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Preface

The theory of Special Relativity was undoubtedly one of the most
outstanding achievements of 20th century physics, and the year
2005 marks the 100th anniversary of Ein-stein’s original publica-
tion. In this book I try to explain Special Relativity to an audience
of non-expert readers. There are, in my opinion, very few areas in
fundamental physics where insights of tremendous depth can be
gained by comparatively simple methods, Special Relativity being
one of them.

More specifically, I address the following four questions: How
did Special Relativity originate? What are its central statements?
What are its most significant applications? What is its present
experimental status?

Any author speaking to a wider audience on a subject of this
nature must be careful to keep the mