which vanishes
at r = 0. The angular coordinate θ is the parameter of integral curves of the
Killing vector. The vanishing of the norm means that the vector field vanishes
there (we are in Euclidean geometry) and hence the angular coordinate cannot
be defined. Some thing similar happens at r = RS .

One of the Killing vector expressing stationarity of the metric is ξ = ∂t
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and its (norm)2 is just gtt which vanishes at r = RS . Since the metric is of
Lorentzian signature, zero norm does not mean the vector vanishes. But it
does mean that the vector ceases to be time-like which is needed to interpret
t as time (as opposed to one of the spatial coordinate). In the case of the
plane, the coordinate failure is cured by using Cartesian coordinates which
are perfectly well defined everywhere. Likewise, one has to look for a different
set of coordinates which are well behaved around r = RS . These are usually
(for effectively two-dimensional space-time) discovered by looking at radial
null geodesics crossing the r = RS sphere and choosing the affine parameters
of these geodesics as new coordinates.

To arrive at these new coordinates, write the metric in the form,

ds2 =

(
1− RS

r

){
−dt2 +

(
1− RS

r

)−2

dr2

}
+ r2dΩ2

:=

(
1− RS

r

){
−dt2 + dr2

∗
}
− r2dΩ2 (5.95)

Solving for r∗(r) and choosing r∗(0) = 0 without loss of generality gives,

r∗(r) = r +RS`n

∣∣∣∣r −RSRS

∣∣∣∣ (5.96)

Notice that r∗ ranges monotonically from −∞ to ∞ as r ranges from RS to
∞. This new radial coordinate r∗ is called the tortoise coordinate. The (t, r∗)
part of the metric is clearly conformal to the Minkowskian metric whose null
geodesics are along the light cone t = ±r∗. Introducing new coordinates (u, v)
via

t :=
1

2
(εuu+ εvv), r∗ :=

1

2
(−εuu+ εvv), εu, εv = ±1,

u = εu(t− r∗), v = εv(t+ r∗) (5.97)

implies −dt2 +dr2
∗ = −εuεvdudv and ds2 = −(1−RS/r)εuεvdudv+ r2dΩ2. So

to retain the signature of the metric and noting that the pre-factor is positive
for r > RS requires εu = εv = ±1.

As r∗ varies from −∞ to ∞ (r ∈ (RS ,∞)), u ∈ (∞,−∞), v ∈ (−∞,∞)
for εu = +1 (and oppositely for εu = −1). Taking εu = 1 for definiteness and
substituting for r∗ one sees that,(

1− RS
r

)
=

RS
r
e−r/RSe(v−u)/(2RS) (5.98)

ds2 = −RS
r
e−r/RS

(
e−u/(2RS)du

)(
ev/(2RS)dv

)
+ r2dΩ2

= −4R3
S

r
e−r/RSdUdV + r2dΩ2, with (5.99)

U := −e−u/(2RS) := T −X
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V := ev/(2RS) := T +X (5.100)

−UV =

(
r

RS
− 1

)
er/RS = X2 − T 2 (5.101)

The coordinates T,X defined in (5.100) are known as the Kruskal coor-
dinates. Their relation to the Schwarzschild coordinates (t, r) is summarized
below.

F (r) = X2 − T 2 :=

(
r

RS
− 1

)
er/RS

t

RS
= 2 tanh−1

(
T

X

)
(5.102)

X = ±
√
|F (r)| cosh

(
t

RS

)
T = ±

√
|F (r)| sinh

(
t

RS

)
(5.103)

ds2 =
4 R3

S e
−r/RS

r

(
−dT 2 + dX2

)
+ r2(T,X) dΩ2 (5.104)
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FIGURE 5.3: Kruskal diagram for the Schwarzschild space-time.

Looking at the figure (5.3) representing the space-time (‘extended’) we can
understand the r = RS singularity. The Schwarzschild time is ill defined at
Rs since the stationary Killing vector becomes null. The full line segments at
450 are labelled by r = RS , t = ±∞. The Schwarzschild coordinates provide
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a chart only for the right (and the left) wedge. To ‘see’ the top and the
bottom wedges one has to use the Kruskal coordinates. Since the form of the
T − X metric is conformal to the Minkowski metric, the light cones are the
familiar ones. one can see immediately that while we can have time-like and
null trajectories entering the top wedge, we can’t have any leaving it. Likewise
we can have such ‘causal’ trajectories leaving the bottom wedge, there can be
none entering it. We have here examples of one-way surfaces. The top wedge
is called the black hole region while the bottom wedge is called the white
hole region. The line r = RS (×S2), separating the top and the right wedges
is called the event horizon. In fact the existence of an event horizon is the
distinguishing and (defining) property of a black hole. For the corresponding
Penrose Diagram, see the figure 8.2.

Incidentally, what would be the gravitational red shift for light emitted
from the horizon? Well, the observed frequency at infinity would be zero but
any way no light will be received at infinity! For a light source very, very close
to the horizon (but on the out side), the red shift factor will be extremely large.
Consequently the horizon is also a surface of infinite red shift (strictly true
for static black hole horizons). Imagine the converse now. Place an observer
very near the horizon and shine light of some frequency at him/her from
far away. The frequency he/she will see will be ω∞(1− RS

robs
)−1/2. If the light

shining is the cosmic microwave background radiation with frequency of about
4 × 1011Hz, to see it as yellow color light of frequency of about 3 × 1015Hz,
the observer must be within a fraction of 10−8 from the horizon. For a solar
mass black hole this is about a hundredth of a millimeter from the horizon!
At such locations the tidal forces will tear apart the observer before he/she
can see any light.

The first, simplest solution of Einstein’s theory shows a crazy space-time!
How much of this should be taken seriously?

What we have above is an ‘eternal black hole’, which is nothing but the
(mathematical) maximally extended spherically symmetric vacuum solution.
From astrophysics of stars and study of the interior solutions it appears that
if a star with mass in excess of about 3 solar masses undergoes a complete
gravitational collapse, then a black hole will be formed (i.e. radius of the
collapsing star will be less that the RS . The space-time describing such a
situation is not the eternal black hole but will have the analogues of the right
and the top wedges. It will have event horizon and black hole regions. Are
there other solutions that exhibit similar properties? The answer is yes but
again these too are mathematically peculiar.

5.4.1.2 The Reissner–Nordstrom Black Hole

These space-times are solutions of Einstein-Maxwell field equations. Like
the Schwarzschild solution, these are also spherically symmetric and static.
Consequently, the ansatz for the metric remains the same as in (2.24). In
addition, we need an ansatz for the electromagnetic field. It is straightforward
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to show that spherical symmetry and staticity implies that the only non-
vanishing components of Fµν are,

Ftr = ξ(r), Fθφ = η(r)sinθ. (5.105)

The dF = 0 (‘Bianchi identity’) Maxwell equations then imply that η(r) =
Qm is a constant while the remaining Maxwell equations imply that ξ(r) =
Qe
r2

√
f(r)g(r) where Qe is a constant. The Q’s correspond to electric and

magnetic charges. There is no evidence for magnetic monopoles yet, so we
could take Qm = 0. However we will continue to assume it to be non-zero in
this section.

The stress tensor for Maxwell field is defined as (4.13). For notational
convenience, we divide by the extra factor of 4π to avoid factors of 8π in the
metric.

Tµν =
1

4π

[
FµαFνβg

αβ − 1

4
gµν

(
FαρFβσg

αβgρσ
)]
. (5.106)

It follows that the non-zero components of Tµν are given by,

Ttt =
1

8π

Q2

r4
f(r), Q2 := Q2

e +Q2
m

Trr = − 1

8π

Q2

r4
g(r)

Tθθ =
1

8π

Q2

r2
, Tφφ = sin2θ Tθθ (5.107)

Due to the tracelessness of the stress tensor of electromagnetism, the Ein-
stein equation to be solved becomes Rµν = 8πTµν . Using the expressions
given in (5.3, 5.107), it is straight forward to obtain the Reissner–Nordstrom
solution:

f(r) =
∆(r)

r2
, g(r) = f−1(r)

Ftr =
Qe
r
, Fθφ = Qg sinθ (5.108)

∆(r) := r2 − 2Mr +Q2 , M, Q are constants,

Evidently, for Q = 0 we recover the Schwarzschild solution with the identifi-
cation RS = 2M .

As before, the metric component gtt vanishes when ∆ = 0 i.e. for r =
r± := M ±

√
M2 −Q2. For M2 ≥ Q2 we have thus two values of r at which

gtt = 0. For this range of values, we have a Reissner–Nordstrom Black Hole.
For M2 = Q2, it is known as an extremal black hole while for M2 < Q2 (r±
is complex), one has what is known as a naked singularity. As before, the
Riemann curvature components blow up only as r → 0 and since there is no
one way surface cutting it off from the region of large r, it is called a naked
singularity. We will concentrate on the black hole case.
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A Kruskal-like extension is carried out in a similar manner. The tortoise
coordinate r∗ is now given by,

r∗(r) = r +
r2
+

r+ − r−
`n

∣∣∣∣r − r+

r+

∣∣∣∣− r2
−

r+ − r−
`n

∣∣∣∣r − r−r−

∣∣∣∣ . (5.109)

There are now three regions to be considered:

A : 0 < r < r− ↔ 0 < r∗ <∞ (Stationary)

B : r− < r < r+ ↔ −∞ < r∗ <∞ (Homogeneous)

C : r+ < r <∞ ↔ −∞ < r∗ <∞ (Stationary)

The Kruskal-like coordinates, U, V are to be defined in each of these regions
such that the metric has the same form and then ‘join’ them at the chart
boundaries r±. The corresponding Penrose Diagram can be obtained by spe-
cializing the figure 8.1 and is discussed in section (8.1).

5.4.2 Stationary (Non-Static) Black Holes

5.4.2.1 Kerr–Newman Black Holes

It turns out that for the Einstein-Maxwell system, the most general sta-
tionary black hole solution – the Kerr–Newman family – is characterized by
just three parameters: mass, M, angular momentum, J and charge, Q. For
J = 0 one has spherically symmetric (static) two parameter family of so-
lutions known as the Reissner–Nordstrom solution. The J 6= 0 solution is
axisymmetric and non-static. This result goes under the title of ‘uniqueness
theorems’ and is also referred to as black holes have no hair. The significance
of this result is that even if a black hole is produced by any complicated,
non- symmetric collapse it settles to one of these solutions. All memory of the
collapse is radiated away. This happens only for black holes!

The black hole Kerr–Newman space-time can be expressed by the following
line element [17,29]:

ds2 = − η
2∆

Σ2
dt2 +

Σ2sin2θ

η2
(dφ−ωdt)2 +

η2

∆
dr2 +η2dθ2 where, (5.110)

∆ := r2 + a2 − 2Mr +Q2 ; Σ2 :=
(
r2 + a2

)2 − a2sin2θ∆

ω := a(2Mr−Q2)
Σ2 ; η2 := r2 + a2cos2θ

a = 0 , Q = 0 : Schwarzschild solution
a = 0 , Q 6= 0 : Reissner–Nordstrom solution
a 6= 0 , Q = 0 : Kerr solution

These solutions have a true curvature singularity when η2 = 0 while the
coordinate singularities occur when ∆ = 0. This has in general two real roots,
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r± = M ±
√
M2 − a2 −Q2, provided M2 − a2 − Q2 ≥ 0. The outer root,

r+ locates the event horizon while the inner root, r− locates what is called
the Cauchy horizon. When these two roots coincide, the solution is called an
extremal black hole.

When ∆ = 0 has no real root, one has a naked singularity instead of a
black hole. A simple example would be negative mass Schwarzschild solution.
The name naked signifies that the true curvature singularity at η2 = 0 can be
seen from far away. While mathematically such solutions exist, it is generally
believed, but not conclusively proved, that in any realistic collapse a physical
singularity will always be covered by a horizon. This belief is formulated as
the ‘cosmic censorship conjecture’. There are examples of collapse models
with both the possibilities. The more interesting and explored possibility is
the black hole possibility that we continue to explore.

We can compute some quantities associated with an event horizon. For
instance, its area is obtained as:

Ar+ :=

∫
r+

√
det(gind)dθdφ =

√
Σ2

∫
sinθdθdφ = 4π(r2

+ + a2) (5.111)

For Schwarzschild or Reissner–Nordstrom static space-time we can identify
(−gtt − 1)/2 with the Newtonian gravitational potential and compute the
‘acceleration due to gravity’ at the horizon by taking its radial gradient. Thus,
for a = 0,

Surface Gravity, κ := − 1

2

dgtt
dr
|r=r+ =

r+ −M
r2
+

=
r+ −M

2Mr+ −Q2
(5.112)

Although for rotating black holes ‘surface gravity’ cannot be defined so
simply, it turns out that when appropriately defined (see equation (8.8) it is
still given by the last equality in the above expression.

There is one more quantity associated with the event horizon of a rotating
black hole – the angular velocity of the horizon, Ω. For the rotating black
holes we have two Killing vectors: ξ := ∂t (the Killing vector of stationarity)
and ψ := ∂φ (the Killing vector of axisymmetry). Their (norms)2’s are given
by gtt, gφφ respectively. Both are space-like at the horizon. However there is
another Killing vector, χ := ξ + Ωψ, which is null at the horizon and hence
similar to the stationary Killing vector of the static cases. This Ω is defined to
be the angular velocity of the horizon. It turns out to be equal to the function
ω evaluated at r = r+. From the definition given above it follows that,

Ω :=
a

r2
+ + a2

. (5.113)

For charged black holes one also defines a surface electrostatic potential
as,

Φ :=
Q r+

r2
+ + a2

(5.114)
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The parameters of the solution are identified as: Q is charge and J := Ma
is the angular momentum.

Thus we have defined:

M = M ; r+ = M +
√
M − a2 −Q2

A = 4π(r2
+ + a2) ; κ = r+ − M

2Mr+ − Q2

J = Ma ; Ω = a
r2+ + a2

Q = Q ; Φ = Qr+
r2+ + a2

(5.115)

Now one can verify explicitly that,

δM =
κ

8π
δA + ΩδJ + ΦδQ (5.116)

This completes our survey of examples of black hole solutions and some of
their properties. All these are stationary solutions of Einstein-Maxwell field
equations. We will return to general definition of black holes and its generaliza-
tion in section 8.2. In the next section we take a brief look at the observational
status of black holes.

5.4.3 Observational Status

Theoretically, black hole solutions exist for all values of mass, angular
momentum and charge subject to M2 > a2 + Q2. Their physical realization
however depends on astrophysical gravitational collapse. As per current under-
standing, beyond a neutron star, there does not seem to be a stable compact
object i.e. if a neutron star crosses the Chandrasekhar limit by an accre-
tion process, then a complete gravitational collapse is un-stoppable with an
end-result most likely being a black hole (size smaller than its Schwarzschild
radius, say) or perhaps a ‘naked singularity’. It is this feature that lends sup-
port to physical realizations of black holes as well as the expectation that the
astrophysical black holes have masses in excess of the solar mass.

There is also the possibility of that a black hole may keep growing by
swallowing nearby stars or other black holes. It is also conceivable that a
super-massive star may collapse directly to a super-massive black hole without
passing through a supernova stage in which a lot of parent stellar material is
exploded away. The star gobbling possibility is likely to occur in the central
regions of most galaxies. These centres could then be super-massive black
holes.

A black hole being black, is hard to detect. It is through its accretion
disc which glows, that one looks for evidence for a black hole. A solar scale
black hole is a few km in size and has strong tidal forces at the horizon. Any
matter reaching nearby can be torn away producing a glowing accretion disc.
Super-massive black holes by contrast, have a smaller curvature and weaker
tidal disruption which cannot sustain a glowing accretion disc. The detection
methods of these two types of black holes are different.
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The stellar scale black holes are searched in binary systems with a visible
star and its invisible companion. The optically invisible companion can be
bright in the x-ray region produced by the heated matter drawn from the
optically bright star. Depending upon the type of accretion disk, evidence for
a black hole horizon is inferred from the luminosity of the ‘reflected’ energy
from the compact object [30].

The super-massive black holes are indicated by the jets of matter and/or
plasma, emanating from the central regions. Such jets can be sustained only
by a powerful central engine, the best candidate for which are rotating, super-
massive black holes. Another method of confirming the black holes in the
centres of nearby galaxies, including our own is, direct, high resolution mil-
limeter wavelength observation. For the Milky Way, Keplerian orbits of stars
in the central region already indicate a 4 million solar mass object confined to
a small region consistent with the horizon size. The Event Horizon telescope
system has already provided evidence for the central black hole.

So far, there have been candidate black holes in the mass range of few
tens to few hundreds of solar masses. There are also candidates of the super-
massive class, with masses ranging from a million to a few billion solar masses.
There are no candidates of intermediate mass range. Further details may be
seen in [31].

5.5 Stars in GR

Let us now turn attention from vacuum solutions to non-vacuum solutions
still continuing with compact bodies with spherical symmetry and staticity.
What do we take for the stress tensor?

The most general stress tensor consistent with spherical symmetry and
staticity can be constructed as follows. Given the metric ansatz, we can define
4 orthonormal vectors as:

eµ0 := 1√
f

(1, 0, 0, 0) , eµ1 := 1√
g (0, 1, 0, 0)

eµ2 := 1
r (0, 0, 1, 0) , eµ3 := 1

rsinθ (0, 0, 0, 1)
(5.117)

Any stress tensor can then be written as Tµν := ρabe
µ
ae
ν
b with ρab symmet-

ric. Spherical symmetry and staticity implies ρab = diag(ρ0, ρ1, ρ2, ρ3) with
ρ2 = ρ3. All these are functions only of r.

The Einstein equations can now be written down. Previously, for the vac-
uum case we could just use Ricci tensor equal to zero. Now we must use
the Einstein tensor. One gets only three non-trivial equations coming from
G00, G11 and G22. The third one is a second order equation and can be traded
for the conservation equation which is first order. Thus we can arrange our
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equations as 3 first order equations [32]:

r
dg

dr
= −g(g − 1) + (8πρ0r

2)g2 (G00 = 8πT00) (5.118)

r
df

dr
= f(g − 1) + (8πρ1r

2)fg (G11 = 8πT11) (5.119)

r
dρ1

dr
= 2(ρ2 − ρ1)− ρ0 + ρ1

2
r
d`nf

dr
(Conservation equation) (5.120)

The (00) equation can be solved for g(r) in terms of ρ0(r) as:

m(r)−m(r1) := 4π

∫ r

r1

ρ0(r′)r′2dr′, g(r) :=

(
1− 2m(r)

r

)−1

(5.121)

Substituting the (11) equation in the conservation equation will give an
equation involving only the ρ′s. Once these are solved we can determine f(r)
from the (11) equation. We already see that we have to provide further in-
formation in order the equations can be solved. This involves specification of
the stress tensor. If this stress tensor is that of electromagnetism (spherically
symmetric and static of course) then ρ2 = −ρ1 = ρ0 = Q2/r4. Using this
leads to the Reissner–Nordstrom solution. For the case of perfect fluid we
have ρ0 ≡ ρ, ρ1 = ρ2 ≡ P together with an equation of state, P (r) = P (ρ(r)).
Now our equation system is determined.

For the interior solution we take r1 = 0 and m(r1) = 0 to avoid getting a
‘conical singularity’ at r = 0. There is supposed to be a maximum value R at
which the density and the pressure is expected to drop to zero. This R is of
course the radius of our static body.

(If ρ0 is not integrable at r = 0, as for the Reissner–Nordstrom case, then
the solution should be understood as an exterior solution. In such a case we
can take r1 to be ∞ and m(r1) ≡M . The solution can be constructed easily
and is also a black hole solution.)

With these we can write the final equations as:

m(r) := 4π

∫ r

0

ρ(r′)r′2dr′, g(r) :=

(
1− 2m(r)

r

)−1

(5.122)

dP (ρ(r))

dr
= −

[
m(r)ρ

r2

](
1 +

P (ρ)

ρ

)1 + 4πr3

m(r)P (ρ)

1− 2m(r)
r

 (5.123)

r
d`nf

dr
= 2

m(r) + 4πP (ρ)r3

r − 2m(r)
(5.124)

The middle equation (5.123) is the Tolman-Oppenheimer-Volkoff equation
of hydrostatic equilibrium. The corresponding Newtonian hydrostatic equilib-
rium equation is obtained by taking P << ρ, m(r) << r. In practice, these
equations are solved by starting with some arbitrary central density and corre-
sponding pressure, ρ(0), P (0) = P (ρ(0)) and integrating the T-O-V equation
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together with the m(r). One continues integration till a value r = R at which
the density and pressure vanish. Once ρ,m(r) are known the last equation can
be integrated. Its boundary condition is chosen so that the interior solution
matches with the exterior Schwarzschild solution. Clearly, the mass of such a
body is just M = m(R) while its surface is at r = R.

Note that ρ(0) and the equation of state are inputs while R and M are the
outputs. Since the equations are non-linear in ρ, we may not find a ‘surface
of body’ for all choices of the central density and/or for all possible equations
of states. If we do, then R,M have a complicated dependence on the central
density. There is then an implicit relation between the mass and radius of a
star. The possibility of non-finite size solution makes the question of stability
of a star quite non-trivial.

An instructive example which can be solved exactly is the so-called incom-
pressible fluid defined as P is independent of ρ and ρ = ρ̂, a constant, for
r ≤ R and zero otherwise. Then, m(r) = (4πρ̂r3)/3 and,

P (r) = ρ̂

[
(1− 2M/R)1/2 − (1− 2Mr2/R3)1/2

(1− 2Mr2/R3)1/2 − 3(1− 2M/R)1/2

]
(5.125)

P (0) = ρ̂

[
(1− 2M/R)1/2 − 1

1− 3(1− 2M/R)1/2

]
(5.126)

The central pressure thus blows up for R = 9M/4! There can be no body
with uniform density and M > 4R/9. A corresponding calculation with New-
tonian gravity has no such limit. Einstein’s gravity has drastic consequences
for stellar equilibria. It turns out that assuming only that the density is a
non-negative monotonically decreasing function of r, the maximum mass pos-
sible for any given radius must be less than 4R/9. That there must be such a
limit follows by noting the g(r) must be positive to maintain the Riemannian
nature of the spatial metric. This already implies M < R/2. Further requiring
f(r) remain positive so as to maintain staticity sharpens this limit [17].

Real stars are of course not static. There are a variety of complicated
processes going on in a star. Over a certain period however a star can be
assumed to approximately in equilibrium. If it is also close to being spherical
and possibly slowly rotating then such a star can be well modelled by an
interior Schwarzschild solution. These solutions are thus useful for identifying
approximate equilibrium states of stars.

However, various possible equilibria may not be stable, a small perturbation
in the central density parameter ρ(0) may result in a solution without a finite
size (a ‘non-star’ solution). It turns out [2] that for the so called Newtonian
Polytropes i.e. stars with equation of state of the form P ∝ ργ and governed
by the Newtonian equations for the hydrostatic equilibrium are stable for all
values of the central density for γ > 4/3 and unstable for γ < 4/3. Applied
to white dwarfs where the pressure is generated by the electron degeneracy
pressure, the instability value of 4/3 is reached for an upper limit of mass, the
Chandrasekhar Limit of about 1.4 times the solar mass. The corresponding
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radius of a white dwarf is about 4000 km. The general relativistic effects can
continue to be neglected. Applied to neutron stars, with the pressure now being
supplied by the neutron degeneracy pressure, there is a similar upper mass
limit from stability and it goes up to about 2.5 solar mass with a size of about
10 km. At this stage, general relativistic effects begin to make contributions,
but are still small. Thus, for real (stable) stars in the astrophysical context,
general relativity does not play a significant role. It does provide the condition
that physical radius of body must be larger than (9/8) times its Schwarzschild
radius. If these upper limits on mass (or lower limits on size) are crossed, black
hole (or a naked singularity) formation is unavoidable.
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Chapter 6

The Space-Time Arena

We have seen several examples of space-times including those which are also
solutions of the Einstein equation. Most of these were local solutions but we
also saw extended solutions in the examples of the static black holes. The basic
idea of an extension is to embed a given space-time, (M, g), into another one,
(M̄, ḡ), such that on M ⊂ M̄ , we have g = ḡ. The two space-times may be
just smooth, or real analytic, or solutions of the Einstein equation. If no such
extension is possible, the space-time is said to be in-extendable. The focus of
this chapter is on in-extendable space-times. Eventually we would like such
space-times as solutions of the Einstein equation with suitable matter stress
tensor, but to begin with we just focus on candidate space-times.

Space-times are distinguished from Riemannian spaces by their Lorentzian
nature which specifies a local notion of causality given by the local light cones.
Causality and determinism are two basic features of predictability that a
space-time allows us to formulate. It is therefore necessary that our candidate
space-times should be causally well behaved, deterministic and predictable.
These are loaded terms which need to be sharpened. We do this in stages.

The absolutely basic prerequisite for any notion of causality (as distinct
from correlations) is a distinction between past and future. This is captured by
the formulation of time orientability. The next feature is a possible mechanism
of causation which requires the possibility of communication and is captured
by positing that two events can be causally connected if there is a curve
connecting them which is future (or past) directed and everywhere non-space-
like. While locally, the division between time-like and space-like intervals is
clear cut, at the global level it leaves open the possibility of closed time-like
or causal curves. This is a causal pathology and is excluded by introducing
the chronology or causality condition. While this condition excludes closed
time-like or causal curves, it leaves open the possibility of a causal curve
returning repeatedly arbitrarily close to a given event. This could jeopardise
the identification of a cause for a given effect due to finite precision. This
is prevented by defining strong causality. Causality is conditional on a given
space-time. But the metric itself could be known to some precision and it is
possible that a metric is strongly causal but the a nearby one has ‘wider light
cones’ and therefore a closed curve that was not causal with respect to the first
one can be causal, thus confusing cause and effect again. This is precluded by
defining stable causality. This finally prevents all possible causal pathologies.

Next is an independent notion of determinism. Wave phenomena which

97
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involve partial differential equations with time evolution. Typically, the ini-
tial data for these is specified on some ‘constant time’ hypersurface and the
equation is supposed to determine future data (and also the past) and this
should be the complete information at all space-time events. Such space-times
are distinguished as being globally hyperbolic. This is a pre-condition for an
evolution equation to be deterministic.

Predictability is a further independent feature which is born after deter-
minism is admissible and is really a property of particular deterministic evo-
lution equations. This has to do with how sensitively ‘future’ data depends on
‘initial’ data and as such is independent of the particular globally hyperbolic
space-time.

We will now take a closer look at various definitions and relevant theorems.
This chapter is more mathematical in nature because of the generality of its
scope and so is the presentation. The main references followed are the books
by Hawking and Ellis [18] and by Wald [17]. For additional examples and
information, please see [33,34].

In the following, (M, g) is an in-extendable Lorentzian manifold of dimen-
sions ≥ 2.

6.1 Preliminary Notions and Results

First, not all manifolds can admit a smooth Lorentzian signature metric!

Theorem 6.1 (Existence of Lorentzian Metric) A manifold M , admits
a Lorentzian metric iff either (i) M is non-compact, or (ii) if M is compact,
then its Euler character is zero.

The proof may be seen in [18,35].
We now have the notion of ‘time’, how do we distinguish future and past?

We know how to do so in the Minkowski space-time. We have already discussed
the division of intervals into space-like, time-like and light-like. The linear
structure of the Minkowski space-time allows us to treat coordinate intervals
as vectors. From the properties of the Lorentz transformations, we also know
that for a time-like or a light-like vector, the sign of its time component is
unchanged by infinitesimal Lorentz transformations. On the set of time-like
vectors, define a relation, X ∼ Y iff X · Y := ηIJX

IY J < 0. This is an
equivalence relation and for members in the same equivalence class we have
X0Y 0 > 0. There are precisely, two equivalence classes, which may be labelled
as [X] and [−X], for some time-like vector X. We arbitrarily designate one of
these as future and the other as past, of the origin (X = 0) of the Minkowski
space-time. We extend these classes to include light-like vectors by stipulating
that a light-like vector, Y , belongs to the future (past) if Y ·X < 0 for some X
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in the future (past). The future (past) including the light-like vectors is referred
to as the future (past) light cone at X = 0. Thus in Minkowski space-time, we
have a definition of future (past) in terms of the light cones. The tangent space
Tp at any event p in a generic space-time, is naturally a Minkowski space-time
and hence has a notion of future and past light cones of the origin in Tp. By a
slight abuse of language we will refer to these light cones also as future (past)
light cones at p.

We transport these notions to a manifold by means of convex normal neigh-
borhoods. Recall that on a (pseudo)Riemannian manifold which has a built-in
definition of geodesics, we can assign coordinates to points q in a neighbor-
hood Up of any point p, by finding a geodesic starting from p with a tangent
vector Xq and connecting to the point q in a unit affine parameter distance.
This defines the exponential map from a neighborhood V0 of the origin in the
tangent space Tp, to a neighborhood Up in the manifold. The coordinates of
q are just the components of the tangent vector Xq and are called Riemann
normal coordinates while the neighborhood of p is called a Riemann normal
neighborhood.

Definition 6.1 (Convex Normal neighborhood:) A Riemann normal
neighborhood is convex if for all points q, r in the neighborhood, there is a
unique geodesic connecting them and lying entirely in the neighborhood.

These are open sets in which, none of the geodesics have any intermediate
points missing. It is a further result that convex normal neighborhoods always
exist on pseudo–Riemannian manifolds. This result enables us to import the
future/past structure from the Minkowski space-time to the general space-
time, albeit only locally.

Definition 6.2 (Time-Orientability:) A space-time is said to be time-
orientable if the future/past assignment can be done consistently everywhere.

Theorem 6.2 (M, g) is time-orientable iff there exists a smooth time-like
vector field.

Such a vector field is not unique and choosing a particular one fixes a time-
orientation. We will assume that a choice has been made.

Definition 6.3 (Time-Like/Causal Curves:) A smooth curve is said to
be future (past) directed time-like (causal) curve if at every point p on the
curve, the tangent vector is future (past) directed time-like (causal) vector.

This allows us to extend the notion of the Minkowski light cone to subsets of
general time-oriented space-times.

Definition 6.4 (Chronological/Causal Future/Past:) Chronological fu-
ture (past) of p is defined as,
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I±(p) := {q ∈M / ∃ a future (past) directed time-like curve from p to q}.
Likewise Causal future (past) of p is defined as,
J±(p) := {q ∈M / ∃ a future (past) directed causal curve from p to q}.

In the above, trivial curves (λ(t) = p ∀ t) are excluded, they have no time-
like/light-like/space-like attribute.

The extension to future/past of any subset S ⊂M is done by taking union
of future/pasts of points of the subset S e.g. I±(S) := ∪p∈SI±(p).

The Minkowski light cones have further properties e.g., I+(p) consists of
exactly all the points which lie on future directed time-like geodesics and the

boundary1, ˙I+(p), of I+(p) is generated by null geodesics. This means that

J+(p) = I+(p)∪ ˙I+. These properties are not true in general space-times. For
example, in a space-time obtained from the Minkowski space-time by removing
a point r from the light cone based on p, any point q ‘beyond’ r will no longer

belong to J+(p) although it will still belong to the boundary ˙I+. Clearly,
˙I+(p) 6= J+(p) − I+(p). However, locally, in a convex normal neighborhood,

the Minkowski properties hold. Let Np be a convex normal neighborhood of
p. Then,

Theorem 6.3 (in a Convex Normal neighborhood)

1. I+(p) ∩Np is the set of points q ∈M such that q can be connected to p
by a future directed time-like geodesic contained within Np, and

2. ˙I+(p) ∩Np is generated by future directed null geodesics from p.

This leads to the corollaries,

1. I+(p) is open. In contrast, J+(p) is not open.

2. If q ∈ Np satisfies q ∈ J+(p), q /∈ I+(p), then q lies on a null geodesic

from p i.e. J+(p)∩Np = I+(p)∩Np which is equivalent to saying that

within Np, J
+(p) = I+(p) ∪ ˙I+(p).

3. If, q ∈ J+(p)− I+(p), then any causal curve connecting p to q must be
null geodesic.

The first corollary is equivalent to the assertion that the tip q, of a time-
like curve can be deformed to range over a neighborhood, q′ ∈ uq, without
changing its time-like character. This also implies that if q ∈ I+(p) then
I+(q) ⊂ I+(p).

Theorem 6.4 (Properties of Future/Past of a Subset:)
For S ⊂M ,

1Boundary of a subset A ⊂ X is the set of all points p of X such that every neighborhood
of p has a non-empty intersection with Ai, and with X −A.
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1. I+(I+(S)) = I+(S);

2. I+(S̄) = I+(S);

3. J+(S) ⊂ I+(S);

4. I+(S) = int[J+(S)];

5. ˙I+(S) = ˙J+(S).

The first result really expresses the ‘transitivity’ - r ∈ I−(q), q ∈ I−(p)⇒ r ∈
I−(p).

Definition 6.5 (Achronal Sets) A subset S ⊂ M is said to be achronal if
for every p, q ∈ S, p /∈ I+(q), and q /∈ I+(p); equivalently, I+(S) ∩ S = ∅ ;

Note that a space-like hypersurface is achronal but the converse is not true.
For instance, if S is the ‘surface’ of a Minkowski light-cone in two-dimensions
(i.e. the 45 degree pair of null lines), its chronological future is the interior of
the light-cone and clearly I+(S)∩S = ∅. An achronal set in general is made up
of portions which are space-like, or null, or isolated boundary points. We have,

Theorem 6.5 For any S ⊂ M , either ˙I+(S) = ∅ or is an achronal, three-
dimensional, embedded, C0 submanifold of M.

This establishes that the boundary of the future of any subset, if non-empty,
is ‘well behaved’ at least in a C0 sense.

It turns out that we need to be able to extend the notions of time-like
or causal curves also to curves which are only continuous. Since a continuous
curve is does not have a tangent, its causal attribute is assigned indirectly.

Definition 6.6 (Continuous Time-Like/Causal Curves)
A continuous curve λ(t) is said to be future directed time-like (causal) if for

every p ∈ λ(t) , ∃ a convex normal neighborhood, Np such that if λ(t1), λ(t2) ∈
Np with t1 < t2, then ∃ a future directed differentiable time-like (causal) curve
from λ(t1) to λ(t2).

We will also need the notion of extendibility for curves. For this we have
to introduce,

Definition 6.7 (End Point) p ∈M is said to be a future end point of λ(t)
if for every neighborhood, up, ∃ t0 such that λ(t) ∈ up ∀ t > t0;

λ(t) is future in-extendible if it does not have a future end point.

Note that end points (future and/or past) need not exist. However if they exist,
they are unique. It is also possible that an end point exists but does not belong
to the curve i.e. @ a t′ such that p = λ(t′). If however, an end point exists
and belongs to the curve, then it is possible to extend the curve by adjoining
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another time-like (causal) appropriately directed curve. This however can only
be guaranteed to be a continuous extension and this is an instance requiring
the inclusion of continuous curves.

Consider now a sequence {λn(t)} of causal curves. We have the natural
definitions:

Definition 6.8 (Convergence and Limit Points)

• p ∈M is a convergence point of the sequence if for every up , ∃ N > 0
such that λn ∩ up 6= ∅ ∀ n > N ;

• p ∈ M is a limit point of the sequence if for every up, λn ∩ up 6= ∅ for
infinitely many n.

A convergence point is a limit point, but not conversely.

• A curve λ(t) is said to be a convergence curve of the sequence if every
p ∈ λ is a convergence point of {λn(t)}. And finally,

• λ(t) is a limit curve of the sequence, if ∃ a sub-sequence {λ′n} such
that λ is a convergence curve of this subsequence.

We have the result: If λ is a limit curve, then every p ∈ λ is a limit point.
The converse is not necessarily true i.e. a curve whose every point is a limit
point is not necessarily a limit curve. It could happen that there may be no
common subsequence for which the curve is a convergence curve.

Note that a given sequence of causal curves, may or may not have (a) any
convergence point; (b) any limit points; (c) any convergence curve or (d) any
limit curves or combinations of these. However, we do have a theorem:

Theorem 6.6 If {λn} be a sequence of future directed, in-extendible, causal
curves having p as a limit point, then there exists a future in-extendible causal
curve through p which is a limit curve of the sequence.

Thus, existence of even a single limit point, is enough to imply existence of a
causal limiting curve. The proof constructs the curve as a limit curve. In the
comment below the definition (6.8), a curve of limit points was given and this
is not guaranteed to be a limit curve. Combining this with the properties of
the boundary of the chronological future of subsets, we have the theorem:

Theorem 6.7 Let S ⊂M be a closed subset. Then for every p ∈ ˙I+(S), p /∈
S, the point p lies on a null geodesics which is entirely in ˙I+(S) and is either
past-in-extendible or has an end point on S.

Every curve is either extendible or not (has an end point or not). The non-
trivial statement is that the null geodesic can have a past end point only on
S. That S is closed is important in the proof [17].

After these preliminaries, we turn to analysis of causality proper.
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6.2 Causality

The most obvious threat to the notion of causality is the existence of closed
time-like or causal curves. While locally (i.e. in a convex normal neighborhood)
this cannot happen, globally, we can have such curves. A simple example is
to take a two-dimensional Minkowski space-time and identify the t = 0 and
t = 1 (say) lines. The x = 0 is a closed time-like curve. Such space-times have
to be explicitly excluded. This is achieved by,

Definition 6.9 (Chronology/Causality Condition)
(M, g) is said to satisfy chronology (causality) condition if @ a closed time-

like (causal) curve in M i.e. ∀ p ∈M, p /∈ I±(p) (respectively p /∈ J±(p)).

The causality condition implies the chronology condition, but the converse
is not true. There may be no closed time-like curves, but a non-space-like
closed curve may have portions which are light-like and therefore would violate
causality condition. How commonly are these conditions violated?

Theorem 6.8 (Compact Space-Time) If the space-time manifold is com-
pact, then both chronology and causality conditions are violated.

We have already noted that a Lorentzian metric is not admissible on a compact
manifold unless its Euler character is zero. Now we see that compact space-
times, even with vanishing Euler character, are in-appropriate for a reliable
notion of causality. Physically admissible space-times should not be compact.

Note that on a non-compact manifold too, either or both conditions can
be violated as the two-dimensional example above shows.

There is another type of causal pathology that can arise - the space-time
interval between two neighboring events can be both time-like and space-like.
This can happen if a time-like curve starting from p has a point q which is
arbitrarily close to p, which will then imply that two nearby points in a convex
normal neighborhood of p, which are space-like separated, are nevertheless
connected by a time-like curve, going out of the neighborhood and re-entering
it. This is excluded by the notion of strong causality.

Definition 6.10 (Strong Causality) (M, g) is strongly causal if for every
p and a up , ∃ u′p ⊂ up such that no causal curve intersects u′p more than
once i.e. λ(t) ∩ u′p 6= ∅ ⇒ t ∈ (a, b), in contradistinction from t in multiple,
disjoint intervals.

At any point and any neighborhood, there will always be one segment of a
causal curve, namely, a causal curve through the point itself. Strong causality
precludes another t-interval of the same causal curve within some neighbor-
hood of the point.
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Evidently, strong causality implies causality. An example where causality
holds but strong causality fails is shown in the figure (6.1) [18].

Identify

Identify

Cut

Cut

FIGURE 6.1: A two-dimensional example. Every neighborhood of the point
has a causal curve entering it twice.

In a strongly causal space-time, we have a result:
In a strongly causal space-time, if we have a causal curve confined to a com-

pact subset of the space-time, then it must be both future and past extendible
(have future and past end points).

Notice that the compact subset may be a compact submanifold. Then by
the previous theorem 6.8, there would be a violation of causality, but this
cannot be so due to strong causality. The only alternative is that the causal
curve must ‘try to exit’ the compact submanifold i.e. must have end points.

Now we come to the notion of ‘stable causality’ which means that even
if the metric is perturbed slightly, the strong causality/causality condition
continues to hold. This would obviously be true if the perturbed metric has
light-cones which are ‘narrower’ than the original metric which trivially pre-
serve causal character of a curve. If however, the new metric has light-cones
which are ‘wider’, then curves which were space-like earlier could now become
causal. So how does one ‘widen’ a metric?

Let tµ be a time-like vector field with respect to a metric gµν and define
ḡµν := gµν − tµtν . Its inverse is given by, ḡµν = gµν + tµtν/(1 − t · t). Then
ḡ(X,X) = g(X,X) − (g(t,X))2. Therefore, g(X,X) ≤ 0 ⇒ ḡ(X,X) < 0 and
ḡ(X,X) ≥ 0⇒ g(X,X) > (t ·X)2 > 0. Thus the light cone with respect to g
is a subset of that with respect to ḡ or ḡ is wider than g.

Definition 6.11 (Stable Causality) (M, g) is stably causal, if ∃ a continu-
ous, non-vanishing time-like vector field tµ such that (M, ḡ) satisfies chronol-
ogy condition.

We have a convenient characterization of stably causal space-times:

Theorem 6.9 (Stable Causality) (M, g) is stably causal iff ∃ a differen-
tiable function f : M → R such that ∂µf is a future directed, time-like vector
field. The function is called a global time function.
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It leads to the corollary: Stable causality implies strong causality. Stable
causality ensures there are no causal pathologies.

Having identified conditions for a causally well behaved space-time, we
seek the property that physically acceptable space-times should afford a de-
terministic dynamics for all matter entities.

6.3 Determinism and Global Hyperbolicity

The notion of determinism is tied with the ability to predict i.e. having
given sufficient information at some ‘instance’, we can predict what the in-
formation will be at a later instance and also retrodict what the information
was at an earlier instance which lead to the information ‘now’. These intuitive
ideas from a Newtonian view of the dynamics are formulated in a relativistic
view, in terms of domains of dependence of a suitable submanifold. As we
will see, the ‘now’ surface (submanifold) can be generalized to an achronal
submanifold (which can have light-like portions which are absent in the New-
tonian causality).

Let S be a closed, achronal set.

Definition 6.12 (Edge Set) p ∈ S is an edge point of S if for every neigh-
borhood up,∃ q, r ∈ up such that q ∈ I+(p), r ∈ I−(p) and there is a time-like
curve λ from r to q which does not intersect S.

The set of all edge points of S is called the edge of S, denoted edge(S).

Note that S is only a set, no smoothness properties are implied. The x-axis
of usual Minkowski space-time is clearly closed, achronal and has each of
its points as its edge point since we can always skirt around by a time-like
curve, hence in this case edge(S) = S. The x-y plane in three-dimensional
Minkowski space-time however has no edge points - edge(S) = ∅. In fact we
have the theorem,

Theorem 6.10 If a non-empty, closed, achronal set S has no edge points,
then S is a three-dimensional, embedded, C 0 submanifold of M .

Such an edge-less S is called a slice.

For a generic closed, achronal set S, we define its domains of dependences.

Definition 6.13 (Future/Past Domains of Dependence)
D+(S) := {p ∈ M/ Every, past in-extendible causal curve through p

intersects S } ;
D−(S) := {p ∈ M/ Every, future in-extendible causal curve through p

intersects S } ;
D±(S) are called future/past domain of dependence of S.



106 General Relativity: Basics and Beyond

Clearly, S ⊂ D±(S) ⊂ J±(S). However, since S is achronal, D+(S)∩I−(S) =
∅ = D−(S) ∩ I+(S). The qualifier every is important since it implies that
the future domain of dependence precisely consists of only those events whose
causes have been registered on S and have no other causes un-registered on S.
Likewise, the past domain of dependence consists of only those ‘causes’ whose
‘effects’ have to be registered on S. Therefore, D(S) := D+(S) ∪ D−(S),
the Domain of Dependence of S, is the set of events at which all physical
properties should be completely determined by the properties at events on S.
Evidently for a space-time supporting predictability, we would like existence
of an achronal set whose domain of dependence is the full space-time! This
leads to the central definition of this section:

Definition 6.14 (Cauchy Surface and Global Hyperbolicity)
If S is an achronal, closed subset of M such that D(S) = M , then S is

called a Cauchy Surface while the space-time is said to be Globally Hyperbolic.

It follows immediately that,

Theorem 6.11 A Cauchy surface is edge-less i.e. a slice which is of course
an embedded three-dimensional, C0 submanifold.

The proof is simple. If edge(S) 6= ∅, then ∃ p ∈ S such that every neighborhood
up containing q ∈ I+(p), r ∈ I−(p) and a time-like curve λ connecting the two
without intersecting S. Hence q, r do not belong to the domain of dependence
of S. But this contradicts global hyperbolicity, hence S must be edge-less.

To consider the converse, let M be a globally hyperbolic space-time so
that it can admit a Cauchy surface. Consider a three-dimensional, achronal,
closed, edge-less submanifold, S ⊂ M . Under what conditions can such an S
be a Cauchy surface?

Theorem 6.12 S is a Cauchy surface iff every, in-extendible null geodesic
intersects S and enters I±(S).

Edge-less, achronal, closed submanifolds which are not intersected by all in-
extendible null geodesics are called Partial Cauchy Surfaces. The domain of
dependence of a partial Cauchy surface, while clearly not all of the space-time,
is by itself a globally hyperbolic space-time with the surface being its Cauchy
surface.

When the domain of dependence of a closed, achronal set S does not
coincide with the space-time, we have the notion of a Cauchy Horizon. To
define it, Let us note some properties of the domains of dependences for a
generic closed, achronal set S. Neither the D±(S) not their closures D±(S)
coincide with the full space-time. Then the following are true:

Theorem 6.13 (Properties of Domains of Dependence)
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1. An event p ∈ D+(S) iff every past in-extendible time-like curve from p
intersects S;

2. It follows that,

Int[D+(S)] = I−[D+(S)] ∩ I+(S);

Int[D(S)] = I−[D+(S)] ∩ I+[D−(S)];

3. Define,

H±(S) := D±(S)− I∓[D±(S)] (Future/Past Cauchy Horizons) ,

H(S) := H+(S) ∪H−(S) (Cauchy Horizon) ;

4. Every p ∈ H+(S) lies on a null geodesic λ contained within H+(S); it
is either past in-extendible or has an end point on S;

5. Cauchy horizon is the boundary of the domain of dependence: H(S) =
˙D(S). As a corollary, it follows that for a connected space-time, S is a

Cauchy surface iff its Cauchy Horizon is empty, H(S) = ∅;

6. If Σ is a Cauchy surface, every in-extendible, causal curve, λ intersects
Σ, I+(Σ) and I−(Σ).

Here are some simple examples. In two-dimensional Minkowski space-time,
the boundary of the ‘future’ light cone (i.e. the two 45 degree lines emanating
into the future from some point, including that point), is a closed, achronal
edge-less submanifold. Its future domain of dependence is the full future light
cone; its past domain of dependence is just the vertex of the light cone. This
set is not a Cauchy surface for the Minkowski space-time - there are several
null geodesics which do not intersect the light cone. Including the past light
cone does not help either. The full light cone is also not a Cauchy surface.

Now we note some of the main properties of globally hyperbolic space-
times. These properties refer to the absence of causal pathologies as well as
implications for the topology of the space-time itself. There are additional
implications related to properties of spaces of curves. These are needed in the
proofs of singularity theorems and will be discussed there.

Theorem 6.14 (Well Behaviour of Causality) A globally hyperbolic
space-time satisfies the chronology condition and is strongly causal. Further-
more, it is stably causal.

The first assertion is easy to see. If the chronology condition is violated, there
there exist a closed time-like curve. If it intersects the Cauchy surface, it
violates the achronality of the Cauchy surface and if it does not intersect,
then it violates global hyperbolicity. If strong causality is violated, then there
exists an event p such that every up ⊃ u′p which is visited more than once at
least by one causal curve. The previous logic applies again to this curve. The
proof of the second assertion is by construction [17].
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Theorem 6.15 (Topological Implications:)

If Σ, Σ′ are two Cauchy surfaces in (M, g), then they are homeomorphic;

A globally hyperbolic space-time admits a global time function such that its
level sets are Cauchy surfaces;

Thus M can be foliated by Cauchy surfaces and topologically, M ∼ R×Σ,
topology of Σ being arbitrary.

This concludes our discussion of determinism and global hyperbolicity. We
will see their role in the singularity theorems as well as in the initial value
formulations.

6.4 Geodesics and Congruences

We have seen the role of time-like or causal curves in the discussion of
causality and determinism. Time-like or causal geodesics also play an impor-
tant role in revealing the structure of a space-time. Physically they repre-
sent test particles - massive or massless and thus serve as probes. Bundles of
geodesics or more technically congruences of geodesics serve as probes of cur-
vature through the geodesic deviation equation and describe the ‘tidal effects’
or ‘real gravity’. In this section we discuss their basic properties.

The idea of a congruence is that it is a family of curves which fill out
an open set. Since we want congruence of geodesics, we have to consider ap-
propriately smooth curves. The notion of continuous causal/time-like curves
introduced above, is not adequate in this context since we will need many
properties of geodesics such as preservation of inner products etc., which can-
not be mimicked by ‘continuous geodesics’. Hence the curves will be smooth. A
family of neighborhood filling smooth curves can be equivalently represented
by a vector field. Smoothness property of the congruence can be defined in
terms of smoothness of the vector field. Thus we define,

Definition 6.15 (Smooth Geodesic Congruence)

A smooth congruence of time-like/null geodesics is defined by a smooth
vector field whose integral curves are time-like/null geodesics.

We consider time-like and null congruences separately. For definiteness, we
take the geodesics to be future directed.

Let ξ denote a congruence of time-like geodesics. Since each of the integral
curves is time-like, we can (and do) normalize it so that the curve parameter
is the proper time, ξ · ξ = −1. Thus ξ satisfies two properties: ξ · ∇ξµ = 0
and ξµ∇νξµ = 1

2∇(ξ2) = 0. Let Bµν := ∇µξν . It follows immediately that
ξµBµν = 0 = ξνBµν . Since ξ is time-like, the tensor Bµν is ‘purely spatial’.
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Define the projection operator: hµν := δµν + ξµξν . Further we define,

σµν :=
1

2
(Bµν +Bνµ)− θ

3
hµν Shear

ωµν :=
1

2
(Bµν −Bνµ) Twist

θ := hµνBµν Expansion (6.1)

Thus, Bµν = σµν+ωµν+ θ
3hµν . We will study the evolution of these quantities

along any geodesic of the congruence.

ξ · ∇Bµν = ξλ∇λ∇µξν = ξλ[∇λ ∇µ]ξν + ξλ∇µ∇λξν
= ξλ[∇λ ∇µ]ξν +∇µ (ξ · ∇ξν)− (∇µξλ)(λ∇ξν)

= Rανµβξ
αξβ −B α

µ Bαν (6.2)

The curvature term signifies the dependence of evolutions along geodesics on
the geometry of the space-time, the remaining terms involve only the congru-
ence (and metric). From this equation, we get the equations for the shear,
twist and expansion. Taking the trace of the equation with hµν leads to the
Raychaudhuri equation,

d θ

dτ
= ξ · ∇θ = − θ2

3
− σαβσαβ + ωαβωαβ −Rαβξαξβ (6.3)

The first three terms come from BαβB
βα which explains the relative minus

sign of the ω2 term. Both the σ2 and ω2 terms are positive because σµν , ωµν
are purely spatial since Bµν is.

Taking the antisymmetric part of the (6.2) we get,

ξ · ∇ωµν = − σ α
µ ωαν + σ α

ν ωαµ −
2

3
θωµν (6.4)

In deriving this we have used the cyclic identity which shows that the cur-
vature term drops out. The σ2, ω2, θ2 terms are all symmetric in µ ↔ ν and
hence drop out too. Important point is that the twist equation is linear and
homogeneous in twist. Consequently, if ω = 0 at some point along a geodesic,
it will remain zero along the entire geodesic.

Noting that ξ · ∇hµν = 0 we can obtain the equation for shear from the
above three equations (6.2, 6.3, 6.4):

ξ · ∇σµν = −2

3
θσµν − {σ α

µ σαν + ω α
µ ωαν}+

1

3
hµν(σαβσ

αβ − ωαβωαβ)

+ ξαξβ(Rαµνβ +
1

3
hµνRαβ) (6.5)

Note that the last term vanishes when contracted with hµν .
In order to appreciate the decomposition of Bµν , consider a vector field
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Zµ which satisfies LξZ = 0. Such a vector field always exists and satisfies,
ξ · ∇Zµ = Z · ∇ξµ (It is not parallelly transported). Clearly,

ξµξ ·∇Zµ = ξµZ ·∇ξµ = Z ·∇ξ2/2 = 0 = ξ ·∇(Z · ξ)−Zµξ ·∇ξµ = ξ ·∇(Z · ξ)

Hence, Z · ξ is constant along each geodesic. Let us take Z · ξ = 0 at some
point along a geodesic, so that Z is orthogonal to ξ along the entire geodesic.
It is spatial and Its norm varies along the geodesic as,

1

2
ξ · ∇Z2 = Zµξν∇νZµ = ZµZνBνµ = σµνZ

µZν +
θ

3
hµνZ

µZν

If the shear of the congruence is zero, then ξ ·∇Z2 = (2/3)θZ2. This shows
that if θ > 0 the norm of a vector orthogonal to the geodesic increases along
the geodesic which justifies θ being called ‘expansion’. Like wise, if expansion
vanishes, ξ ·∇Z2 = 2σαβZ

αZβ . Since σ is symmetric2, norm of Z will vary by
different amounts along different spatial directions. Hence σ is appropriately
called ‘shear’. If both shear and expansion vanish, then the norm is preserved.
Furthermore, ξ ·∇Zµ = ZνB µ

ν = Zνω µ
ν implies that Zµ(ε) ≈ (δ µν + εω µ

ν )Zν

and antisymmetry of ω implies that Z ‘rotates’ as it evolves along the geodesic
which justifies ω being called ‘twist’. Twist is also related to ‘hypersurface
orthogonality’ of the congruence.

Theorem 6.16
A time-like congruence is hypersurface orthogonal iff its twist is zero.

By definition, ξ is hypersurface orthogonal if Tµνλ := [ξµ(∇νξλ − ∇λξnu) +
cyclic] = 0, while ωµν = 1

2 (∇µξν−∇νξµ). Thus vanishing of twist immediately
implies hypersurface orthogonality. Conversely, if Tµνλ = 0, then dotting with
ξλ and using the facts that ξ2 = −1 and ξ satisfies geodesic equation, it follows
that the twist vanishes3.

Consider now the case of a hypersurface orthogonal time-like congruence
so that at the surface of orthogonality, the twist is zero and by the twist
equation (6.4), it is zero along any of the geodesics and this is independent of
the curvature. If the space-time is Riemann flat and we choose the expansion
and shear also to be zero initially, then they will be zero identically. If we
have only Ricci-flatness, then initially zero shear could evolve into a non-
zero shear thanks to the non-zero Weyl curvature. This in turn forces the
expansion to be non-zero as well and it decreases monotonically as seen from
equation (6.3). This shows that in a non-trivial vacuum solution of Einstein
equation (Ricci-flatness), gravity pulls together nearby freely falling particles.
The same conclusion follows for non-vacuum solution, provided Rµνξ

µξν ≥
0 ←→ Tµνξ

µξν ≥ −T2 ξ · ξ i.e. the matter stress tensor satisfies the strong
energy condition. Since Tµνξ

µξν is just the local energy density measured in

2The shear tensor is spatial and metric on the spatial subspace is positive definite.
3For null geodesic congruence, the converse does not hold.
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the rest frame of a freely falling frame, we infer that gravity (= tidal forces)
is attractive. In this case we can say more:

Theorem 6.17
In a space-time solving the Einstein equation with stress tensor satisfying

the strong energy condition, an initially converging, hypersurface orthogonal,
time-like, geodesic congruence attains θ → −∞ in finite proper time along a
geodesic.

Expansion becoming −∞ signals a singularity of the congruence and indicates
development of focussing of nearby geodesics.

We will also focus on some specific time-like (and later on light-like)
geodesic which may or may not be a member of a congruence. It is convenient
to choose a pseudo-orthonormal basis, ξµ, eµi , ξ · ξ = −1, ei ·ej = δij i = 1, 2, 3
at a point along a geodesic and define it along the geodesic by parallel trans-
port i.e. ξ · ∇eµi = 0. Since Bµν is spatial, its components can be written as:
Bij := eµi e

ν
jBµν . The i, j indices will be raised/lowered by δij/δij .

As an example, let us construct a hypersurface orthogonal congruence
of time-like geodesics, with expansion going to −∞ at some point along a
geodesic.

Fix a point p in the space-time and consider the set of all geodesics defined
by future directed, time-like tangent vectors at p. These define a congruence,
away from the point p, of future directed, time-like geodesics which emanate
from p into its future. or focus into p from its past. We can make these explicit
by choosing Riemann normal coordinates, xµ, at p: xµ(p) := 0. Each such
geodesic will be given locally as xµ(ε) = εvµ, v ∈ Tp(M), v · v = −1 and future
directed. For positive ε the geodesics emanate from p and for negative ε they
focus into p. Clearly, x · x = −ε2 defines space-like hypersurfaces in a convex
normal neighborhood - the future and past hyperboloids. Their normals are
given by, nµ := ∂µ(x · x+ ε2) = 2ηµνx

ν = 2εvµ. Thus, the vector field defined
by vµ is proportional to the normal to a space-like hypersurface and hence the
geodesics congruence is hypersurface orthogonal. Furthermore, we also get
B ν
µ := ∇µvν = ε−1∂µx

ν = δ νµ /ε which implies B j
i = ε−1δ ji . The expansion

of the congruence, hµνB
ν
µ is 3/ε. As we approach p, ε → 0∓, the expansion

θ → ∓∞. This congruence will be useful below.
Let us return to a vector field Z which satisfies LξZ = 0 , Z · ξ = 0. Recall

from chapter (14), section 14.6, that this is a deviation vector with ξ ·∇Zµ =:
vµ as the relative velocity and ξ · ∇vµ =: aµ as the relative acceleration which
satisfies the geodesic deviation equation:

(ξ · ∇)2Zµ = Rµαβνξ
αξβZν .

Referring to the orthonormal basis along a geodesic, any deviation vector,
being spatial, can be expressed as, Zµ = zieµi .

This allows us to write the defining equation for a deviation vector as,

(ξ · ∇zi)eµi = ξ · ∇Zµ = Z · ∇ξµ = zj(ej · ∇ξµ) ⇒
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dzi

dτ
= B i

j z
j (6.6)

Likewise, the deviation equation gets expressed as,

d2zi

dτ2
= Ri00jz

j (Jacobi equation) (6.7)

Both the two equations above are linear, ordinary differential equations of 1st
and 2nd order respectively and can be viewed as evolution equations along
any given geodesic. The defining equation for a deviation vector explicitly
refers to the congruence through the B matrix while the Jacobi equation has
no reference to a congruence and explicitly depends on the curvature. Notice
that solution of (6.6) is a solution of (6.7), but not conversely. To emphasize
this distinction, we will denote solutions of the first order equation by zi(τ)
and those of the Jacobi equation by ηi(τ). Both equations being linear, their
solutions can be constructed from corresponding matrix equations.

Define Aij(τ) by, Ȧ = B(τ)A(τ) , A(0) = 1. Then any non-trivial
solution of the defining equation can be constructed from an initial deviation
vector z(0) 6= 0 as, zi(τ) = Aij(τ)zj(0). For the Jacobi equation, we have
two initial conditions and to allow arbitrary choices of these, we define two
matrices, I(τ), J(τ) by the equations,

Ïij(τ) = Ri00k(τ)Ikj(τ) , I(0) = 1 , İ(0) = 0

J̈ ij(τ) = Ri00k(τ)Jkj(τ) , J(0) = 0 , J̇(0) = 1

A general Jacobi field is then given by, ηi(τ) = Iij(τ)ηj(0) + J ij(τ)η̇j(0).
Clearly, if ~z(0) = 0 then the deviation vector is identically zero. However,

it may happen that a non-trivial deviation vector can still vanish at some
points along the geodesic. For this to happen, we must have detA vanish at
these points. When is this possible? The defining equation gives, B(τ) = ȦA−1

which implies θ(τ) = Tr(B) = Tr(ȦA−1) = dτ (Tr lnA) = (detA)−1dτ (detA).
Therefore, if detA is to vanish as (τ − τ∗)→ 0−, then we must have θ → −∞.
Thus, a non-trivial deviation vector can vanish at some point in the future,
provided the expansion of the congruence diverges as that point is approached.
That such a choice of initial deviation vector exists is seen from the example
discussed above.

Next, suppose we are given a non-trivial Jacobi field vanishing at some
point p, when can we find a deviation vector which matches with the Jacobi
field at least when both are non-zero? Since deviation vectors depend on a
congruence, it is enough to find some congruence with at least one deviation
vector matching.

Let p = γ(0) be a point at which a Jacobi field η(0) = 0. For ε > 0,
η(ε) ≈ η(0)+εη̇(0)+(ε2/2)η̈(0) . . .. The first and the last terms vanish because
of the initial condition and the Jacobi equation. Let if possible, z(τ) be a
deviation vector which matches η(τ) for all τ ≥ ε. Let ẑ := η(ε) = εη̇(0).
Define z(τ) as a solution of (6.6) with ẑ as initial condition. This will be
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identical to η(τ) if at some point, say γ(ε), we have z(ε) = η(ε) and ż(ε) = η̇(ε).
We have already matched the values. Requiring that the derivatives match,
gives: żi(ε) = η̇(ε) ⇒ B i

j (ε)ẑj ≈ η̇i(0) + εη̈i(0) = η̇i(0), since the Jacobi

equation implies that the η̈(0) vanishes. Hence, η̇i(0) = B i
j ẑ

j = B i
j εη̇

j(0)

which implies, [εB j
i (ε)−δ ji ]η̇j(0) = 0. Thus, a Jacobi field vanishing at p will

match with a deviation vector for all τ ≥ ε provided det(B − ε−11) = 0. Note
that this is a condition on the congruence and the particular Jacobi field. We
could have a matching deviation vector for every Jacobi field vanishing at p, by
choosing a congruence with B = ε−11. And we can choose such congruences
as shown by the example above. We conclude that,

Theorem 6.18
If η is a non-trivial Jacobi field vanishing at a point p = γ(0), then there

exists a deviation vector z such that z(τ) = η(τ), ∀ τ ≥ ε. Such a deviation
vector can be chosen for the congruence of geodesics emanating from (focusing
into) p.

Thus, if along any given a geodesic, there are several points at which a Ja-
cobi field vanishes, that at each of these, we can find hypersurface orthogonal
geodesic congruences with a non-trivial deviation vector matching with the
Jacobi field. Given that ‘gravity is attractive’, does it follow that there will be
another point on the given geodesic at which the Jacobi field will vanish?

Definition 6.16 (Conjugate Points)
p and q on a geodesic γ are said to be conjugate points if there is a Jacobi

field vanishing at both the points.

We have a theorem:

Theorem 6.19 (Existence of Conjugate Points)
Let (M, g), be a space-time such that Rµνξ

µξν ≥ 0 ∀ time-like vectors ξµ.
For a time-like geodesic γ and a point p on it, consider a Jacobi field vanishing
at p and the geodesic congruence emanating from p. Let r ∈ γ be such that
the expansion is negative at r. Then within ∆τ ≤ 3/|θ|r from r, there exist a
point q ∈ γ conjugate to p, assuming that the geodesic extends that far.

The congruence of emanating geodesics is hypersurface orthogonal and hence
twist free. Each term on the right-hand side of the Raychaudhuri equation,
(6.3), is negative and hence implies that there exists a q at which the expansion
goes to −∞. To show that this implies that q is conjugate to p, we have to
show a Jacobi field vanishing at both the points.

Consider the matrix equation, J̈ ij(τ) = Ri00k(τ)Jkj(τ) , J(0) = 0, J̇(0) =
1. Then η(τ) := J(τ)η̇(0) is a Jacobi field vanishing at p = γ(0), for every
choice of η̇(0). By the previous theorem, every such Jacobi field matches with
a deviation vector z(τ) satisfying ż(τ) = B(τ)z(τ) ∀ τ ≥ ε. It follows that
J̇(τ) = B(τ)J(τ). Now θ = Tr(B) = dτ (ln det(J)) → −∞ at q = γ(τ∗),
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implies detJ → 0. Hence, there is a choice of η̇(0) such that η(τ∗) = 0 (namely,
the eigenvector of J with zero eigenvalue). We have thus found a Jacobi field
vanishing at p and q i.e. q is conjugate to p.

Note that existence of a conjugate point q is conditional on existence of
point r after p at which expansion of the emanating congruence is negative.
There is a stronger version of the theorem regarding existence of conjugate
points, namely,

Theorem 6.20 (Existence of Conjugate Points)
Let γ be a geodesic. Let p1 := γ(τ1) be such that Rµνξ

µξν(τ1) 6= 0. Let
Rµνξ

µξν ≥ 0 all along the geodesic, then ∃ τ0 < τ1 < τ2 such that p := γ(τ0)
and q := γ(τ2) are conjugate points provided the geodesic extends that far.

One also has a notion of a point conjugate to a spatial hypersurface.
Let Σ be a spatial hypersurface and ξ be a geodesic congruence orthogonal

to Σ. Let p be a point on a geodesic γ in this congruence. p is said to be
conjugate to Σ along γ if ∃ a non-trivial deviation vector z 6= 0 on Σ and
vanishing at p.

The corresponding existence theorem states that If the space-time satisfies
the condition Rµνξ

µξν ≥ 0 and θ|Σ < 0, then there exists a point p conjugate
to Σ along a geodesic.

Conjugate points are important because they invalidate the property of
geodesics being curves of (locally) maximum ‘length’ among the time-like
curves connecting two given points. This is sharpened as follow.

Fix p and a q ∈ I+(p) in M . Let λ(α, t) denote a smooth family of time-
like curves so that for each α, we have a time-like curve from p to q with the
parameter t ∈ [a, b]. Smoothness means that λ(α, t) constitute an embedded
two-dimensional surface in M , [∂t, ∂α] = 0. Denote Tµ∂µ := ∂t , X

µ∂µ := ∂α.
This T is a time-like vector (not normalized to −1) and X is called a devia-
tion vector (not a geodesic deviation vector) which vanishes at the endpoints.
Define,

τ(α) :=

∫ b

a

dtf(α, t) , f(α, t) :=
√
−TµT νgµν(t). (6.8)

Clearly τ(α) is positive and is called the length function. The following results
hold [17]:

dτ(α)

dα
=

∫ b

a

dt [XµT ν∇ν (Tµ/f)]

∴
dτ(α)

dα

∣∣∣∣
α0

= 0 ∀ X ⇒ λ(α0, t) is a geodesic. (6.9)

d2τ(α)

dα2

∣∣∣∣
α0

=

∫ b

a

dt Xµ
{
gµν(T · ∇)2 −RµρσνT ρTσ

}
Xν . (6.10)

In getting the final simplified expression for the second variation, the extremal
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curve is taken to be a geodesic which is affinely parametrised (f = 1 along the
geodesic) and the deviation vector is taken to be orthogonal to the geodesic
(thus X is space-like). The expression in the braces is just the operator ap-
pearing in the geodesic deviation equation. If it is negative definite, then the
second variation is negative and the geodesic, λ(α0) is a local maximum of
the length function. It also means that there are no conjugate points between
p, q. The details of these calculations may be seen in [18].

As an implication, we have the two theorems,

Theorem 6.21
Let γ be a time-like geodesic between two points p, q. The necessary and

sufficient condition for γ to maximize the proper time function over smooth,
one parameter variations is that γ has no conjugate points between p, q.

Theorem 6.22
Let γ be a smooth, time-like curve connecting a point p ∈M , to some point

q on a space-like hypersurface Σ. γ locally maximizes the proper time function
between p and Σ iff γ is a geodesic, orthogonal to Σ with no point conjugate
to Σ between p and Σ.

In essence we have seen that for space-times with Rµνξ
µξν ≥ 0 ∀ ξ · ξ < 0,

conjugate points always exist on sufficiently ‘long’ time-like geodesics thanks
to the Raychaudhuri equation and whenever they exist, the geodesic segment
containing a pair of conjugate points cannot locally maximize proper times.

There is another property of physically acceptable maximally extended
space-times which forces geodesics to attain maxima of proper time function
and this produces a contradiction of the singularity theorems discussed later.

Analogous notions and results also hold for null geodesic congruences. We
note below the distinctive features of null congruences and the results.

Null Geodesic Congruence is defined by a smooth everywhere light-like
vector field kµ , k · k = 0 satisfying the geodesic equation, k ·∇kµ = 0. Define
as before, Bµν := ∇µkν . It follows that

kµBµν = 0 = Bµνk
ν , (k · ∇)Bµν = Rανµβk

αkβ −B α
µ Bαν

We cannot define hµν though thanks to k2 = 0. Hence, definition of shear and
expansion is not straightforward. Likewise, while defining deviation vectors,
we cannot use the condition Z · k = 0. Consider first the deviation vectors.
Let Zµ be defined by LkZµ = 0 or k ·∇Zµ = Z ·∇kµ. Along a given geodesic,
choose an ‘orthonormal basis’ by making a choice at a point p and parallel
transporting it along the geodesic: k·∇eµ... = 0. At p we choose: eµ0 := kµ, eµ1 :=
lµ, eµa , a = 1, 2 such that,

l2 = 0 , k · l = −1 , ea · eb = δab , k · ea = 0 = l · ea .

Note that neither l nor the 2-plane spanned by eµa is uniquely determined.
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Referring to such a basis, we write Zµ := z0kµ + z1lµ + zae µa . Now,

0 = kµZ · ∇kµ = kµk · ∇Zµ = k · ∇(k · Z) = −dz
1

dλ

Hence, it is possible to choose z1 = 0 consistently along the geodesic and we
will do so. Substitution of the expansion of Z, we get,

dza

dλ
= B a

b z
b := eµae

ν
bBµν ,

dz0

dλ
= − (lµeνaBνµ) za

Notice that equation for za does not depend on z0 and in turn determines
z0. The ‘orthogonality’ condition Z · k = 0 precisely leaves the z0 component
ambiguous. Hence, we define the equivalence class of Z relative to the equiv-
alence relation , Z ′ ∼ Z ⇔ Z ′ = Z + αk, as a deviation vector for the null
congruence.

The deviation equation for Bij is derived as,

k · ∇Bab = eµae
ν
bRανµβk

αkβ − (eµaB
α
µ )(Bανe

ν
b )

= Rαbaβk
αkβ −BaαBβbgαβ and ∵ B α

a = B 0
a k

α +B c
a e

α
c ,

∴
dBab
dλ

= −Raαβbkαkβ −B c
a Bcb (6.11)

The shear, twist and expansion can now be defined and computed as,

Bab := σab + ωab +
θ

2
hab , hab = δab

Using this equation and the defining equation for a deviation vector, we deduce
the geodesic deviation equation (or Jacobi equation) as,

d2za

dλ2
=

dzb

dλ
B a
b + zb

dB a
b

dλ
= zcB b

c B
a
b − zb

(
R a
bαβ kαkβ +B c

b B
a
c

)
∴ z̈a = −Ra00bz

b (6.12)

We have obtained the basic defining equation for deviation vector as well as
Jacobi equation in the same form as before except the indices take two values
instead of three. Subsequent analysis of conjugate points and their existence
is similar to the time-like case except: (a) hypersurface orthogonality of the
congruence implies vanishing twist but the converse is not true; (b) the proper
time is replaced by affine parameter; (c) the condition on the Ricci tensor, for
the Raychaudhuri equation to force a conjugate point is Rµνk

µkν ≥ 0 ∀ k2 =
0; (d) the deviation vector is an equivalence class and therefore its vanishing
at a point is also defined to within an arbitrary component along kµ.

Since there is no proper time for light-like geodesics, the implications of
conjugate points is differently formulated. The relevant theorem is,
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Theorem 6.23 (Consequence of Conjugate Points)
Let γ be a smooth causal curve connecting p and q ∈ J+(p). Then, it

cannot be deformed to a time-like curve via a smooth, 1-parameter variation
over causal curves iff γ is a null geodesic with no conjugate points between p
and q.

The notion of point conjugate to a hypersurface also changes. Let Σ be a two-
dimensional space-like submanifold. At every point, the complement of its
tangent space has two null basis vectors which we label as ‘out-going’ and ‘in-
coming’. For an orientable Σ a consistent choice of this labelling can be made
over Σ. We can construct two null geodesic congruences emanating from any
point on Σ, by selecting the sets of all out-going (in-coming) future directed
light-like vectors. Both of these will have their twists equal to zero.

Let µ be one of the out-going (in-coming) null geodesic orthogonal to Σ.
p ∈ µ is said to be conjugate to Σ if ∃ a non-trivial deviation vector which is
non-zero at Σ but vanishes at p.

With these definitions we have the obvious analogues of the theorems for
the time-like case. One additional result, specific to null geodesic congruences
is,

Theorem 6.24 Let the space-time be globally hyperbolic and let K be a com-
pact, two-dimensional, orientable, space-like submanifold. Then every point
p ∈ İ+(K) lies on a future directed null geodesic orthogonal to K and with
conjugate point in-between.

We will note more results relevant in the context of singularity theorems.

6.5 Singularity Theorems

We have so far noted the conditions under which conjugate points do exist
and some of their implications. A particularly crucial property is the failure
of local maximization of the proper time function when conjugate points exist
as noted in the theorems (6.21, 6.22). Now we note conditions for attaining
the global maximum of the function.

For this, let us introduce the space C(p, q), which is the space of all con-
tinuous, future directed, causal curves connecting points p and q ∈ J+(p).
Likewise, for a smooth, achronal hypersurface Σ and q ∈ J+(Σ), we denote
by C(Σ, q) the space of all continuous causal curves from some point p ∈ Σ to
q.

Let (M, g) be strongly causal. For u an open subset of M , define the subset
O(u) ⊂ C(p, q) consisting of those causal curves which are contained entirely
in u (here curve means the set of points). Note that O(u) can be empty for
some u. Taking these subsets together with their arbitrary unions and finite
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intersections as open sets on C(p, q), define a topology on C(p, q). This topol-
ogy is controlled by the causality properties of (M, g). For instance, strong
causality on (M, g) is required for this topology to be ‘nice’ (e.g. Hausdorff)
and have the same notion of convergence of sequence of continuous causal
curves as defined before. Furthermore, if (M, g) is globally hyperbolic, then
C(p, q) is compact [17].

Analogous definition is given for the set of all continuous, causal, future
directed curves from a Cauchy surface Σ to a point q it its future. The space
C(Σ, q) is then also compact. These compactness properties lead to:

Theorem 6.25
Let (M, g) be strongly causal. Consider the length function, τ(γ) (see eqn.

6.8) defined for γ ∈ C(p, q).
If τ attains its maximum value for γ0, then γ0 is a geodesic with no con-

jugate points.
Likewise, for τ defined over C(Σ, q), if τ attains its maximum at γ0, then

γ0 is a geodesic, orthogonal to Σ and with no conjugate points.

Note that only strong causality is needed. Also, τ need not attain its max-
imum! However,

Theorem 6.26
If (M, g) is globally hyperbolic, then there exists a γ0 ∈ C(p, q) on which

the length function does attain its maximum.
Likewise, in a globally hyperbolic space-time, if Σ is a Cauchy surface, then

there exist a causal curve γ0 ∈ C(Σ, q) on which the maximum is attained.

By the previous theorem, γ0 is a geodesic with no conjugate points between
p and q.

As yet, there is no contradiction between local existence of conjugate points
along a finite geodesic and global existence of also a finite a geodesic with no
conjugate points on it.

With a further input of certain ‘physical’ conditions, a contradiction does
arise and these are formulated as the Singularity Theorems. There are four
main versions - two pertaining to cosmological context and two to compact
bodies. The formulation is as given in [17].

Theorem 6.27 (Singularity Theorem 1)
Let (M, g) be globally hyperbolic with Rµνξ

µξν ≥ 0 ∀ time-like vectors ξ
(equivalently for a solution of Einstein equation with stress tensor satisfying
the strong energy condition). Suppose there exists a space-like Cauchy surface,
Σ, for which the trace of the extrinsic curvature, k := gµν∇µnν ≤ C < 0
everywhere on Σ , then no past directed, time-like curve from Σ can have a
length greater than 3/|C|. In particular, all past directed time-like geodesics
are incomplete.
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The proof is short, so let us go over it. Let if possible λ be a past di-
rected time-like curve with length greater than 3/|C|. Let p be a point on λ
beyond the length 3/|C|. By theorem (6.25), since strong causality is implied
by global hyperbolicity, λ is a geodesic with no conjugate points. However,
since the expansion of the geodesic congruence emanating from p is negative
and bounded away from zero, by theorem (6.19), a conjugate point must ex-
ist within length ≤ 3/|C|. We reach a contradiction and hence the presumed
curved cannot exist.

The inputs that have gone in the conditions of the theorem are: two generic
conditions - good causal behaviour and space-time being a solution of Einstein
equation with a physically reasonable stress tensor (which roughly says that
the gravity is attractive) and a condition stipulating a special context roughly
saying that the universe is expanding everywhere with a rate bounded away
from zero. May be the special condition is too special. Here is a second version.

Theorem 6.28 (Singularity Theorem 2)
Let (M, g) be strongly causal satisfying Rµνξ

µξν ≥ 0 ∀ time-like ξ ev-
erywhere on M . Suppose ∃ a compact, edge-less, achronal, smooth space-like
hypersurface S such that for past directed normal geodesic congruence from
S, its expansion is everywhere negative and bounded away from zero, then
at least one past directed time-like geodesic from S has length ≤ 3/|C|.

This proof too is by reductio ad absurdum. Suppose all past directed, in-
extendible, time-like geodesics have length greater than 3/|C|. The portion
M̃ := int[D(S)] ⊂ M , is ‘globally hyperbolic’ and hence by the previous
theorem all the above geodesics must be incomplete. Thus they must exit M̃
and hence must intersect the boundary H−(S) of M̃ and this must happen
before 3/|C| i.e. the boundary is non-empty. Now one shows that the past
Cauchy horizon is compact.

However, S being edge-less implies that the past Cauchy horizon contains
a future inextendible null geodesic while its compactness in a strongly causal
space-time makes this impossible (see the result near the figure 6.1). This
invalidates the initial assumption thereby proving the theorem.

Both these theorems correspond to the cosmological context as it uses
the condition of everywhere non-zero expansion and deduces past-incomplete
time-like curves. Notice that the theorem does not assert that the universe
must be everywhere expanding. This happens to be an observational input for
our universe.

There are two more theorems which correspond to gravitational collapse.
For this we first need a definition,

Definition 6.17 (Trapped Surface)
A compact, two-dimensional, space-like submanifold is said to a trapped

surface if the expansions θ± for both the orthogonally out-going and in-coming,
null geodesics is strictly negative at all points of the surface. If zero expansion
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is allowed for one of the null geodesics congruences, then one has outer/inner
marginally trapped surface.

Theorem 6.29 (Singularity Theorem 3)
Let (M, g) be globally hyperbolic with a non-compact Cauchy surface. Sup-

pose Rµνk
µkν ≥ 0 ∀ k2 = 0 (equivalently, solution of Einstein equation with

stress tensor satisfying the weak or the strong energy condition). Suppose the
space-time contains a trapped surface, S, with θ0 < 0 being the maximum value
for both θ±. Then, at least one, future directed, in-extendible, orthogonal null
geodesic emanating from S, has an affine length ≤ 2/|θ0|.

This context corresponds to collapse because non-compact Cauchy surfaces
arise in asymptotically flat space-times which correspond to space-times ap-
propriate for isolated bodies. The incomplete null geodesic is future directed.
This proof derives a contradiction between the trapped surface being compact
and the Cauchy surface being non-compact. The existence of trapped surface
signals that the collapse has progressed far enough to be irreversible. This the-
orem too does not assert that collapse must advance enough to form a trapped
surface. That this is likely to happen in an astrophysically realizable context,
is dependent on further dynamical properties of collapsing matter.

Finally we have the version,

Theorem 6.30 (Singularity Theorem 4)
Suppose a space-time satisfies the following conditions:
(a) Rµνξ

µξν ≥ 0 ∀ time-like and null ξµ (translates into strong energy
condition on the stress tensor);

(b) Every time-like geodesic has at least one point with Rµναβξ
µξβ 6= 0

(time-like genericness condition) and every null geodesic has a point at which
either R · k · k > 0 or k[ρCµ]να[βkσ]k

νkα 6= 0 (null genericness condition);
(c) No closed time-like curves exist; and
(d) At least one of the following holds: (i) (M, g) has a compact, edge-

less achronal set (‘closed universe’), (ii) (M, g) has a trapped surface, or (iii)
there exists a point p ∈M such that expansion of the future (or past) directed
null geodesics emanating from p becomes negative along each geodesic in this
congruence; then, there exist at least one incomplete time-like or null geodesic.

This version has significantly weakened the causal properties and has also
replaced the expanding universe hypothesis by the closed universe hypothesis.
The conclusion too is correspondingly weaker - only existence of one causal
curve is inferred with no further information.

We should emphasize that apart from general conditions such as good
causal behaviour and attractiveness of gravity (energy conditions), there is
always a condition identifying a special physical input such as existence of
trapped surface or everywhere expanding universe with expansion bounded
away from zero, and only with this additional input, geodesic incompleteness
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is deduced. Without such an input, there are perfectly non-singular solutions
in valid physical situations.

There have been further developments beyond these classic singularity
theorems. Notable among these is the singularity theorem applicable to the
context of inflationary cosmology. Recall the singularity theorems which apply
to the cosmological context. They use the strong energy condition. If the
universe is non-singular (and other causality conditions hold together with
the expansion being bounded away from zero everywhere), then the strong
energy condition must be violated. For perfect fluid in FLRW cosmology,
this means ρ + 3P < 0 and the Raychaudhuri equation immediately implies
existence of an accelerated phase. Note that the converse need not be true i.e.
violation of energy condition does not guarantee non-singularity. Borde and
Vilenkin considered the new context of inflation which does violate strong
energy condition but nevertheless proved that under the assumption of future
eternal inflation, the space-time is past geodesically incomplete [36].

The space-times in the context of singularity theorems are all in-extendible
(without which incompleteness of geodesics can be trivially arranged). These
are usually constructed by extending/patching different solutions with certain
degrees of smoothness for the metric as well as stress tensors assumed. These
could be relaxed and new versions of singularity theorems could be explored.
The characterization of singularity as geodesic incompleteness itself can also
be replaced by another suitable criteria and in fact has been done [37].

For an extensive review of singularity theorems, please see [38].
One could certainly question the validity of Einstein equations themselves

in the context when singularities are suppose to occur especially if the geodesic
incompleteness is accompanied by diverging curvature invariants. Energy con-
ditions, which enter through the Einstein equation could also be violated if
quantum effects are significant, though this by itself does not guarantee non-
singularity as pointed out above. What then is a physical import of these
theorems?

In brief, these theorems demarcate the conditions under which it is im-
possible to have a physically well behaved, self consistent, classical model
of relativistic space-time with matter. These inadequacies of classical models
perhaps hint at the need to go beyond and also give a hint as to in which phys-
ical context one may seek extensions—the early universe and an un-stoppable
gravitational collapse.





Chapter 7

Asymptotic Structure

The issue of asymptotic structure of space-times is tied with the question:
what is the appropriate space-time which corresponds to an ‘isolated body’
or a source of gravitation confined to a compact region? This means that we
expect there are regions in the manifold where the matter stress tensor van-
ishes and hence the metric satisfies the vacuum Einstein equation. Allowing
for the possibility of a cosmological constant, there are precisely three matter-
free space-times which are simplest in the sense that they have maximum
possible symmetry. These are: the Minkowski space-time (Λ = 0), De Sitter
(Λ > 0) and the anti-De Sitter (Λ < 0). The space-times exterior to the mat-
ter sources are expected to be approaching these special solutions as one goes
‘sufficiently far away’ from the sources. Thus we need to understand what
the ‘sufficiently far away’ (or infinity) from the ‘origin’ (a point interior to a
compact region) means for these special solutions. This is non-trivial because
the Lorentzian signature implies there are different ways to approach an in-
finity. For instance, in a Euclidean space, we can ‘go to large r’ in different
directions. For Lorentzian space-times, there is a further possibility of ‘going
to large r’ with different speeds along different directions. In particular the
speeds are delineated by the speed of light. These asymptotic approaches can
be understood in terms of taking (say) affine parameters to their asymptotic
values along time-like/light-like/space-like geodesics. The solutions of basic
wave equation also shows possibilities of different asymptotic behaviours. Sec-
ondly, without any preferred coordinate system, specification of asymptotic
fall-off behaviours of metric is at best ambiguous. It would conceivably be
easier if we could bring the ‘infinity’ - region of infinite coordinate values -
to region of finite coordinate values. Let us see how this could work. We will
focus on Λ = 0 case first and comment on the other cases at the end.

Introduce the standard spherical coordinates in the Minkowski space-time,
M , so that the line element is given by,

ds2 = − dt2 + dr2 + r2dω2 , dω2 := dθ2 + sin2θdφ2

Define, u := t − r, v := t + r ↔ t = (u + v)/2, r = (v − u)/2. The line
element then becomes, ds2 = −dudv + 1

4 (v − u)dω2. Suppress the angular
part for notational convenience. Both u, v ∈ R with the restriction, v − u ≥
0. We can bring the infinite range of u, v to a finite range by using new
coordinates: U := tan−1u , V := tan−1v, both ranging over (−π/2, π/2).
Further introduce, T := V + U ,R := V − U ↔ 2V = T +R , 2U = T −R

123
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both ∈ (−π, π) and v − u ≥ 0 implies R ≥ 0 as well. It follows that,

dudv = [sec2Usec2V ]dUdV ,

(v − u)2 = (tanV − tanU)2 = tan2(V − U) (1 + tanUtanV )
2

= tan2(V − U)(sinUsinV + cosUcosV )2 sec2U sec2V

= [sec2Usec2V ]tan2(V − U)cos2(V − U)

= [sec2Usec2V ]sin2R (7.1)

∴ ds2 =

[
sec2Usec2V

4

] (
−dT 2 + dR2 + sin2Rdω2

)
(7.2)

:= [Ω−2](ds̃2)

By changing the coordinates, we have transformed the infinite extent (u, v)
chart on the Minkowski space-time (angular part suppressed), into the finite
extent chart (U, V ) or (T,R) and getting in the process a new metric ds̃2

which is conformal to the Minkowski metric. Notice that the conformal factor
vanishes as U, V → ±π/2 or T ± R → ±π and these are exactly the points
that correspond to going-to-infinity along various directions in the original
chart. In terms of (U, V ), we can extend the chart to include these points
since the ds̃2 metric is well behaved and thus obtain a conformal extension of
the Minkowski space-time. The spatial metric is the canonical metric on S3.
Once R = 0, π points are added during the extension, we get the extended
space-time, M̃ to be R×S3. What is the ‘boundary’ of the original Minkowski
space-time in the extended space-time?

The boundary of M in M̃ is precisely defined by the the set of points where
Ω = 0. These are given by U = ±π/2 , or V = ±π/2 , or both U, V = ±π/2
such that R = V − U ≥ 0. The hypersurface R = 0 (↔ r = 0) is already
part of the Minkowski space-time. Additionally considering radial geodesics
(straight lines) and taking their affine parameter to infinity, we can discover
the boundary points reached. This leads to figure 7.1.

Future Null Infinity: J + (U ∈ (−π/2, π/2), V = π/2)× S2

Past Null Infinity: J− (U = −π/2, V ∈ (−π/2, π/2))× S2

Future Time-like Infinity: i+ (U = π/2, V = π/2)
Past Time-like Infinity: i− (U = −π/2, V = −π/2)
Spatial Infinity: i0 (U = −π/2, V = π/2)

The i+, i−, i0 are single points since they have R = 0, π at which the S3

degenerates to a point. The u, v axes are oriented so that light propagates
along 450 lines. The labels of the different components of the ‘infinity’ indicate
the boundaries asymptotically reached by all time-like (future/past directed),
light-like (future/past directed) and space-like curves respectively1.

1Note that the Null infinities, J±, which by definition are boundary points of null
geodesics, are themselves null hypersurfaces. This however is not always the case. In the De
Sitter space-time, the null infinity hypersurfaces are space-like.
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FIGURE 7.1: Conformal diagram of Minkowski space-time.

Observe that Minkowski space-time is geodesically complete and hence is
inextendible as a vacuum solution with Λ = 0. The extension we have seen
above is a conformal extension. The boundary of M in M̃ has the property
that every geodesic has its end-points on the boundary of M in M̃ , none are
missed. One can easily verify this by considering radial geodesics. We have
obtained a satisfactory description that whatever attempts to exit from a
compact region ends up at the boundary.

The idea now is to define an asymptotically flat space-time to be a so-
lution of Einstein equation which admits an asymptotic structure similar to
that of the Minkowski space-time. The notion of asymptotic structure is un-
derstood to mean an embedding of (M, g) into (M̃, g̃) so that the boundary
of the embedded M has specified components and on the embedded M , the
two metrics are conformal to each other. A judicious choice of these allows
us to provide a suitable class of coordinates near the boundary and stipulate
specified fall off behaviours for the metric which is the eventual goal of this
construction. It will turn out that the choices made also allow formulation of
conservation laws and corresponding definitions of conserved quantities such
as mass/energy, angular momentum etc. We will discuss the definitions for
only asymptotically empty and flat solutions of Einstein equation, based on
conformal completion [17,39,40] and comment briefly on more recent alterna-
tives in the context of spatial infinity [41]. For a recent review of conformal
techniques, please see [42].

Definition 7.1 A space-time (M, g), called physical space-time, is said to be
asymptotically empty and flat at null and spatial infinity if there exists an-
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other, unphysical, space-time (M̃, g̃) and an embedding φ : M → M̃ satisfying
following conditions:

1. The metric, g̃ is smooth everywhere except possibly at a point i0, called
the spatial infinity, where M̃ is C>1 while g̃ is C>0 (defined below).

Let J(i0) := J+(i0) ∪ J−(i0) denote the causal future and past of the
spatial infinity and let J± := J̇±(i0) − i0. Denote the future and past
null infinities.

2. The complement of φ(M) in M̃ is the closure of the causal future and
past of the spatial infinity i.e. M̃ − φ(M) = J(i0) := J+(i0) ∪ J−(i0).

3. There exists a neighborhood V of {i0}∪J +∪J− in M̃ such that (V, g̃)
is strongly causal and in M ∩V , the physical metric satisfies the vacuum
Einstein equation, Rµν = 0.

4. There exist a function Ω on M̃ which is C2 at i0 and C∞ everywhere
such that on φ(M), g̃µν = Ω2gµν .

At null infinity: Ω|J± = 0 , ∇̃µΩ
∣∣∣
J±
6= 0.

At the spatial infinity: Ω(i0) = 0, limi0 ∇̃µΩ = 0 , limi0 ∇̃µ∇̃νΩ = 2g̃µν .

5. (a) The space of integral curves of ñµ := g̃µν∂νΩ on J± is naturally
diffeomorphic to the space of null directions at i0.

(b) Given any smooth function ω on M̃ − i0 which is strictly positive on
M ∪ J + ∪ J− and ∇̃µ(ω4ñµ) vanishes on the null infinity, the vector
field ω−1ñµ is complete on the null infinity2.

An immediate and important observation which is easily checked is that the
conformal factor satisfying the conditions is not unique. Any Ω′ = ωΩ will
satisfy all the conditions for all ω > 0 which are smooth everywhere except
possibly at i0 where it can be C>0 with ω(i0) = 1.

These are quite a few stipulations and elaborations are in order. The def-
inition begins with an extension of the space-time of interest - the physical
space-time - and stipulates the distinctive regions that must be present in the
conformally extended (un-physical) space-time, namely spatial infinity and null
infinity. The spatial infinity is postulated to be a single point which is distin-
guished by the possibility of modification of the smooth manifold structure of
M̃ as well as smoothness properties of the metric g̃. There is no requirement
of existence of the time-like infinities i± seen in the Minkowski space-time.
One reason is that we may have a body existing in the infinite past and/or
future, which will not be ‘empty’ at time-like infinities.

The un-usual C>k structures mean the following. The ‘k’ denotes that the

2In the following, we adopt the notation of putting a ˜ on quantities referring to the
un-physical metric and/or quantities defined on the null infinity. Thus ñµ := g̃µνnν , ξ̃µ :=
g̃µνξν etc.
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quantity such as coordinate transformations in overlapping charts or tensor
fields, are k-times differentiable with the kth partial derivatives being continu-
ous. The ‘>’ stipulates that the kth partial derivatives are more than continu-
ous in that the (k+ 1)th partial derivatives do have limits as i0 is approached,
but the limiting values depend on the direction along which the limit is taken.
Nevertheless, these different limiting values which are thus functions of ‘an-
gular coordinates’ labelling the directions, are smooth. Thus such quantities
are more than continuous at the kth level but less than full differentiability at
the (k+ 1)th level [17,39,40]. Having allowed the metric to be C>0, there are
many possibilities for modified differential structures and this is restricted to
be the C>1.

Why such a complicated stipulation? This is essentially because the two-
dimensional boundary of a three-dimensional Cauchy hypersurface is being
‘compactified’ into a single point. Explicit example of the Coulomb solu-
tion of Maxwell field in Minkowski space-time, exhibits this property. This
is discussed further in the discussion of spatial infinity. Similarly, for the
Schwarzschild solution and indeed any space-time associated with a massive
body, one expects such a behaviour. This is the price to be paid for the ‘one-
point-compactification’ of spatial infinity3.

Condition (2) implies that what is ‘added’ in the extension is just the light
cone at the spatial infinity together with its interior. It also means that the
spatial infinity is related to all points of φ(M) ⊂ M̃ in a space-like manner
and the boundary of φ(M) in M̃ is precisely i0 ∪ J + ∪ J−.

Condition (3) incorporates the feature that asymptotically the vacuum Ein-
stein equation holds - any non-zero matter stress tensor must vanish suitably
in the vicinity of the ‘added infinity’. This vicinity is also free of any closed
or ‘almost closed’ causal curves.

Condition (4) stipulates that the extension of the physical space-time is a
conformal extension. This in particular mean that the light cones of the two
space-times agree on the image, φ(M). The conformal factor vanishes on the
boundary of φ(M) as in the case of the Minkowski space-time. The vanishing of
the conformal factor implies that physical intervals get infinitely stretched as
the boundary is approached since the un-physical intervals remain finite. The
stipulation on the derivatives, restricts the fall-off behaviours of the physical
metric. We will see this in the next section.

The last conditions, (5), tie-up the spatial infinity and the null infinity
in such a way that the boundary has the basic features of a light-cone of
a point in Minkowski space-time even though i0 is not a regular point of a
smooth manifold. The first part of the condition ensures that all null geodesics
emanating from i0 span the null infinity. This would have been automatic if i0

were a regular point, for which the null generators of its causal future/past are
indeed null geodesics emanating from it. This implies that J± ∼ R×S2 [39,40].

3The [41] work gives a different definition of spatial infinity which is a two-dimensional
manifold which does not have these differentiability conditions, but it looses the link with
the null infinity.
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The second part of the condition stipulates, that there are no ‘missing points’
in J±. This also has implications for the symmetries of the asymptotically
flat space-times.

In summary, this definition of asymptotically empty and flat space-times,
extends the physical space-times of this class by attaching a single point to-
gether with its causal past and future such that its light-cone is the bound-
ary. The technical conditions such as a nonstandard differential structure, are
needed to accommodate physically relevant solutions e.g. massive physical
bodies, and imply a controlled form of asymptotic fall-off for the metric. The
vanishing conformal factor accounts for infinite stretching and the ‘complete-
ness of the boundary’ ensures that whatever escapes from the compact region,
ends up on the boundary.

For use in subsequent discussion, we note that under a conformal scaling
of the metric, the Ricci tensors of the two metrics are related as,

Rµν = R̃µν + 2Ω−1∇̃µ∇̃νΩ

+ g̃µν g̃
αβ
(

Ω−1∇̃α∇̃βΩ− 3Ω−2∇̃αΩ∇̃βΩ
)

(7.3)

Ω−2R = R̃+ 6Ω−1g̃µν∇̃µ∇̃νΩ− 12Ω−2g̃µν∇̃µΩ∇̃νΩ (7.4)

Let us see some of the implications of this definition.

7.1 Vicinity of the Null Infinity

Bondi gauge: As a first illustration, we see how the asymptotic analysis
carried out by Bondi, Van der Burg and Metzner [43] can be derived from the
abstract definition.

In V , we have Rµν = 0 and tilde quantities are well defined on the null
infinity. Multiplying equations (7.3, 7.4) by Ω we see that the Ω−2 terms in
both the equations must have a smooth limit to the null infinity. If we denote
ñµ := g̃µν∇̃νΩ then the last term implies that ñ · n = 0 on the null infin-
ity. ñµ is clearly normal to the Ω = 0 surface i.e. to J± which is light-like.
Since we defined J± as parts of the light-cone at i0, this is a consistent con-
sequence. Had we not defined J± in this manner, but defined it only as a
three-dimensional boundary where all null geodesics reach asymptotically in
their affine parameter4, we would have deduced that this boundary is neces-
sarily a null surface. We can do more. Using the freedom to re-scale Ω by a
positive ω, we can arrange Ω−1g̃αβ∇̃αΩ∇̃βΩ = 0. The required ω satisfies,

ñ · ∇ lnω = −1

2
Ω−1g̃αβ∇̃αΩ∇̃βΩ ⇒ ∇̃µ∇̃νΩ

∣∣∣
J±

= 0 (7.5)

4This is customary when asymptotic flatness is defined separately at null and spatial
infinities.
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The last implication follows because the second and the third terms on the
right-hand side of Ω×(7.4) vanish. From this it follows immediately that null
vectors ñµ satisfy the geodesic equation. The null geodesic congruence defined
by these, trivially has zero shear, twist and expansion since Bµν := ∇̃µ∇̃νΩ =
0. Vanishing twist implies that nµ is hypersurface orthogonal (orthogonal to
the Ω = 0 hypersurface) and being null, it is also tangential to J±.

The condition (7.5) still allows further re-scalings by an ω that is constant
along each of the null geodesics. Consider any two-dimensional submanifold of
the future (resp. past) null infinity which is intersected by the null geodesics
exactly once. Given the topology of the null infinity, such a cross-section must
be a 2-sphere. The metric g̃ on J± induces a Riemannian metric on the cross-
section which is conformally related to the standard metric on S2. The residual
ω can now be chosen to take the metric on the sphere to have unit radius.
The expansion and shear of the null generators being zero, completeness of
the generators imply that the same metric can be transported to all the cross-
sections.

The conformal factor satisfying ∇̃µ∇̃νΩ = 0 on J± and having unit sphere
metric on the cross-sections, is called the Bondi Gauge or Bondi conformal
frame.

The Bondi gauge, leads us to choose a coordinate system in V ∩ J±.
Consider J + for definiteness. ∇̃Ω 6= 0 implies that Ω itself can be taken
as a coordinate. Choosing any cross-section, introduce the standard angular
coordinates θ, φ . Along each of the null geodesic generator of J +, assign the
same angular coordinates and use an affine parameter u, of the geodesic as the
third coordinate. The affine parameter may be initialized on the chosen cross-
section and normalized as ñ · ∇̃u = 1. Each constant u cross-section of J +

is a sphere and has another null vector orthogonal to it at each of its points.
Along null geodesics generated by these vectors, assign the same coordinates
(u, θ, φ), the fourth coordinate being Ω (Ω = 0 is J +). With this choice. the
unphysical metric on J + takes the form, ds̃2 = 2dΩdu+ dθ2 + sin2θdφ2. The
condition (5-b) implies that the coordinate u ranges over the full R.

The gauge condition (7.5) on Ω implies that the metric components
g̃uu, g̃uθ, g̃uφ all vanish with Ω as Ω2. Hence, the asymptotic behaviour of
the physical metric is determined from gµν = Ω−2g̃µν . With further coordi-
nate transformations, it is possible to put the metric in the form postulated
by Bondi et al. [43] in their analysis of gravitational radiation [17].

The Peeling Property: We have seen above the form of the physical metric
as the null infinity is approached. In V , we already have the Ricci tensor to
be zero. Geroch showed [44] that the Weyl tensor of the unphysical metric too
vanishes on the null infinity. So the full Riemann tensor vanishes as the null
infinity is approached. In V the two Weyl tensors are equal. Any null geodesic
in M̃ landing on the null infinity with a bounded affine parameter corresponds
to a null geodesic in M with an unbounded affine parameter λ → ∞ as the
null infinity is approached. Using the Bianchi identity, it is shown that the
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Weyl curvature must behave as,

Cµναβ =
C4
µναβ

λ
+
C3
µναβ

λ2
+
C2
µναβ

λ3
+
C1
µναβ

λ4
+ o(λ−5) . (7.6)

In the above, the Ciµναβ are bounded and independent of λ and have the Petrov
types IV (= N), III, II (or D) with a single, repeated principle null vector -
the geodesic tangent - and the last one has type I with the geodesic tangent
being one of the principle null directions. This property follows as a special
case (spin 2) of the behaviour of spin-s massless fields in Minkowski space-
time [45]. It played a role in the analysis of characterization of gravitational
radiation. Petrov classification is discussed in section (14.8).

Asymptotic Symmetries at Null Infinity: The notion of asymptotic symme-
tries is naturally the set of diffeomorphism of the physical space-time which
preserves the asymptotic form of the metric. The asymptotic form has been
specified in terms of the definition of J± and the conformal factor in the
Bondi frame. Thus, symmetries at null infinity are the diffeopmorphisms of
M̃ which induce a conformal diffeomorphism of J± on the null infinity with a
conformal factor constant along each null generator5. These symmetry trans-
formations form a group known as the Bondi-Metzner-Sachs (BMS) group [47].
The infinitesimal generators of this group are conformal Killing vectors on the
null infinity. The idea is to identify vector fields on the physical space-time
which when extended to the null infinity boundary, become conformal Killing
vectors there. There could be many ways of extending vector fields to the
boundary. These are restricted by the demand that the asymptotic form in
the neighborhood be preserved. This is done as follows.

We begin by noting a simple identity: For any vector field ξµ on M̃ , on
φ(M) ⊂ M̃ we have,

Ω2Lξgµν = Lξ g̃µν − 2Ωξ · ∇(Ω) gµν = Lξ g̃µν − 2Ω−1(ξ · n)g̃µν (7.7)

where, nµ := ∇̃Ω = ∂µΩ. Observe that the right-hand side would be well

defined on J if the vector field minimally satisfied ξαnα = ΩK̃ where K̃ is a
smooth function on M̃ (at least on a neighborhood of the null infinity). Such
a vector field, on the null infinity will be non-zero and tangential to J and
thus will generate diffeomorphisms of J . It would generate conformal diffeo-
morphisms on the null infinity, provided we demand that the right-hand side
vanishes on the null infinity. Note that the physical metric is not defined on

5It is possible to identify symmetries in terms of an intrinsic description of the null
infinity which is defined as 3 manifold with topology of R × S2, a collection (qij , n

i) of a
degenerate metric qij and a nowhere vanishing vector field ni together with all the pairs of
the form (ω2qij , ω

−1ni), ω > 0 everywhere and satisfying: (i) ni is the only degenerate
direction of qij , (ii) Lnqij = 0, (iii) the vector field ni is complete with its orbit space
diffeomorphic to S2. Diffeomorphisms of the 3 manifold which preserve the collection of
these pairs, are symmetries of the null infinity. Note that in this definition, ni is not related
to any gradient of any conformal factor. This group of symmetries is precisely the BMS
group [46].



Asymptotic Structure 131

the conformal boundary and hence Lξgµν is not well defined on the bound-
ary either. It is nonetheless demanded that after multiplying by Ω2, the Lie
derivative be extendable to the boundary and should vanish there for ξ to
qualify as a BMS generator. Thus, we define a vector field ξµ on M̃ to be a
generator of an asymptotic symmetry if [48],

(i) ξαnα = ΩK̃ and (ii) Lξ g̃µν − 2K̃g̃µν = ΩX̃µν , (7.8)

where K̃ and X̃µν are smooth fields on a neighborhood of the null infinity.
If ξµ is an isometry of the physical space-time, then the left-hand side of

the identity (7.7) is exactly zero even off-J and therefore X̃µν = 0 as well.

K̃ may or may not be zero and thus ξµ generates an isometry (K̃ = 0) or a
conformal isometry (K̃ 6= 0) of the un-physical space-time.

As an example, consider a vector field

ξµ := αñµ = αg̃µνnν , nν := ∇νΩ , ñ · ∇α|J = 0 . (7.9)

On J , we also have g̃µνnµnν = 0. In the vicinity of J , We want to compute

Lξ g̃µν = ∇̃µξ̃ν + ∇̃ν ξ̃µ , ξ̃µ := g̃µνξ
ν and identify K̃, X̃µν to check if ξ is a

BMS generator. Since n · n and n · ∇α vanish on J , away from it they must
have appropriate factors of Ω. To determine these factors, recall the equations
(7.3, 7.4) and use Rµν = 0 which is valid in the vicinity. This leads to,

R̃µν −
R̃

6
g̃µν = − Ω−1(∇̃µnν + ∇̃νnµ) + Ω−2g̃µν ñ · n (7.10)

Since the left-hand side has a smooth limit to J , we must have ∇̃µnν +

∇̃νnµ := ΩỸµν and n · n := Ω2ρ̃ for some tensors Ỹµν , ρ̃ which have smooth

limit on J . For the gradient of α, it suffices to have ñµ∇̃µα := Ωβ̃.

Substituting for ξ, we get, Lξ g̃µν = ∇̃µ(αnν)+µ↔ ν = ΩαỸµν+nµ∇̃να+

nν∇̃µα. While the first term has a smooth limit to the null infinity, the last
two terms do not! Thus the candidate vector field is not a BMS generator. We
can get rid of the offending terms by subtracting Ωg̃µν∇̃να from the ξ. This
leads to, (now ξ̃µ := αnµ − Ω∇̃µα)

ξµnµ = Ω2ρ̃α− Ω2β̃ ⇒ K̃ = Ω(αρ̃− β̃) (7.11)

Lξ g̃µν = ΩαỸµν − 2Ω∇̃µ∇̃να ⇒ X̃µν = αỸµν − 2∇̃µ∇̃να− 2(αρ̃+ β̃)

Ỹµν may be substituted in terms of curvature from (7.10).

Notice that it is possible to have two different vector fields on M̃ which
are equal on the null infinity (e.g. the above example) in which case they
generate the same infinitesimal conformal transformation on J and should be
identified as the same generator. Hence we define that two BMS generators
are equivalent if they are equal on J . How is this freedom characterized?

The difference of two BMS generators vanishes on J and hence must be of
the form: ξµ1 − ξ

µ
2 = Ωζµ. Substitution in the identity (7.7) and evaluating it
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on the null infinity, leads to ζµ|J = 0 i.e. ζµ = Ωuµ or difference of two BMS
generators is proportional to Ω2uµ for some vector field uµ in a neighborhood
of null infinity. The identity then implies, (δξµ := Ω2uµ)

δK̃ = Ωu · n , δX̃µν = nµuν + nνuµ − ñ · ũ g̃µν +
Ω

2

(
∇̃µũν + ∇̃ν ũµ

)
.

All the above equations refer to the un-physical metric explicitly. What hap-
pens when this is changed by the allowed scaling by ω2? The same vector field
is again a BMS generator but now K̃ and X̃µν change as,

K̃ ′ = K̃ + ω−1ξµ∇̃µω , X̃ ′µν = ωX̃µν .

This completes the definition of infinitesimal generators of the BMS group
together with the two sets of gauge ambiguities.

The BMS generators are tangential to the null infinity. Hence there is a
subclass of them so that on J , ξµ = αnµ, n · ∇̃α = 0. Clearly since α is
constant along the integral curves, these generate isometries (of the induced
metric) on J . These are termed super-translations, they translate along the
null generators in an angle dependent way since α is a smooth function of the
angles. It turns out that these form an infinite-dimensional, Abelian, normal
subgroup of the BMS group and the quotient group is isomorphic to the
Lorentz group6.

Conservation Laws at Null Infinity: Do these asymptotic symmetries also
lead to any corresponding ‘conserved quantities’? What would such a notion
mean (at this stage, we are not using any action formulation to appeal to
Noether theorem for a conservation law nor are the symmetries defined as
invariance of any action)? To appreciate it, consider first the case of physical
space-time admitting a Killing vector, ξµ.

If we have non-vanishing matter stress tensor with, ∇µTµν = 0, then
we define Jµ := Tµνξν which is also covariantly conserved and as discussed
before (see 4.10), we can define for a 3-manifold Σ, a ‘conserved charge’,
Qξ(Σ) :=

∫
Σ
J ·n ds. The conservation aspect follows by noting that if Σ1,Σ2

are two hypersurfaces which bound a 4-region V, then Qξ(Σ1) = Qξ(Σ2). For
a hypersurface orthogonal, time-like Killing vector, Σi being surfaces of or-
thogonality are the natural choice. This is conserved ‘energy’ associated with
matter. What happens in the absence of matter, as in the case of asymptot-
ically empty space-time? Here we note a few mathematical relations, (please
see section 14.6). Using ξ := gµνξ

νdxµ,

α := ∗dξ ⇒ dα = ∗ δdξ ; and for a Killing 1-form,

(δdξ)µ = ∇ν (∇µξν −∇νξµ) = 2Rµνξ
ν (7.12)

6There is a further unique, four-dimensional subgroup of the super-translations, namely
that generated by super-translations with α(θ, φ) spanned by the four Ylm(θ, φ) with l =
0, 1, which is also a normal subgroup of the BMS group. For the Minkowski space-time, it
corresponds to translations [17]. This plays a role in the definition of the Bondi Energy-
Momentum discussed below.
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In the last equality, we have used the Killing equation.
Notice that α is a 2-form and dα is a 3-form which vanishes in the region

where the Ricci tensor vanishes. Therefore, if S1, S2 are two 2-surfaces with-
out boundary, which bound a 3-region where the Ricci tensor vanishes, then
QS :=

∫
S
α, has the same value for S1, S2. For vacuum solutions with isome-

tries, these ‘charges’ are the Komar Integrals [49]. Specifically, for stationary
and/or axisymmetric vacuum solutions, these define the mass and the angular
momentum of the space-time [17]:

MS :=
1

8πG

∫
S

∗dξ = − 1

8πG

∫
S

dsµνεµναβ∇αξβ ; (7.13)

JS := − 1

16πG

∫
S

∗dξ = +
1

16πG

∫
S

dsµνεµναβ∇αψβ . (7.14)

Here, S is a space-like topological 2-sphere surrounding matter sources, lying
in the asymptotic region where the Ricci tensor vanishes and the integrals are
independent of the sphere S. The ξ is a time-like Killing vector, normalized as
ξ · ξ = −1 at infinity while ψ is the space-like Killing vector whose orbits are
closed curves, normalized so that the Killing parameter ranges over [0, 2π].

S0

Sλ

Vλ

S1

J +

S2

R

Gravitational Radiation

Gravitational Radiation
T

S

FIGURE 7.2: In the lowest slice, S is the limiting member of a family of Sλ
used in defining the conserved charge associated with a BMS generator. The
circles S1, S2 are intersections of the shaded slices with J + and bound the
region V of J + over which the flux is integrated.

Thus we see that for an asymptotically Ricci flat space-time with isome-
tries, we can define conserved quantities (the Komar integrals) which enable
us to evaluate them ‘on a sphere at infinity’ in a limiting sense. The ques-
tion now is whether analogous quantities can be defined when we have only
asymptotic symmetries of the BMS group.

Recall that a vector field ξµ on the un-physical space-time which is tan-
gential on J and generates conformal transformation on J is a representative
of a BMS generator and there are two types of gauge freedoms. Consider the
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integrands in the Komar integrals but express it in terms of the un-physical
metric g̃µν .

εµναβ∇αξβ = εµναβg
αρgβσ∇ρξσ = Eµναβ

√
ggαρgβσ∂ρξσ

= EµναβΩ−4Ω4
√
g̃ g̃αρ g̃βσ∂ρΩ

−2ξ̃σ = ε̃µναβ g̃
αρg̃βσ∇̃ρΩ−2ξ̃σ

= ε̃µναβ∇̃αΩ−2ξ̃β , ξ̃β = ξβ (7.15)

If we were to attempt to adopt the Komar integral on a cross-section, S, of
J as a candidate conserved quantity, we immediately face a problem with
the Ω−2. However, we can consider a cross-section, S, being approached as a
limiting sphere from a family, Sλ, of topological 2-spheres from a neighborhood
of the null infinity. Being away from J , Ω is non-zero on each member of the
family. Since ξ is not a Killing vector, d ∗ dξ is non-zero even in the Ricci flat
region. Nevertheless, we can still use the Stoke’s theorem. To do this, consider
a 3-region, Vλ, bounded by a fixed 2-sphere, S0, in the physical space-time
and a member Sλ. The Stokes’ theorem then gives,∫

Sλ

dsµν ε̃µναβ∇̃α(Ω−2ξ̃β) =

∫
S0

dsµνεµναβ∇αξβ +

∫
Vλ

∗δdξ (7.16)

where (δdξ)µ = ∇̃ν
(
∇̃µΩ−2ξ̃ν − ∇̃νΩ−2ξ̃µ

)
(7.17)

= 2Ω−1
(
−∇̃νX̃µν + ∇̃µX̃ν

ν + 3Ω−1X̃µν ñ
ν
)

Here we have used, Ω−2ξ̃µ = Ω−2g̃µνξ
ν = ξµ and in the second line we have

used equation (7.12). The last equality follows by noting the general identity,

∇b (∇avb −∇bva) = 2Rabv
b + 2∇a(∇ · v)−∇b (∇avb +∇bva) ,

and applying it to vµ = ω−2ξ̃µ. The curvature is eliminated using (7.10) and

X̃µν enters from the last two term, using the conditions (7.8) for ξµ to be a
BMS generator.

The integral in the first term of eq. (7.16) is well defined and fixed. If the
integrand of the second term remains finite in the limit Sλ → S, then the
integral too will remain finite. It is shown in [48] that this is indeed so and
therefore the integral on the cross-section is well defined. Furthermore, it is
also independent of family of spheres approaching the same cross-section S
since the integral over S0 and the interpolating region V are independent of
the family chosen. This integral has been termed as a ‘linkage’ [48].

Now to address the gauge ambiguities. Under the conformal scaling by
ω2, one can see explicitly that the integral is unchanged. However, as the
representative of the BMS generator is changed, the integral changes! This
is remedied by stipulating that the representative be required to satisfy a
further condition, namely, ∇̃µξ̃µ = 0 [17,48]. Thus we have achieved a goal of
associating a gauge invariant quantity with each BMS generator with linear
dependence. What is ‘conserved’ about it? It is a conserved quantity in the
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sense that it can be again be evaluated on a ‘sphere at infinity’ in a limiting
sense, independent of the way the limiting family is chosen, just as in the
case of the exact symmetries. For exact symmetry, the value of the integral
remains the same for all members of the family while this is not so for the
asymptotic symmetries. For asymptotic symmetries, the value does depend
on the limiting sphere on J .

Is it possible to relate the values at two different cross-sections? The answer
turns out to be yes.

Recall the mathematical relations (7.12). The Stokes’ theorem already
gives us

∫
V
∗δdξ =

∫
∂V
∗dξ. Consider a region V in the vicinity of J + (say)

which is bounded by two 2-spheres S0, S
′
0. These bounding spheres will be

taken to two cross-sections S, S′ of J + respectively. We have already defined
a conserved quantity (linkage integral) associated with a BMS generator and
a cross-section: QS(ξ) :=

∫
S
ε̃µναβ∇̃α(Ω−2ξ̃β). The volume integral in the

Stoke’s theorem can be written as,∫
V

∗δdξ =

∫
V

dxµ ∧ dxν ∧ dxα

3!
ε̃ β
µνα ∇̃ρ

(
∇̃βΩ−2ξ̃ρ − ∇̃ρΩ−2ξ̃β

)
=

1

3!

∫
V

d3xEµνασnσ ε̃ β
µνα ∇̃ρ

(
∇̃βΩ−2ξ̃ρ − ∇̃ρΩ−2ξ̃β

)
=

∫
V

d3x
√
h̃ñσ∇̃ρ

(
∇̃σΩ−2ξ̃ρ − ∇̃ρΩ−2ξ̃σ

)
∴
∫
V

∗δdξ :=

∫
V

d3x
√
h̃F (7.18)

In the above, we have used Eµνα := Eµνασnσ, where nσ is the normal to the
region V regarded as a hypersurface in M̃ and h̃ is the determinant of the
induced metric on this hypersurface. Note that away from J , ñ · n 6= 0 and
the induced metric is non-degenerate too.

We have already simplified part of the expression for the flux F defined
above, in eqn. (7.17,7.18). Using ñσ = ∇̃σΩ, keeping only the terms that
survive in the limit of going to J + and using the gauge condition ∇̃ · ξ̃ = 0
on the representative of BMS generator, a convenient and gauge invariant
expression of flux is [48]:

F = −∇̃µ∇̃νX̃µν+3∇̃µX̃µ+
3

4
∇̃2X̃+

1

24
R̃X̃ , X̃µ := Ω−1X̃µν ñ

ν (7.19)

As an illustration, the flux corresponding to the super-translation (7.9) is
given by [48],

F =
1

4
α−1

(
∇̃2 − 2Ω−1ñµ∇̃µ

)
H̃ − 2α−1X̃µνX̃µν + α−1X̃2

H̃ := α∇̃2α+ α2

(
1

6
R̃+ ρ̃

)
− ∇̃µα ∇̃µα− 2αβ̃ (7.20)

A further specialization to translations, where α is restricted to linear
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combination of only l = 0, 1 spherical harmonics, H̃ is a constant and X̃µν −
1
2X̃h̃µν =: αÑµν where h̃µν is the induced, degenerate metric on J and Ñµν
is the Bondi news function. The flux then reduces to

F = αÑµνÑµν .

7.2 Vicinity of the Spatial Infinity

The discussion of this section is based on [39,40].
This region is more complicated to analyse because approaching infinity

along all spatial directions is squeezed into a single point i0 at which the
differentiability conditions are also complicated. That such a squeezing nec-
essarily implies non-smooth behaviour of physical fields can be seen as fol-
lows. Consider the electric field of a charge moving uniformly in an otherwise
empty, flat Euclidean space or equivalently following a time-like geodesic in
the Minkowski space-time. Any spatial hyperplane together with i0 is topo-
logically a 3-sphere (3) in M̃ and therefore the total charge on this compact
manifold without boundary which equals the divergence of the electric field
integrated over the 3-manifold must vanish. But we have a charge inside the
volume. So at i0 there much be an effective image charge if Maxwell equations
are to hold for appropriately scaled Maxwell fields on M̃ . But this also means
that the Maxwell fields must diverge in a direction dependent manner at i0.
Ashtekar and Hansen give a detailed discussion of the appropriateness of the
chosen non-standard smoothness requirements at i0.

To have an analogue of the Bondi coordinate system and for discussion
of asymptotic symmetries and conserved charges, a ‘blown-up’ model of i0 is
needed. This means i0 is to to be understood as another manifold together
with some additional structures chosen such that the physical fields will be
smooth on this manifold with smoothness properties corresponding to the
differentiable structure at i0. To appreciate this, let us note a few points.

The idea of spatial infinity is to characterize the different ways in which
one may go far away from localized sources, in a space-like manner. This
may be done by selecting spatial hypersurfaces and then going to infinity in
any direction or by simply following space-like curves directed away from the
sources. The curves should be in-extendible to capture the sense of ‘reaching
to infinity’. The later is in spirit similar to the null infinity being understood
as ‘end-points’ of null geodesics. The space-like curves, in the physical space-
time, are smooth (C∞) however in the conformally extended space-time the
available smoothness at i0 is only C>1. This means that in extending a space-
like curve to spatial infinity, it is meaningless to demand higher degree of
smoothness and thus it appropriate to define equivalence classes of curves
which agree only upto ‘second order’. The set S of such equivalence classes can
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be given a (smooth) manifold structure and this manifold serves as a blown-up
model for the i0 - the smooth fields on this manifold correspond to the fields on
the conformal infinity with direction dependent limits at i0. The specific details
and discussion of this construction are best seen in Ashtekar and Hansen. The
upshot is that the spatial infinity can be equivalently described as a four-
dimensional manifold S, called Spi for spatial infinity, which is a principal
fibre bundle with the base manifold K given as the unit, time-like hyperboloid
in the tangent space at i0 and the additive group of reals as the structure
group. Spi inherits two tensor fields: A degenerate metric hab which is the
pull-back of the natural metric on K (π : S → K) and a vertical vector field va

generating the one parameter diffeomorphisms induced by the action of the
structure group7. The appendix C of the Ashtekar-Hansen paper also gives
the explicit form of Kerr metric near spatial infinity as well as gives a general
form of the physical metric which can be conformally extended such that it
will satisfy the local condition at i0.

Having gotten the Spi structure in a form similar to that of null infinity,
the notions of asymptotic symmetries and conserved charges proceeds similar
to that in the case of the null infinity. The infinitesimal diffeomorphisms which
preserve the structure of Spi turn out to be characterized by vector fields ξ
on S which satisfy, (a) Lξ̄ ḡab = 0 on K and (b) Lξva = 0 on S. Here ḡ

is the natural metric on the base manifold K and ξ̄ is the projection of ξ
on it. The Lie algebra of these vector fields is the Lie algebra of Spi. The
special case where the projection ξ̄ vanishes i.e. ξa itself is a vertical field
proportional to va, turn out to form an invariant Abelian sub-algebra and
constitute the Spi super-translations. The further special case wherein the
proportionality function f in ξa = fva, is linear in the position vectors, ηa on
K i.e. 4f = kaη

a for some co-vector ka on the hyperboloid, constitute the Spi
translations. The quotient of the Spi Lie algebra by the super-translations, is
isomorphic to the isometries of the unit time-like hyperboloid K which is the
Lorentz algebra, Spi/supertranslations ∼ Lorentz. This is very similar to
the BMS symmetries. These structures extend to the finite diffeomorphisms
to i.e. to groups.

The conserved charges corresponding to the Spi generators are constructed
analogously and depend on the asymptotic forms of various fields. The spa-
tial infinity is completely decoupled from the dynamics (no causal relations)
and hence the conserved quantities are constants characterising the asymp-
totically flat space-times. Furthermore, there are only 4 non-trivial conserved
quantities—the 4-momentum which corresponds to the translations and the
charges corresponding to the other super-translations vanish. Likewise, if
Maxwell fields are included, the non-trivial charges are the electric and the
magnetic charge only. These results follow from the detailed asymptotic forms
of the gravitational and the Maxwell fields. To define angular momentum

7The null infinities J± too have a similar structure a degenerate metric and the null
normal fields. The base manifold is however an s2 and the null infinities themselves are
3-manifolds.
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though, further restrictions on the asymptotic form of the Weyl tensor need
to be imposed.

This concludes our discussion of the asymptotically flat space-times, their
symmetries and associated conserved quantities.

The case of non-zero cosmological constant has not been analysed as ex-
tensively [50]. The asymptotic structure of the de Sitter (dS) and the Anti
de Sitter (AdS) space-times is well known [18]. With the cosmological models
favouring Λ > 0 (De Sitter) space time, there is some motivation to consider
the asymptotically De Sitter space-times. The AdS case has been analysed
in more details thanks to the theoretical interest in the AdS/CFT correspon-
dence.



Chapter 8

Black Holes

Among the solutions of space-times with compact sources are the Black Hole
solutions. The very first Schwarzschild solution provided the initial model of
space-time near the Sun with which general relativity passed its first tests.
Its mathematical extension (decreasing the radial coordinate, first below the
physical radius of the star and then below the Schwarzschild radius) already
revealed the exotic nature of the space-time of a point mass. We have seen the
Kruskal extension of the Schwarzschild solution and indicated the similar one
for the Reissner–Nordstrom solution. These and the Kerr–Newmann family
of solutions are all asymptotically flat. The portion of space-time connected
to the asymptotic region is the exterior region. The mathematical extension
refers to extension away from the asymptotic region, in the interior region.
The different regions are signalled in terms of coordinates where some of the
metric components vanish or diverge and are demarcated by the zeros of the
function ∆(r) = (r − r+)(r − r−) where r± are constants. As noted be-
fore, although some of the metric components vanish or diverge, the Riemann
tensor - which encodes the physical effects of gravity - is perfectly well be-
haved. The geodesics across the r = r± surfaces are well behaved too and
in fact signal how an extension may be sought. Fundamentally, an extension
across a chart boundary is sought by changing the local coordinates, obtain-
ing the corresponding metric and continuing the same metric form to a larger
neighborhood till the next chart boundary where the extended metric or the
curvature may develop singularities.

We now illustrate the method for the Kerr–Newman family and then dis-
cuss more general black holes and briefly touch upon their further generaliza-
tion to isolated and dynamical horizons.

8.1 Examples of Extended Black Hole Solutions

Let us recall the metric of the Kerr–Newman solution in two different forms
(a 6= 0, Q 6= 0 ,M2 > a2 +Q2),

ds2 = −η
2∆

Σ2
dt2 +

Σ2sin2θ

η2
(dφ− ωdt)2 +

η2

∆
dr2 + η2dθ2 (8.1)
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= −∆

η2

{
dt− asin2θdφ

}2
+
sin2θ

η2

{
(r2 + a2)dφ− adt

}2

+
η2

∆
dr2 + η2dθ2 where, (8.2)

∆ := r2 + a2 − 2Mr +Q2 , η2 := r2 + a2cos2θ

Σ2 :=
(
r2 + a2

)2 − a2sin2θ∆ , ω :=
a(2Mr −Q2)

Σ2
(8.3)

As mentioned before, there are coordinate singularities at the zeros of the
∆(r) function while at r = 0 there is a curvature singularity. The two roots of

∆(r) = 0 are: r± = M ±
√
M − a2 −Q2 which split the range of r into three

segments

(A) : −∞ < r < r− , (B) : r− < r < r+ , (C) : r+ < r <∞ .

Note that for the Kerr–Newman family, r is not the areal radial coordinate and
is not required to be positive. The curvature singularity occurs when η2 = 0
which in turn happens at r = 0 and θ = π/2. Since r = 0 is a curvature
singularity, one may suspect that negative r is excluded. This is not the case
since the curvature blows up along a ‘ring’ in the equatorial plane θ = π/2.
This is most readily seen in the so-called Kerr-Schild form of the metric. It is
therefore possible to continue through the ‘r = 0’ singular space-time cylinder
[17, 29]. For contrast, the ‘r = 0’ singularity in the spherically symmetric
Schwarzschild and Reissner–Nordstrom solutions is a sphere of radius zero (or
a line in the space-time).

Observe that along θ = 0, π submanifolds, the metric is same as that of
the spherically symmetric Reissner–Nordstrom solution (a = 0). Hence the
extension across the three regions can be done in the same manner. We have

already given the tortoise coordinate r∗ defined by dr∗ := r2

(r−r+)(r−r−)dr

which leads to,

r∗(r) = r +
r2
+

r+ − r−
ln

∣∣∣∣ rr+
− 1

∣∣∣∣− r2
−

r+ − r−
ln

∣∣∣∣ rr− − 1

∣∣∣∣ (8.4)

Here we have chosen r∗(0) = 0 arbitrarily. In terms of this coordinate, the
two-dimensional metric is conformal to the two-dimensional Minkowski met-
ric: ds2 = ∆

r2 (−dt2 + dr2
∗). The radial null geodesics are given by t = ±r∗.

In the three regions we have (r+,∞) ↔ r∗ ∈ (−∞,∞) , (r−, r+) ↔ r∗ ∈
(∞,−∞) and (−∞, r−) ↔ r∗ ∈ (−∞,∞). Introduce u := εu(t − r∗) , v :=
εv(t + r∗) , εu,v = ±1 so that dt2 = −(∆/r2)εuεvdudv. In regions C and A,
∆ > 0 hence the signature of the metric requires that εu = εv = ±1 while in
region B, ∆ being negative requires εu = −εv = ±1. We have thus 6 possible
choices labelled as A±, B± and C± which are detailed in the equation (8.5) be-
low. In each of the six blocks, the u, v coordinates range over (−∞,∞). These
ranges can be brought to (−π/2, 0) , (0, π/2) by introducing new coordinates
U(u), V (v) suitably in each of the blocks. These are to be chosen so that the
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metric takes the same form and an extension is obtained by matching the
individual chart boundaries. The following definitions – which are little dif-
ferent from [29] – achieve this. Following [29], the diagram is first constructed
for θ = 0, π and then extended to other values of θ. Across different chart
boundaries, different definitions of φ are needed. The final resulting Penrose
diagram is shown in figure (8.1).

A+ : u = t− r∗ , tanU := e−αu

: v = t+ r∗ , tanV := eαv

A− : u = −t+ r∗ , tanU := eαu

: v = −t− r∗ , tanV := e−αv

B+ : u = t− r∗ , tanU := −e−αu
: v = −t− r∗ , tanV := −eαv

B− : u = −t+ r∗ , tanU := eαu

: v = t+ r∗ , tanV := eαv

C+ : u = t− r∗ , tanU := −e−αu
: v = t+ r∗ , tanV := eαv

C− : u = −t+ r∗ , tanU := eαu

: v = −t− r∗ , tanV := −e−αv

(8.5)

For the special case of Reissner–Nordstrom, the r = 0 is a curvature singu-
larity and the portions B′ and B in the right portion of figure (8.1) are absent.
For the special case of Schwarzschild, the two roots of ∆(r) coincide and the
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FIGURE 8.1: The t-axis goes from bottom to top, the r∗-axis goes from left
to right and the metric is conformal to the Minkowski metric thereby having
the same causal structure.

entire portions A± are absent. Furthermore, the r∗ reaches a finite value, say
zero when the curvature singularity at r = 0 is reached. This is space-like and
therefore the top half of B− and bottom half of B+ are also absent leading to
the maximally extended Schwarzschild space-time in figure (8.2).
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The various null surfaces such as the event horizon (r = r+) and the
Cauchy horizon (r = r−) are also identified together with the portions of the
asymptotic infinities, J±, i0. These will be defined in the more general context
of black holes in asymptotically flat space-times in the next section.
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FIGURE 8.2: Maximally extended Schwarzschild space-time.

The Kerr–Newman family presents another novel feature apart from the
two horizons of the Reissner–Nordstrom and the ‘ring singularity’ when the
rotation parameter a 6= 0 - the ergospheres.

The stationary Killing vector has its norm given by (see equation 8.2),

ξ · ξ = gtt(r, θ) =
∆− a2sin2θ

η2
=

r2 − 2Mr + a2 +Q2 − a2sin2θ

η2

= 0 for R±(θ) = M ±
√

(M2 − a2 −Q2) + a2sin2θ (8.6)

The hypersurface defined by ξ2 = 0 ↔ r = R+(θ) is called infinite red-shift
surface since the light received at infinity from this surface will be infinitely
red-shifted. The regions r+ < r < R+(θ) and R−(θ) < r < r− are called
outer (inner) ergospheres, respectively. In the region between the inner and
the outer ergospheres, the Killing vector ξµ is space-like. See figure (8.3).

Physically, it is the outer ergosphere that is of interest since it is accessible
to far away observers. In this region, any time-like vector field, uµ := dxµ

dτ , u ·
u = −1, implies that dφ

dτ > 0 i.e. an observer within the ergosphere has to co-
rotate with the Kerr–Newmann black hole. This is an extreme form of frame
dragging.

This is also the region where the Penrose Process for extracting the ro-
tational energy of the rotating black hole takes place. This is based on the
following observation. When a space-time has Killing vectors, the time-like
geodesics have corresponding constants of motion e.g. E := −u · ξ which has
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FIGURE 8.3: Ergospheres in Kerr–Newmann family.

the interpretation of energy per unit mass of the body following the geodesic.
For a future directed (ut > 0), time-like geodesic, E is positive in the exterior
region where ξµ is time-like while it can have either sign if the geodesic is
inside the ergosphere where ξµ is space-like. This, in particular means that
a positive energy body can enter the ergosphere but a negative energy body
cannot enter/exist in the exterior region. Furthermore, not only are negative
energies possible only inside the ergosphere, the other constant of motion,
angular momentum per unit mass, Lz := u · ψ, must also be negative. Here
ψµ = ∂φ is the Killing vector of axisymmetry and the z-component of the an-
gular momentum of the black hole is defined as positive. The Penrose process
now consists of sending in a body with initial (positive) energy, Ei = mEi,
arranging it to separate it into two bodies A,B such that the body A (say)
is put in an orbit with EA < 0 and the body B is arranged to head to the
exterior region. Energy conservation at separation implies that EB > Ei and
therefore, we have extracted some energy from the black hole. The body A has
to fall inside and it reduces both the mass and the angular momentum of the
black hole. In this process, the ergosphere also shrinks a little. Repeated ex-
traction of energy by this process will eventually halt the rotation of the black
hole which also removes the ergoregion. The changes in the mass and angular
momentum of the black hole by this process are not independent though.

In the discussion above equation (5.113), we noted that the Killing vector
χ := ξ+Ωψ, is time-like in the region exterior to the event horizon, r > r+ and
becomes light-like at the horizon. Hence, u·χ ≤ 0. This implies, −E+ΩLz ≤ 0.
For the body A which crosses the horizon, both E and Lz are negative and
result in decrease of the mass and angular momentum of the black hole. Setting
δM = E and δJ = Lz, we get δM ≥ ΩδJ = a

2Mr+
(aδM + Mδa) which

translates into: r2
+δM ≥ Maδa. Substituting for r2

+ = M2 + (M2 − a2) +

2M
√
M2 − a2, the inequality can be expressed as,

r2
+δM −Maδa ≥ 0 ⇐⇒ δ

(
M2 +M

√
M2 − a2

2

)
=: δM2

irr ≥ 0 . (8.7)
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The condition on decreasing the mass and angular momentum of a Kerr black
hole by the Penrose process, is conveniently expressed as stipulating that
the irreducible mass [51], M2

irr(M,a) := (M2 + M
√
M2 − a2)/2 must not

decrease. Therefore, from a given black hole of mass M and angular momentum
aM , the maximum amount of energy that can be extracted via the Penrose

process is Emax(M,a) = M(1 − 1√
2

√
1 +

√
1− a2/M2) which in turn is the

maximum possible for the maximally spinning black hole, a = M and this is
about 29% of the hole’s initial mass.

There is also a counterpart of this mechanism in the scattering of waves off
a Kerr black hole. For a massless wave equation for integer spin, the reflection
coefficient is larger than 1 i.e. there is an enhancement of energy in the reflected
wave. This is known as the super-radiance phenomena. It is absent for Dirac
and Weyl wave equations.

This completes our discussion of the Kerr–Newman family of black holes.

8.2 General Black Holes and Uniqueness Theorems

One can very well imagine physical processes wherein a star collapses to
form a black hole that settles in to a stationary black hole. However somewhat
later another star or other body is captured by the black hole that eventually
falls in to the black hole changing its parameters. This process can repeat.
Such processes cannot be modelled by stationary space-times so one needs
a general characterization of space-times that can be said to contain black
hole(s).

One always imagines such space-times to be representing compact bodies
i.e. sufficiently far away the space-time is essentially Minkowskian. Now the
notion of a black hole is that there is a region within the space-time from
which nothing can escape to ‘infinity’, ever. ‘Nothing’ can be understood as
causal curves reaching out to farther distances. ‘Infinity’ and ‘ever’ needs to be
defined more sharply in order to provide a precise enough definition of a black
hole. The ‘infinity’ is specified to be the null infinity, J +, of an asymptotically
flat space-time. Events from its causal past can send signals to it. A black hole
region must be excluded from this.

Thus, an asymptotically flat space-time, M , contains a Black Hole region B
if B := M−J−(J +) 6= ∅. Its boundary (three-dimensional) is called the Event

Horizon, H := M ∩ ˙J−(J +). It is a always a null hypersurface. However, such
a definition is too general for proving useful statements. For many results dis-
cussed below, some further stipulations are required. As discussed in [17] for
instance, the notion of strong asymptotic predictability suffices. It stipulates
that the asymptotically flat space-time be such that in the unphysical space-
time (M̃, g̃), there is a region Ṽ ⊂ M̃ containing the closure of M ∩ J−(J +)
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such that (Ṽ, g̃) is globally hyperbolic. The ‘closure’ part implies that spatial
infinity is included in Ṽ . The global hyperbolicity of Ṽ further implies that
(M ∩ Ṽ, g) is globally hyperbolic too. This in particular means that if from
some regular conditions on a Cauchy surface (e.g. collapsing matter), a sin-
gularity develops, then it cannot be visible from the future null infinity. The
condition of strong asymptotic predictability thus excludes the possibility of
having naked singularity in such space-times1.

The global hyperbolicity of the physical region guarantees existence of
Cauchy slices and the intersection of the event horizon with a Cauchy slice Σ,
is a two-dimensional, possibly disconnected submanifold. Each of its connected
component is identified as an instantaneous black hole.

In a general space-time containing black holes various things can happen:
new black holes may form, some may merge, some will grow bigger etc. How-
ever some things cannot happen.

For instance, once a black hole is formed, it can never disappear. A black
hole may also never split into more black holes (no bifurcation theorem).
This result depends only on the definition of black holes and topology and
is independent of the field equations. It stipulates that while black holes can
merge and/or grow, they cannot split.

The ‘evolution’ of such black holes is tracked by a family of Cauchy sur-
faces. One can thus obtain the areas of the intersection of the horizon and
the Cauchy slices using the induced metric. Interestingly, the Hawking area
theorem proves that area of an instantaneous black hole may never decrease.
The proof uses Einstein equation together with the stress tensor satisfying
the null energy condition. This result, known as the second law of black hole
mechanics, prompted Bekenstein to think of black hole area as its entropy.

Note that the no-bifurcation theorem put some conditions on possible evo-
lution of black holes. The area of a black hole may change due to accretion
from other objects or merging of black holes. The Hawking theorem stipulates
that in either of these processes, the area must not decrease which is a stronger
statement.

Indeed one can imagine processes involving black holes wherein a black
hole does change its properties (e.g. area) consistent with the above theorems.
However the accretion/merger processes may be separated by long periods of
‘inactivity’. During these periods, the black hole may be well approximated
by stationary black hole solutions. These are black hole space-times with a
time-like Killing vector. For these a lot more is known. Some of these results
are summarized below [17,54,55].

1. For stationary black hole, the event horizon is a Killing horizon i.e. a
hypersurface on which the norm of some Killing vector ξ vanishes.

2. The instantaneous black holes have spherical topology. The area A of

1Whether from the complete collapse of reasonable physical matter a strongly asymp-
totically predictable space-time always results or not is an open issue articulated as the
Cosmic Censorship Conjecture [52, 53].
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these black holes is therefore finite and of course constant due to sta-
tionarity. This is true for black holes in asymptotically flat space-times.

3. For stationary vacuum black holes, the Killing vector ξ corresponding to
stationarity, is tangential to the event horizon. Thus it has to be either
space-like or light-like.

(a) If ξ is everywhere non-space-like outside the horizon (No ergosphere)
then on the horizon it is light-like. The solution then must be static.

(b) If ergosphere is present but intersects2 the event horizon, then ξ
is space-like on a portion of the event horizon. In this case there exist
another Killing vector χ which commutes with ξ and is light-like on the
event horizon. A linear combination ψ, of ξ and χ can be constructed
which is space-like and whose orbits are closed. In other words the space-
time is stationary and axisymmetric.

The three Killing vectors are related as, χ = ξ + ΩH ψ and ΩH is
called the angular velocity of the event horizon.

Since χ is light-like on the horizon, it defines a parameter κ, called the
surface gravity of the event horizon, by the following equation holding
on the event horizon H,

∇µ χ2 = − 2κχµ ⇒ χ · ∇χµ = κχµ (8.8)

4. The surface gravity is constant over the horizon

This is the zeroth law of black hole mechanics. This result depends on the
stress-tensor satisfying the so called dominant energy condition. Con-
stancy of κ allows the interpretation of κ being proportional to the
‘temperature’.

The existence of the two Killing vectors ξ, ψ in the general stationary, ax-
isymmetric asymptotically flat space-times give the corresponding con-
served quantities, the ADM mass M (7.13), and the angular momentum
J (7.14) of the black hole.

At this stage, for the general stationary, axisymmetry, vacuum black
holes we have assembled the parameters: area, surface gravity and an-
gular velocity defined at the horizon (two-dimensional) and also the
mass and angular momentum defined by Komar integrals evaluated in
the asymptotic region. Thanks to the isometries, all of these are constant
parameters except the surface gravity which, nevertheless is shown to
be constant if matter satisfies dominant energy condition.

5. Vacuum black holes with nearby values of parameters A, κ,Ω, J,M sat-
isfy,

δM =
κ

8πG
δA+ ΩδJ .

2The case where an ergosphere exists but does not intersect the horizon is not completely
clear [17].
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This is the first law of black hole mechanics.

In (5.4.2.1) we had discussed the values of the black hole parameters for
the Kerr–Newman family and have also verified the first law. The above is a
general result.

The classic black hole uniqueness results establish that starting from the
general definitions of stationary black holes in an asymptotically flat and
asymptotically strongly predictable space-times, the Kerr family is the only
family of solutions. The uniqueness results are also extended to inclusion of
Maxwell field and leads to the Kerr–Newman family as the corresponding
unique family of solutions [56–64]. These are also paraphrased as the state-
ment, Black Holes have No Hair.

The uniqueness results for stationary black holes are limited to four space-
time dimensions and with the naturally occurring long range gravitational and
electromagnetic classical fields. In presence of non-abelian gauge fields and as
well as interacting scalar fields, the uniqueness results are not completely
established. With higher dimensions and non-asymptotically flat space-times
lot more work remains to be done. These developments are reviewed in [65].

8.3 Black Hole Thermodynamics

The laws of black hole mechanics, including now the Maxwell fields as
well, look very much like the laws of thermodynamics. Here is a table of
analogies [17]:

Laws of Black Hole Mechanics Thermodynamics

Zeroth law κ is constant T is constant

First law δM = κ
8π δA + ΩδJ + ΦδQ δU = TδS + PδV + · · ·

Second law δA ≥ 0 δS ≥ 0

Third law Impossible to achieve κ = 0 Impossible to achieve T = 0

The analogy is very tempting, in particular, κ ∼ T,A ∼ S is very striking.
Like a thermo-dynamical system, black hole space-times are characterized by
a few parameters. Just as for thermo-dynamical systems at equilibrium, all
memory of the history of attaining the equilibrium is lost, so it is for the
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stationary black holes thanks to the uniqueness theorems. A typical thermo-
dynamical system has a total energy content, U and a volume, V which are
fixed externally. In equilibrium the system exhibits further response parame-
ters such as temperature, T and pressure, P which are uniform through out
the system. In going from one equilibrium state to another one the system
ensures that its entropy, S, has not decreased and of course the energy con-
servation is not violated. It is also important to note that the thermodynamic
quantities T, P, ... are functions only of ‘conjugate’ quantities S, V, .... Black
holes also have parameters, referring to the global space-time, such as M,J,Q
and also ‘response’ parameters, referring to the horizon, such as κ,A,Ω,Φ and
these must also be functions only of the previous set of parameters. This of
course is true for the explicit stationary black hole solutions. A natural and
some what confusing question is: what is the thermodynamic system here -
the entire black hole space-time or only the horizon? If it is the former then
equilibrium situation should correspond to stationary space-times. If it is the
latter it is enough that the geometry of the horizon alone is suitably ‘sta-
tionary’. The latter is physically more appealing while historically black hole
thermodynamics was established using the global definitions of black holes.
Only over the past few years the more local view is being developed using
generalization of stationary black holes called ‘isolated horizons’. For these
also the mechanics-thermodynamics analogy is established [66,67].

However if taken literally one immediately has a problem. If a black hole
has a non-zero temperature, it must radiate. Since the surface gravity is de-
fined for the horizon, we expect the horizon to radiate. But by definition
nothing can come out of a black hole So how can we reconcile these? Here
Hawking made a crucial observation. He noted that so far quantum theory
has been ignored. There are always quantum fluctuations. It is conceivable
then that positive and negative energy particles that pop out of the vacuum
(and usually disappear again) can get separated by the horizon and thus can-
not recombine. The left over particle can be thought of as constituting black
hole radiation. He in fact demonstrated that a black hole indeed radiates with
the radiation having a black body distribution at a temperature given by
kBT = ~κ

2π ! This provides the proportionality factor between surface gravity

and temperature. Consequently, the entropy is identified as S = kB
~
A
4 . How

much is this temperature? Restoring all dimensional constants the expression
is [17]:

T =
~c3

8πGkBM�

(
M�
M

)
0K

= 6× 10−8

(
M�
M

)
(8.9)

Notice that heavier black hole is cooler, so as it radiates it gets hotter and
radiates stronger in a run-away process. A rough estimate of total evapora-
tion time is about 1071(M/M�)3. The end point of evaporation is however
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controversial because the semi-classical method used in computations cannot
be trusted in that regime. This is also the cause of the tension between gen-
eral relativity which allows for black hole horizons and quantum theory which
suggests evaporation thereby raising the possibility of pure quantum state
evolving into a thermal density matrix - the information loss problem.

If the thermodynamic analogy is true, the statistical mechanics cannot be
far behind and one way to ascribe micro-states to black hole horizons is to
look for a quantum theory of gravity. A simple way to see that entropy can be
proportional to the area is to use the Wheeler’s ‘it from bit’ picture. Divide up
the area in small area elements of size about the Planck area (`2p ∼ 10−66cm2).
The number of such cells is n ∼ A/(`2p). Assume there is spin-like variable in
each cell that can exist in two states. The total number of possible such states
on the horizon is then 2n. So its logarithm, which is just the entropy, is clearly
proportional to the area. Of course same calculation can be done for volume
as well to get entropy proportional to volume. What the picture shows is that
the entropy being proportional to the area is suggestive of associating finitely
many states to an elementary area of a black hole.

There are very many ways in which one obtains the Bekenstein-Hawking
entropy formula. Needless to say, it requires making theories about quan-
tum states of a black hole (horizon). Consequently everybody attempting any
theory of quantum gravity wants to verify the formula. Indeed in the non-
perturbative quantum geometry approach the Bekenstein-Hawking formula
has been derived using the ‘isolated horizon’ framework (modulo the value of
the ‘Barbero-Immirzi’ parameter being chosen for one black hole), for the so-
called non-rotating horizons. String theorists too have reproduced the formula
although only for black holes near extremality.

Recall that extremal solutions are those which have r+ = r− which implies
that the surface gravity vanishes. For more general black holes this is taken
to be the definition of extremality. For un-charged, rotating extremal black
holes M = |a| while for charged, non-rotating ones M = |Q|. Since vanishing
surface gravity corresponds to vanishing temperature one looks for the third
law analogy. It has been shown that the version of third law, which asserts that
it is impossible to reach zero temperature in finitely many steps, is verified for
the black holes - it is impossible to push a black hole to extremality (say by
throwing suitably charged particles) in finitely many steps. There is however
another version of the third law that asserts that the entropy vanishes as
temperature vanishes. This version is not valid for black holes since extremal
black holes have zero temperature but finite area.

Black holes which began as peculiar solutions of Einstein equations have
revealed an arena where general relativity, statistical mechanics and quantum
theory are all called in for an understanding.
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8.4 Quasi-Local Definitions of Horizons

The various results on black hole mechanics/thermodynamics used event
horizon as the definition of the black hole. This is unsatisfactory for two
reasons. The event horizon definition refers to infinity and also needs the
entire space-time to be known to identify it. At any spatial slice, an observer
would not know if he/she is being engulfed by a surface which will be part of
the event horizon! It is much more desirable, both from a conceptual and a
practical angle e.g. in a numerical evolution, to characterize a black hole in a
more local manner. Indeed such a characterization of black holes is available.
For the stationary black holes it is captured by the notion of an isolated
horizon [66,67] while for a evolving black hole, it is captured by the notion of a
dynamical horizon [68,69]. Both these notions arose from the notion of trapping
horizons [70] which are generalizations of the apparent horizon [17, 18]. Let
us get a glimpse of these and note important results.

We have already defined trapped surfaces (6.17) as two-dimensional, space-
like submanifolds such that the expansions of both the orthogonally in-going
and out-going null geodesics is negative. These played a role in establishing
singularity theorems (6.29, 6.30). These surfaces are also related to the event
horizon in a strongly asymptotically predictable space-times with Rµνk

µkν ≥
0 ∀ k · k = 0, namely, any marginally trapped surface is contained in the
black hole region B. This property also extends to certain three-dimensional
space-like submanifolds [17].

Let Σ be a any asymptotically flat Cauchy surface for Ṽ - the region of
the unphysical space-time (M̃, g̃) which is globally hyperbolic - containing the
spatial infinity and being space-like there. Let C be a closed, three-dimensional
submanifold of Σ∩M , with its two-dimensional boundary Ċ. If the out-going
null geodesics orthogonal to Ċ have their expansion non-negative, then Ċ
is called outer marginally trapped surface (θ ≤ 0) and C is called a trapped
region. Now not only the boundary Ċ but the whole three-dimensional region
C is contained in the black hole region, B.

A given Cauchy slice Σ may have several trapped regions. Let T be the
closure of the union of all trapped regions of the Cauchy slice. This is called
the total trapped region of Σ. Its (topological) boundary, A := Ṫ is called an
apparent horizon on Σ. If it so happens that T is a manifold with boundary,
then the apparent horizon is an outer, marginally trapped surface with θ = 0.
A is always contained in the event horizon or coincides with it.

In these notions, although event horizon does not play a role in the defini-
tion, there is still a weaker reference to the infinity through the asymptotically
flat Cauchy slice containing i0. It is tied to such a slice. In fact it is possible
to have Cauchy slices which do not have any apparent horizon [71]! Hence
we cannot quite use apparent horizon as an alternative characterization of a
black hole.
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The next effort at a local characterization are the trapping horizons of
Hayward [70]. For a trapped surface S, expansions θ± of both the orthogo-
nally emanating null geodesics are negative. Marginally trapped surfaces allow
zero expansion as well. We have thus the possibilities of θ± ≤ 0 in different
combinations. Furthermore, if we move off the null hypersurfaces ∆± gener-
ated by the in-going/out-going null geodesics, the expansions θ∓ may become
positive or negative. These possibilities lead to future/past and outer/inner
trapping horizons.

One begins with a Penrose’s characterization of a trapped surface as one
for which the product θ+θ− > 0. If both are positive, it is called a past trapped
and if both are negative, it is called future trapped which are associated with
white/black holes respectively. Collect all points in the space-time through
which at least one trapped surface passes. A connected component of this set
constitutes an inextendible trapped region. Its boundary is called a trapping
boundary - not yet a horizon. Note that there is no reference to any asymptotic
structures and we also do not know which is ‘out-going’ or ‘in-coming’. Let `
and n denote the two null congruences emanating orthogonally from a trapped
surface with θ+ := θ` and θ− := θn

3.
To define a horizon, consider marginally trapped surfaces with θ` = 0 (say).

Let H be a three-dimensional submanifold foliated by marginally trapped
surfaces with the further property that θn|H 6= 0 and the Lie derivative Lnθ` 6=
0. Its closure H̄ is called a Trapping Horizon. It is future trapping horizon if
θn < 0 and past if θn > 0 while it is ‘outer’ if Lnθ` < 0 and ‘inner’ if the Lie
derivative is positive. The future outer trapping horizons provide a quasi-local
definition of black holes.

Hayward proves a number of results for the trapping horizons [70]. These
are analogous to the theorems for event horizons and we list them below.

The notation and the definitions introduced are based on a 2 + 2 decompo-
sition adapted to double null foliations. We recall the bare minimum notation
to state the results, further details are available in [70,72].

The the space-time is taken to be of the form S×R×R, locally coordinatised
by (u, v, xa), a = 1, 2. The local coordinates u, v can be reparametrized and the
physical quantities are invariant under these reparametrizations. The metric
is parametrized in terms a non-singular, Euclidean signature metric on S, hab,
two ‘shift vectors’ r, s (two-dimensional) and three ‘lapse functions’, ef , a, c
accounting for 10 independent metric coefficients. The null foliations require
a = c = 0. The null normals are denoted as `, n and they are normalized as
` · n = −ef . Let L+ := Le−f `, L− := Le−fn, D be the covariant derivative
compatible with hab and µ the corresponding area 2-form on S. Denote,

θ± =
1

2
habL±hab , σ±ab := h c

a h
d
b L±hcd − habθ± (8.10)

ωa :=
1

2
efhab[L−(e−f `)]b , ν± := L±f (8.11)

3The N± of [70] correspond to the `, n here.
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For the outer trapping horizons, define the trapping gravity (analogue of the
surface gravity) as,

κ :=
1

2

√
−efLnθ` (8.12)

This is an invariant under the null foliation reparametrizations and is positive
(can be allowed to be zero to include degenerate horizons).

For compact trapping horizon, S, define,

m :=
√
A/16π ‘irreducible energy’; (8.13)

a := m

√
1

4π

∫
S

(ω −Df)a(ω −Df)a ‘angular energy’; (8.14)

q := m

√
2

∫
S

µ ef ρ ‘matter energy’. (8.15)

Here is the list of results [70].

1. Topology: Outer, marginal surfaces are either spherical (compact) or
planar (non-compact). This uses the dominant energy condition and a
property of being ‘well-adjusted’ (so that certain integrals exist) when
the surface is non-compact. The topology of inner, marginal surfaces has
no such restrictions.

2. Signature: Trapping horizons are null only if it is instantaneously sta-
tionary i.e. L`θ`|H = 0 otherwise the outer trapping horizons are spatial
(induced metric is Euclidean) while the inner ones are Lorentzian.

3. Second law: The area form of future, outer trapping horizons is gener-
ically non-decreasing and is constant only if the Horizon is null. This
uses the null energy condition. For compact topology, the same holds
for the area of the horizon.

4. Zeroth law: The trapping gravity has an upper bound for a compact,
outer trapping horizons. This upper bound is attained iff the trapping
gravity is constant over the horizon. Specifically,∫

S

µκ ≤ 4π
√
m2 − a2 − q2 (8.16)

5. First law: The change in the area form along a vector z which is tangent
to the horizon and normal to S (normalized if spatial) is determined by
the trapping gravity and an energy flux:

κLzµ|H = 8πΦmatter = −µefθn

√
πφ+ +

1

32
(σ+)ab(σ+)ab

∣∣∣∣∣
H

.

(8.17)



Black Holes 153

Here φ+ is the `` component of the matter stress tensor and the ‘shear’ σ+
ab

is defined in eq. (8.10).

A related but different quasi-local formulation of black hole thermodynam-
ics is given by Ashtekar et al. in terms of the dynamical horizon [68, 69] and
its stationary counterpart, the isolated horizon [66, 67] which is used in the
computation of entropy from the quantum micro-states [73].

Dynamical horizons are space-time concepts too as are the trapping hori-
zons. They are stipulated to be space-like and there is no condition the vari-
ation of θ` off the horizon i.e. on Lnθ` (though θn < 0 holds). The definition
is thus tied to only quantities intrinsic to the dynamical horizon. This also
suffices to capture an evolving horizon with corresponding laws of mechanics
analogous to the thermodynamic ones. Below we summarize basic definitions
and results from [68,69].

We begin with the definition of a dynamical horizon. A Dynamical Hori-
zon, H, is a smooth, three-dimensional, space-like submanifold which can be
foliated by close 2-manifolds such that on each leaf S, expansion of one of
the null normals, lµ is zero while that of the other null normal is negative:
θ` = 0, θn < 0. The foliation satisfying these conditions is called a preferred
foliation and its leaves are called cross-sections of the horizon.

The unit time-like normal of H is denoted by τ̂µ while the unit space-like
normal to a cross-section which is tangent to H is denoted by r̂µ. The two null
normals to cross-sections are chosen to be ` := τ̂+r̂ and n := τ̂−r̂ so that `·n =
−2. The induced metric on H is given by qµν := gµν + τ̂µτ̂ν while its extrinsic
curvature is given by Kµν := q ρµ q

σ
ν ∇ρτ̂σ. The metric compatible covariant

derivative on H, and its curvature are denoted by D and Rµν etc. Likewise,
using r̂µ, within H we can induce a metric on leaves with the corresponding
compatible covariant derivative and curvature as well as extrinsic curvatures
of the leaves: q̃µν := qµν − r̂µr̂ν , K̃µν := q̃ ρµ q̃

σ
ν Dρr̂σ etc.

From the very definition of the dynamical horizon and the unit vector r̂
normal to the cross-sections, it follows that K̃ = q̃µνDµr̂ν = 1

2 q̃
µν∇µ(`ν −

nν) = − 1
2θn > 0 i.e. the area of cross-section increases monotonically in the

direction of r̂. On physical grounds we expect this increase to be correlated
with the net energy flux entering the horizon. This is the fundamental relation
that governs the details of the preferred foliation. A dynamical horizon being
space-like, we can use it to do a 3 + 1 decomposition of the Einstein equation.
The vector and the scalar constraints, being preserved along any evolution,
provides the necessary relations. The constraint equations are:

16πGT̄µν τ̂
µτ̂ν = R+K2 −KµνKµν

8πGqαµ T̄
µν τ̂ν = Dβ(Kαβ −Kqαβ)

T̄µν := Tµν −
1

8πG
Λgµν (8.18)

The matter energy-momentum current is given by T̄µν τ̂
ν and to define its flux

across the horizon, we need to choose a vector field, ξµ = Nτ̂µ + Nµ for a
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suitable choice of lapse and shift. This should be transversal to the horizon
which is space-like and therefore ξµ should be time-like or null and it should
also be have a component along r̂µ to cut across the cross-sections. A natural
choice is ξµN = N`µ which corresponds to the choice of shift vector Nµ = Nr̂µ.

Consider a portion ∆H of H, which is bounded by two cross-sections S1, S2

(which are marginally trapped surfaces). The matter-energy flux across this
portion is given by,

Fmatter(ξN ) :=

∫
∆H

d3v
√
q T̄µν τ̂

µξνN (8.19)

The right-hand side is expressed in terms of linear combinations of the
constraints multiplied by the lapse and simplified further using a 2 + 1 de-
composition within ∆H. On ∆H introduce an areal radial coordinate R along
r̂ so that each cross-section with coordinate R, has an area 4πR2 and two
coordinates χa along the cross-sections. The Jacobian factor is absorbed by
choosing the lapse N := NR such that NR

√
qd3v = dR

√
q̃d2χ. Putting all

these together, one obtains the area balance equation,

1

16πG
(R2 −R1)I(S) = Fmatter(ξNR) + Fgrav(ξNR) where, (8.20)

Fgrav(ξNR) :=
1

16πG

∫
∆H

d3v
√
qNR

(
σabσab + 2ζaζa

)
and, σab := q̃ ca q̃

d
b ∇c`d , ζa := q̃abr̂ · ∇`b, (8.21)

and I(S) is proportional to the Euler invariant of the cross-section (8π for
spherical topology). Since the expansion θ` = 0, the change in the horizon
radius is also the change in the Hawking Mass of the horizon cross-section.

The balance equation implies that if the stress tensor satisfies dominant
energy condition so that T · τ̂ · ` is non-negative and the cosmological constant
is non-negative, then the right-hand side is non-negative and therefore the
cross-sections is spherical or toroidal. If Λ < 0, then any topology is possible.

The quantities σ2 and ζ2 are interpreted as contributions of gravitational
waves with the ζ2 being non-zero when the angular momentum is non-zero.
It is absent if the dynamical horizon becomes null (or has null portion).

Just as matter flux carries energy across the horizon, so also it carries
angular momentum and there is a corresponding balance equation derived
from the same constraint equations.

Choose a vector field, φa, on H such that it is tangential to the cross-
sections. Then dotting with the vector constraint and integrating over ∆H,
one obtains the angular momentum balance equation,

JS2(φ)− JS1(φ) = Jmatter(φ) + Jgravity(φ) where, (8.22)

JS(φ) := − 1

8πG

∫
S

Kabφ
ar̂b
√
q̃d2χ ,

Jmatter(φ) := −
∫

∆H

Tabτ̂
aφb
√
qd3v and,
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Jgravity(φ) := − 1

16πG

∫
∆H

(
Kab −Kqab

)
Lφqab

√
qd3v .

The angular momentum JS(φ) is defined here for an arbitrary φ tangential
to a cross-section and is not required to be a rotational isometry. Hence it is
more appropriately called generalized angular momentum. The usual angu-
lar momentum at infinity is defined using the Arnowitt-Deser-Misner (ADM)
framework. We could imagine choosing a Cauchy slice Σ extending to spatial
infinity and having an inner boundary at a chosen cross-section S and choosing
a new vector field φ̄a on Σ which matches with the φa on S and becoming an
axial isometry at infinity. Then the angular momentum at S will have similar
expression as above with Kab replaced by K̄ab which is the extrinsic curvature
of Σ. The definition thus depends on the slicing and is ambiguous. However,
if φa is divergence free, then the angular momentum definition is independent
of the slice Σ. It is a result that the ζ2 contribution to energy vanishes iff the
angular momentum of S vanishes for every, divergence-free φa on S. Restrict
now for spherical topology.

We have defined the energy flux and angular momentum flux for the choices
of ξa, φa, Na, the areal radial coordinate and the corresponding choice of the
lapse N . Furthermore, noting that for R2 = R1 − δR, the left-hand side
of the area balance equation (8.20) is δA

8πG
1

2R , we define an effective surface
gravity, κR := 2R−1 and identify the right-hand side of (8.20) as the change
in the ξNR -energy of the horizon, δE(ξNR). Now generalizing from ξNR to a
general time evolution vector field ta := NR`

a − Ω(R)φa, repeating the steps
leading to the area balance equation and using the corresponding identification
of effective surface gravity and change in the energy, one gets a combined
‘balance’ equation,

R2 −R1

2G
+ JS2

(Ωφ)− JS1
(Ωφ)−

∫ Ω2

Ω1

dΩJS(φ)

= Fmatter(t) + Fgrav(t) + Jgrav(Ωφ) =: ∆E(t) (8.23)

For infinitesimal δR = R2 −R1, this takes the form,

κR
8πG

δA+ ΩδJ(φ) = δE(t) (8.24)

This is the first law of dynamical horizon mechanics.
The above expressions have been given for the particular choice of areal

radial coordinate, but it can be generalized to other coordinates r. There is
a first law expression for every choice of ta, φa vector fields and the function
Ω(r).

For further details and discussion of existence and uniqueness issues for
dynamical horizons, please see [68,69].

As mentioned before, there is a separate definition of isolated horizon to
correspond to the equilibrium states of horizons and can be thought of as
a generalization of Killing horizons. These are supposed to be solutions of
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Einstein equation with stress tensor satisfying the dominant energy condition.
Unlike the dynamical horizons, isolated horizons are null hypersurfaces ∆ with
a null normal `. There are three progressively restrictive definitions which are
briefly summarized below.

• Non-Expanding Horizon, ∆ (NEH): requiring only that θ` = 0 and no
condition on θn. One of its main implications is that the L`qab = 0
where qab is the induced degenerate metric on ∆. The intrinsic ge-
ometry is ‘time’ (along `) independent. Any constant scaling of ` is
also a null normal and all such null normals constitute an equivalence
class [`]. There can be several equivalence classes on a given NEH, ∆.
The null normal congruence is expansion, shear and twist free. This
in turn implies that there exist a unique, 1-form ωa on ∆ defined by,
V · ∇`a = (V bωb)`

a , ∀ V a tangent to ∆. For each null normal, one
defines the surface gravity, κ` := `bωb. It follows that the 1-form ωa
satisfies dω = (Ψ2 − Ψ̄2)ε(2) where Ψ2 = Cµναβ`

µmνm̄αnβ is one of the
Penrose-Newman components of the Weyl tensor C which turns out to
be independent of the null tetrad (`, n,m, m̄) on a NEH and ε(2) is the
natural area 2-form on ∆ satisfying L`ε(2) = 0 = ` · ε(2).

An NEH is said to be non-rotating if imaginary part of Ψ2 vanishes.

• Weakly Isolated Horizon, (∆, [`]) (WIH): requires that a qab compatible
connection also satisfies (L`Da − DaL`)`b = 0 ∀ ` ∈ [`]. Here D is the
unique, torsion-free, metric compatible derivative on ∆ induced from ∇
on the space-time. Thus, only some components of the induced connec-
tion are required to be time independent. It follows that L`ωa = 0. Thus
follows the zeroth law of mechanics for all WIH.

A WIH with vanishing surface gravity is said to be extremal.

• Isolated Horizon, (∆, [`],D) (IH): requires further that all components
of the induced connection be time independent i.e. in the definition of
WIH, replace `b by an arbitrary V b tangential to ∆. Every WIH is not
necessarily an IH and generically, if a WIH admits IH structure, it is
unique.

Symmetries of a IH are determined by isometries of the induced metric
on cross-sections of ∆. If it has rotational isometry i.e. there exist a
Killing vector φa on ∆, the angular momentum of a WIH is defined
to be J∆(φ) := − 1

8π

∫
φaωa ε

(2). If there are matter gauge fields, there
are further contributions to the horizon angular momentum. The above
expression may thus be termed purely geometrical (or ‘bare’) angular
momentum of ∆.

Consider now a definition for mass of an IH. Every constant linear com-
bination of ` and φ is an isometry of ∆ and we may associate a hori-
zon energy with such a Killing vector, ta(B,Ω) := B`a − Ωφa, where
B and Ω are constants. This is explored conveniently in the covariant
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phase space formalism i.e. employing the (pre-)symplectic structure on
the space of solutions of the field equations. Every vector field on the
space-time manifold, induces a vector field on the covariant phase space
and this is required to be a Hamiltonian vector field in order to be able
to define a function on the phase space. Not every vector field ta(B,Ω)
induces a Hamiltonian vector field on the phase space. Explicit compu-
tation shows that the surface gravity, κ(B, `) := B`aωa, and the angular
velocity parameter Ω, must be functions of the two quantities defined
on ∆, namely, the horizon area a∆ and the horizon angular momentum
J∆, satisfying,

∂κ(B, `)

∂J∆
= 8πG

∂Ω

∂a∆

This then implies that κ(B,`)
8πG δa∆ + ΩδJ∆ = δE∆(B,Ω, `) which is the

statement of the first law of mechanics of (weakly) Isolated Horizon.

As in the case of the dynamical horizons, there are infinitely many first
laws. Thanks to the uniqueness theorems for (electro-)vacuum black
holes, we have a unique dependence of the surface gravity on area and
angular momentum, namely that obtained in the Kerr–Newman solu-
tion. Choosing κ(a∆, J∆) to be this function, the above integrability
conditions can be solved to give the angular velocity and the E∆ for the
isolated horizons.

Finally, imagine that a dynamical horizon ‘relaxes’ to an isolated horizon
so that H and ∆ are ‘joined’ at some boundary. It turns out that the two
notions of energy and angular momentum defined on H and ∆ agree at the
boundary.

This completes our basic summary of the quasi-local generalizations of
black holes. There are many other interesting aspects of these and several
delicate points which should be seen in the references [66–70].





Chapter 9

Cosmological Space-Times

In section 5.2, we looked at the physically well motivated model space-time
for the universe. The metric of this space-time has only one function of time,
the scale factor and its evolution reveals the first instance of a space-time
singularity. Is this an artifact of the presumed very high degree of symmetry?
Apart from the fact that the universe is certainly neither exactly homoge-
neous nor isotropic, the added interest in more general ‘cosmological space-
times’ is for reasons of the issue of singularity. An obvious strategy would be
to loosen the degree of symmetry required of the space-time. Thus as a first
step, we give up isotropy, but retain homogeneity to get the class of homo-
geneous models. The next steps are to introduce inhomogeneities in just one
direction to get for instance, the class of Gowdy models and finally to drop
homogeneity completely. These mathematically motivated models also serve
as testing ground for quantum versions of general relativity. In this chapter,
we will discuss the class of homogeneous space-times and briefly describe the
Belinskii-Khalatnikov-Lifshitz (BKL) conjecture for approach to a singularity.

The four-dimensional, spatially homogeneous space-times have all been
classified completely.

Let us recall from the section 5.2 that a space-time is spatially homoge-
neous if (a) it can be foliated by a 1-parameter family of space-like hypersur-
faces, Σt and (b) possessing a (Lie) group of isometries such that for each t
and any two points p, q ∈ Σt there exist an isometry of the space-time metric
which maps p to q. The isometry group G is then said to act transitively on
each of the Σt. If the group element connecting p, q is unique, the group ac-
tion is said to be simply transitive (otherwise multiply transitive). Spatially
homogeneous space-times can be further divided into two types depending
upon whether or not there is any subgroup of isometries which have a simply
transitive action.

A spatially homogeneous space-time is be of a Bianchi type if the group of
isometries contains a subgroup (possibly itself), G∗, which acts simply tran-
sitively on Σt. If there is no such subgroup, then it is of the Kantowski–
Sachs type. It turns out that except for the special case of Σ ∼ S2 × R and
G = SO(3)×R, in all other cases one has a Bianchi type space-time. Interior of
the Schwarzschild solution is an example of Kantowski–Sachs type space-time.

Transitive action implies that there must be at least three independent
Killing vectors at each point of Σt since Σt is three-dimensional. But there
could be additional Killing vectors which vanish at a point. These Killing
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vectors generate the isotropy (or stability) subgroup, H ⊂ G. Since H will
induce a transformation on the tangent spaces to the spatial slices, it must be
a subgroup of SO(3) and thus dimension of G can be at the most 6 and at
least 3 since the dimension of G∗ is always 3. All three-dimensional Lie groups
have been classified by Bianchi into 9 types. The classification goes along the
following lines [74].

A Lie algebra (or the connected component of a Lie group) is character-
ized by structure constants CIJK with respect to a basis XI , satisfying the
antisymmetry and Jacobi identity, namely,

[XJ , XK ] = CIJKXI ; CIJK = −CIKJ ; (9.1)

0 =
∑

(IJK)

CNILC
L
JK , I, J,K = 1, 2, 3.

Using the availability of the Levi–Civita symbols, EIJK , EIJK , E123 = 1 =
E123, we can write the structure constants as,

CIJK = EJKLCLI , CIJ := M IJ + EIJKAK (9.2)

Thus, the 9 structure constants are traded for 6 M IJ (symmetric in IJ) and
the 3 AK . This has used only antisymmetry. The Jacobi identity implies,
M IJAJ = 0.

Under a change of basis of the Lie algebra, XI → S J
I XJ , the structure

constants too transform linearly. Using these, the symmetric M IJ can be di-
agonalized by orthogonal transformations and the non-zero eigenvalues can
be further scaled to ±1 i.e. we can arrange, M IJ = nIδIJ . The condition
M IJAJ = 0 now implies that either AI = 0 (Class A) or AI 6= 0 (class B) in
which case M IJ has a zero eigenvalue and we may take the non-zero eigen-
vector AI to be along the ‘1st’ axis, i.e. AI = aδI,1 and n1 = 0. This leads
to,

[XJ , XK ] = nIEIJKXI +XJAK −XKAJ .

In the class A, there are precisely 6 possibilities organized by the rank
of the matrix M IJ (= 0, 1, 2, 3) and signature (++,+−) for rank 2 and
(+ + +,+ + −) for the rank 3. The eigenvalues of M IJ can be taken to be
nI = ±1, 0.

In the class B, the rank of M IJ cannot be 3 and the possibilities are
restricted to the ranks 0, 1, 2 and signatures (++,+−) for rank 2. If the rank
of M is 0, all three eigenvalues are zero and scaling X1, we can arrange a = 1.
For rank 1, taking n3 to be the non-zero eigenvalue, scaling X1, X3 ensures
a = 1. For rank 2 however, (n2 = ±1, n3 = ±1), no scaling can preserve n2, n3

and set a = 1 (though a = 1 is of course possible).

Here is a table of the classification of Riemannian, homogeneous 3-
geometries [74]:
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Type a n1 n2 n3

Class A

I 0 0 0 0

II 0 1 0 0

VII0 0 1 1 0

VI0 0 1 −1 0

IX 0 1 1 1

VIII 0 1 1 −1

Class B

V 1 0 0 0

IV 1 0 0 1

VIIa a 0 1 1
III 1 0 1 −1

VIa a 0 1 −1

When the stability subgroup H = SO(3), one has isotropy in addition to
homogeneity i.e. Robertson-Walker space-times. We know that these come in
three varieties depending on the constant spatial curvature. The spatially flat
case is of type Bianchi I while positively curved case is of type Bianchi IX.
The negatively curved case is in class B, type V.

The metrics of the general Bianchi type space-times have at the most
6 degrees of freedom thus constituting what are known as mini-superspace
models. Just as for the FLRW case, we could fix the spatial metric modulo a
scale factor which depends on time, the spatial metrics of these general models
can be put in the form:

ds2
3 = gIJe

I
i e
J
j dx

idxj , eI := eIi dx
i satisfy deI = 1

2C
I
JKe

J ∧ eK . (9.3)

The eI, I = 1, 2, 3 are the so called Maurer-Cartan 1-forms on the group
manifold G∗ and gij are constants on the group manifold which is identified
with one of the hypersurfaces of homogeneity, Σ0, say. The Maurer-Cartan
forms are the unique, Lie algebra valued, 1-forms invariant under the left
action of the group on itself.

A good deal of work on these classes of space-times with or without matter
has been done. What is important for us with regards to the singularity issue
are the two models: Bianchi-I and Bianchi-IX.

To proceed further, we need to introduce suitable coordinates on the space-
time manifold and choose the corresponding metric coefficients. This can be
done as follows. At any point p ∈ Σ0, choose a normal and consider the
geodesic emanating from it. It will intersect the other surfaces Σt’s only once
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due to the foliation property of the Σ’s. Choosing a basis in the tangent space
of p, parallel transport it along the geodesic. By construction, the transported
bases will remain orthogonal in each of the Σt. These in turn can be Lie
transported on each of the hypersurfaces using the isometries to construct the
corresponding spatial metric in the same form as above. The only difference
would be that the gij would now depend on the label t of the hypersurface. We
can now change from the foliation label t to the proper time τ of the geodesic
of the geodesic. This then implies that the space-time metric can be taken in
the form,

∆s2 = −∆τ2 + gIJ(τ)eIi e
J
j ∆xi∆xj . (9.4)

The time τ is called the synchronous time. This is the form from which we
proceed.

Note that it is always possible to diagonalize gIJ(τ) at one particular τ ,
but it cannot be assured that the metric can be taken to be diagonal for all
τ . For the vacuum case, however, it is consistent to have a diagonal metric for
all times.

Bianch-I: The structure constants are zero and the Maurer-Cartan
equations allow us to choose dxI themselves as the invariant 1-
forms. By taking linear combinations we can diagonalize the metric to
gIJ(τ) =diag(a1(τ), a2(τ), a3(τ)). It is a simple calculation to get the Ricci
tensor1. The only non-vanishing expressions are:

Γτii = aiȧi , Γiτi =
ȧi
ai

for i = 1, 2, 3 ;

Rττ = −
3∑
i=1

äi
ai

, Rii = −ȧ2
i + aiäi + aiȧi

∑
j

ȧj
aj

 . (9.5)

These are easy to solve. The trivial solution, namely, ȧi = 0 ∀ i, is just the
Minkowski metric. The evolving solutions show a singular behaviour for the
determinant of the spatial metric, namely, it must vanish for some value of
τ and we choose τ such that it happens at τ = 0. The solution for the three
scale factors is then,

ai(τ) = âiτ
pi ,

∑
i

pi = 1 =
∑
i

p2
i . (9.6)

The pi’s are constants. The Rii = 0 equations give the solution for ai(τ) and∑
i pi = 1 while the Rττ = 0 equation gives the further constraint

∑
i p

2
i = 1.

This is the Kasner solution already obtained in 1925 [75]. The parameter space
of pi’s is one-dimensional and we have a one parameter family of evolving
space-times.

1It is possible to derive the general form of the Einstein tensor for the homogeneous
metrics and is available in [17, 74]. For our purposes, the direct computations can be done
more easily.
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There is one special case where only one pi equals 1 and others are
zero which implies expansion along the corresponding direction, say, the x-
direction. It can be seen as a Rindler wedge, by making the coordinate change:
x′ = τsinh(x) , τ ′ = τcosh(x). This transforms −∆τ2 +τ2∆x2 +∆y2 +∆z2 →
−∆τ ′2 + ∆x′2 + ∆y2 + ∆z2. In the (τ ′, x′) plane, constant τ curves are hy-
perbolae with τ = 0 degenerating into the pair of 45◦ lines. The space-time
is manifestly Riemann flat and the vanishing of a1 at τ = 0, is a coordinate
singularity. In all other cases, the space-time is non-flat and the singularity
due to vanishing determinant as τ → 0 is a physical singularity.

It can be seen that we must have one exponent to be negative and the other
two be positive. Therefore while the physical volume of a cell - (a1a2a3)× the
comoving volume - vanishes monotonically as τ → 0, the shape distorts with
two directions contracting while the remaining one expanding, as τ decreases.

Bianchi IX: This is the most complex of the Bianchi types and an exact so-
lution is not known. Taking gIJ(τ) = diag(a2, b2, c2)(τ), the vacuum Einstein
equation leads to [74]:

(abc)
d

dτ

[
1

a
(abc)

da

dτ

]
=

1

2

(
(b2 − c2)2 − a4

)
and cyclic (9.7)

bc
d2a

dτ2
+ cyclic = 0 (9.8)

It is convenient to choose a new time parameter η defined through dτ :=
(abc)dη and also introduce a := eα etc. The equations take the form (′ denotes
d
dη ),

2α′′i = (a2
j − a2

k)2 − a4
i ,

∑
i

α′′i = 2
∑
i<j

α′iα
′
j . (9.9)

Notice that if the right-hand sides are zero we get back to the Kasner
case (η ∼ ln τ with equality equivalent to

∑
i pi = 1.). This suggests that

if the terms on the right-hand sides become close to zero, we can expect
approximate Kasner behaviour. However, the right-hand sides of all three
equations cannot remain close to zero, since in the backward evolution (η
decreasing), two scale factors decrease while one increases. This results in
different scale factors increasing and decreasing taking turns. Thus the Kasner
pattern of two contracting directions and one expanding one, holds for some
duration; the directions get permuted and then the pattern continues again.
The rules of following the shifts of Kasner epoch are known and are discussed
in detail in [74]. In all of these shifts, the volume of the universe proportional
to the product a1a2a3, keeps decreasing monotonically as η decreases.

Misner [76] gave a convenient picture of understanding this oscillating
behaviour in the approach to singularity in terms of a dynamics of a point
moving in a two-dimensional anisotropy plane. Introduce the parametrization:

α1 := −Ω + β+ +
√

3β−, α2 := −Ω + β+ −
√

3β−, α3 := −Ω− 2β+. (9.10)
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Observe that the volume ∼ a1a2a3 = e−3Ω and the singularity (vanishing
volume) is approached as Ω→ +∞.

Substitution in (9.9) and eliminating
∑
i α
′′
i we get,∑

i

α′i = −3Ω′ ,
∑
i

α′2i = 3Ω′2 + 6β′2+ + 6β′2−

(
∑
i

α′)2 −
∑
i

α′2i =
1

2

(∑
i

a4
i − 2(a1a2a3)2

∑
i

a−2
i

)
(9.11)

Ω′2 − β′2+ − β′2− =
e−4Ω

12
V (β+, β−) where,

V (β+, β−) := e−8β+ − 4e−2β+cosh(2
√

3β−) +

2e4β+(cosh(4
√

3β−)− 1) (9.12)

Dividing by Ω′2 we can write the last equation in terms of variation of the
anisotropy parameters β± with the volume Ω as,

1−
(
dβ+

dΩ

)2

−
(
dβ−
dΩ

)2

=

(
e−4Ω

12Ω′2

)
V (β+, β−). (9.13)

From the first of the equation (9.9), we also have,

Ω′′ = − 1

6
e−4ΩV (β+, β−) (9.14)

The equations have the Ω′. We can eliminate it by introducing a new vari-
able, Λ(Ω) := Ω′2. This gives d ln Λ

dΩ = 2 Ω′′

Ω′2 . Eliminating the double derivative
of Ω, we write the Ω−evolution system as,

1−
(
dβ+

dΩ

)2

−
(
dβ−
dΩ

)2

=

(
e−4Ω

12Λ

)
V (β+, β−),

d ln Λ

dΩ
= −

(
e−4Ω

3Λ

)
V (β+, β−). (9.15)

The potential is invariant under a rotation by 2π/3 in the anisotropy plane
and, as the β+ → −∞ behaviour shows, it has exponentially rising ‘walls’.
The height of a wall at a given location in the anisotropy plane, decreases
as volume diminishes. Thus the walls can be seen as moving outward. The
Bianchi-IX evolution can now be qualitatively understood as the bouncing
of the system point (β+, β−)(Ω) against the receding potential walls. The
bouncing continues ad-infinitum since the speed of the system point is larger
than the wall speed [76]. Away from the walls the potential can be neglected
and the system point follows the Kasner behaviour. Thanks to the shuffling
of Kasner epoch interspersed with the reflections, this behaviour has been
termed the ‘mixmaster’ behaviour.
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This feature of the approach to the singularity revealed by the vacuum
Bianchi-IX model is expected to retain its qualitative behaviour even in the
presence of matter as argued in [74]. In general the matter would add non-
diagonal pieces of the metric as well and close to the singularity, this results
in the changes in the directions of the axes of the scale factors. This is in
addition to changes in Kasner epochs relative to a fixed set of axes.

These studies revealed that apart from a power law approach to the sin-
gularity as seen in the Kasner solution (scale factors behaving as power of the
synchronous time τ), there is another possibility where no power law approach
is possible. The asymptotic behaviour of the scale factors can be oscillatory
and indeed more strongly, chaotic.

Based on these studies, around 1970, Belinski–Khalatnikov–Lifshitz (BKL)
[77–79] analysed the vacuum Einstein equation near a presumed space-like

singularity. The question posed was: Is there a general solution of the equation
which is singular? Here singularity was understood as diverging curvature in-
variants and/or matter invariants (energy density etc.) and not as any geodesic
incompleteness. By general solution they meant that the solution characteris-
ing the behaviour has four arbitrary functions on a spatial slice2.

The asymptotic analysis was carried out with the choice of the synchronous
time, with an ansatz of the form,

gIJ(τ, x) = a2lI lj + b2mImJ + c2nInJ

with a2 = τ2p1(x) , b2 = τ2p2(x) , c2 = τ2p3(x),

and
∑
i

pi(x) = 1,
∑
i

p2
i (x) = 1. (9.16)

The directions specified by lI ,mI , nI are space dependent too. The solution
of the above form is analysed in the limit τ → 0 as an expansion in powers
of τ . This ansatz has 10 unknown functions of the space coordinates: the
three components of each of l,m, n vectors and one function in the three pi’s
satisfying 2 equations. The Gaussian form of the space-time metric is preserved
by making 3 purely spatial coordinate transformations and of course there are
3 constraint equations Rτi = 0. This leaves 4 unrestricted functions of spatial
coordinates.

Note that the ansatz contains as a special case the Bianchi-IX metric which
is known to be singular as discussed above, and has the oscillatory approach
to the singularity. The subsequent detailed analysis shows that as τ → 0,
the spatial derivatives may be neglected making the space-time effectively
homogeneous (in a small coordinate patch). The equations themselves then
resemble the Bianchi-IX and therefore exhibit the same oscillatory approach
to the singularity. This forms the basis for the BKL conjecture informally
phrased as:

2The counting is most clearly seen in the Hamiltonian formulation. There are 12 phase
space functions and 4 first class constraints. This leaves 12 - 4 - 4 = 4, freely specifiable
function on the 3-manifold. See chapter 11.
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Near a presumed space-like singularity, approached as τ → 0, the general
inhomogeneous solution becomes fragmented into locally homogeneous patches
each of which evolves independently, in a manner similar to the vacuum
Bianchi-IX space-time.

This remains a conjecture and continues to be investigated. For a review
of numerical approach and status, please see [80] and for a recent critical
discussion within the Hamiltonian framework please see [81,82].

The singularity theorems formulate conditions under which incomplete
causal geodesic(s) must exist but do not give any further details of the nature
of singularity while the BKL approach and conjecture asserts that general
solutions with space-like singularity do exist, have divergent curvature invari-
ants and the approach to singularity is oscillatory. It does not give general
conditions under which singularities must exist.



Chapter 10

Gravitational Waves

We have discussed gravitational waves first as an example of non-stationary
space-time and then as possible source of energy loss form dynamical matter
sources, both in the context of linearized model. Historically, the inherent non-
linear nature of the field equations as well as the huge coordinate freedom,
made it very confusing to reliably assert the ‘reality of gravitational waves’.
An interesting account of the history related to this confusion may be seen
in [83]. In the next section, we will try to gain an appreciation of the issues
and their resolutions.

10.1 Conceptual Issues

One of the early and distinctive prediction of general relativity was the
possible existence of gravitational radiation. The linearized Einstein equation
resembles a wave equation and admits plane wave solutions. Furthermore, the
analysis of the inhomogeneous equation with bounded matter distribution,
reveals that ‘accelerated’ matter sources radiate energy with power related to
the third time derivative of the quadrupole moment of the matter distribu-
tion - the quadrupole formula. While this was given by Einstein already in
1916, several doubts arose. Is the radiative solution of the linearized equa-
tion a genuine prediction of the exact theory or is it a spurious solution with
no corresponding solution of the exact equation to which this is an approx-
imation? Is the ripple character of the solution only an artifact of choice of
coordinates? The measure of energy used is not a tensorial quantity (Einstein
pseudo-tensor), is it then a reliable measure? Since causality is contingent on
the metric and apart from analogy with electromagnetism there is no empiri-
cal guidance, which Green function is appropriate to use in the computation
of the inhomogeneous solution?

The first issue was tackled and an exact solution of the Einstein equation
was given by Einstein and Rosen - now known as the Einstein-Rosen cylin-
drical waves. So the exact equation does have a wave-like solution, however
other issues remained. The ripple character was coordinate dependent (Ed-
dington 1922 - “gravitational waves propagate at the speed of thought”) [83];
the measures of energy-momentum pseudo-tensors vanish for this solution; the
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solution was ‘unstable’ as revealed by motion of test particles. Once again, the
main factors contributing to the issues were the coordinate dependence and
lack of definition of localized gravitational energy.

The Bondi-Feynman bead argument at least settled the issue that gravi-
tational waves are capable of ‘carrying energy’ or at least are capable of doing
work on physical system - beads on a rod, suitably oriented would be rubbed
against the rod thereby generating heat. The efforts to characterize the grav-
itational waves, shifted from the metric to the curvature tensor - essentially
the Weyl curvature since the Ricci is zero for vacuum solutions [84]. Here,
one more point is to be noted. It is not just wave-like solutions ‘propagating’
that one wants, but more specifically one is looking for the characterization of
radiation emitted by bounded sources [85]. Such a physical system of bounded
sources could also have incoming radiation. This is to be excluded in attribut-
ing radiation to specific sources. Sachs attempted to capture this by proposing
a boundary condition for out-going radiation [86] and concluded that this con-
dition is equivalent to the Weyl tensor exhibiting what is subsequently called
the peeling property [87], namely, along any null geodesic with an unbounded
affine parameter, r, the leading o( 1

r ) curvature has Petrov type N, the next
leading has type III, the next has type II, the o(r−4) has type I while the
order r−5 has no relation to the geodesic. This lead to the identification of
radiative field as the o( 1

r ) piece which is given by the Weyl component Ψ4.
The Petrov classification is discussed in section 14.8.

Finally, Bondi and his collaborators [43] proceeded to analyse asymptotic
fields and identify the radiative parts of the asymptotic fields. They intro-
duced a coordinate system (u, r, θ, φ) where u, θ, φ label light rays out-going
from some fiducial point on the axis of symmetry (they assumed axial symme-
try) while r is an affine parameter along the light-like geodesic. This was used
to restrict the metric to four functions of three coordinates. The vacuum equa-
tions were then simplified and analysed in detail. Further imposition of the
‘out-going wave condition’ (expansion in inverse powers of r with coefficients
functions only of u and θ) and use of further coordinate transformations al-
lowed such metrics to be fully determined in terms of a single function c(u, θ).
Considering the physical situation to start from staticity, have some transients
for a finite duration and return again to staticity, they were able to identify a
mass aspect function which coincided with the mass in the static situation and
showed a monotonic decrease when the news function, ∂uc(u, θ) is non-zero.
The entire analysis was at the full non-linear level, however, a linearization was
also shown to reproduce the quadrupole formula. The outcome of this anal-
ysis and its further refinements (e.g. removing axial symmetry assumption
etc.) established that (a) there exists solution of the full non-linear vacuum
equation; (b) it can be interpreted to be associated with a bounded, transient
source; (c) presence of radiation is unambiguously detected by non-zero news
function which also shows mass loss; (d) this mass loss can only be attributed
to energy being carried away via gravitational waves.
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This established that gravitational radiation does exist with all the phys-
ically expected attributes.

How does this help in the detection of gravitational waves? The above
analysis establishes that general relativity does make a physically sustainable
prediction of gravitational waves and puts the quadrupole formula, which
is used for estimation of expected amplitudes of gravitational waves, on a
conceptually reliable footing. The analysis also provides analytical checks on
numerical simulations involving strong field regimes (e.g. merger and ring
down phases), for instance, by computing the news function for correlating
energy loss with back reaction on source motions.

Finally, the observation of orbital decay of the Hulse–Taylor binary pulsar
has established that the decay is fully consistent with the energy radiated
as per the quadrupole formula. This constitutes an evidence for gravitational
radiation and also empirically shows that binary systems, even though only
under gravitational forces, can be a source of gravitational radiation.

10.2 Observational Issues

Unlike the indirect conformation of gravitational waves, which is based
on the loss of energy due to gravitational radiation, the approach for direct
detection of gravitational waves is based on the time varying tidal effects
caused by a passing gravitational wave. Consequently, the primary issues are:
(i) the types of sources together with the characteristic amplitude and time
dependence of their signal and (ii) the choice of test body/detector system and
their sensitivity parameter. The secondary issues involve the identification of
a signal and an estimate of expected detection rate. We will briefly describe
these aspects. For a recent review and an excellent textbook please see [27,28].

Sources: As seen in the section (5.3), any matter distribution which is at
least quadrupolar and has an accelerated motion is a potential source of gen-
eration of gravitational waves. Cataclysmic short duration events such as a
supernova and other gravitational collapse produce a burst signal while long
duration binary systems of compact objects produce periodic signals during
their in-spiral phase. There are many individually sub-detection level sources
which could produce a stochastic background. A cosmic gravitational back-
ground is also expected from the very early universe.

Amplitude and frequency estimates: These are based on the quadrupole for-

mula, hTTij (t) = G
c6

2
r
d2

dt2

∫
source

ρxixj which gives the amplitude at the detector
when the source is at a distance r. Here ρ = T00 is the energy density and we
have restored the factors of G, c. The amplitude hij is dimensionless. There
are three parameters associated with a localized (as distinct from a stochastic
background) source - mass, M , of the source, a length scale, L, associated
with the quadrupole and a time scale, T , characteristic of the time variation.
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Hence on dimensional grounds, we can write for a typical component of the
amplitude,

h ∼ G

c4
ML2T−2

r
∼ 10−44ML2T−2

r

Here r is the distance to the source and we have used the mks units. The M ,
L, T are not always the total mass or the ‘radius’ or a period but are some
fractions of these. Such geometry dependent numerical factors are absorbed
in the M , L, T parameters. For short duration sources such as gravitational
collapse, it is easier to estimate the total energy released E, the frequency of
the gravitational waves, f , the duration over which the source is observed, T .
Then using ḣ ∼ hf and average power ∼ E/T , leads to an estimate of the

amplitude as, h ∼ 1
πrf

√
E
T

√
G
c3 ∼

10−18

πrf

√
E
T in MKS units [28].

The supernovae sources are at distances in the Kpc ∼ 1019m (in our
galaxy) to Mpc (in other galaxies) range. Their estimated event rate is quite
low - roughly once in fifty years or so for a Milky Way type galaxy. The prop-
erties of supernovae with regards to frequency of the gravitational waves and
the energy carried by them, is estimated from simulation which indicate the
typical numbers to be E

c2 ∼ 10−7M� ∼ 1023 Kg, f ∼ kHz, T ∼ millisecond.
This leads to an amplitude of about h ∼ 10−21.

For isolated pulsars as well as binaries of stars and stellar mass black holes,
the distance is again in the 10 Kpc - Mpc range. For pulsars, the effective
mass parameter would be about 10−3M� ∼ 1027kg, L ∼ 104m and T ∼
10−3s leading to h ∼ 10−23. For long duration, sources of periodic signal, the
effective amplitude is actually larger thanks to matched filtering method of
signal extraction. If n is the number of cycles of the signal contained in the
observation period of T , then the effective amplitude is heff ∼

√
nh. For a

signal of frequency f , observed for time T , the number of cycles is n = fT .

The most promising and studied candidates are binary systems. For a
mass M spherical object, the radius of last stable circular orbit is about 3
times the Schwarzschild radius. For binaries made up of neutron stars or
black holes, the binaries could be quite tight with L closer to the radius of
the last stable circular orbit. These are called coalescing binaries. For binaries
involving white dwarfs or normal stars, the L would be quite large and are
called in-spiraling binaries. We can eliminate the binary radius by the angular

frequency using Kepler’s law to get h ∼ 10−55

r M5/3Ω2/3. For M ∼ M� and
Ω ∼ 10−4, we get h ∼ 10−28. For the last stable orbit, the angular frequency for
a solar mass object would be about Ω ∼ 104 leading to h ∼ 10−22. Although
the amplitude for white dwarf binaries is quite small, they are nearer and
amenable to enhancement through matched filtering. Coalescing binaries of
super-massive black holes too are candidates at frequencies of the order of
mHz. For coalescing binaries, there is also the possibility of merger into a black
hole which then rings down to its stationary state. These ringing frequencies,
called quasi-normal modes, are characteristic of the black hole parameters.
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The amplitudes during this phase turn out to be sizable and vary between
about 10−21 − 10−17 even over several hundred mega-parsec distances.

Finally, there are the stochastic gravitational waves which are made up
of incoherent superposition of a large number of sources as well an expected
isotropic component as a relic from the very early universe. Here the study
is not by measuring an amplitude, but rather by studying the frequency
spectrum of the gravitational energy density or more precisely the quantity,

Ωgw(f) := ρ−1
c

dρgw
dlogf where ρc :=

3c2H2
0

8πG is the cosmological critical energy

density. The expected frequencies range over 10−18 − 109 Hz [27].

The upshot is that the expected amplitude or effective amplitude from
various sources is about h ∼ 10−21 or smaller while the frequencies vary
between mHz to kHz for individual sources but over a vast range for stochastic
background.

Detection methodology: Since the detection method is based on tidal distor-
tions of bodies, the earliest method proposed by Weber, was to use a Resonant
bar. The idea is that a strain produced in a system will make the system vi-
brate with its fundamental frequency. For an aluminium cylinder of length ∼ 3
meters and mass of 1000 kg has its resonant frequency in the range of 500–1500
Hz. The amplitude of this vibration will be set by the gravitational wave to be
∼ 10−21 × 103 meters. This is very tiny and is smaller than or comparable to
three main sources of triggers - thermal excitations, noise in the amplification
process and the quantum uncertainty. Even at low temperatures of tenth of a
Kelvin, the rms amplitude of thermal fluctuations is about 6× 10−18 meters.
With a very narrow bandwidth around the fundamental frequency (Q factor
of ∼ 106), it is possible to have the duration of the signal to be short (10−3

sec.) enough so that the noise amplitude reaches only about a thousandth of
its rms value, thereby permitting a signal detection of h ∼ 10−20. The noise
in the amplification process can also be managed for lower frequencies ∼ 102

Hz. The quantum mechanical zero point fluctuation ∼
√
~/(2Mω) ∼ 10−21

meters. So as thermal noise is reduced, the quantum noise begins to challenge.
Squeezing of uncertainty in a different observational procedure is a possible
option. Apart from the standard bar configuration, spherical resonant bodies
have also been used which can have more mass in a smaller volume and also
have sensitivity in all directions.

Another type of detector uses light beams between a transmitter and a
receiver at different locations and attempts to detect the slight fluctuations in
the arrival rates due to the distortion in the physical path length1. A passing
gravitational wave causes the proper length traversed by the light beam to
change and hence its arrival time. The rate of light pulses received therefore

1The form of the gravitational wave is the simplest in the TT-gauge. This gauge corre-
sponds to a freely falling coordinate frame with the coordinate time being the proper time
of the freely falling observer. In this gauge, the spatial coordinates of a particles initially at
rest, do not change as can be seen from the geodesic equation. The physical lengths however
do change [27].
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changes from the rate of emitted pulses. Measuring this rate gives a detection
of a gravitational wave [28,88].

Clearly, this depends on availability of very precise time-stamping. The
best clocks with stability of few parts in 1016 can detect an amplitude of
about 10−15. Pulsars themselves are comparably stable and hence can be
used for time-stamping for the emitted pulses. Simultaneous observations of
several pulsars over long periods can detect very low frequency (∼ nano Hertz)
gravitational waves.

Essentially the same logic holds in interferometric detectors whose two
arms change their physical lengths by different amounts producing interference
fringes. Many collaborative efforts are built around Michelson-Morley type
interferometer using lasers. Since the expected highest frequency is about
kHz, the wavelengths are larger than 300 kms. It is impossible to build an
interferometer with comparable arm length. The arms of the current Earth
based interferometers are in the range of 300 meters (TAMA) and 600 meters
(GEO) meters to 4 kilometers (LIGO). It is possible to effectively increase the
arm length a hundred fold by making the laser beam make a 100 traversals in
a Fabry-Parot cavity before producing fringes. A longer arm length has the
advantage that length determination needs to be within about 10−16 meters
which is smaller than the size of a nucleus! No mirror can be ground to this
degree of smoothness. Here the fact that the laser beam has a width means
that individual rays reflect from different irregularities on the mirror surface.
Averaging the lengths over the beam cross-section, measures the coherent
movement and tiny changes in these averages averages can be determined.
Being fixed to the Earth, there are many sources of noise e.g. fluctuations
in the gravitational field due to seismic shifts and other movements of mass.
These are controlled with suspensions and filtered out selecting frequency
windows. As mentioned above for the resonant bars, thermal noise is reduced
by keeping the mirrors at cryogenic temperatures or by choosing material for
suspension fibres. The quantum noise due to Poisson statistics obeyed by the
laser photons, called the photon shot noise is a limiting noise which is sought
to be minimized by using squeezing. For an extensive discussion of possible
noise sources and their control or avoidance, please see [27].

Suffice it to say that extracting an unambiguous signal of gravitational
waves from some astronomical source from a variety of noises larger than
the signal, is a daunting task requiring sophisticated data analysis techniques
as well as a ‘bank of templetes’ of expected waveforms for use of matched
filtering. The requirements are being met and there is talk of gravitational
wave astronomy using data from multiple detectors.



Chapter 11

Field Equation: Evolutionary
Interpretation

The field equation stipulates conditions on the space-time geometry as a com-
plete entity. In practice though, we have clear sense of a dynamical evolution
of matter. Can this sense be extended to a dynamical view of the space-time
itself? In other words, can the set of space-time events be viewed as a sequen-
tial arrangement of some three-dimensional entities? We expect such a view
to be supported on physical grounds, but does the manifest, space-time co-
variant mathematical formulation accommodate such a view? This is far from
automatic. It turns out that Einstein equation does admit such an evolution-
ary interpretation - a solution space-time can be viewed as an evolving spatial
geometry.

Recall from the discussion of causality and determinism, globally hy-
perbolic space-times have the property of admitting a Cauchy surface such
that data recorded on it has a possibility of determining completely the data
throughout the entire space-time. These space-times are likely to provide us
the clues for seeking an evolutionary view of space-time. We study implica-
tions of global hyperbolicity and then reverse the process to get the ‘initial
value formulation’ of the Einstein equation. The notation and presentation
follows closely [17].

11.1 The 3 + 1 Decomposition

Let (M, g) be a globally hyperbolic space-time, not necessarily a solution
of Einstein equation, and let T : M → R be a time function (not unique)
which is guaranteed to exist. Let Σ denote a T =constant hypersurface. Let
nµ := f∂µT be the unit, time-like normal to Σ, n · n = −1. Let hµν :=
gµν +nµnν which satisfies, hµνn

ν = 0, hµαh
α
ν = hµν . Thus hµν is a projection

operator which projects tangent vectors to M to tangent vectors to Σ. On the
subspace, Tp(Σ) ⊂ Tp(M), hµν is a positive definite metric. This is referred
to as the induced metric on Σ or the first fundamental form of Σ. Using these
available structures, we carry out a ‘3 + 1’ decomposition i.e. express space-
time geometrical quantities in terms of spatial geometrical quantities.
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Projection of tensors: Given an arbitrary tensor Tµ1,...,µm
ν1,...,νn we define a

corresponding spatial tensor as,

T̄µ1,...,µm
ν1,...,νn := hµ1

α1
. . . hβnνnT

α1,...,αm
β1,...,βn

Due to the explicit factors of h, contraction of any index with n will given
zero. Hence T̄ is spatial.

Next, we want to define a covariant derivative operator ∇̄ which will pro-
duce a spatial tensor upon acting on a spatial tensor. Observe that if we
have a vector Xµ satisfying n ·X = 0, it does not follow that ∇µXν satisfies
n · ∇Xν = 0 or nν∇µXν . The first type of term involves derivative ‘off’-Σ
while the second type of term shows that spatial derivative of a spatial tensor
need not be spatial. Therefore we need to make explicit projections for both
the derivative as well as the differentiated tensor and we define,

∇̄λT̄µ1,...,µm
ν1,...,νn := hµ1

α1
. . . hβnνnh

ρ
λ ∇ρT̄

α1,...,αm
β1,...,βn

The ‘bar’ on the tensor is put to remind us that the ∇̄ is defined only for
spatial tensors which could have been constructed from space-time tensors via
projections. Notice that there is one factor of h for each (un-summed) index.
This spatial covariant derivative satisfies the same properties of the usual
space-time covariant derivative namely, (i) it is linear, (ii) satisfies Leibniz rule,
(iii) on functions depending on Σ alone, reduces to ordinary spatial derivative
(∇̄αf = h β

α ∇βf = ∂αf + nαn · ∂f =: ∂̄αf), (iv) is torsion free (since ∇ is)
and (v) ∇̄λhµν = 0 i.e. ‘metric compatible’. Such a derivative operator on Σ
is uniquely defined.

Armed with a spatial covariant derivative operator, we can define the cor-
responding Riemann tensor from commutator of these derivatives:

∇̄µ∇̄νĀλ = h α
µ h

β
ν h

λ
γ∇α(∇̄βĀγ)

= h α
µ h

β
ν h

λ
γ∇α(h ρ

β h
γ
σ∇ρĀσ)

= h α
µ h

ρ
ν h

λ
σ∇α∇ρĀσ + h α

µ h
ρ
ν h

λ
γ(∇αhγσ)∇ρĀσ

+h α
µ h

β
ν h

λ
σ(∇αhρβ)∇ρĀσ

= h α
µ h

ρ
ν h

λ
σ∇α∇ρĀσ + h α

µ h
ρ
ν h

λ
γnσ(∇αnγ)∇ρĀσ

+h α
µ h

β
ν h

λ
σn

ρ(∇αnβ)∇ρĀσ

= h α
µ h

ρ
ν h

λ
σ∇α∇ρĀσ + (h α

µ h
λ
γ∇αnγ)nσh

ρ
ν ∇ρĀσ

+(h α
µ h

β
ν ∇αnβ)hλσn

ρ∇ρĀσ

:= h α
µ h

ρ
ν h

λ
σ∇α∇ρĀσ +K λ

µ h
ρ
ν nσ∇ρĀσ

+Kµνh
λ
σn

ρ∇ρĀσ (11.1)

We have defined the second fundamental form or extrinsic curvature of Σ,
Kµν := h α

µ h
β
ν ∇αnβ , nα = f∂αT . Under anti-symmetrization in µ, ν, the
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last term vanishes, since

Kµν −Kνµ = h α
µ h

β
ν (∇αnβ −∇βnα) = h α

µ h
β
ν (∂αnβ − ∂βnα) , and

∂αnβ − ∂βnα = (∂αf)(∂βT )− (∂βf)(∂αT ) = (∂α ln f)nβ − (∂β ln f)nα

In the middle term, ∇ρ can be flipped on nσ and using Kνσ = h ρ
ν h

β
σ ∇ρnβ =

h ρ
ν ∇ρnσ, the middle term, after antisymmetrization, can be written as
−(Kλ

µKνσ−Kλ
νKµσ)Āσ. Finally, the first term gives the space-time Riemann

tensor. Stripping off Āσ, we obtain,

R̄λσµν = hλρh
τ
σ h

α
µ h

β
ν R

ρ
ταβ −K

λ
µKνσ +Kλ

νKµσ (11.2)

This is one of the Gauss–Codacci equations which relates the Riemann tensor
of M to the Riemann tensor of the first fundamental form, hµν , of a spatial
hypersurface and its second fundamental form, Kµν . The second of the Gauss–
Codacci equations is obtained in a similar manner and relates the spatial
covariant derivatives of the extrinsic curvature of Σ to the Ricci tensor of the
space-time:

∇̄µKµ
ν − ∇̄νKµ

µ = h α
ν Rαβn

β (11.3)

Consider now the Einstein tensor, Gµν and its projections:

Ḡµν := h α
µ h

β
ν Gαβ , h

α
µ Gαβn

β and Gµνn
µnν .

Using the definitions, it follows immediately that Rµναβh
µαhνβ = 2Gµνn

µnν .
The Gauss–Codacci equations imply,

h α
µ Gαβn

β = h α
µ Rαβn

β = ∇̄νKν
µ − ∇̄µKν

ν and, (11.4)

R̄ = hαβR̄αβ = hαβR̄λαλβ

= hαβ
[
h µ
α h

ν
β h

λ
ρh

σ
λ R

ρ
µσν − K λ

λ Kβα +K λ
β Kλα

]
= hµνhρσRρµσν − (K α

α )2 +KαβK
αβ

∴ Gµνn
µnν =

1

2

(
R̄+K2 − KµνK

µν
)

, K := K α
α (11.5)

All these are straightforward consequences of global hyperbolicity of (M, g),
the Einstein equation has not been used. Now we have the following theorem
[17]:

Theorem 11.1 Let Jµ := Gµνn
ν and Ḡµν := h α

µ h
β
ν Gαβ. If Ḡµν = 0

everywhere and Jµ = 0 on a Σt0 , then (a) Jµ = 0 everywhere and (b) Gµν = 0
everywhere. Furthermore, Jµ has no term involving (n · ∂)2.

The proof goes through the following steps. Ḡµν = 0 everywhere, implies that
−Gµν = nµJν +nνJµ +nµnν(n ·J) everywhere. Therefore Jµ = 0 everywhere
will immediately give Gµν = 0 everywhere. Next, the contracted Bianchi iden-
tity, ∇µGµν = 0 everywhere, leads to,

(∇ · n)Jν + n · ∇Jν + J · ∇nν + nν∇ · J + nν(n · ∇)(n · J)

+(n · J)n · ∇nν + (n · J)nν∇ · n = 0 (11.6)
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Contracting with nν leads to,

∇ · J + Jνn · ∇nν = 0 (11.7)

Both equations are valid everywhere. We can eliminate ∇ · J from the second
equation and see that the first equation is of the form n · ∇Jν = JµXµν(n)
and holds everywhere. These are coupled, first order, homogeneous equations
for Jµ and evolves it off Σt. Hence, if Jµ = 0 on Σt0 then it is zero everywhere.
This establish (a) and (b) of the theorem.

To show that Jµ has no (n · ∂)2 terms, split ∂µ := ∂
‖
µ + nµD, D := n · ∂.

Then the only terms that contains D2 involve two derivatives and are of the
form, ∂µ∂ν ∼ nµnνD

2. Now consider a coordinate expression for Gµν , keep
only the second derivative terms and replace them by n n D2. These terms
have the form,

Gµν ∼
(
hµνh

αβD2gαβ − h α
µ h

β
ν D

2gαβ
)

+ single D terms.

The explicit factors of h give the result.
Thus, it is enough that the six spatial field equations hold everywhere

and the remaining four equations Jµ = 0 hold only at one Cauchy surface
to imply that the full ten equations hold everywhere. In other words, there
are redundancies in the Einstein equations. The last sentence of the theorem
shows that the equations (11.4,11.5) denote constraints on the data on Σ and
are not evolution equations.

The net conclusion of this analysis is that for the class of globally hy-
perbolic space-times, the vacuum Einstein equation can be split into four
equations, Jµ = 0, which are constraint equations that need to be imposed on
one Cauchy surface and six evolution equations, Ḡµν = 0. These are sufficient
to ensure that the globally hyperbolic space-time is a solution of the vacuum
Einstein equation.

The interesting feature now is that the 3 + 1 split can be reversed to
construct a space-time solution of the Einstein equation! This is the Cauchy
Initial Value Theorem for the Einstein equations.

11.2 Initial Value Formulation

The analysis of the previous section allowed us to identify the constraint
equations and the evolution equations, albeit for the class of globally hyper-
bolic solutions. We now state the theorem which guarantees existence and
uniqueness of globally hyperbolic solutions. We give the theorem as stated
in [17].

Theorem 11.2 (Well-Posed Initial Value Problem) Let Σ be a three-
dimensional manifold, gij a Riemannian metric and Kij a symmetric tensor
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on Σ. Let gij ,Kij satisfy

∇̄iKi
j − ∇̄jKi

i = 0 and R̄+ (Ki
i)

2 −KijK
ij = 0

Then there exist a unique four-dimensional space-time (M, g) and an embed-
ding φ : Σ→ φ(Σ) ⊂M, such that,

1. Gµν(g) = 0.

2. (M, g) is globally hyperbolic with φ(Σ) as a Cauchy surface for M .

3. The first and the second fundamental forms of φ(Σ) coincide with
gij ,Kij, respectively, i.e. gij = φ∗(gµν),Kij = φ∗(Kµν).

The space-time (M, g) is called the maximal Cauchy development of
(Σ, gij ,Kij) while Σ and (gij ,Kij) satisfying the constraint equations
on Σ, are called the initial data.

4. The space-time is unique in the sense that any other (M ′, g′) satisfying
the above three conditions, can be embedded isometrically into a subset
of (M, g).

5. Let (Σ, g,K) and (Σ′, g′,K ′) be two initial data sets with (M, g) and
(M ′, g′) their maximal Cauchy developments with φ, φ′ the corresponding
embeddings. If f : S ⊂ Σ → S′ ⊂ Σ′ be a diffeomorphism taking the
initial values into each other, then the domain of dependence of φ(S) is
isometrically mapped to the domain of dependence of φ′(S′).

6. The space-time metric gµν depends continuously on the initial values
gij ,Kij (Well-posedness property).

The proof consists of a series of steps relying on certain general existence,
uniqueness and well-posedness properties of a class of partial differential equa-
tions. We sketch and list these steps and refer the reader to [17] for further
details.

We are given Σ and the tensors ḡij , K̄ij relative to some local coordinates
on Σ. Construct a four-dimensional manifold, M as a Cartesian product of
an interval I and Σ. Let the local coordinates around a point p ∈ Σ ⊂ M
be denoted as (t, xi) ↔ (xµ) and arranged so that t ∈ I and t = 0 gives
the local portion of Σ. Our task is to show that a four-dimensional metric
gµν(x) can be guaranteed to exist in the chart, with the requisite properties.
To this end, we set gij(0, ~x) := ḡij(~x) and ∂tgij(0, ~x) := K̄ij(~x). The idea is to
construct the metric as a solution of a type of a partial differential equation
with the above as initial conditions. However, the Einstein equation is not
directly of the required type to guarantee a desired solution. In order to arrive
at the required type of equation, consider Hλ(x) whose vanishing makes the
coordinates to be harmonic relative to the metric.

Hλ := gρσ∇ρ∇σxλ = − 1

2
gαβgλτ (∂βgτα + ∂αgτβ − ∂τgαβ)
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and

Rµν =
1

2
gαβ (∂α∂µgνβ + ∂α∂νgµβ − ∂α∂βgµν − ∂µ∂νgαβ)+a function of g, ∂g

Hence the combination, RHµν := Rµν + gλ(µ∂ν)H
λ, has the form,

RHµν = − 1

2
gαβ∂α∂β gµν + a function of g, ∂g (11.8)

The equation, RHµν = 0 has requisite form for which local existence, unique-
ness and well-posedness properties hold. The relevant theorems are given in
the mathematical background 14, section 14.7. Hence, we are guaranteed a
metric in the coordinate neighborhood with the portion of Σ as the Cauchy
surface and with the specified initial data. Moreover, RHµν = 0 implies the
vacuum Einstein equation, Rµν = 0, provided the coordinates are harmonic
coordinates i.e. Hλ(x) = 0 in the local neighborhood.

We had left the time derivatives ∂tg0µ(x) as unspecified. Let us stipulate
that these be such that Hµ(0, ~x) = 0. Now one shows that if RHµν = 0 in the
coordinate neighborhood and the first constraint and Hµ = 0 hold on Σ, then,
∂tH

µ(0, ~x) = 0. The contracted Bianchi identity can be cast as an equation
for Hµ which is again of the form that admits a unique solution given the
initial data. In particular, for Hµ = 0 = ∂tH

µ, it follows that Hµ(x) = 0 in
the neighborhood and now the solution of RHµν = 0 is also a solution of the
vacuum Einstein equation. This is the basic step for proving the theorem.

There are a couple of points to be cleared. In applying the theorem 14.2,
we have to start with a known solution (the φ0

a of that theorem), namely,
the flat space-time. The theorem then guarantees solution for data sufficiently
close to the flat space-time. We have to go beyond. Secondly, the constructed
solution is only local on Σ.

The first point is taken care of by a scaling trick. Observe that for a
sufficiently small coordinate neighborhood of a point p ∈ Σ, we can always
choose coordinates (xµ(p) = 0) such that the metric is Minkowskian: gµν(p) =
diag(−1, 1, 1, 1) and ∂tgµν(p) = 0. Given an initial data, gµν(0, ~x), ∂tgµν(0, ~x),
not close to ‘flat space data’, consider new data g′ := λ−2g, ∂tg

′ := λ−2∂tg.
Under these constant scalings, the new data satisfy the constraint equations,
if the old one does. On this data, make a coordinate transformation, x′µ :=
λ−1xµ. Then we obtain g′µν(x′) = gµν(λx′) and ∂t′g

′
µν(x′) = λ∂tgµν(λx).

Clearly as λ → 0, the new data approaches the data for flat space-time for
which the local solution is guaranteed to exist. This solution, g0

µν(x′) (say),

evaluated at λ−1
0 x is the solution for the original initial data.

For globalising the solution over Σ, one constructs local solutions in over-
lapping neighborhoods (can be chosen to be finitely many for paracompact Σ).
Local uniqueness then permits consistent patching up of the local solutions.

Finally, the existence of maximal Cauchy development is proved by con-
structing a partial order on the set of all globally hyperbolic solutions with
the same data (Σ, g,K) and invoking Zorn’s lemma.



Field Equation: Evolutionary Interpretation 179

The theorem establishes an evolutionary view for the class of globally hy-
perbolic solutions of the vacuum Einstein equation. It reveals that a subset of
the equations are non-dynamical (are constraints on the initial data) which in
turn is understood as a consequence of the covariance under arbitrary coor-
dinate transformations. It also leads to possibility of organizing this class of
solutions by analysing the solutions of the constraint equations. This forms a
basis for numerical solutions which are analytically intractable. More on this
in the next chapter on numerical relativity.

11.3 Hamiltonian Formulation (ADM)

We saw that Einstein equation is a second order, ‘quasi-linear’, hyperbolic,
non-linear, partial differential equation (in the harmonic gauge) and admits
a Cauchy initial value formulation. It has the further property that it can be
put in the form of first order Hamilton equations of motion, albeit with ‘first
class constraints’ in Dirac’s terminology. A Hamiltonian formulation provides
a phase space view of general covariance and also opens up the possibility
of canonical quantization of General relativity. We begin with the Einstein–
Hilbert action1,

S[g] =

∫
M

d4x
√
|g|R(g) , |g| := −det(gµν) > 0 .

Let us quickly verify that Einstein equation follows from extremization of
this action. For convenience, we take gµν as independent variable so that
δgµν = −gµαδgαβgβν . Computing δS := S[gµν + δgµν ]− S[gµν ] to first order
in δgµν we get,

δS[g] =

∫
M

d4x
√
|g|
[
δgµν

(
Rµν −

1

2
Rgµν

)
+∇λJλ(δgµν)

]
(11.9)

Here we have used: δg = ggµνδgµν = −ggµνδgµν and gµνδRµν = ∇λJλ with,

Jλ(δgµν) = gαβδΓλαβ − gλαδΓ
β
αβ ←→ Jλ = ∇µδgµλ − gµν∇λδgµν (11.10)

The divergence term is a surface term whose vanishing (or not) will depend
upon the boundary conditions specified. The metric fields which will represent
physical space-times (i.e. ‘solutions of equations of motions’) are selected by
requiring that arbitrary, first order variation in the action, about a space-time
metric, receives contributions only from the boundary values of the metric.

1Note that the integrand is a scalar density of weight 1 and hence the action integral is
well defined.
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This immediately requires the physical metric to satisfy the Einstein equation:
Rµν − 1

2Rgµν = 0. A few remarks are in order.

Remark 1: There are several different action principles to ‘derive’ the Ein-
stein equation. Within the metric formulation of gravity, there are two versions
- the one described above in which metric (or its inverse) is the independent
variable and is sometimes referred to as the ‘second order formulation’. It is
possible to use the same action but treat the metric and the affine connec-
tion Γλµν as independent variables. The corresponding variational principle
is known as the Palatini formulation. There are two sets of Euler-Lagrange
equations of motion one from δgµν and one from δΓλµν . The equation of mo-
tion from the variation of the affine connection determines the connection to
be the Levi-Civita (torsion-free, metric compatible) connection up to an ad-
ditive term. The equation of motion from the variation of the metric then
gives the Einstein equation regardless of the additive term [89]. This is called
a ‘first order formulation’. There is another formulation of general relativity,
especially when one has spinorial matter or Fermions. Then one uses tetrad
field eµI in place of the metric and a ‘spin connection’, ω IJ

µ . Once again we
have two formulations - one on which the spin connection is determined in
terms of the tetrad (and co-tetrad) and a ‘Palatini’ form wherein both are
treated as independent. At the level of classical equations of motion, all dif-
ferent formulations imply the Einstein equation. Corresponding Hamiltonian
formulations are available as well, however, we will discuss only the metric
formulation with the Levi-Civita connection.

Remark 2: We have not detailed the surface terms. While they are impor-
tant in the passage to a canonical formulation (they can modify the symplectic
structure), they play no role at the level of classical equations of motion. We
comment on them at the end of the section.

To obtain a Hamiltonian formulation, we need to identify a ‘time’ and
obtain a ‘3 + 1’ decomposition of the space-time. Only after this is done, we
can identify generalized velocities, define the generalized momenta and go over
to a Hamiltonian form via the Legendre transform.

Let us assume that our would be space-time manifold is such as to admit a
smooth function T :M→ R such that the T = constant level sets, generate a
foliation. Different possible T -functions will generate different foliations. For
this to be possible, we must have M∼ R× Σ3.

Now choose a vector field tµ∂µ which is transversal to the foliation i.e. every
integral curve of the vector field intersects each of the leaves, transversally.
Furthermore, locally in the parameter of the curve, the leaves are intersected
once and only once. Normalize the vector field so that tµ∂µT = 1. This ensures
that values of the T -function can be taken as a ‘time’ parameter which we
denote as t.

Fix a leaf Σt0 and introduce coordinates, xi, i = 1, 2, 3 on it. Carry these
along the integral curves of the vector fields, to the other leaves. This sets
up a local coordinate system onM such that the normalized parametrization
provides the coordinate t while the integral curves themselves are labelled by
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the {xi}. Note that there is no metric so M is not yet a space-time. We have
only set up a coordinate system.

Choose tensors gij , N
i, N on each of the leaves in a smooth manner and

define a space-time metric via the line element:

ds2 := −N2dt2 + ḡij
(
dxi +N idt

) (
dxj +N jdt

)
. (11.11)

Choosing ḡij to be positive definite and N 6= 0 ensures that the space-time
metric gµν is invertible. Its inverse is given by,

gtt = −N−2 , gtj = N jN−2 ,

gij = ḡij −N−2N iN j , ḡikḡkj = δij . (11.12)

We now have a space-time. The space-time metric is defined in terms of 10
independent functions and so there is no loss of generality. It is a convenient
parametrization for reasons given below, but alternative parametrizations are
possible.

It follows that (i) The induced metric on the leaves is the Riemannian
metric ḡij .

(ii) ñµ := ∂µT is ‘normal’ to the leaves, in the sense that for any tangent
vector Xµ∂µ, to Σt, X

µñµ = Xµ∂µT = 0. Thanks to the normalization of
tµ∂µ, we have ñµ = (1, 0, 0, 0).

(iii) ñµ := gµν ñν ⇒ ñµñµ = gtt = −N−2 < 0 and therefore the normal
is time-like and hence the leaves are space-like. We take nµ := εNñµ, N >
0, ε = ±1 to be the unit time-like normal.

(iv) The original transversal vector field can be decomposed as tµ = anµ+
Ñµ where Ñµnµ = 0 and hence Ñµ is tangential to the leaves and Ñ0 = 0.

This decomposition refers toN as the lapse function and Ñµ as the shift vector.
Next, tµnµ = −N ⇒ a = N . The sign is chosen so that tµ and nµ are both
future (say) directed time-like vectors. The integral curve equation, dtx

µ =
Nnµ + Ñµ implies for µ = i, Ñ i = −Nni = −NgitεN = −εN2(N−2N i) =
−εN i. To identify the N i with the shift vector (which is spatial) we choose
ε = −1. Thus, nµ := −N∂µT .

The particular parametrization of the space-time metric can be said to be
adapted to the pre-selected coordinate system.

Since we have the unit time-like normal, nµ to the hypersurface Σ, we can
follow the steps used in the previous sections to express the action in terms
of the parametrization. In particular, we note,

nµ , n
µ : nt = −N , ni = 0 , nt = N−1 , ni = −N iN−1

hµν : htt = ḡijN
iN j , hti = ḡijN

j , hij = ḡij

h ν
µ : h t

t = 0 , h t
i = 0 , h i

t = N i , h j
i = δ ji .

Recalling,

R = 2(Gµν −Rµν)nµnν = R̄+K2 −KµνK
µν − 2Rµνn

µnν .
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and using the Ricci identity, we express the last term as,

nνRµνn
µ = nνRλµλνn

µ = nν [∇λ,∇ν ]nλ (11.13)

= (∇ · n)2 − (∇λnν)(∇νnλ) +∇λ(n · ∇nλ)−∇ν(nν∇ · n) .

Using the definition of the extrinsic curvature, Kµν := h α
µ h

β
ν ∇αnβ we see

that the first two terms are just K2−KµνK
µν . The last two terms are diver-

gences which we suppress for the moment.
Lastly, by considering δ ln detgµν = gµνδgµν with δgµν induced by δN, δN i,

δḡij , one can see that
√
|g| = N

√
ḡ, ḡ := det ḡij . Hence, up to divergence

terms, the action becomes,

S[ḡ, N,N i] =

∫
M

dtd3x N
√
ḡ
(
R̄−K2 +KµνK

µν
)

To make the ḡ, N i, N dependence explicit, we use the explicit expressions for
the normal and the projection operators and note,

Kµν = h α
µ h

β
ν (∂αnβ − Γγαβnγ) = h k

µ h
l
ν (∂knl +NΓtkl) = Nh k

µ h
l
ν Γtkl,

Γtkl =
1

2N2

(
∂tḡkl − ∇̄kNl − ∇̄lNk

)
⇒ (11.14)

Ktt = NNkN lΓtkl , Ktj = NNkΓtkj , Kij = NΓtij (11.15)

In the above, we have use h t
µ = 0, nl = 0, and ∇̄ is explicitly defined using

the Riemann–Christoffel connection of ḡij . It is clear from these expressions
that only time derivatives of ḡij occur and that to only through the extrinsic
curvature. These then are the generalized coordinates while the lapse and shift
must be Lagrange multipliers if they occur linearly in the action. It follows
that,

πij := δL
δ ˙̄gij

=
√
ḡ
(
Kij − (ḡklKkl)ḡ

ij
)

←→
√
ḡKij = πij −

(
πklḡkl

2

)
ḡij

˙̄gij = 2N Kij + ∇̄iNj + ∇̄jNi

=
2N√
ḡ

(
πij −

π

2
ḡij

)
+ ∇̄iNj + ∇̄jNi, π := πij ḡij (11.16)

Using these the canonical Hamiltonian density, H := πij ḡij − L becomes,

H =
√
ḡ

[
N

{
−R̄+

πijπij − π2

2

ḡ

}
+Ni

{
−2∇̄j(

πij√
ḡ

}]
, (11.17)

where we have suppressed the total derivative term, 2
√
ḡ∇̄i(πijNj/

√
ḡ). As

expected, the lapse and shift appear as Lagrange multipliers whose equations
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of motion - the coefficients - give the primary constraints in Dirac’s terminol-
ogy and the Hamiltonian density is a linear combination of the constraints.
The Hamilton’s equations of motion are of course equivalent to the Euler-
Lagrange equations of motion i.e. to the Einstein equation. For completeness
we note the equation for π̇ij (boundary terms are ignored) [17]:

π̇ij = −N
√
ḡ

{(
R̄ij − 1

2
R̄ḡij

)
− ḡij

2ḡ

(
πklπ

kl − 1

2
π2

)
(11.18)

+
2

ḡ

(
πikπ j

k −
1

2
ππij

)}
+
√
ḡ
(
∇̄i∇̄j − ḡij∇̄k∇̄k

)
N

+
√
ḡ∇̄k

(
Nkπij√

ḡ

)
−
(
πik∇̄kN j − πjk∇̄kN i

)
The coefficient of the Lapse N is called the Scalar (or Hamiltonian) con-

straint while the coefficient of Ni is called the vector (or the diffeomorphism)
constraint. The matter-free gravity is thus a Hamiltonian system with phase
space coordinatised by a 3-metric (Euclidean signature), gij and a symmetric
tensor field, Kij defined on a three manifold Σ satisfying the scalar and the
vector constraints which are first class constraints in Dirac’s terminology [90].
The space-time description of the initial value formulation has been cast in a
phase space formulation, potentially ready for a passage to canonical quanti-
zation. This is known as the Arnowitt-Deser-Misner (ADM) formulation [91].
The hall mark of general relativity, the space-time covariance, has apparently
disappeared. It is not so, the space-time covariance is encoded in the algebra
of constraints, known as the Dirac Algebra:

H(N) :=

∫
Σ

d3x N

(
−
√
ḡR̄+

πijπij − π2/2√
ḡ

)
(11.19)

H( ~N) :=

∫
Σ

d3x Ni
(
−2∇̄jπij

)
(11.20)

{H( ~N), H( ~M)} = −H(~L) , Li := N j∇̄jM i −M j∇̄jN i (11.21)

{H( ~N), H(M)} = −H(K) , K := N i · ∇̄iM (11.22)

{H(N), H(M)} = H( ~K) , Ki := ḡij(N∂jM −M∂jN) (11.23)

The detailed demonstration of these facts may be seen in [92,93].
Suffice it to say that not only Einstein equation admit a dynamical view

of space-time as an evolving 3-geometry, this dynamics is a Hamiltonian dy-
namics making general relativity amenable to canonical quantization.

We return to the surface terms now. If we just want to get the equation
of motion, then the surface terms could be ignored as they do not affect local
equations of motion. However, the idea of a variational principle is to vary
over ‘all possible fields in a neighborhood of a path’. For this we have to
specify what ‘all possible’ means i.e. specify the space of fields over which the
variation is to be considered. The space of fields for the action formulation are
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suitably smooth space-time fields subject to their specification on the space-
time boundary. So to begin with the action should be a well-defined function
on such a space and it should be stationary with respect to all infinitesimal
variations in the vicinity of a potential solution. To ensure that ‘all partial
derivatives’ vanish at the extremum, the variation of the action should depend
only on δgµν and all other dependences should cancel, if necessary, by addition
of further terms.

Consider the surface terms in the variation of the action under the stipu-
lation δgµν = 0 on the boundary ∂M .

The surface term in the Einstein–Hilbert action is explicitly given in
(11.10). Taking the boundary of the four-dimensional region on which the
action is defined, to be made up of space-like or time-like hypersurfaces, it
is easy to see that Jλn

λ = (nλhµν − nµhνλ)∇µ(δgνλ), where nλ is the nor-
mal to the boundary hypersurface and hµν = δµν ± nµnν is the corresponding
projection operator. The ± relates to the space-like/time-like segments. For
the variation δgµν = 0 on the boundary, hνλ∇λδgαβ = 0 as well on the hy-
persurface and the surviving term is J · n = −hαβn · ∇δgαβ . This is nothing
but −2δKµ

µ or the variation of the trace of the extrinsic curvature of the
hypersurface.

It follows that S′[g] := S[g] + 2
∫
∂M

K, under the variation δgµν vanishing
at the boundary, has no boundary contributions and its variation vanishes iff
the metric satisfies the Einstein equation.

The Hamiltonian formulation uses the 3 + 1 decomposition and proceeds
to identify a phase space. The identification of canonical variables is sensitive
to the total divergence terms in the action and can lead to quite different
canonical formulations2 giving the same classical equations of motion. Once
the symplectic structure (canonical variables) is identified, the phase space is
defined in terms of appropriately smooth fields on the 3-manifold together
with appropriate stipulation of boundary condition. In order to define the
Hamilton’s equations of motion, the variation of the Hamiltonian H :=

∫
Σ
H,

over paths in the phase space, should not contain any other contributions from
the boundary of the 3-manifold.

For the ADM Hamiltonian, the cases of interests are (a) the 3-manifold
Σ being compact without boundary and (b) it being asymptotically flat at
spatial infinity. In the former case, there is no boundary while in the latter
case an extra term needs to be added and corresponds to the ADM energy of
the space-time. For the details, we refer to [17].

The real utility and significance of action formulation(s) is really at the
quantum level whether in the path integral approach or the canonical ap-
proach. Our focus being the classical level, we conclude this section with these
brief remarks.

2This is especially so in the tetrad formulation allowing for non-zero torsion. The con-
nection formulation discovered by Ashtekar [94] by a canonical transformation on the ADM
phase space, can be obtained from addition of such terms [95].
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Numerical Relativity

Einstein equation is a complicated system of partial differential equations and
even though it can be cast as an initial value problem, obtaining solutions for
physically realistic situations is a very tall order and Numerical Simulations
are crucially needed. Perhaps the strongest need is felt for extracting wave
forms of gravitational waves from compact sources in a variety of possible
motions. The numerical simulations however have also unexpectedly revealed
the critical phenomena in collapse situation and are a tool to explore issues
such as cosmic censorship. In this chapter we will describe the basic ingredients
of numerical relativity and highlight some of the recent developments. The
primary reference is the beautiful review by Luis Lehner [96].

Problems of interest: In the weak field regimes - metric close to Minkowski
metric or observation length scales are large compared to the Schwarzschild
radius of compact source - systematic perturbative analytical methods such
as post-Newtonian expansion exists which are quite reliable. In these regimes
too numerical simulations are used e.g. N-body simulations for galaxies, but
these are not general relativistic simulations. It is the strong field regimes
where numerical methods play a crucial role. This class of problems involve
compact stars such neutron stars or black holes, individually or in binaries,
formation of horizons (or otherwise) in a gravitational collapse, oscillatory
or otherwise approach to cosmological singularities (the Belinskii-Kalatnikov-
Lifshitz conjecture) etc. Some of these are primarily of theoretical interest such
as exploration of critical collapse, cosmic censorship, BKL singulatities or the
general two body problem. Some, however, have practical applications in the
astrophysical context, especially the two body problem is strongly motivated
by the efforts towards direct detection of gravitational waves. Following [96]
we will first describe the numerical approach in somewhat general terms.

The basic problem: The basic problem is of course to solve the Einstein
equation numerically. The covariant form of the equation implies that a phys-
ical solution can be obtained as many different metric coefficients as functions
of corresponding (local) coordinates. In arbitrary coordinates, the equation is
a local, partial differential equation with no particular type - hyperbolic or
parabolic or elliptic. Whichever way a solution, gµν(x), is obtained, it is a local
solution and one attempts to extend it in some ‘maximal way’. Already in the
discussion of causality and determinism, we noted that not every solution of
the equation is physically admissible and the globally hyperbolic solutions are
the physically relevant ones. These space-times already have a R× Σ3 topol-

185



186 General Relativity: Basics and Beyond

ogy and can be viewed (sliced) as evolution of spatial hyper-surfaces in the
space-time. In the previous chapter we saw that performing a ‘space + time’
decomposition and further imposition of coordinate conditions, it is possible
to split the equations into elliptic (constraint) and hyperbolic ones for which
local existence, uniqueness and well-posedness properties hold. This means
that we input (i) a 3-manifold Σ, (ii) two symmetric tensor fields of rank 2
on it namely gij and Kij one of which is a Riemannian 3-metric, (iii) a lapse
function N , (iv) a shift vector N i and construct a space-time from the evo-
lution equations satisfied by the two tensor fields. There are other methods
of viewing the Einstein equation as an evolution of some data specified on
3-manifolds which will be null hypersurfaces in the evolved space-time e.g.
the characteristic value formulation. We will focus on the Cauchy framework
and refer the reader to the references for other approaches [96,97].

In the previous section, we have already given the 3+1 decomposition as
well as obtained the extrinsic curvature Kij in terms of the ∂tḡij (eqn. 11.15).
We also had the Hamilton’s form of evolution equations. In the numerical
approach, it is more customary to present the evolution equations in terms of
Ln , nµ = N−1(tµ −Nµ) or dt := ∂t − LNµ = NLn. Thus the equations are
presented as1,

dtgij = 2NKij (12.1)

dtKij = −N(Rij − 2K l
i Klj +KKij) +∇i∇jN (12.2)

These are to be supplied with initial values of gij ,Kij satisfying the constraints
(which are satisfied there after),

R+K2 −KijKij = 0 , ∇j(Kij −Kgij) = 0 . (12.3)

and the lapse and shift, which are arbitrary. Prescribing a lapse and shift
in some manner corresponds to specification of coordinates. Notice that the
lapse appears explicitly in the evolution equation (12.1) while the shift appears
when relating the dt evolution to Lt(= ∂t) evolution. Hence their choices have
to be made judiciously for a stable numerical evolution.

For instance, an obvious choice of lapse and shift would be, N = 1, N i = 0
which corresponds to a Gaussian coordinate system (also known as geodesic
slicing). A draw back of these coordinates is that geodesics emanating nor-
mally from the spatial slice tend to develop caustics thereby limiting the evo-
lution.

Another potential danger, for simulations involving possibility of black hole
formation, is developing of singularities. These can be avoided if coordinates
can be so chosen as to approach the singularity ‘slowly’ by making the lapse
approach zero in the vicinity. One such choice of slicing is the so called maximal

1In this section, all quantities are three-dimensional tensors and all over-bars are re-
moved. More standard notation in numerical relativity community is: N → α,N i →
βi, gij → γij and Kij → −Kij
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slicing i.e. slices on which the local volume is maximized. This is defined
by K = 0. From the trace of the second evolution equation, it follows that
∇2N = NKijKij +dtK while the trace of the first evolution equation implies
dt ln g = 2NK. Thus for maximal slicing local volume is constant (i.e. ∂tg =
0), if shift is chosen to be zero. This shows the singularity avoidance property.
However, it distorts the slicing so much that the spatial gradients start getting
larger thereby crashing the simulation. This is an example where the lapse is
specified by its own equation (elliptic). Yet another type of specification is
imposing conditions on the coordinates directly e.g. the Harmonic coordinate
condition: gµν∇µ∇νxλ = 0. This was used in the proof of the theorem (11.2).
This has problems of developing so called ‘coordinate shocks’ which are then
sought to be alleviated by using a generalized harmonic coordinate condition,
replacing the right-hand side by a source function Hλ which is further to be
supplied with its own evolution equation. There are many variants of these
and other slicings too [96].

The coordinate conditions, is just one of the issues to be faced. There are
two other main issues. The choice of initial conditions together with treatment
of constraints and the treatment of boundary conditions.

Usually, the evolution is taken to be ‘free’ evolution i.e. the initial data
is chosen to satisfy the constraints and constraints are not checked at each
step. If the evolved solution fails to satisfy the constraints to within truncation
errors, then numerically it would be acceptable to ignore constraints (however
the violations could grow). This would be convenient since solving constraint is
computationally intensive. If the constraint violation is larger, then simulation
could crash. In the context of evolution of black hole binaries, there seem to
be two methods of handling this: adopt generalized harmonic coordinates with
constraint damping or use suitable variants of the so-called BSSN evolution
scheme together with appropriate gauge choices and treatment of black hole
singularities [98,99].

Choosing initial data itself has two main issues to be faced. The constraint
equations do not tell us which components of the metric and the extrinsic
curvature or combinations thereof could be specified freely and the remaining
ones solved for. The second issue is how to choose solutions of the constraints
which capture the physical situation. For example, in the two body problem
case, apart from putting in the initial orbit parameters and spins (which itself
is non-trivial), one also needs to include the existing gravitational radiation
which can only be guessed or tried out with different amounts. The first prob-
lem is addressed by extracting a conformal factor from the metric and using
a decomposition of the Kij in terms of its transverse, traceless part and a
longitudinal part. The most common decomposition is the York–Lichnerowicz
conformal decompositions [100]. In this decomposition, one chooses freely a
‘conformal metric’ γ̃ij with determinant equal to 1 (say), a traceless symmet-

ric tensor M̃ij and a scalar K. The desired initial data variables gij ,Kij are
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defined in terms of these as

gij := ψ4γ̃ij , Kij := ψ−10
{

L̃V )ij + M̃ ij
}

+
1

3
ψ−4γ̃ijK (12.4)

where, (L̃V )ij := ∇̃iV j + ∇̃jV i − 2

3
γ̃ij∇̃ · V

The constraint equations now become equations for the function ψ and the
vector V i constituting the longitudinal part of Kij . With such a decomposi-
tion, the 4 quantities, ψ, V i, satisfy standard form of elliptic equations which
can be solved for choosing suitable boundary conditions2. The free data of
course has to be chosen to reflect the physical situation.

This brings us to the issue of boundary conditions. A simulation involv-
ing compact bodies has outer boundary which is typically asymptotically flat.
If the compact body involves a black hole, then there is an inner boundary
as well which is expected to hide the singularity, assuming censorship holds.
Numerical domain cannot be infinite and this is a tricky issue. One natu-
ral method would be to use the conformal compactification and specify the
boundary conditions consistent with asymptotic flatness at spatial infinity.
This however suffers from loss of resolution and ‘piling up of gravitational
ripples’ and usually drives the simulation into instability. Another naive ap-
proach would be to make a ‘box’ around the localized sources by introducing a
time-like boundary. However what the appropriate boundary conditions are is
not known, all one knows are the fall off conditions as discussed in chapter 7.
One way in which the issue is avoided, takes the outer boundary ‘far enough’
from the localized region containing the ‘source’ so that the wave form ex-
traction can be achieved within some radius of ‘far zone’ and region exterior
is evolved accepting the loss of resolution. Another strategy is to match the
solution with another solution obtained in the characteristic value problem
(data on null hypersurface(s)). This is analogous to the method of extending
a solution and is called the Cauchy Characteristic Matching. Suffice it to say
that there is no single, clear-cut and computationally viable strategy.

Inner boundaries arise potentially in the context involving black holes
which contain singularities and horizons. One way to avoid emergence of di-
vergences due to singularities is to exclude from the grid a portion where sin-
gularities could arise. Natural questions are how to identify the excision region
and what boundary conditions are to be provided at the excision boundary.
Obvious place to introduce an inner boundary is somewhere on or inside an
apparent horizon (since event horizon cannot be known in advance). From the
analytical studies of black holes we know that once inside the event horizon,
no null rays can come out. So there would always exist inner boundaries where
all null rays of the solution would be directed inwards i.e. out-going from the
computational domain. Since no ‘cause’ inside the excised region can have any
effect in the computational domain, no boundary conditions need be specified!

2The transverse parts, Q̃ij can be defined either with respect to gij or the γ̃ij i.e.

∇jQ̃ij = 0 or ∇̃jQ̃ij = 0 [100].
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It remains to locate apparent horizon by detecting outer, marginally trapped
surfaces defined in the definition (6.17). Tracking apparent horizon however
is computationally expensive.

Another way of dealing with evolution in presence of singularities is to
replace a black hole singularity by a puncture. Roughly speaking, a black
hole’s interior is replaced by a transformed copy of its exterior with the spatial
infinity represented by a ‘point’ or a puncture. For instance, consider the
Schwarzschild worm hole which has two copies of exterior Schwarzschild space-
time and joined at the r = 2m sphere. A coordinate transformation, from the

standard areal radial coordinate r → ρ, r(ρ) := (2ρ+m)2

4ρ allows the two copies

to be covered by ρ ∈ (∞,m/2] and ρ ∈ [m/2, 0). In the (ρ, θ, φ) coordinate
system, the ρ = 0 corresponds to the spatial infinity of one of the copies and
the full range correspond to the exterior region which is what is relevant in
the evolution. The behaviour of the metric at spatial infinity is irregular but
understood. Thus, for numerical evolution, a black hole is represented not by
any apparent horizon, but by a puncture (spatial infinity) in the initial slice.
How the slice is evolved in the vicinity of the puncture(s) i.e. choice of lapse
and shift and their evolution controls the stability of the evolution. If the
shift is made to vanish at a puncture, it is a ‘fixed’ puncture while allowing
shift to be non-zero gives a ‘moving puncture’ evolution. This is one of the
ingredients that made the breakthrough in evolving binary systems of black
holes in 2005 [101].

We have so far assumed that the system of evolution equation (and vari-
ables) is the one that followed the standard ADM form. There are alterna-
tive schemes of evolution that have been successful. One such is the BSSN
(Baumgarte-Shapiro-Shibata-Nakamura) scheme [102, 103]. This is similar to
the York–Lichnerowicz conformal decomposition mentioned above. Its ba-
sic variables are the conformal metric γ̃ with determinant 1, the trace of
the extrinsic curvature, K, the trace-free part of the conformally scaled ex-
trinsic curvature, Ãij := ψ−4(Kij − 1

3gijK) and the connection variable

Γ̃i := Γ̃ijkγ̃
jk = − ∂j γ̃ij . The evolution equations for ψ, γ̃, Γ̃i follow from their

definitions while those for K, Ãij come from the Einstein equation. The lapse
and shift remain freely prescribable. In actual implementations constraints
are used to eliminate certain terms to simplify the equations incorporating
constraints partially at least. The treatment of Γ̃i as an independent variables
allows the system to be cast as a hyperbolic system with suitable choices of
gauge conditions [99].

Generalized Harmonic condition with constraint damping is another evo-
lution scheme which has been successful too. We have already noted that the
drawbacks of the Harmonic coordinate condition are alleviated by introducing
the source function, Hλ := gµν∇µ∇νxλ. The usual scalar and vector con-
straints can be expressed in terms of Cµ := gµν(Hν −�xν). Hence vanishing
of Cµ which is same as imposing the generalized harmonic condition, implies
vanishing of the usual constraints. The evolution scheme now expresses the
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Einstein equation in terms of the usual variables and a multiple of the con-
straints Cµ is added which gives it the adjective of ‘constraint damping’. An
evolution equation for the source function must be specified to complete the
equation system [99,104].

The break through in achieving a long term stable evolution of black hole
binaries is based on the BSSN evolution scheme with moving punctures (shift
is allowed to be non-zero but the lapse is arranged to vanish near the punc-
tures). Prior to 2005, the evolution used to crash before completing barely
one orbit. After the break through however, over ten orbits are possible which
include merger phase and an overlap with in-spiral.

Further comments and details may be seen in [98,99].
This concludes our brief sketch of some of the basic issues that arise in a

numerically solving the Einstein equation. There are many technical variations
and clever implementations which are too specialized for this book and the
reader is directed to the references.



Chapter 13

Into the Quantum Realm

From the Newtonian conception of gravity as a universal and instantaneously
acting force to the Einsteinian one wherein the Newtonian gravity is seen as
a manifestation of the curvature of the space-time involved a revision of the
space and time to a changeable, merged entity called a space-time. It extended
the scope of gravitational phenomena from solar system scale to cosmological
scale, triggered further instabilities in the stellar equilibria to suggest forma-
tion of the black holes, accommodated an expanding universe providing a
mechanism for formation of structures at various scales and gave an indepen-
dent dynamical status (degrees of freedom) to the space-time geometry via
the brand new prediction of gravitational waves. This transition came about
by the challenge thrown by special relativity at the Newtonian gravity with
its accidental equality of inertial and gravitational masses. The relativistic
gravity faces its own new challenges. What are these challenges?

General relativity predicts the black hole solutions - space-times with hori-
zons containing trapped surfaces. Within the classical framework, the singular-
ity theorems (6.29) imply existence of a singularity inside a black hole horizon
implying breakdown of general relativistic model of a space-time. Likewise,
an everywhere expanding universe too imply a breakdown of the relativistic
space-time, without necessarily implying infinite gravity (tidal forces). Thus,
the singularity theorems challenge the relativistic model of the space-time
arena, without any input from the quantum.

The same solutions with horizons also obey certain laws of their behaviour
with a curious formal similarity with the laws of thermodynamics. This could
have remained an intriguing curiosity, but Hawking showed that these hori-
zons have the ability to accentuate the quantum fluctuations enough to make
them radiate like a hot body. This suggests a mechanism for a possibly com-
plete evaporation of the black hole or possibly leaving behind a remnant. The
distinction between evaporation of the by-now-proverbial piece of coal and
that of a black hole horizon is that the coal does not hide its contents at any
stage while a black hole horizon does all through the evaporation process. This
entails two possibilities: (a) a black hole may be formed from the collapse of
a pure quantum state and at the end of evaporation, one has only a thermal
state - such an evolution cannot be unitary1; (b) one may send in a pure state
into a black hole and wait for its complete evaporation to retrieve it. But this

1A small size remnant is not large enough to retain the information.
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is not possible, leading once again to the loss of ‘information’. The former is
a process including formation of a black hole with its subsequent evaporation
and it is not unitary while the latter implies non-unitarity of a scattering
process in the presence of an evaporating black hole.

Usual quantum theory does not allow for such non-unitary processes while
classical general relativity, by admitting black holes, implies existence of such
processes. This is a potential conflict between classical general relativity and
the quantum theory.

There is a third and more elementary challenge from the quantum theory.
Recall the determination of the space-time metric from section (4.4). It is
premised on experimental determination of local light-cones. The wave nature
of any particle-like probe will render such a determination a little ‘fuzzy’.
Thus quantum theory will directly interfere with the operational meaning of
any space-time metric at sufficiently small length/time scales.

There are different interpretations of these challenges as well as different
suggestions of meeting them. Broadly, one interpretation can be described as
‘gravity is an emergent phenomenon’ while the second one interprets it as an
indication that ‘gravity needs a quantum extension’. We briefly comment on
these alternatives below.

13.1 Gravity Is “Emergent”

This is a view which is a mixture of many ideas with a common thread
that gravitational interaction need not be a ‘fundamental’ interaction and by
implication, need not be ‘quantized’ at all. The strongest hint of this is inferred
from the black hole thermodynamics2.

Once a black hole has formed and settled in, all memory of its formation
process is lost except for the mass, angular momentum and charge. Further-
more the membrane paradigm establishes a detailed analogy of their horizons
with surfaces endowed with certain mechanical and electromagnetic proper-
ties. These two together contained a hint that space-time may be some kind
of a fluid with Einstein equation being the hydro-dynamical equation [107].
This idea got a further boost in the work of Jacobson [108] which argued that

2Historically, Sakharov was the first to suggest that dynamics of space-time metric may
be determined by quantum fluctuations of matter on a Lorentzian manifold [105, 106].
The motivation was from the astrophysical possibility of non-zero cosmological constant
while the rationale was from the 1-loop effective action for a background geometry from
quantized matter on that background. This is completely independent of any black hole
thermodynamics and implicitly assumes a background to be not too far from Minkowski
space-time. General covariance and a derivative expansion is sufficient to generate both the
cosmological constant and the Einstein–Hilbert action as leading terms. Away from such
weak fields we would not even know how to quantize matter fields on an arbitrary Lorentzian
manifold.
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it is possible to interpret Einstein equation as an equation of state from a
thermo-dynamical system identified by a suitable causal horizon whose exis-
tence in a neighborhood of every space-time point is assured. The rationale is
based on the inputs that (a) a causal horizon makes some of the microscopic
degrees of freedoms (molecules of a thermo-dynamical system) unobservable
and energy flux across it can be thought of as ‘heat’; (b) the quantum entan-
glement across a horizon can account for the entropy of the system ‘behind’
the horizon and (c) the quantum fluctuations are seen as thermal fluctuations
by a local Rindler observer hence a temperature can be taken to be the local
Unruh temperature. However, not every causal horizon can give a thermo-
dynamic system in equilibrium. Its stipulation is done locally in an inertial
frame at a space-time point p such that the generators of the causal horizon
have zero expansion and shear at the point p. This allows the area change to
be linked with the heat flow to first order within the neighborhood. Assuming
that the entropy is proportional to the area of the cross-section of the hori-
zon, the equation of state of such a system is precisely the Einstein equation,
including the possibility of a cosmological constant. The solution space-times
thus correspond to equilibrium states of the unknown micro-constituents of
the system. From this perspective, the gravitational waves can be thought
of as sound waves in a gas, propagated by the large number of ‘collisions’ of
the micro-constituents, while the singular solutions simply indicate deviation
from the equilibria. This is a persuasive argument with a sense of generality
since it is applied near every point and is free from black hole horizons.

The thermodynamic interpretation of gravity is pushed further by Pad-
manabhan along with his collaborators [109]. They argue that just as there
exist local inertial observers so do there exist local Rindler observers and
thanks to the local Unruh temperature, in these observer’s view, space-time
is a thermodynamical entity. Padmanabhan advances the criteria that if such
a view of a Rindler observer is to be viable, then there should be a variational
principle (not just equation of state) which has a direct thermodynamical
analogy. Furthermore, the analogy should continue to hold for other possible
field equations which require different ‘actions’ and hopefully lead to some
new insights. A variational principle based on null hypersurfaces (in a given
background Lorentzian geometry) is proposed and the viability criteria are
checked, at least for Lovelock type actions which include the Einstein–Hilbert
action. In particular, such a variational principle leads to an equation of the
form (Gµν − Tµν)nµnν = 0 ∀ n · n = 0. It is noted that such an equation is
invariant under addition of a constant to the Lagrangian density since it adds
a cosmological constant term which is killed by the null vector norm. This is
useful since it removes the ambiguity in the value of the cosmological constant
by shifts in the matter actions. This approach emphasizes that using (suitably
defined) surface and bulk degrees of freedom in a region, Einstein’s equations
can be written in a thermodynamic language instead of in a purely geometric
language, [110].

The main argument here seems to be that since the Einstein equation can
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be obtained without treating the metric as a fundamental dynamical variable,
gravity described by the Einstein equation is an emergent phenomenon3.

There are other ideas centered around the black horizons. For instance,
Laughlin regards black hole horizons (but not any other causal horizons?)
as a place where the classical general relativity breaks down in analogy with
critical surfaces in quantum phase transitions, again suggesting that gravity
is not fundamental [112].

All these approaches, presume the framework of Lorentzian manifold and
what is taken as ‘emerging’ are the space-times satisfying the Einstein equa-
tion. An implication is usually made that it is inappropriate to quantize the
metric which does not represent underlying microscopic degrees of freedom.
These views while acknowledging the existence of ‘different’ microscopic de-
grees of freedom, do not contain any clues as to what those might be or how
they may be ‘discovered’. Although local Rindler observers exist within the
classical Lorentzian space-times, a quantum input is brought in via the Unruh
temperature.

There has also been a proposal wherein not just the dynamics, but kine-
matics of general relativity - smooth Lorentzian manifold - is also envisaged to
be emergent. The Causal Set Theory approach [113–115] falls into this cate-
gory which recovers continuum geometry from a statistical sprinkling of finite
set of points with built-in causal relations as a partial order.

13.2 The Quantum Gravity Paradigm

Independent of the information loss issue, the existence of black hole en-
tropy itself is taken as a clue to the existence of micro-structure to classical
horizon and in the light of classical black holes being pure geometry objects,
the presumed micro-structure is taken to be ‘atoms of geometry’. The quan-
tum geometry of LQG provides enough structure to explain the black hole
entropy in this manner.

String theory explains the entropy in a different manner. It posits that
microscopically, the (extremal) black holes are actually collections of D-branes
whose states can be counted. Changing the string coupling then brings us to a
regime wherein these states can be seen as states of conventional geometrical
black holes. The supersymmetry plays a crucial role by preserving the state
counting through the process of changing the coupling.

Together with the breakdown of general relativity indicated by the singu-
larity theorems, these aspects strongly suggest a need for ‘quantizing gravity’.

3There is also a notion of ‘emergent gravity’ (and ‘emergent gauge theory’) in the context
of AdS/CFT or gauge-gravity duality, which is within a quantum framework and is of a very
different nature. This may be seen in the contribution of Horowitz and Polchinski in [111].
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In the next subsection we recall some of the salient points of the two main
approaches to quantum gravity - Loop Quantum Gravity and String Theory.
For more comprehensive views, please see [111].

13.2.1 String Theory: The Unification Paradigm

Historically, string theory arose out of the s-matrix approach to strong in-
teractions [116–120]. Characteristically it predicted a massless, helicity-2 state
in its spectrum while no such hadron is known. This led authors of [121,122]
to suggest that the theory is perhaps more appropriately regarded as being
applicable at the Planck scale and thus be interpreted as a theory of gravity.
It is primarily a quantum theory of a string (or strings) propagating in some
embedding space-time i.e. an open or close, two-dimensional world sheet, em-
bedded in some D+1-dimensional space-time. In its classical formulation, it is
a 1+1 dimensional field theory with fields taking values in a D+1-dimensional
target manifold. The fields defined on the target manifold serve as ‘coupling
constants’ of the two-dimensional field theory. The theory is invariant un-
der world-sheet diffeomorphisms and Weyl scalings of the world-sheet metric.
In its quantum form, preservations of these ‘gauge invariances’ puts severe
constraints on its properties. The most characteristic ones are: (1) a critical
dimension - 26 for strings with only bosonic fields and 10 for strings including
fermionic fields with supersymmetry; (2) bosonic strings have tachyons for
both the open and closed strings but more crucially the closed strings have a
massless helicity-2 state, graviton, in its spectrum; (3) the fermionic strings
display supersymmetric spectra, no tachyons and again a graviton in the closed
superstring spectra; (4) the spectra are very rich and tightly controlled (mass
and spins being correlated) and so are the the scattering amplitudes; (5) the
consistency conditions are so strong that the allowed Yang-Mills groups are
limited two just two - SO(32) and E8 × E8 [123].

These features lent support to the unification paradigm - a single frame-
work to ‘understand’ all known (and possibly yet to be known) interactions
together with the participating entities, perturbative gravity being automati-
cally included by the demand of consistency of the theory. It also provided a
novel way to view space-time fields and their equations of motion as arising
from the (super)conformal invariance of suitable world-sheet quantum field
theories. The perturbative approach provided an appealing picture of interac-
tions being constrained by the geometrical joining and splitting of strings.
The perturbative niceties were soon seen to be inadequate thanks to the
non-summability of the string perturbation theory [124] paving the way for
non-perturbative sectors of the theory together with various dualities linking
‘different’ string theories [125,126].

As far as gravity is concerned, the string theory contains the following fea-
tures. First, perturbative gravity is automatically incorporated. Second, the
non-renormalizable ultraviolet divergences that plague the perturbative field
theory are supposed to be effectively absent thanks to the modular invariance
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properties of the amplitudes. Third, the non-perturbative sector contains soli-
tonic excitations such as the Dp-branes (Dirichlet boundary condition along
p-directions) [127] which provide a microscopic description of black holes, at
least of the extremal variety and lead to their Bekenstein-Hawking entropy.
Fourth, there are possible mechanism such as the ‘fuzz ball’ picture [128] which
provides a replacement of the traditional black hole horizon thereby avoiding
the ‘information loss’ conflict. Fifth, the T-duality suggests a possibility that
as the cosmological singularity is approached in a particular presentation, the
would-be-singular presentation can be related to a non-singular one thereby
‘resolving’ the cosmological (FLRW) singularity. For a 25-year perspective on
string theory, please see [129].

It is perhaps fair to say that lessons from string theory for a modification
of Einsteinian gravity are that quantum mechanically gravity should not be
viewed in isolation but as packaged with matter. It is also conceivable that
the underlying quantum world may accessed via a collection of perturbative
string theories appropriate for different regimes, connected nevertheless to-
gether thanks to the various dualities. String theory claims to be one such
(and currently only such) package with the consistency of the framework be-
ing conditional on extra space-time dimensions and supersymmetry.

13.2.2 Loop Quantum Gravity: The Background Indepen-
dence Demand

General covariance is an essential property of relativistic gravity and this
is in conflict with any prescribed background. Let us note a few points to
appreciate this statement. General covariance refers to form invariance un-
der general coordinate transformations whose most explicit articulation is in
the framework of differentiable manifolds. The adjective ‘general’ refers to
arbitrary, appropriately Ck and usually C∞, invertible change of local coor-
dinates. ‘Covariance’ then is most economically expressed by using tensorial
objects as basic variable as well as any local differential equations they may
be required to be satisfied (e.g. the Einstein equation). For contrast, the co-
variance under Lorentz transformations limits the permitted transformation
to linear coordinate transformations forming the group O(1, 3). The physical
reason for requiring general covariance has been the postulated equivalence of
observers in arbitrary relative motion, regardless of any equation the metrics
may satisfy. Now imagine we have some tensor field(s) prescribed ab initio
on a manifold on which we wish to study other dynamical tensorial fields,
including a Lorentzian metric. The prescribed fields are fixed as a background
on which we may anchor locations and time stamps. Any such background,
immediately limits the set of permitted coordinate transformations to those
that leave the background unchanged and we get only a limited covariance.
There are no tensorial fields which are invariant under arbitrary coordinate
transformations and hence general covariance is in conflict with prescription
of any background fields. In this sense, general covariance is synonymous with
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requirement of independence of any background fields, manifestly or other-
wise. This applies not just to the gravitational (metric) field but also to all
matter fields coupled to gravity. Loop Quantum Gravity (LQG) is an ap-
proach to constructing a quantum theory of gravity maintaining background
independence manifest.

As Einstein reasoned in his ‘Hole Argument’, general covariance is also in
conflict with a deterministic interpretation of the dynamical equations unless a
solution and its transforms under space-time diffeomorphisms are regarded as
physically the same. This results in the dynamics being constrained - the clear-
est expression of which is obtained in the canonical form as a system with first
class constraints. This again is true in presence of non-gravitational fields as
well. In a quantum theory, this ‘gauge redundancy’ of the tensorial fields must
be properly taken into account. Note that classically, this gauge redundancy
only masks sometimes, the diffeomorphism equivalence of apparently different
solution. Quantum mechanically, an incorrect accounting of this redundancy
could miss or over-count equivalence classes of classical solutions jeopardiz-
ing the semiclassical correspondence or lead to an inconsistency. Background
independence is thus crucially relevant at the quantum level.

Let us follow the canonical form since Loop Quantum Gravity primarily
developed in this form (although a covariant form has been developing in
terms of the Spin foams [130, 131]). We have a theory with first class con-
straints. Its reduced phase space, space of orbits generated by the constraints,
on the constraint submanifold, is not known well enough to construct a quan-
tum theory directly. The alternative is to construct the quantum theory in
two (or more) steps. First construct a Hilbert space ignoring the constraints,
called the kinematical Hilbert space, and then identify the physical states as
solutions of the constraint operators defined on it. Typically, the solutions are
non-normalizable (or are distributional) and one needs to define a new inner
product on this space of solutions [132].

In constructing the kinematical Hilbert space, typically a measure on the
configuration space of the system is needed to define an inner product. Since
we want to get rid of the gauge redundancies, we want the inner product to
be diffeomorphism invariant. We can’t use any background field, let alone the
metric which is a dynamical variable itself. This is in contrast with the usual
case of non-gravitational systems where we can choose the usual background
metric as there is no requirement of general covariance. Here in lies the main
difficulty in quantizing a theory with general covariance.

The space of Euclidean 3-metrics seems too unwieldy to admit any measure
let alone a 3-diffeomorphism invariant measure. In the mid-eighties, Ashtekar
gave an alternative formulation of general relativity in terms of gauge con-
nections [94] which has since been presented in the so-called ‘real SU(2)’ for-
mulation [133,134]. In this alternative formulation, the phase space of gravity
is same as that of a Yang-Mills gauge theory with gauge group SU(2). Thus
apart from the 3-diffeomorphism redundancies, we also have the usual gauge
actions under SU(2). The naive configuration space variables are the Aia(x)
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fields on a 3-manifold with ‘i’ being the adjoint index of SU(2) and ‘a’ being
the space index, both taking 3 values each. The space of gauge connections is
unsuitable because of two reasons: under SU(2) transformations it transforms
inhomogeneously and there is no known diffeomorphism invariant measure
on this space4. Lattice gauge theories, employing non-perturbative approach,
use Wilson loops or holonomies as elementary variables which do transform
homogeneously [135]. Furthermore, on the space of holonomies, there is a
unique, diffeomorphism invariant measure! Using holonomies as basic vari-
ables together with the unique, Ashtekar-Lewandowski measure on the space
of functions thereof, constitutes Loop Quantization [136, 137]. This gives the
kinematical Hilbert space in a background independent manner and the first
step of Dirac quantization is successfully achieved. The subsequent steps of
obtaining a physical Hilbert space together with physical observables have not
been satisfactorily concluded. The familiar background space-times are now
to be understood as appropriate semiclassical states of the quantum theory
and these too are yet to be obtained in a satisfactory manner. All these steps
- complete Dirac quantization with semiclassical states has been obtained in
the physically relevant, toy version for homogeneous, isotropic cosmology with
a particular form of resolution of the isotropic Big Bang singularity [138,139].
One of the implications of loop quantization is that the spectrum of any area
operator [140] is discrete. This has been used in the context of the isolated
horizons to obtain the black hole entropy by state counting [73,141].

One of the key possibility uncovered by this approach is that the spatial
geometry need not be a continuum Riemannian geometry in the sense that
the spectra of geometrical operators [140,142,143] can be discrete and is also
non-commutative [144]. At a microscopic level, the classical space-time picture
may be completely superseded by some discrete structure, LQG providing a
specific one. For further details of LQG, please refer to [145,146].

We would like to mention that there are other more radical approaches
which potentially remove a dependence on the background structures such as
a manifold and its topology. These include the Causal Sets mentioned above
and Causal Dynamical Triangulation [147]. The CDT approach in particular
hints at the possibility of a changing ‘dimensionality’ of the space—from 2 at
the micro-level to 4 at the macro-level [148].

4These issues do not arise in the quantization of usual Yang-Mills theories in Minkowski
space-time because one typically works in a perturbation theory which needs a gauge fixing
and there is no requirement of diffeomorphism invariance.



Chapter 14

Mathematical Background

14.1 Basic Differential Geometry

In this chapter we take the opportunity to introduce the hierarchy of struc-
tures leading to the desired Riemannian geometry. The idea is to do this in
stages to see what structures enable us to do what. Only basic ideas are dis-
cussed. There are several excellent books available [149–151] as well the parts
of [17,18].

14.2 Sets, Metric Spaces and Topological Spaces

The absolute minimum to begin with is a set or a well-defined collection
of elements. We can consider subset of a set, a collection (or a set) of subsets
of a given set, and construct new sets by defining Cartesian product of two
sets X,Y as the set of ordered pairs whose first entry is an element of X and
the second entry is an element of Y . There are two notions that we need, that
of a mapping between two sets and that of a binary relation on a set.

The notion of a mapping, f : X → Y , associates a unique element of Y to
every element of X. (It can be represented also as a subset of the Cartesian
productX×Y := {(x, f(x))/f(x) ∈ Y, ∀ x ∈ X}). Some features immediately
arise. A mapping f is one-to-one, or injective, if f(x) = f(y) ⇒ x = y; it is
on-to or surjective, if for every y ∈ Y, ∃ x ∈ X; it is bijective, if it is one-to-one
and on-to.

For every map f : X → Y , we can define inverse image of y ∈ Y to be
the subset: Invf (y) := {x ∈ X/f(x) = y}. For an injective map we can define
an inverse map f−1 :Range(f) ⊂ Y → Domain(f) ⊂ X. Notice that if there
is a bijective map from X to Y , then inverse map is also bijective and all set
theoretic properties of the two sets X and Y are identical - the only difference
between the two is the labels on their elements. The two sets are then said
to be equivalent. Examples: two finite sets containing the same number of
elements are equivalent; set of even integers is equivalent to set of all integers;
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set of rational numbers is equivalent to the set of integers; an open interval
(0, 1) is equivalent to the set of all real numbers etc.

The notion of a binary relation R on a set X is simply that it is a subset
R ⊂ X × X. Some particular subsets deserve special names e.g. equivalence
relation, partial order, . . . etc. For us, the first one is more relevant. It is
defined by the following conditions: (i) Reflexivity: (x, x) ∈ R,∀ x ∈ X, (ii)
Symmetry: (x, y) ∈ R ⇒ (y, x) ∈ R, and (iii) Transitivity: (x, y) ∈ R, (y, z) ∈
R⇒ (x, z) ∈ R. Innocuous as these may look, one has an important result that
Every equivalence relation partitions the set and conversely, every partition
defines an equivalence relation. Here, partition of a set X means X can be
expressed as X = ∪iXi such that Xi ∩ Xj = Φ, the empty set. The proof is
very simple and is left as an exercise.

As an example, consider X = set of all sets. On this, define a relation
xRx′ iff there exists a bijective map between x and x′. Show that this is an
equivalence relation. Define the equivalence class of x, [x] := {y/yRx}. Show
that [x] = [y] iff y ∈ [x] (or x ∈ [y]). Otherwise [x] ∩ [y] = Φ. Thus, the set of
all sets is partitioned into classes consisting of equivalent sets.

Both these notions are used repeatedly to organize various structures.

In order to generalize the familiar calculus, we need to suitably generalize
the notions of limits of sequences, continuity of functions, their derivatives
and integrals. To this end, let us recall the definitions of limit of a sequence
of real numbers and continuity of a function at a point.

Convergence: A sequence {xn} is said to converge to x if for every ε >
0, ∃ N > 0 such that |xn − x| < ε ∀ n > N . This is denoted as xn → x.
Likewise,

continuity: A function f(x) is said to be continuous at a if for every ε >
0, ∃ δ > 0 such that |f(x)− f(a)| < ε ∀ |x− a| < δ.

In these definitions, the absolute value of the differences provides a notion
of nearness. The generalization to sequences of points in n-dimensional spaces
or functions of n-variables involves only using the corresponding definition of
the absolute value, namely the length of the difference vector also called its
Euclidean norm. This norm satisfies the following properties: (a) |~x − ~y| is
always non-negative and vanishes only of the difference vector vanishes; (b) it
is symmetric in ~x, ~y and (c) |~x − ~y| ≤ |~x − ~z| + |~z − ~y| (triangle inequality).
Interestingly, these properties are sufficient to prove all the results involving
limits and continuity of real variables.

Now observe that, suppose we let the variables to be elements of an arbi-
trary set - not necessarily of numbers - but equip the set with distance function
d : X × X → R i.e. d(x, y) ∈ R which precisely satisfies the three properties
listed above. Then we can take over the definition of limit of a sequence of
elements of X, xn ∈ X! To define continuity of mapping f : X → Y , we will
need to introduce a distance function on X as well as on Y . The distance
function is called a metric on the set X.

A set X together with a metric d defined on it, is called a metric space.
Introducing this notion, we have managed to extend the notions of limit and
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continuity from sets of numbers to arbitrary sets which admit a metric. To
be explicit, let us define an ε−neighborhood of x ∈ X as: Nε(x) := {y ∈
X/d(y, x) < ε}. The definition of limit xn → x then becomes: for every ε >
0 ∃ N > 0 such that xn ∈ Nε(x) ∀ n > N . In the definition of continuity,
there will be Nε(f(a)) and Nδ(a) with two metrics on X and Y , respectively.
There are still the ε, δ,N which are real numbers.

Let us define A ⊂ X to be an open set if for every x ∈ A, there exists an
ε > 0 such that Nε(x) ⊂ A. It follows that every ε−neighborhood is an open
set of X; the set X itself is open and so is the empty set Φ. These open sets
satisfy two crucial properties: (A) union of arbitrary number of open sets is an
open set and (B) intersection of finitely many open sets is an open set. It turns
out that these two properties together with X,Φ being open, are sufficient to
deduce all properties/results pertaining to limits and continuity.

We can now free ourselves from the ε, δ numerical features from the no-
tion of nearness - all we need to do is have a supply of proper subsets of X
satisfying the properties (A) and (B). This leads to our final generalisation
which provides a satisfactory formulation of notion of nearness. Here is the
definition.

Let X be a non-empty set and let T be a collection of subsets of X such
that (i) X,Φ ∈ T , (ii) arbitrary unions of members of T is contained in T
and (iii) all intersections of finitely many members of T are contained in T .
T is called a topology on X; members of T are called open sets and the set X
together with a topology T is called a Topological space.

For practice, re-write the definition of limit of a sequence in a topological
space.

There are three basic properties of topological spaces, namely: (i) connect-
edness and local connectedness; (ii) separability and (iii) compactness and
local compactness. These may be seen in [152].

Remark:

• On a given set, there can be several topologies and hence several different
definitions of convergence of sequences.

Two extreme examples are: (1) trivial topology, the only open sets are
X and Φ and (2) discrete topology, every subset of X is an open set.

• Even a finite set can admit a topology and hence a corresponding notion
of nearness.

• In metric spaces, there is a natural topology, namely, that given by the
ε-neighborhoods.

• Finally, without a choice of a topology, it is meaningless to talk about
limits or convergence.

We can immediately define mappings between two topological spaces: f :
(X,T )→ (X ′, T ′). As a map between the two sets, f can be injective and/or
surjective and/or bijective. The two sets can be equivalent as sets (there exist
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a bijective map). But is there a sense in which the map ‘preserves’ also the
topologies? The answer is yes.

Topology allows us to introduce further attributes of a maps. f : X → Y
is open if every open set of X is mapped to an open set of Y ; it is continuous
if inverse image, Invf of every open set of Y is an open set of X. f is an
homeomorphism if it is bijective, open and continuous. Two topological spaces
are homeomorphic if there exist a homeomorphism between them. This defines
an equivalence relation which partitions the set of all topological spaces into
mutually homeomorphic spaces. All set theoretic and topological properties
for homeomorphic space are identical.

For finite sets one can easily display topologies and maps illustrating these
definitions. The topology defined by the Euclidean norm on RN , is called the
usual topology of RN .

We are now ready to go to the next step of generalising the notion of
differentiation.

14.3 Manifolds and Tensors

We would like to see if the notion of differentiation can be imported to a
general topological space. As before, let us recall the definition of derivative
of a function. It is defined as

lim
h→0

f(x+ h)− f(x)

h
=:

df

dx

While we can generalize the numerator and the denominator, how do we
generalize the notion of division to non-numerical entities such as points of a
topological space?

There is one way out of this, namely, assign numbers to points of the topo-
logical space. An immediate question is, how? This should be done in a ‘con-
tinuous manner’ (recall that in the usual case, differentiation is defined only
for functions which are at least continuous). This could be done, for example,
by requiring suitable open sets of the topological space to be homeomorphic
to suitable open sets of some Rn. The integer n could provide the notion of
‘dimensionality’ (number of coordinates/number of independent variables in
a function etc.). For n = 2, this in turn can be imagined as sticking pieces of
graph paper on the surface of some balloon (a topological space). But, clearly
there are infinitely many ways of doing this and there is no way to make any
natural choice. We can live with this freedom provided we can ensure that
whatever we really want to do (define a derivative) does not depend on the
choice of the labelling. This is done as follows. In anticipation, we denote a
topological space as M from now on.

We first define an n-dimensional Chart around a point p ∈M . This consists
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of an open set uα containing p i.e. a neighborhood of p, together with a home-
omorphism φα : uα → Oα ⊂ Rn i.e. φα(q) ↔ (x1(q), x2(q), . . . , xn(q)). Recall
that homeomorphism is a one-to-one, on-to, open and continuous assignment.
The xi(q) are called local coordinates of point q ∈ uα.

Introduce such charts around each point of M and choose a collection
of charts covering all of M . Some of the charts may overlap: uα ∩ uβ 6= Φ.
The common point then have two different coordinates, say xi(q) and yi(q)
and due to the on-to-one assignments, we can use this to define a coordinate
transformation xi ↔ yi. Clearly these are one-to-one, on-to (with respective
domains and ranges) and continuous since the defining homeomorphisms are.
We now require that yi(x1, x2, . . . , xn) and xi(y1, y2, . . . , yn) are both infinitely
many times differentiable functions. The two conditions, namely, the collection
of charts covering all of M and the smoothness of coordinate transformations
in the overlap, implies that all charts must be of the same dimension, say, n.
Such a collection of charts is called a smooth, n-dimensional atlas1.

We can construct several different smooth atlases. Let us define a relation
on the set of all atlases. We will say that two atlases, {(uα, φα)}, {(va, ψa)}, are
compatible if their union is also an atlas. This requires that even for overlapping
neighborhoods from different atlases, the corresponding coordinate transfor-
mations are also smooth. This is an equivalence relation and the equivalence
classes are called differential structures on the topological space. A topologi-
cal space together with a given differential structure is called a differentiable
manifold or manifold for short.

To appreciate the need for the smoothness of coordinate transformation
consider a possible definition of differentiability of a real valued function
f : M → R. The function itself can be defined independent of any atlas e.g.
temperature on the surface of Earth which does not need (longitude, latitude)
to be chosen. Referring to a chart around some p, we convert the function
to a function of xi. We can now define f to be differentiable at p if f(xi) is
differentiable at x(p) (and we know what this means). But now the differen-
tiability of a function seems to be tied with the particular chart chosen. If we
choose a different chart, does the function still remain differentiable? Well,
let us assume that ∂f/∂xi exist. Let yj denote another set of coordinates. By

the chain rule, we expect that ∂f
∂yi = ∂xj

∂yi
∂f
∂xj . Evidently, the left-hand side

will be well defined iff ∂xj

∂yi is well defined i.e. the coordinate transformation
is differentiable. Furthermore, f being smooth will be meaningless, unless the
coordinate transformation is smooth. But this is precisely what is guaranteed
by the condition on the atlas! So, although we need to use arbitrary coordinates
to make sense of differentiability, the additional structure introduced, ensure
that the property of differentiability is independent of the choice of coordinate.

1Functions which are k-times differentiable (partial derivatives in case of several vari-
ables) are said to be of class Ck. C0 refers to continuous functions while C∞ are termed
smooth. One can also have real analyticity, complex analyticity classes etc. The atlases
involving coordinate transformations of a given class are given the same adjective.
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Our primary goal of importing notions of differentiation to topological spaces
is achieved. The price to pay is the introduction of a differential structure and
an implicit restriction to only those topological spaces which are locally Rn.

Just as there are different topologies on a given set, there can be several
different differential structures on the same topological space e.g. S7 has 28
differential structure while R4 has infinitely many differential structures. For
Rn with the usual topology and an atlas consisting of a just a single chart -
the chart defined by the identity map, defines the ‘usual’ differential structure.
The analogue of homeomorphism in this case is called a diffeomorphism. Let
M,N be two differential manifolds of the same dimension and let f : M → N
be a map which is a homeomorphism of the underlying topological spaces.
Under this, open sets of M go to open sets of N and this induces a corre-
sponding coordinate transformation of local coordinates xi on M going to
local coordinates yi on N . If these coordinate transformations (xi ↔ yi) are
smooth, then f is called diffeomorphism and M,N are said to be diffeomor-
phic to each other. Again this is an equivalence relation and partitions the set
of all differential manifolds into classes of mutually diffeomorphic manifolds.

On a manifold, several types of quantities can be defined in a natural man-
ner. These can be defined in a manifestly coordinate independent manner or
through use of coordinates such that the choice of coordinates does not mat-
ter. We have already seen the example of one such quantity, namely smooth,
real valued functions f : M → R. Our next quantity is a smooth curve on a
manifold.

A curve γ on M is a map γ : (a, b) ⊂ R → M from an open interval into
the manifold i.e. t ∈ (a, b)→ γ(t) ∈M . Referring to local coordinates, this is
represented by n functions of a single variable, xi(t), t ∈ (a, b). The curve is
smooth, if these functions are smooth functions of t. Again, smoothness of γ
is independent of the choice of local coordinates.

Let us assume for definiteness that 0 ∈ (a, b) and denote p = γ(0). Every
curve on a manifold gives rise to a tangent vector as follows. For any function
f : M → R,

d

dt
f

∣∣∣∣
γ

:= lim
ε→0

f(γ(ε))− f(γ(0))

ε
(14.1)

Using a chart, (uα, φα), gives the function f as a function of the local coordi-
nates as fα(xi(p)) := f( φ−1

α (xi) ). In terms of this, we get,

d

dt
f

∣∣∣∣
γ

= lim
ε→0

fα(xi(γ(ε)))− fα(xi(γ(0)))

ε
But,

xi(γ(ε))− xi(γ(0)) ≈ ε
dxi

dt

∣∣∣∣
t=0

∴
d

dt
f

∣∣∣∣
γ

:= lim
ε→0

fα(xi(γ(0)) + εdx
i

dt )− fα(xi(γ(0)))

ε
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= lim
ε→0

εdx
i

dt
∂fα
∂xi

ε

=
dxi

dt

∣∣∣∣
γ

∂

∂xi
fα ∀ f : M → R (14.2)

The (14.1) gives a manifestly coordinate independent definition while the sub-
sequent equations gives expression involving local coordinates. Since the func-
tion is arbitrary, one can think of the d

dt |γ as an operator which takes function
to numbers. There is one such operator for each curve γ and it is called a
tangent vector to the manifold at the point p = γ(0). One can collect all such
tangent vectors at the same p and define a vector space in an obvious manner.
This is called the Tangent Space to M at p and is denoted as Tp(M). What
is its dimension?

Consider eqn.(14.2). Stripping off the function, the tangent vectors are

parametrized by the n numbers dxi

dt |γ while ∂
∂xi are linearly independent el-

ements of the tangent space. This implies that the dimension of the tan-
gent space is precisely n. The { ∂

∂xi }, form a basis, called a coordinate basis,
for the Tangent Space. A general tangent vector is therefore expressible as
X := Xi ∂

∂xi .

If we refer to another local coordinates yi, then any given tangent vector
is expressed as{

dxi

dt

}
∂

∂xi
=

{
dxi

dt

}{
∂yj

∂xi

}
∂

∂yj
=

{
dyj

dt

}
∂

∂yj
or,

Xi ∂

∂xi
= Xi

{
∂yj

∂xi

}
∂

∂yj
= Y j

∂

∂yj

We notice that if we have a set of quantities Xi which transform under coordi-

nate transformation as Xi → Y i = ∂yi

∂xjX
j , then the combination X := Xi ∂

∂xi

is independent of the coordinates.

Such quantities, Xi, are called components of a contravariant vector which
is an element of the tangent space, which is a vector space of dimension n.

Now, it is a general construction that given a vector space V , one defines
another vector space, called its Dual, V ∗, as the collection of linear functions
on V . That is, consider f : V → R such that f(a~u + b~v) = af(~u) + bf(~v).
The set of all such linear functions can be given a vector space structure in
an obvious manner: (a � f1 ⊕ b � f2)(~x) := af1(~x) + bf2(~x),∀ ~x ∈ V . If {~ei}
is a basis for V so that ~x = xi~ei, then f(~x) = xif(~ei) := xifi. All possible
elements of V ∗ are obtained by varying the {fi} and thus dimension of V ∗ is
the same as that of V . The tangent space is no exception and its dual is called
the Cotangent Space, T ∗p (M). A basis for T ∗p (M) dual to a coordinate basis

for Tp(M) is denoted as {dxi} and is defined by dxi( ∂
∂xj ) := δij . A general

element ω of the cotangent space, can be evaluated on a general element X
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of the tangent space as,

ω(X) = ωidx
i

(
Xj ∂

∂xj

)
= ωiX

i

Here, ωi are called the components of a cotangent vector, relative to the basis
{dxi}. Referring to another coordinate system leads to,

∴ ωiX
i = ω′iY

i = ω′i
∂yi

∂xj
Xj ⇒ ω′i =

∂xj

∂yi
ωj .

Thus, we deduce that the components of a cotangent vector transform as:

ωi → ω′i = ∂xj

∂yi ωj . The cotangent vectors themselves are invariant under a
coordinate transformation.

There is another natural construction given two vector spaces, U, V ,
namely to construct another vector space called their Tensor Product and
denoted as U ⊗ V . Its dimension is the product of the dimensions of the two
vector spaces. With the tangent and the cotangent spaces available, we can
construct arbitrary tensor product spaces from Tp(M) and T ∗p (M) and then
take their duals (linear functions). Elements of these duals are called Ten-
sors. As it stands, these definitions are phrased independent of any reference
to local coordinates. We will use an alternative but equivalent definition in
terms of ‘components’, as was illustrated for the tangent and cotangent spaces.
The coordinate independent definitions are given in section (14.6). Here is the
definition we use.

A set of quantities, T
i1i2...ip

j1j2...jq
(x) that transform under a coordinate

transformation xi → yi(x) as,

(T ′)i1i2...imj1j2...jn(y(x)) =

{
∂yi1

∂xm1

∂yi2

∂xm2
· · · ∂y

ip

∂xmp

}{
∂xn1

∂yjq
∂xn2

∂yjq
· · · ∂x

nq

∂yjq

}
× Tm1m2...mp

n1n2...nq (x)

are said to be components of a tensor of contravariant rank p and covariant
rank q. The arguments y, x are two different local coordinates of the same point
p ∈ M . These quantities are ‘born’ with a manifold and represent quantities
which have a coordinate independent meaning.

Being elements of a vector space, tensors of the same rank at a given point,
can be added and multiplied by real (or complex) numbers. From tensors of
different ranks, we can construct new tensors of higher ranks by multiplying
the components. This is the operation of tensor or outer product. We can
also equate one or more contravariant (upper) index pair-wise with covariant
(lower) indices on the same or different tensors resulting in reduction in both
the contravariant and the covariant ranks. This is called contraction or interior
products. Elements of tangent space correspond to rank (1,0) tensors while
those of the cotangent space correspond to rank (0,1). Functions are rank
(0,0) tensors and also referred to as scalars.
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Completely antisymmetric tensors of rank (0,k), 0 ≤ k ≤ n, are called k-
forms and for them another algebraic operation called wedge product is defined.
Its definition is included in the section 14.6.

This concludes the discussion of algebraic operations that can be performed
on tensors at each point of the manifold. We now proceed to tensor calculus,
in particular, differentiation.

14.4 Affine Connection and Curvature

To discuss notions of differentiation, we must first introduce Tensor Fields.
These are nothing but assignments of tensors of rank (p,q) to each point of the
manifold. This assignment is such that the tensor components with respect
to any coordinate basis are smooth i.e. partial derivatives of arbitrary order
of the tensor components exist everywhere. However, partial derivatives of
tensor fields are not tensors themselves in general!; the sole exception are the
tensors of rank (0,0).

To see this, consider a rank (1,0) tensor Ai(x). Consider its partial deriva-

tive, ∂Ai

∂xj . Under a coordinate transformation, we get,

∂A
′ i(y)

∂yj
=

∂xk

∂yj
∂

∂xk

(
∂yi

∂xl
Al(x)

)
=

∂xk

∂yj
∂yi

∂xl
∂Al

∂xk
+
∂xk

∂yj
∂2yi

∂xk∂xl
Al (14.3)

The first term in the last equality has the correct form for a tensor component,
the last term however is a spoiler. Had the transformations been at most linear,
this term would have been absent. This is why while discussing derivatives of
tensors with respect to Lorentz transformations, one does not face any issue.
We need to consider some modification of derivative to construct a tensor. The
reason is not hard to see. Taking derivatives involves taking difference of tensor
components at two nearby points, but the tensor algebra holds only point-wise.
This deficiency can be corrected by introducing an auxiliary quantity called
an Affine Connection, Γijk(x) whose transformation property is deduced as
follows.

Define a covariant derivative, ∇jAi := ∂Ai

∂xj +ΓijkA
k and demand that this

quantity transforms as a tensor of rank (1,1). This fixes the transformation of
the affine connection.

∇′jA
′ i :=

∂A
′ i(y)

∂yj
+ Γ

′i
jkA

′k

=
∂xk

∂yj
∂yi

∂xl
∂Al

∂xk
+
∂xk

∂yj
∂2yi

∂xk∂xl
Al + Γ

′i
jk

∂yk

∂xl
Al
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=
∂xk

∂yj
∂yi

∂xl

(
∂Al

∂xk
+ ΓlkmA

m

)
+[(

∂xk

∂yj
∂2yi

∂xk∂xm
+ Γ

′i
jk

∂yk

∂xm
− ∂xk

∂yj
∂yi

∂xl
Γlkm

)
Am
]

=
∂xk

∂yj
∂yi

∂xl
∇kAl + 0 (14.4)

Thus we deduce that,

Γ
′i
jk(y(x)) :=

∂yi

∂xl
∂xm

∂yj
∂xn

∂yk
Γlmn(x) +

∂yi

∂xl
∂2xl

∂yj∂yk
(14.5)

The affine connection transformation has a tensor-like piece (the first term)
which is homogeneous in the connection, but crucially has the inhomogeneous
or connection independent piece as well (the second term). This piece is sym-
metric in the lower indices. It then follows that the antisymmetric combina-
tion, T ijk := ΓIjk − ΓIkj actually transforms as a tensor of rank (1,2). This
is known as the Torsion tensor of the affine connection. For our purposes, we
will restrict to those affine connections which are symmetric in their lower
indices i.e. the torsion tensor vanishes. In the next section, the general affine
connection is considered.

Now, unlike a tensor, a (symmetric) connection can be made to vanish at
any chosen point. The proof is simple. Let xi be local coordinates around a
point p such that xi(p) = 0 (this is only for convenience). Consider a coor-
dinate transformation yi(x) := xi + 1

2a
i
jkx

jxk + o(x3). This implies that the

inverse transformation is xi(y) = yi − 1
2a
i
jky

jyk + o(y3). It follows,

Γ
′i
jk(y(0)) = δilδ

m
j δ

n
kΓlmn(0) + δil (−aljk).

By choosing the constants aijk = Γijk(0), the result follows.
By exactly analogous reasoning it can be checked that partial derivatives

of a scalar is a tensor of rank (0,1) without any affine connection modification
while for tensor of rank (0,1), affine connection term is needed. The definition:
∇jBi := ∂Bi

∂xj − ΓkjiBk constructs a tensor of rank (0,2).
What about covariant derivatives of other tensor fields? Observe that par-

tial derivatives of scalars are rank (0,1) tensors automatically. The affine con-
nection is needed to cancel-off the double derivatives of the coordinate trans-
formations, which appear index-by-index in a tensor transformation. Thus, we
must define covariant derivatives on higher rank tensors by adding an affine
connection term for each contravariant index and subtracting such a term for
each covariant index.

It follows that like the usual partial derivatives, the covariant derivatives
also act linearly and satisfy the Leibniz rule: ∇(AB) = A(∇B) + (∇A)B.
These basic properties are satisfied by all covariant derivatives i.e. for every
choice of an affine connection and there are infinitely many affine connections,
on a manifold.
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There is one crucial property of partial derivatives which is not shared by
a covariant derivative: covariant derivatives do not commute in general. Using
the notation, ∂

∂xi :=: ∂i, consider,

∇l∇kBj = ∂l(∇kBj)− Γmlk∇mBj − Γmlj∇kBm
=

{
∂l∂kBj − Γmkj∂lBm − Γmlk∂mBj − Γmlj∂kBm

}
+
{
−∂lΓnkj + ΓmljΓ

n
km + ΓmlkΓnmj

}
Bn (14.6)

∴ [∇l,∇k]Bj =
{
∂kΓilj − ∂lΓikj + ΓikmΓmlj − ΓilmΓmkj

}
Bi

or [∇l,∇k]Bj = −RijlkBi with (14.7)

Rijkl(Γ) := ∂kΓilj − ∂lΓikj + ΓikmΓmlj − ΓilmΓmkj (14.8)

The terms in the first braces, all involving derivatives of the tensor field,
and the last term in the second braces in eq. (14.6) are symmetric in k ↔ l
and hence drop out in the commutator of the covariant derivatives in the
next equation. Equation (14.7) is known as the ‘Ricci Identity’ and eq. (14.8)
defines the Riemann Curvature tensor.

Remarks:

• There is an alternative notation to denote partial and covariant deriva-
tives, namely, ∂jT ⇔ T , j and ∇jT ⇔ T ; j .

• It is straightforward to verify that

[∇l,∇k]Ai = +RijlkA
j

and the commutator on higher rank tensors goes index-by-index.

• From eq.(14.7), it is obvious that Rijkl is a tensor of rank (1,3) because
the left-hand side is a tensor of rank (0,3) and Bi is also a tensor of rank
(0,1). It is antisymmetric in the last two indices2.

• The Riemann tensor depends only on the affine connection and its
derivatives. While the Γ2 terms can be made to vanish at any point,
the derivatives cannot. So no coordinate transformation can make the
Riemann tensor vanish if it is non-zero to begin with. This also means
that vanishing of the Riemann tensor is a necessary condition for the
affine connection to vanish in a neighborhood.

Along with an affine connection are born the two tensors: the torsion
tensor and the Riemann curvature tensor. We have chosen the torsion to
be zero. The Ricci identity has an additional term for non-zero torsion.

• The Riemann tensor satisfies two important identities: the algebraic
cyclic identity

∑
(jkl)R

i
jkl = 0 and the differential Bianchi identity,∑

(klm)∇mRijkl = 0. Here
∑

(ijk) means sum over cyclic permutations
of the indices.

2There are different routes to defining the curvature and there are different conventions.
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• From the Riemann tensor on defines the Ricci Tensor, Rij := Rkikj
which will play a role later.

There are two important notions associated with an affine connection, that
of parallel transport and that of an affine geodesic. Consider a vector field Xi

and construct the differential operator X ·∇ := Xi∇i. Acting on an arbitrary
tensor, it produces another tensor of the same rank,

X ·∇T =
dxi

dt
∇iT =

dxi

dt
(∂iT ± connection terms) =

dT (xi(t))

dt
±dx

i

dt
×(Γ·T ).

So, X ·∇T = 0 is a first order differential equation which has a unique solution
given an initial condition T (x(0)). Thus, given a tensor T (p) at a point p and
a vector field Xi, we can determine a tensor along the integral curve of the
vector field.

Solution of X · ∇T‖ = 0 defines the notion of parallel transport of T (p)
along the vector field X.

Since tensor of any rank can be parallel transported along any vector field,
we can construct parallel transport of the vector field along itself, X ·∇Xi

‖ = 0.
In general, X‖ 6= X. The vector fields which do satisfy the equality define
integral curves which are called Affine Geodesics3. The explicit and perhaps
a bit familiar form of the equation for geodesic curves is:

X · ∇Xi = Xj∂jX
i + ΓijkX

jXk =
d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0.

We have used Xi = dxi

dt which defines integral curves of a vector field. The
curve is uniquely determined by giving the initial point p = x(0) and an initial

tangent ‘velocity’ dx
i

dt |0 = Xi(0).
The geodesics generalize the notion of ‘straight paths’ of the familiar Eu-

clidean geometry. Note that whether a given curve is a geodesic or not depends
on the affine connection used in the definition of the covariant derivative.

To summarize: In order to generalize the notion of differentiation to topo-
logical spaces, we need to introduce a differential structure on the topological
space which turns it into a manifold. A manifold naturally leads to invariant
quantities called tensors of ranks (p,q). In order to have derivatives of tensor
fields to be tensors, we needed to equip the manifold with an affine connec-
tion which immediately lead to the notions of torsion, Riemann Tensor, Ricci
tensor and affine geodesics4.

3There is a slightly general definition of affine geodesics, namely, that X‖ ∝ X which

implies X ·∇Xi = ξXi. However by re-parametrizing the integral curves, this can be reduced
to the equation X ·∇Xi = 0. Our geodesics are strictly speaking affinely parametrized affine
geodesics.

4There are other notions of derivatives producing tensors e.g. the Lie derivative which
uses mappings of manifold but no other structure. Consequently it does not lead to new
geometrical structures over and above what is provided by a manifold. Likewise, for k-forms,
there is the notion of exterior derivative. Again, while very useful, it does not lead to new
structures.
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In the next section we introduce the metric tensor and make contact with
general relativity.

14.5 Metric Tensor and Pseudo–Riemannian Geometry

Consider a symmetric, rank (0,2) tensor field, gij(x) on a manifold M . At
any given point, it is a real symmetric matrix and so can be diagonalized. By
making scaling coordinate transformations, the diagonal elements can be made
±1 i.e. by coordinate transformations we can always arrange to have, at one
point, g′ij = ηij := ηiδij , ηi = ±1, 0. Let n+, n−, n0 be the number of positive,
negative and zero values of the ηi. These numbers are characteristic of the
matrix gij and do not change with coordinate transformations. If the tensor is
smooth (and hence continuous), then on any connected piece of the manifold,
these numbers cannot vary from point to point and hence are characteristic
of the tensor field itself.

If n0 = 0, the matrix gij is invertible (or non-degenerate and its inverse
is denoted by gij , gijgjk = δik. We will refer to a non-degenerate, symmetric
tensor of rank (0,2) as a metric tensor. Its inverse is a tensor of rank (2,0)
and is called the inverse metric. The n− is called the index of the metric,
(n+ − n−) is called the signature of the metric. A manifold with a metric is
called a (pseudo-)Riemannian manifold.

The metric tensors with index(g) = 0 are called Riemannian Metrics and
the others are generically called pseudo–Riemannian. Signature ±(n−2) met-
rics are called Lorentzian. We deal with Lorentzian metrics only and choose
our conventions so that n+ = n−1, n− = 1. Not all manifold admit Lorentzian
metrics, the next section gives basic existence results.

Availability of a metric (and its inverse) allows us to convert contravariant
tensors to covariant ones and vice-a-versa - in short it allows raising and
lowering of indices. For instance, we can define Rijkl := gimR

m
jkl and also the

Ricci Scalar, R := gijRij . More important for us is the next property:
There is unique symmetric affine connection such that covariant deriva-

tive of the metric vanishes. This unique connection is called the Riemann–
Christoffel connection. It is given explicitly by,

Γijk(g) :=
1

2
gil (glj,k + glk,j − gjk,l) . (14.9)

To obtain this, write the defining equation ∇kgij = 0 three times by cyclically
permuting the indices; add two of these equations and subtract the third one.
Remember to use the property that the affine connection is symmetric. The
more general case of non-zero torsion is given in the next section.

The Riemann tensor of the Riemann–Christoffel connection has further
additional properties, (a) Rijkl is also anti-symmetric in the first two indices;
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(b) Rijkl is symmetric under exchange of the first pair of indices with the
second pair; (c) the Ricci tensor is symmetric and (iv) the Einstein Tensor,
Gij := Rij − 1

2Rgij satisfies ∇jGij = 0, by virtue of the Bianchi identity. The
symmetry properties also allow us to determine the independent components
of Riemann tensor (for n-dimensional manifolds) as, n2(n2 − 1)/12. These
properties are summarized in the next (summary) section.

Apart from raising and lowering indices, the metric tensor also allows us to
define a notion of ‘length’ for tensors. For examples we can define the ‘norm’
of a vector field Xi by ||X||2 := gijX

iXj and similarly for higher rank tensors
with one factor of the metric for each index. For Riemannian metrics, these
are really norms - are positive semi-definite. For Lorentzian metrics, these
could be positive, negative or even null. The corresponding vector field is then
called Time-like, Space-like and Light-like (or null) respectively. The covariant
constancy of the metric (also called the metric compatibility condition on
the affine connection), implies that the norm of a geodesic tangent vector is
preserved and more generally, ‘inner products’ of parallelly transported tensors
are preserved along the vector field.

The result that a symmetric affine connection can be made to vanish at a
point also applies to the Riemann–Christoffel connection and now it implies
that the first derivatives of the metric can be made to vanish at a point. Since
we can always choose coordinates so that a metric can be taken to be the
Minkowski metric, diag(- 1, 1, 1, . . . , 1), it follows that in a sufficiently small
neighborhood of any point, there exist coordinates such that the metric is the
Minkowski metric up-to first order coordinate variations. Notice that the ‘size’
of this neighborhood is controlled by the curvature tensor.

14.6 Summary of Differential Geometry

This is a summary of basic definitions which also serves to state some of
the conventions5. We consider only real manifolds and the Einstein summation
convention is used throughout.

1. A Chart (uα, φα) around a point p ∈ M means that p ∈ uα and φα
gives local coordinates around p : φα(p)↔ (x1(p), x2(p), · · · , xn(p)).

2. An Atlas is a collection of compatible charts such that the uα provide
an open cover of underlying topological space and compatibility refers
to coordinate transformations for overlapping uα, uβ being differentiable
(C∞) with a differentiable inverse.

3. Equivalence classes of Atlases with respect to the compatibility relation
defines Differentiable Structures.

5In the main text, we have n = 4 and Torsion = 0.
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4. By a Manifold we will always mean a connected, locally connected,
Hausdorff topological space with a C∞ structure of dimension n; typi-
cally denoted by M.

It is taken to be oriented i.e. the Jacobian determinant of the coordinate
transformations in all overlapping charts is positive.

5. A Differentiable Function f : M → R means that f(xi) is a differen-
tiable (C∞) function of the n variables which are the local coordinates.

6. A Differentiable Curve γ on M means a map γ : (a, b) → M ↔
(x1(t), · · · , xn(t)) ∈ γ, t ∈ (a, b) and xi(t) are differentiable functions of
the single variable t.

7. A Tangent Vector to M at p is an operator, d
dt |γ associated with

every smooth curve γ through p, which maps smooth functions on M
to real numbers by the expression:

d

dt
f |γ := lim

ε→0

f(γ(ε))− f(γ(0) = p)

ε
=

dxi(t)

dt
|γ

∂

∂xi
f .

The set of all tangent vectors is naturally a vector space of dimension n
and is called the Tangent Space. It is denoted by Tp(M).

Every chart (i.e. local coordinate system) around p gives a natural basis
for Tp(M), namely,

{
∂
∂x1 , · · · , ∂

∂xn

}
and is called a coordinate basis. A

generic basis is denoted by {Ea, a = 1, · · · , n}.

8. The vector space Dual to Tp(M) is called the Cotangent Space
and is denoted by T ∗p (M). The basis dual to

{
∂
∂xi

}
is denoted as{

dx1, · · · , dxn
}

and satisfies, dxi(∂j) = δij . Likewise, the basis dual to a
generic basis {Ea} is denoted by {Ea} and satisfies, Ea(Eb) = δab .

9. Given the tangent and the cotangent spaces at p, Tp(M), T ∗p (M) one
defines tensor products of these as:

(Πs
r)p :=

T ∗p ⊗ · · · ⊗ T ∗p︸ ︷︷ ︸ ⊗ Tp ⊗ · · · ⊗ Tp︸ ︷︷ ︸
r-factors s-factors

This is a vector space of dimension (n)r+s and its elements are ordered
(r + s)−tuples:

(ω1, · · · , ωr, X1, · · · , Xs) ∈ (Πs
r)p ⇔ ωi ∈ T ∗p and Xj ∈ Tp .

A Tensor of rank (r, s) at p ∈ M is a real valued function T :
(Πs

r)p → R which is linear in each of its arguments. r is called the
contravariant rank and s is called the covariant rank. Evidently, a tensor
of rank (r, s) is an element of the vector space dual to (Πs

r)p. The dual
vector space is denoted as Trs.
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Given a basis Ea of Tp and its dual basis Ea of T ∗p , one defines basis
tensors,

Ea1···ar
b1,···,bs := Ea1 ⊗ · · ·Ear ⊗ Eb1 ⊗ · · ·Ebs

such that

Ea1···ar
b1,···,bs(Ec1 , · · · , Ecr , Ed1 , · · · , Eds) := δc1a1 · · · δ

bs
ds

A generic tensor is then expanded as:

T =
∑

T a1···ar b1···bsEa1···ar
b1,···,bs ⇐⇒

T a1···ar b1···bs = T (Ea1 , · · · , Ear , Eb1 , · · · , Ebs)

The T a1···ar b1···bs are the components of the tensor. When specialized to
coordinate bases, they have the familiar transformation under a change
of local coordinates:

(T ′)i1···ir j1···js(x
′) =

∂(x′)i1

∂xm1
· · · ∂(x′)ir

∂xmr
∂xn1

∂(x′)j1
· · · ∂x

ns

∂(x′)js
×

(T )m1···mr
n1···ns(x)

The vector space structure takes care of the operations of addition of
tensors and of scalar multiplication.

There are three more common operations: tensor (or outer) product,
interior product and contractions. These are defined as,

Tensor Product (Outer Product):

(T1 × T2)(ω1, · · · , ωr1 , ωr1+1, · · · , ωr1+r2 ;

X1, · · · , Xs1 , Xs1+1, · · · , Xs1+s2)

:= T1(ω1, · · · , ωr1 ;X1, · · · , Xs1)×
T2(ωr1+1, · · · , ωr1+r2 ;Xs1+1, · · · , Xs1+s2)

In terms of components:

(T1 × T2)a1···ar1ar1+1···ar1+r2 b1···bs1bs1+1···bs1+s2
:=

(T1)a1···ar1 b1···bs1 (T2)ar1+1···ar1+r2 bs1+1···bs1+s2

Interior Products: There are two of these, one with an element X of
the tangent space and one with an element ω of the cotangent space.

(iXT )(ω1, · · · , ωr;X1, · · · , Xs−1) := T (ω1, · · · , ωr;X,X1, · · · , Xs−1) ⇔

(iXT )a1,···,ar b1,···,bs−1
:= Xb (T )a1,···,ar b,b1,···,bs−1

(iωT )(ω1, · · · , ωr−1;X1, · · · , Xs) := T (ω, ω1, · · · , ωr−1;X1, · · · , Xs) ⇔
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(iωT )a1,···,ar−1
b1,···,bs := ωa (T )a,a1,···,ar−1

b1,···,bs

Contraction:

T (ω1, · · · , ωr−1;X1, · · · , Xs−1) :=

T (ω1, · · · , Ea, · · · , ωr−1;X1, · · · , Ea, · · · , Xs−1) ⇔
T a1,···,ar−1

b1,···,bs−1
:= T a1,···,c,···,ar−1

b1,···,c,···,bs−1

10. A tensor of rank (0, k) is called a k-form if it satisfies:

T (X1, · · · , Xi, · · · , Xj , · · · , Xk) = −T (X1, · · · , Xj , · · · , Xi, · · · , Xk) ∀ i, j

These are completely antisymmetric covariant tensors of rank k. Evi-
dently, 0 ≤ k ≤ n must hold.

Given any tensor of rank (0, k) we can always construct a k-form by the
process of antisymmetrization:

(anti T )(X1, · · · , Xk) :=
1

k!

∑
σ∈Sk

sign(σ) T (Xσ(1), · · · , Xσ(k)) ⇔

(anti T )a1,···,ak :=
1

k!

∑
σ∈Sk

sign(σ) Taσ(1),···,aσ(k) := T[a1,···,ak]

The space all k-forms is a vector space, denoted as Λk and has the
dimension nCk.

Denote by Λ the direct sum of all of these Λk : Λ =
∑n
k=0 ⊕Λk.

On Λ one defines the Exterior (or Wedge) Product. Let ω be a p-
form and η be q-form such that p + q ≤ n. Then we define the wedge
product of these to be the (p + q)-form, denoted as ω ∧ η, by,

ω ∧ η :=
(p+ q)!

p!q!
anti [ω ⊗ η]

In terms of components,

(ω ∧ η)a1,···,ap+q =
(p+ q)!

p!q!
ω[a1,···,ap ηap+1,···,ap+q ]

=
1

p!q!

∑
σ∈Sp+q

sign(σ) ωaσ(1),···,aσ(p) ηaσ(p+1),···,aσ(p+q)

These definitions, in particular the normalization factors, imply:

(ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ) Associativity of wedge product

ω ∧ η = (−1)pqη ∧ ω Commutation property

This takes care of the basic Tensor Algebra that we need.
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11. Exterior Differentiation: The exterior differentiation is defined for
k-forms to produce a (k + 1)-form. It is defined as:

d : Λk → Λk+1 , k = 0, 1, · · · , n such that

(i) for f ∈ Λ0, d(f) := df ∈ Λ1 is given by, df(X) = X(f) ∀X ∈ Tp(M).

In local coordinates, df = ∂f
∂xi dx

i . This is called the differential of f .

(ii) For ω of higher ranks, express it in terms of its expansion in a
coordinate basis,

ω = ω[i1,···,ik]dx
i1 ∧ · · · ∧ dxik , i1 < i2 < · · · < ik

=
1

k!
ω[i1,···,ik]dx

i1 ∧ · · · ∧ dxik , unrestricted sum over the i’s,

its exterior derivative is then defined by,

dω = (dω[i1,···,ik]) ∧ dxi1 ∧ · · · ∧ dxik , i1 < i2 < · · · < ik ,

dω[i1,···,ik] =

n∑
ik+1=1

(
∂ω[i1,···,ik]

∂xik+1

)
dxik+1 ∈ Λ1.

Alternatively, the components of dω are also given by,

(dω)i1···ik+1
= (k + 1)∂[i1ωi2···ik+1]

Some of its basic properties are:

(a) The exterior differentiation is obviously a linear operation.

(b) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη ∀ ω ∈ Λp, η ∈ Λq.

Due to the presence of sign factor, this is called the anti-derivation
property.

(c) d2ω = 0 ∀ ω ∈ Λ (Nil-Potency property).

(d) If d′ is any other map from Λk → Λk+1 satisfying linearity, anti-
derivation, nil-potency and the action on functions producing their
differential, then such a map coincides with the exterior differen-
tiation defined above. In other words, the four properties uniquely
characterize exterior differentiation.

(e) ω ∈ Λk is called a Closed Form if dω = 0 and it is called an
Exact Form if it can be expressed as ω = dξ, where ξ ∈ Λk−1.
Clearly, every exact form is closed but the converse need not be
true.

Denote: Zk := the (vector) space of all closed k-forms (dω =
0, ∀ p ∈ M) and Bk := the vector space of all exact k-forms,
Bk ⊂ Zk. Define Hk := Zk/Bk, i.e. the space of all closed forms
modulo exact forms. This vector space is called the kth Cohomol-
ogy Class of M . For compact manifolds, its dimension is finite,
bk := dimHk, and is called the kth Betti Number of the manifold.
This number turns out to be a Topological Invariant.
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(f) Poincare Lemma: Every closed form is locally (i.e. in a con-
tractible neighborhood) is exact. In particular, Rn being con-
tractible, all closed forms are exact and hence all its Betti numbers
are zero.

12. Levi–Civita Symbol Ei1···in :

Ei1···in :=


1 if i1 · · · in is an even permutation

of (1 · · ·n)
− 1 if i1 · · · in is an odd permutation

of (1 · · ·n)
0 otherwise.

This allows us to write,

dx1 ∧ · · · ∧ dxn =
1

n!
Ei1···indxi1 ∧ · · · ∧ dxin etc.

For any non-singular matrix J ij , we have the useful relation,

(det J)(J−1) k1i1
. . . (J−1) kmim Ek1...kmim+1...in

= J
km+1

im+1
. . . J kn

in
Ei1...imkm+1...kn ∀ 0 ≤ m ≤ n .

For m = 0, it is just the definition of a determinant.

13. Volume Form, Orientation, Densities: Recall that Λn is one dimen-
sional. A non-zero n-form ω ∈ Λn at p, is said to be a Volume Element
at p. Two volume elements are said to be equivalent if ω2 = λω1 , λ > 0.
This is an equivalence relation and has exactly two equivalence classes
which are called Orientations on Λn. The n-form ω := E1 ∧ · · · ∧ En
always defines a volume element.

A basis {Ea} for Tp(M) is said to be Positively Oriented with respect to
[ω] if ω(E1, · · · , En) > 0.

An n-form field µ on M is said to be Volume Form on M if µ(p) 6=
0, ∀ p ∈M .

Volume forms provide an alternative definition of orientability. M is said
to be orientable if it admits a volume form and is said to be oriented
if a particular choice of volume form has been made. This definition of
orientability is equivalent to the one given in terms of the sign of the
Jacobian determinant of coordinate transformations in the overlapping
charts.

For a volume form µ, let its coordinate component µi1...in := v(x)Ei1...in .
Under a coordinate transformation x→ x′ and the definition µ′i1...in :=

v′(x′)Ei1...in , we get that v′(x′) = det
(
∂x
∂x′

)
v(x).
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It is easy to see that T̃i1...im := Ei1...imim+1...inT
im+1...in transforms

as a tensor of rank (0, m) with an additional factor of det
(
∂x
∂x′

)
. Such

quantities are called tensor densities of weight 1, rank (0, m).

We could like wise define Levi–Civita symbol with upper indices (nota-
tional convenience only) and construct tensor densities of rank (m, 0)
with weight -1. As an aside, we note that had we allowed orientation
reversing transformations as well, then the additional factor could be
either the Jacobian determinant or its absolute value. The tensor densi-
ties transform by the absolute value of the Jacobian determinant while
those which transform by the determinant are called pseudo-tensors.

14. Integration: Integration on a manifold is a generalization of the Rie-
mann integral of functions of N variables over bounded domains of
RN . The crucial property of these integrals is their invariance under
the change of variables. On a manifold, using charts, we can import
the Riemann integral onto an open set of the manifold. The change of
chart induces a change of variables in the local integration and unless
the Jacobian determinant of the coordinate transformations is cancelled
against an inverse Jacobian coming for the integrand, we cannot have
the integral to be chart independent. The only entity on a manifold that
has such a property is the component of an n-form as noted above.

Thus, to define an oriented integral of an n-form ω, on an oriented
n-manifold, choose an atlas and on each of its charts, define∫

uα

ω :=

∫
φα(uα)

dnx ω1...n(x) ,

where the right-hand side is the Riemann (or Lebesgue) integral over a
domain in Rnand the coordinate basis is positively oriented.

In the overlap of charts, the two expressions will match thanks to the
Jacobian determinant being cancelled by its inverse coming from the
component of ω. Thus on n-dimensional manifolds only n-forms can be
integrated meaningfully. These are locally given by,∫

M

ω :=

∫
dx1 ∧ · · · ∧ dxn ω1···n :=

∑
i

∫
φi(ui)

dnx ω1···n .

Technically, in order to make sense of the sum, the manifold is required
to be paracompact [17]. (This property is also needed of existence of
metric tensor).

Since the sole component of an n-form can also be viewed as scalar
density of weight 1, an equivalent statement is that the integrand must
be a scalar density one object for its integral to be well defined.

15. Stoke’s Theorem: This arises in the context of a manifold with bound-
ary. To define a manifold with boundary, we go back to the definition



Mathematical Background 219

of a chart and allow the φα to map uα into open sets of 1
2Rn. The ‘1/2

Rn’ is defined by the restriction x1 ≤ 0 (say). Thus x1 = 0 hyperplane
is the boundary of 1

2Rn and is itself a manifold of dimension (n − 1).
The set of points of uα which are mapped to points in the boundary
of Oα ⊂ 1

2Rn, constitute the boundary points of uα. To define a mani-
fold with boundary, we consider atlases which include charts which have
boundary points. Defining compatible atlases etc., we arrive at the def-
inition of a manifold, M , with boundary. The boundary ∂M consists of
the boundary points of the charts with boundaries. ∂M in turn is a (n
- 1) dimensional manifold without boundary.

If M is an oriented manifold, then there is a volume form µ, defin-
ing its orientation. Since ∂M is a submanifold of M , at points on the
boundary, Tp(∂M) is an n − 1 dimensional subspace of Tp(M). Let
X1, . . . , Xn−1 be a basis for Tp(∂M). Let Y ∈ Tp(M) be linearly inde-
pendent from the X ′s. Since X ′s are also in Tp(M), we can choose Y to
be such that µ(Y,X1, . . . , Xn−1) > 0 and define µind(X1, . . . , Xn−1) :=
µ(Y,X1, . . . , Xn−1). This defines a volume form on ∂M and the corre-
sponding orientation on the boundary is called the induced orientation
on the boundary. With these definitions, we have the Stoke’s theorem,∫

M

dη =

∫
∂M

η ,

where η is an (n− 1) form.

This theorem plays a role in the conservation laws discussed in the text.

16. Mapping of Manifolds: Let M,N be two manifolds of dimensions
m,n, respectively. Let φ : M → N be a map which is smooth i.e.
locally, φ is represented as (x1, . . . , xm) → (y1, . . . , yn) such that the
functions yα(xi) are smooth. Such a map allows us to push-forward
and pull-back tensors defined on the two manifolds. For example, given
f : N → R, we define its pull-back, (φ∗f)(p) := f(φ(p)), a func-
tion on M . Locally, (φ∗f)(x) = f(y = φ(x)). From this we define
a push-forward of a tangent vector X ∈ Tp(M) to a tangent vector
φ∗X ∈ Tφ(p)N as: [φ∗X](f)|φ(p) := X(φ∗(f))|p ∀ p ∈ M . Locally,

(φ∗X)α(φ(p)) = ∂yα

∂xi |pX
i(p). This in turn allows us to pull-back co-

tangent vector ω ∈ T ∗φ(p)(N) to a co-tangent vector (φ∗ω) ∈ T ∗p (M),

as: (φ∗ω)(X) := ω(φ∗X) ∀ X ∈ Tp(M) and locally, (φ∗ω)i(p) :=
∂yα

∂xi |pωα(φ(p)). This generalizes to tensors of higher ranks with con-
travariant rank tensors pushed forward while covariant rank tensors
pulled-back. Also, the corresponding ranks are preserved in these maps.
Mixed rank tensors have no such natural relation.

When φ is a diffeomorphism (m = n), its inverse is also a diffeomorphism
and using both of these we can either push forward all tensors or pull
back all tensors. We can consider continuous families of diffeomorphisms
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and consider their infinitesimal forms. Since we can have a tensor at a
point p, and a tensor at a point q, pulled back to p, we can take their
difference, divide by the infinitesimal parameter and take the limit of
vanishing parameter to define the Lie derivative of the tensor: LXT |p :=
limε→0 ε

−1(φ∗εT −T ). Here the one parameter family of diffeomorphisms
is taken to generate a vector field X. In the next item we give the
algebraic form of the definition. This notion plays a role in defining
symmetries of specific tensor fields. Thus if a diffeomorphism φ leaves a
metric tensor invariant i.e. (φ∗g)(p) = g(p), the diffeomorphism is said
to be an isometry.

17. Lie Differentiation: This is defined by using diffeomorphisms gener-
ated by vector fields, Xi∂i (locally: xi → (x′)i := xi + εXi(x)). Ab-
stractly, for each smooth vector field X on M , it is defined as a map
LX : Trs → Trs satisfying the following properties:

(a) It is linear;

(b) LXf := X(f) ∀ f : M → R;

(c) LX Y := [X,Y ] ∀ vector fields Y on M ;

(d) LX(S ⊗ T ) := (LXS)⊗ T + S ⊗ LXT ). In particular,

LX(〈ω, Y 〉) := 〈LXω, Y 〉+〈ω,LXY 〉, ∀ ω, 1-forms and ∀ Y, vector
fields, on M . We have used: 〈ω,X〉 := ω(X).

The corresponding local expressions are:

(a) LXf = Xi ∂
∂xi f(x);

(b) LXY =
[
Xj ∂Y i

∂xj − Y
j ∂Xi

∂xj

]
∂
∂xi ;

(c) LXω =
[
ωj

∂Xj

∂xi +Xj ∂ωi
∂xj

]
dxi;

(d) More generally, one can show:

LXω = iXdω + d(iXω), ∀ ω ∈ Λk, k = 0, · · · , n; It follows that
dLXω = LXdω, i.e. the Lie-derivative and the exterior derivatives
commute.

18. Covariant Differentiation: Let X,Y, · · · denote smooth vector fields
on M and let S, T, · · · denote tensor fields of rank (r, s). Let ∇X : Trs →
Trs denote a family of maps, labelled by vector fields X, satisfying the
following properties:

(a) ∇X is linear;

(b) ∇X(f) := X(f) ∀ f : M → R ;

(c) ∇fX+gY (T ) = f∇X(T ) + g∇Y (T ) ∀ functions f, g and vector
fields X,Y ;
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(d) ∇X(S ⊗ T ) = (∇XS)⊗ T + S ⊗ (∇XT ) and in particular,

∇X〈ω, Y 〉 = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉 ;

∇XT is called a Covariant derivative of T with respect to X.

Note: This is similar to the definition of the Lie derivative. It differs cru-
cially in the property (18c). Also, while Lie derivative of vector fields is
specified as part of its definition, there is no such stipulation for covariant
derivative. These differences allow several different covariant derivatives
to be defined. Given a family ∇X satisfying the above properties, one
can define a map ∇ : Trs → Trs+1 by,

(∇T )(η1, · · · , ηr;X,X1, · · · , Xs) := (∇XT )(η1, · · · , ηr;X1, · · · , Xs)

This map ∇ is well defined provided ∇X satisfies the property (18c).

The freedom in the possible maps ∇X is parametrized (locally) by an
Affine Connection, Γ, introduced via the covariant derivatives of vec-
tor fields Ea:

∇EbEc := Γa bcEa, ∇∂j∂k := Γi jk∂i

Note that the right-hand sides in the above equations being vector fields
they are expressed as linear combinations of the basis vector fields and
the expansion coefficients are the ‘components’ of the affine connection.

Changing to a different coordinate basis and using the definition of the
corresponding components, the transformation law for the components
of the affine connection can be deduced and it can be verified that that
the affine connection is not a tensor.

The familiar ‘semicolon notation’ for covariant derivatives is obtained as
follows. For a (contravariant) vector field, A := Ai∂i denote: ∇∂iA :=
Aj ;i∂j .

∇∂i(Aj∂j) = (∇∂iAj)∂j +Aj∇∂i∂j =⇒
Ak ;i∂k = (∂iA

j)∂j +AjΓk ij∂k =⇒
Ak ;i = Ak ,i + Γk ijA

j The usual definition.

Exercise: For a 1-form field B := Bidx
i, denote ∇∂iB := Bj ;idx

j and
show that Bk ;i = Bk ,i − Γj ikBj .

Watch out for the position of the lower indices since Γ is not necessarily
symmetric in these.

19. Parallel Transport and Affine Geodesics: We have defined covari-
ant derivative of a tensor field T , along a vector field X, as ∇XT . Let
X = Xi∂i in some coordinate neighborhood around a point p. Let γ be
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an integral curve of X through p, i.e. around p, Xi(γ(t)) = dxi(t)
dt . Then,

∇XT = ∇Xi∂iT = Xi∇∂iT, Denote: ∇i := ∇∂i
= Xi∇iT := X · ∇T

=
dxi

dt
∇iT

=
dxi

dt
(∂iT ± connection terms.)

=
dT (xi(t))

dt
± dxi

dt
times connection terms.

Therefore, if ∇XT ( = X · ∇T ) = 0, then we get a first order, ordi-
nary differential equation for T (xi(t)). This always has a solution in a
sufficiently small neighborhood t ∈ (−ε, ε) and the solution is uniquely
determined by giving the initial value; T (p). Therefore, given a tensor
at p and a vector field X, we can determine a tensor along an integral
curve of X through p. The tensor so determined is called a Tensor par-
allelly transported along γ. Notice that this is determined by the
connection.

What is parallel about it? If the connection vanished, then the parallelly
transported tensor just equals the tensor at p i.e. is ‘parallel’ in the
intuitive sense (has the same components).

Thus, by definition, a tensor parallelly transported along X satisfies:
X ·∇T|| = 0. A non-zero covariant derivative thus measures the deviation
from ‘parallality’.

Such parallelly transported tensors are defined for arbitrary rank. In
particular, one can consider parallel transport of X along itself. In gen-
eral, this will not be equal to the vector field itself, X|| � X. However,
for special cases of vector fields we may actually find X · ∇X = 0. The
integral curves of such a vector field are called (Affinely parametrized)
Affine Geodesics. If we allow X to satisfy X · ∇X ∝ X, then integral
curves of such vector fields are called Geodesic!non-affinely parametrized
affine geodesics.

Although an affine connection is not a tensor, one can construct two
natural tensors from it and its derivatives.

20. The Torsion Tensor: Given an affine connection (or covariant deriva-
tive) via ∇X (or ∇), one naturally defines the Torsion Tensor T as:

T (ω,X, Y ) := 〈 ω,∇XY −∇YX − [X,Y ] 〉 ∀ ω,X, Y.

Clearly, this is a tensor of rank (1, 2) and is manifestly antisymmet-
ric in its covariant rank arguments. To show that this is well de-
fined (i.e. does define a tensor) one has to show: T (fω, gX, hY ) =
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fghT (ω,X, Y ) ∀ functionsf, g, h. The stipulated properties of ∇X
are crucial for this proof.

It follows that T i jk := T (dxi, ∂j , ∂k) = Γi jk − Γi kj .

An affine connection is said to Symmetric if its Torsion tensor is zero.

For a symmetric connection,

LXY = [X,Y ] = ∇XY −∇YX ⇔ (LXY )i = XjY i ;j − Y jXi
;j .

21. The Riemann Curvature Tensor and the Ricci Tensor: Given
an affine connection one naturally defines another tensor of rank (1, 3),
called the Riemann Curvature Tensor as:

R(ω,Z,X, Y ) := 〈 ω,∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z 〉 ∀ ω,X, Y, Z.

It follows that Ri jkl := R(dxi, ∂j , ∂k, ∂l) are given by,

Ri jkl = ∂kΓi lj − ∂lΓi kj + Γi kmΓm lj − Γi lmΓm kj

The definition is independent of the torsion being zero or non-zero.

The Ricci Tensor is a tensor of rank (0,2) and is defined as:

R(X,Y ) := R(Ea, X,Ea, Y ) ⇔ Rij := Rk ikj .

22. Cartan Structural Equations: The definitions associated with an
affine connection imply certain relations which can be conveniently used
as alternative definitions of the curvature and the torsion tensors relative
to an arbitrary basis. To see this recall (and define) for generic bases,
Ea, E

a:

∇EbEc := Γa bcEa ; [Eb, Ec] := Ca bcEa ;

Ea b := Γa cbE
c (Connection 1-forms);

T a bc := T (E1, Eb, Ec)

= Γa bc − Γa cb − Ca bc;
Ra bcd := R(Ea, Eb, Ec, Ed)

= Ec(Γ
a
db)− Ed(Γa cb) + Γa cfΓf db

−Γa dfΓf cb − Γa fbC
f
cd;

T a :=
1

2
T a bcE

b ∧ Ec; Torsion 2-forms

Ra b :=
1

2
Ra bcdE

c ∧ Ed Curvature 2-forms.
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These definitions imply the relations:

dEa = −Ea b ∧ Eb +
1

2
T a bcE

b ∧ Ec

dEa b = −Ea c ∧ Ec b +
1

2
Ra bcdE

c ∧ Ed

These are rewritten as (the Cartan Structural Equations):

T a = dEa + Ea bEb;
Ra b = dEa b + Ea c ∧ Ec b

In the previous items, the connection, the torsion and the Riemann
curvature have been defined in a manifestly coordinate (or basis) inde-
pendent manner. If an arbitrary basis is used and components relative
to this are obtained, then these must satisfy the Cartan structural equa-
tions.

In practice, these are also used to compute the connection 1-forms and
curvature 2-forms especially when the torsion vanishes. The structural
equations immediately imply the two well known identities: the cyclic
identity and the Bianchi identity by simply taking the exterior derivative
of these equations.

23. The Cyclic Identity:

dT a = 0 + dEa b ∧ Eb − Ea b ∧ dEb

= (Ra b − Ea c ∧ Ec b) ∧ Eb − Ea b ∧ (T b − Eb c ∧ Ec)
= Ra b ∧ Eb − Ea b ∧ T b

Specializing to coordinate bases and using the explicit definitions of
wedge products, covariant derivatives etc., the above relation in terms
of forms is equivalent to:∑

(jkl)

Ri jkl =
∑
(jkl)

T i jk;l +
∑
(jkl)

T i mjT
m
kl

The (jkl) denotes sum over cyclic permutations of the indices.

The right-hand side is zero for a symmetric connection and is the more
familiar form of the cyclic identity.

24. The Bianchi Identity:

dRa b = 0 + dEa c ∧ Ec b − Ea c ∧ dEc b
= (Ra c − Ea d ∧ Ed c) ∧ Ec b − Ea c ∧ (Rc b − Ec d ∧ Ed b)
= Ra c ∧ Ec b − Ea c ∧Rc b
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In coordinate bases, this is equivalent to:∑
(klm)

Ri jkl;m =
∑

(klm)

Ri jknT
n
lm

Again the right-hand side vanishes for symmetric connection and is the
more familiar form of the Bianchi identity.

25. The Ricci Identities: There is another set of identities known as the
Ricci identities which are usually given in component form relative to
coordinate bases. In a local approach, these are also used to define the
curvature tensor. These are obtained by evaluating double covariant
derivatives on an arbitrary tensor and antisymmetrizing.

Recall that covariant derivative of a tensor is tensor and so is its double
covariant derivative. However, only for an antisymmetric combination,
the result has a term independent of derivatives of the tensor and a term
involving a covariant derivative of the tensor. The coefficients involve the
curvature and the torsion tensors respectively.

Using the definitions: ∇iBj := ∂iBj − Γk ijBk and ∇iAj := ∂iA
j +

Γj ikA
k it follows that,

(∇l∇k −∇k∇l)Ai = +Ri jlkA
j − T j lk ∇jAi

(∇l∇k −∇k∇l)Bj = −Ri jlkBi − T i lk ∇iBj .

These extend to arbitrary rank tensors in an obvious manner (index-by-
index).

26. Implications of Curvature and Torsion:

(a) An infinitesimal parallelogram with all sides being geodesics exists
iff the Torsion tensor vanishes.

(b) A tensor field T satisfying ∇XT = 0 exists throughout a neigh-
borhood up iff the Riemann tensor vanishes in the neighborhood.
Riemann = 0 is thus an integrability condition for a parallelly trans-
ported tensor field to be definable in a neighborhood.

(c) A tensor field, parallelly transported along a closed (and con-
tractible) loop equals the original tensor iff the Riemann tensor
vanishes.

Therefore, in general, geodesics which begin as parallel do not re-
main so subsequently. Curvature is thus a measure of geodesic de-
viation. See item (32).

Notice that we have got all the notions of geodesics, curvature etc. with-
out introducing any metric tensor.
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27. The Metric Tensor: A symmetric tensor field g of type (0, 2) is called a
Metric Tensor field on the manifold. This is of course to be distinguished
from the (metric = ) distance function introduced while motivating the
definition of topology.

At any point p, we can define a symmetric Matrix, gab := g(Ea, Eb) by
choosing a basis for the tangent space. This can always be diagonalized
by a real linear, orthogonal basis transformation and by scaling the basis
vectors (or local coordinates in case of coordinate basis) can be further
brought to a form:

g(ei, ej) = ηij = ηiδij , ηi = ±1, 0 .

Let n±, n0 be the number of positive, negative and zero values of
ηi, n = n+ + n− + n0. These numbers are characteristic of the ma-
trix i.e. are independent of the initial basis chosen to obtain the matrix.
Furthermore, on a connected manifold and smooth metric tensor, these
numbers cannot change from point-to-point and are thus characteristic
of the metric tensor itself.

The metric tensor g is said to be Non-degenerate if n0 = 0. In this
case, one can define a smooth tensor field, g−1 of the rank (2, 0) such
that at every point, gab := g−1(Ea, Eb) satisfies, gab = gba, gacgcb = δab .
g−1 is naturally called the Inverse Metric Tensor. In practice, one
does not use a separate symbol for the inverse metric, it is inferred from
the index positions.

n− is called the Index of g, ind(g) while n+ − n− is called the Sig-
nature of g, sig(g).

For the case of ind(g) = 0, the metric is said to Riemannian; otherwise
it is generically called Pseudo–Riemannian. When the signature is
±(n − 2), the metric is said to be Lorentzian. In our convention, the
signature is (n− 2) i.e. n− = 1 and n+ = n− 1.

Basic existence results: [18]

(a) Any paracompact manifold admits a Riemannian metric;

(b) Any non-compact, paracompact manifold admits a Lorentzian met-
ric;

(c) A compact manifold admits a Lorentzian metric iff its Euler char-
acter, χ(M) :=

∑n
k=0(−1)kbk, is zero.

28. Weyl, Diffeomorphism and Conformal Equivalences and Isome-
tries: There are many different notions of equivalence in use. These are:

(a) Two metrics g1, g2 are said to be Weyl equivalent if g2 = eΦg1 for
some smooth Φ : M → R.
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(b) Two metrics g1, g2 are said to be Diffeomorphism equivalent if g2 =
φ∗g1 for some diffeomorphism φ : M → M and φ∗ denotes the
corresponding pull-back map.

(c) Two metrics g1, g2 are said to be Conformally equivalent if there
exists a diffeomorphism φ : M → M such that g2 = eΨ(φ∗g1) for
some smooth function Ψ : M → R.

(d) A diffeomorphism φ : M →M is said to be an Isometry of a metric
g, if φ∗g = g. Likewise, it said to be a Conformal Isometry of g if
φ∗g = eΨg for some smooth Ψ : M → R.

29. Extra Operations Available Due to a Metric Tensor: A non-
degenerate metric gives us both gab and gab which sets up a canonical
isomorphism between the tangent and the cotangent spaces which ex-
tends to tensors of higher ranks through the operations of raising and
lowering of indices.

(a) A non-degenerate metric determines a unique affine connection
through the compatibility condition, ∇kgij = 0 ∀ i, j, k:

Γk ij =

{
1

2
gkl (glj,i + gli,j − gij,l)

}
−1

2

{
gimT

m
jng

nk + gjmT
m
ing

nk
}

+
1

2
T k ij

For the zero-torsion case, the connection is given only by the first
term and is called the Riemann–Christoffel Connection or the met-
ric connection. It is given completely in terms of the metric. This
is the connection used in general relativity.

All the definitions of curvature etc. are immediately applicable for
this special connection. However, in addition now one can also de-
fine the Ricci scalar R := gijRij .

Because of the vanishing torsion and availability of raising and low-
ering of indices, the Riemann tensor has further properties under
interchange of its indices. These are summarized in the item 30.

(b) Invariant Volume Form:

From transformation of the metric it follows that
√
|detgij | trans-

forms as, √
|detg′ij | =

(
det

∂x

∂x′

)√
|detgij |

Hence, on a (pseudo-)Riemannian manifold we have a natural ten-
sor density of weight 1, namely the

√
|detg|.

This also gives a canonical volume form, µg :=
√
|detgij |dx1∧· · ·∧

dxn which is a volume form (since the metric is non-degenerate) and
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is invariant under coordinate transformations. Notationally this In-
variant Volume Form is also denoted as

µg :=
√
|detgij |dx1 ∧ · · · ∧ dxn :=

√
g dnx .

We also define the Levi-Civita densities of weights 1 and -1 respec-
tively as,

εi1...in :=
√
|g|Ei1...in , εi1...in :=

1√
|g|
E i1...in

(c) Hodge Isomorphism: On Λk, the space of k-forms, define an inner
product (or pairing) as,

(ω, η)|p =
1

k!
ωi1···ikη

i1···ik |p , ηi1···ik := gi1j1 · · · gikjkηi1···ik .

It is obvious (ω, η) = (η, ω) (symmetry) and (ω, η) = 0 ∀ η ⇒ ω = 0
(non-degeneracy).

The Hodge Isomorphism (or Hodge * operator) is defined as:
∗ : Λk → Λn−k such that

α ∧ (∗β) := (α, β)µg ∀ α ∈ Λk

It follows,

α ∧ ∗β = β ∧ ∗α ;

∗ ∗ β = (−1)index(g) (−1)k(n−k) β;

(∗α, ∗β) = (−1)index(g)(α, β) .

The local expressions for components of ∗β:

(∗β)i1···in−k =
1

k!
(−1)k(n−k)εi1···in−kj1···jkβ

j1···jk

(d) Co-differential: On k-form fields we defined the exterior differential
d : Λk → Λk+1. With a non-degenerate metric tensor available, the
Co-Differential δ is defined as: δ : Λk → Λk−1,

δω := (−1)index(g)(−1)nk+n+1 ∗ d ∗ ω .

On a k−form,

(δω)i1,···,ik−1
:= (−1)kgij∇iωi1,···,ik−1,j = − gij∇iωj,i1,···,ik−1

where ∇ is the torsion-free, metric compatible, covariant derivative
(it could be replaced by ∂i due to anti-symmtrisation).
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It follows that δ2ω = 0 ∀ ω ∈ Λ.

ω is said to be Co-closed if δω = 0;

It is Co-exact if it can be written as ω = δξ , ξ ∈ Λk+1;

It is said to be Harmonic if it is both closed and co-closed,
dω = 0 = δω.

Using the Exterior differential and the co-differential one defines
the Laplacian Operator on k-forms as, ∆ := dδ + δd. Evidently it
maps k-forms to k-forms.

(e) On the space of smooth k-form fields one defines a bilinear, sym-
metric, non-degenerate quadratic form:

〈ω|η〉 :=

∫
M

ω ∧ ∗η =
1

k!

∫
M

ωi1···ikη
i1···ik√gdnx .

For Riemannian manifolds without boundary,

〈ω|δη〉 = 〈dω|η〉 .

For the case of a Riemannian metric, index(g) = 0, the d and δ are
Adjoints of each other and the Laplacian is ‘Self-Adjoint’ (for suit-
able boundary conditions). One can then also write an orthogonal
decomposition, the Hodge Decomposition, for any k-form as:

ω = α+ dβ + γ , dα = 0 , dγ = 0 = δγ .

30. Number of Independent Components of the Riemann Tensor
for the Metric Connection (without Torsion): Availability of met-
ric tensor allows us to define Rijkl := gimR

m
jkl. Use of the Riemann–

Christoffel connection, which implies zero torsion, simplifies many ex-
pressions. These are summarized as:

Rijkl = −Rijlk From definition ;∑
(jkl)

Rijkl = 0 Cyclic identity;

∑
(klm)

Rijkl;m = 0 Bianchi identity;

(∇k∇l −∇l∇k)T i1···im j1···jn = +

m∑
σ=1

Riσ jklT
i1···j···im

j1···jn

+

n∑
σ=1

Ri jσklT
i1···im

j1···i···jn

(Ricci identity)
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Further Symmetry Properties:

Rijkl = −Rjikl Rijkl = Rklij , Rij = Rji

R := gijRji The Ricci Scalar

Gij := Rij −
1

2
Rgij The Einstein Tensor

∇jGij = 0 Contracted Bianchi identity

The calculation of the number independent components the Riemann
tensor is slightly tricky due to the various symmetries and the cyclic
identities.

Given (ijkl) consider sub-cases (i) two of the indices are equal, e.g. Rijil
with i 6= j, i 6= l, and j 6= l (ii) two pairs of indices are equal e.g.
Rijij and (iii) all indices are unequal. For the first two sub-cases, the
cyclic identities give no conditions (are trivially satisfied). The number of

components in case (i) is n(n−1)
2 × (n− 2). For the case (ii), the number

is n(n−1)
2 . For the case (iii) a priori we have n(n − 1)(n − 2)(n − 3).

Since i ↔ j, k ↔ l, (ij) ↔ (kl) are the same components we divide
by 2 · 2 · 2 = 8. The cyclic identity is non-trivial and allows one term
to be eliminated in favor of the other two. This gives the number to
be 2

3
1
8n(n − 1)(n − 2)(n − 3). Thus, the total number of independent

components is given by,

n(n− 1)(n− 2)

2
+
n(n− 1)

2
+

1

12
n(n−1)(n−2)(n−3) =

n2(n2 − 1)

12
.

For n = 2, the number of independent components is just 1 and the
Riemann tensor is explicitly expressible as:

Rijkl =
R

2
(gikgjl − gjkgil) .

For n = 3, the number of independent components is 6 and equals the
number of independent components of the Ricci tensor. One can express,

Rijkl = (gikRjl − gjkRil − gilRjk + gjlRik)− 1

2
R(gikgjl − gjkgil) .

For n ≥ 4, the number of independent components of the Riemann
tensor is larger than those of the Ricci tensor plus the Ricci scalar.
Hence in these cases, the Riemann tensor cannot be expressed in terms
of R,Rij , gij alone. We need the ‘fully traceless’ Weyl or Conformal
tensor.

31. The Weyl tensor: This is a combination of the Riemann tensor, the
Ricci tensor, the Ricci scalar and the metric tensor which vanishes when
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any pair of indices is ‘traced’ over by the metric (contracted by the
metric). It is given by,

Cijkl := Rijkl −
1

n− 2
(gikRjl − gjkRil − gilRjk + gjlRik)

+
1

(n− 1)(n− 2)
(gikgjl − gjkRil) .

32. Geodesic Deviation—Relative Acceleration: In the following the
connection is a metric connection.

Consider a smooth, 1-parameter family of affinely parametrized
geodesics, γ(t, s) so that for each fixed ŝ in some interval, γ(t, ŝ) is a
geodesic. Smoothness of such a family means that there is a map from
(t, s) ∈ I1× I2 into M and this map is smooth. Let this map be denoted
locally as xi(t, s).

We naturally obtain two vector fields tangential to the embedded 2-

surface: ui(s, t) := ∂xi(s,t)
∂t and Xi(s, t) := ∂xi(s,t)

∂s . The former is tangent
to a geodesic and hence u · ∇xi = 0. The latter is called a generic
deviation vector. From the smoothness of the family (i.e. existence of
two-dimensional embedded surface) it follows that [∂t, ∂s] = 0 and this
translates into (for torsion free connection) X · ∇ui = u · ∇Xi.

Claim: By an s-dependent affine transformation of t one can ensure that
X · ∇u2 = 0.

Corollary: u2 is independent of t, s and u ·X is a function of s alone.

Claim: For non-null geodesics u2 6= 0, it is possible to make a further
affine transformation to arrange u ·X = 0.

In other words, for a family of time-like or space-like geodesics it is
possible to arrange the parameterization such that the deviation vector
is orthogonal to the geodesic tangents. One defines:

Xi, X · u = 0 the Displacement vector;

vi := u · ∇Xi the Relative Velocity;

ai := u · ∇vi the Relative Acceleration.

By contrast, for any curve, Y · ∇Y i is called the Absolute Acceleration.

It follows:

ai = uj∇j(uk∇kXi) = u · ∇(X · ∇ui) ([X,u] = 0) (14.10)

= Xju · ∇(∇jui) + (∇jui)u · ∇Xj

= Xjuk∇k∇jui + (∇jui)X · ∇uj

= Xjuk∇j∇kui −Ri kjlukXjul + (X · ∇uj)∇jui

= (X · ∇)(u · ∇ui)−Ri kjlukXjul Or,

ai = −Ri jklujXkul the Deviation Equation. (14.11)



232 General Relativity: Basics and Beyond

14.7 Theorems on Initial Value Problem

We list here a set of theorems from [17] for the convenience of a self-
contained reading.

Initial value problem is the manner in which we are accustomed to thinking
from the experience in particle mechanics which is governed by ordinary dif-
ferential equations. Partial differential equations in (t, x1, . . . , xn) introduces
new features - the initial data consists of functions of xi’s which is a ‘infinite
amount of data’. So some regularity properties need to be stipulated on the
initial data and these have to be preserved by the evolution in t. When we
have equations from relativistic theories (finite speed of propagation of infor-
mation), the initial data should influence only the data in its ‘forward light
cone’ while the evolved data should have correlations induced from its past
light cone only. If a solution is exist and is uniquely determined, we also need
to have the well-posedness property: the solution (evolved data) depends con-
tinuously on the initial data in a suitable sense. With these in mind, we list
the theorems.

Cauchy–Kowalewski theorem: This applies for partial differential equations
in n+ 1 variables, (t, x1, . . . , xn), which are of the forms,

∂tφa(t, xi) = Fa(t, xi ; φb, ∂tφb ; ∂iφb, ∂
2
ijφb) , a, b = 1, . . . ,m. (14.12)

where the Fa’s are analytic functions of their arguments. Let fa(xj), ga(xj)
be two analytic functions.

Theorem 14.1 (Cauchy–Kowalewski)
There exist an open neighborhood of a hypersurface Σ0 and a

unique, analytic solution of the equation (14.12) such that φa(t0, x
j) =

fa(xj) , ∂tφa(t0, x
j) = ga(xj).

While existence and uniqueness for analytic data is assured by the theo-
rem, it does not assure the well-posedness property for any choice of reasonable
topology [17]. The requirement of analytic data means that initial data cannot
be changed even in a small neighborhood on Σ0 without affecting the data ev-
erywhere. So to formulate a notion of causal propagation, we need to relax the
analyticity requirement. However, for smooth data, the Cauchy–Kowalewski
analysis does not prove even existence.

An example where we do have local existence, uniqueness, causal propaga-
tion and well-posedness is the massive Klein–Gordon equation in Minkowski
space-time: (∂2

t −∂2
i +m2)φ = 0. Firstly, thanks to the background Minkowski

space-time, we do have the notion of relativistic causality. We also have the
domains of dependences of subsets of space-like hypersurfaces. The proof of
the properties uses the conservation of the stress-tensor, the existence of time
translation Killing vector and the fact that the stress tensor satisfies the
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dominant energy condition. First it is established that if for a given smooth
data on a portion S0 ⊂ Σ0 solutions exists in the domain of dependence
D+(S0)∩J−(Σ1) where Σ1 is another constant t-hypersurface in the future of
Σ0, then the solution is unique. The same step also establishes that a change
in the initial data outside S0, cannot affect the solution within D+(S0). Next,
using Sobolev norms, the property of well-posedness is established. Finally,
using the continuity property, existence of a smooth solution is proved. The
details crucially use the linear nature of the equation and the Lorentzian na-
ture of the metric which makes it a wave equation. For a Euclidean metric we
have an elliptic equation and it does not have well-posedness property.

The next generalization is to a general hyperbolic equation on a globally
hyperbolic space-time. Let (M, g) be a globally hyperbolic space-time. A sec-
ond order, linear partial differential equation is said to be hyperbolic iff it can
be expressed in the form,

gµν∇µ∇νφ+Aµ∇µφ+Bφ+ C = 0 . (14.13)

This has well-posed initial value formulation for initial data (φ, nµ∇µφ) on
any smooth, space-like Cauchy surface Σ. Here, ∇ is any derivative operator
on the space-time, nµ is normal to the Cauchy surface and the coefficients
g,A,B,C are all smooth. While it is not possible to construct a conserved
stress tensor satisfying dominant energy condition, it is possible to construct
a ‘stress tensor’ satisfying the dominant energy condition with a non-zero but
bounded divergence and this suffices to construct a proof.

This is further generalized to a system of linear, second order, hyperbolic
equations with weaker differentiability requirements [18].

The final generalization relevant for us is a theorem of Leray.
A system of m, second order, partial differential equations for m unknowns

φa, on a manifold M is said to be quasi-linear, diagonal, second order, hyper-
bolic system if it can be put in the form,

gµν(x;φb,∇αφb) ∇µ∇νφa = Fa(x;φb,∇αφb) , (14.14)

where g is a smooth Lorentzian metric on M and Fa are smooth functions of
its arguments.

Theorem 14.2 (Main Theorem)
Let φ0

a be any solution of (14.14) and let gµν0 := gµν(x;φ0
a,∇αφ0

a). Suppose,
(M, gµν0 ) is globally hyperbolic. Let Σ be a smooth Cauchy surface for this
space-time. The the initial value formulation for the equation is well-posed in
the sense:

For initial data, sufficiently close to the initial data for the solution φ0
a (in-

duced on Σ), there exist an open neighborhood O ⊃ Σ, such that the equation
system has a solution φa in O with (O, gµν(x;φa,∇αφa)) being globally hy-
perbolic. The solution is unique and propagates causally i.e. if the initial data
for two solutions φ′a and φa coincide on S ⊂ Σ, then the solutions coincide
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on O ∩D+(S). Finally, the solution depends continuously on the initial data
in the same sense as it does for the Klein–Gordon equation [17, 18].

The theorem guarantees existence, uniqueness, causal propagation and
well-posedness only for initial data close (in a suitable sense) to the initial
data induced by a solution given to exist. This is used in establishing exis-
tence, uniqueness and well-posedness property for the Einstein equation in
the main text.

14.8 Petrov Classification

The non-trivial vacuum solutions have non-zero Weyl tensor. So a classi-
fication of such solutions is naturally done in terms of the algebraic classifi-
cation of the Weyl tensor. At any point in the space-time, the Weyl tensor
C ρσ
µν can be viewd as a 6 × 6 matrix acting on the space of 2-forms which

is six-dimensional. Any square matrix has a Jordan canonical form such that
the number of Jordan blocks and their dimensions are uniquely determined.
Giving a list of the dimensions of the Jordan blocks goes under the name
of Segre classification. Special to four-dimensions is the split of the (com-
plexified) vector space of 2-forms into self-dual and anti-self-dual subspaces
which are three-dimensional and the Segre classification can be applied to the
three-dimensional complex matrix representing the Weyl tensor. This results
in the Petrov classification. There are several alternative ways of obtaining
a classification which are discussed and summarized in the thesis of Carlos
Batista [153]. A method which is convenient and at the same time also shows
a simplification of the Weyl tensor, is based on the use of null tetrad and their
behaviour under Lorentz transformations [29].

We introduced null tetrad in the context of gravitational waves while
describing their helicities. Given an arbitrary choice of a null tetrad
(`, n,m, m̄), ` · n = −1 , m · m̄ = 1, the Weyl Scalars are defined as,

Ψ0 = Cµνρσ`
µmν`ρmσ , Ψ1 = Cµνρσ`

µnν`ρmσ

Ψ2 = Cµνρσ`
µmνm̄ρnσ , Ψ3 = Cµνρσ`

µnνm̄ρnσ

Ψ4 = Cµνρσn
µm̄νnρm̄σ , All are complex. (14.15)

While these are scalars under general coordinate transformations, they change
under Lorentz transformations which transform one null tetrad into another
one. The Lorentz transformations are grouped into three classes: (i) those
which leave ` invariant (one complex parameter a), (ii) those which leave n
invariant (one complex parameter b) and (iii) those which scale `, n by λ, λ−1

and rotate m, m̄ by e±iθ respectively. The idea of the classification is to see
which and how many of these scalars can be made zero by a suitable choice of
the null tetrad.
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Starting with a non-zero Ψ4 (if necessary by making a class (i) transforma-
tion), consider a general class (ii) transformation which leaves Ψ4 invariant.
Under this,

Ψ′0(b) = Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4 (14.16)

Ψ′1(b) =
1

4

dΨ′0
db

, Ψ′2(b) =
1

3

dΨ′1
db

, Ψ′3(b) =
1

2

dΨ′2
db

. (14.17)

The highest order polynomial in b is the Ψ′0. It can always be set to zero by
maximally 4 transformations of class (ii). If bi is a root, then the transformed
`, `′ := b∗m + bm̄ + b∗bn is called a Principal Null Direction (PND) of the
Weyl tensor. Clearly, there exist at least one PND (unless Weyl tensor is
zero) and at the most 4 PNDs. Having found a PND, we can look for further
transformations which will make additional scalars zero without affecting the
previously arranged values. The classification results from the way the roots
of the equation Ψ′0(b) = 0, coincide or be distinct. This is discussed in detail
in [29] and we will just summarize the results.

Type Distinct PNDs and Roots Vanishing Weyl Scalars

I 4 (Algebraically general) Ψ0 = Ψ4 = 0
II 3 (One double root) Ψ0 = Ψ1 = Ψ4 = 0
D 2 (Two double roots) Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0
III 2 (One triple root) Ψ0 = Ψ1 = Ψ2 = Ψ4 = 0
N 1 (One quadruple root) Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0
O 0 (Conformally flat) Weyl tensor vanishes.

As examples, we note that all known black hole solutions are of Type D,
the gravitational radiation is of Type N while the FLRW space-time (non-
vacuum) is of Type O. Further examples may be found in [154].
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The primary focus of this book has been to appreciate the wide class of phe-
nomena contained within classical general relativity. The mere extension from
the Minkowskian space-time of special relativity to an arbitrary Lorentzian
space-time, introduces the new feature of gravitational frequency shift and
clock rates. Although tiny, these are large enough to affect the accuracy of
the global positioning systems. The tiny effect of ‘bending of light’ is large
enough to reveal gravitational lensing by galaxies. The possibility of space-
time geometry being changeable, accommodates an expanding universe which
is one of the key ingredients in the precipitation of different matter species and
formation of structures. In all these, the specific Einstein equation provides
the quantitative control on relating the geometry and the matter distribution.
Although GR plays a marginal role in the properties of stable stars, it does
predict the possibility of a complete gravitational collapse thereby suggesting
existence of black holes (or a naked singularity). The brand new phenomenon
of gravitational radiation generates a further instability in binary systems.
The scales of the phenomena range from the planetary to the cosmological.
Surprisingly, in the very early universe, when the length scales get closer to the
Planck scale, the theory itself suggests its inadequacy. The book has discussed
these aspects.

There are several other topics which are left out - some due to the space
and time bounds on the book and some by choice. A topic of practical appli-
cations is the post-Newtonian formalism and its cousins. Relatively recently,
effective field theory methods have been developed for application to motion
of extended bodies and the gravitational radiation. These are more specialized
and important computational tools and I would have liked to introduce them
at the same level as numerical relativity. Another topic left out is the com-
plete gravitational collapse including the critical phenomena first discovered
by Choptuik in the spherically symmetric gravitational collapse of massless
scalar field. The initial data is divided in two regions: one corresponding to
collapse to a black hole and the other to a dispersal. There are universal crit-
ical exponents as the boundary is approached and the boundary solution has
naked singularity. These could not be included due to the space and time
constraints.

I have left out the various action formulations and the ensuing canonical
forms. These have been and are important in the formal structure of GR

237
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especially as a preparation to its quantization. That is a shift from the main
focus of the book which I felt is beyond the scope of the book.

This is a good place for a pause.
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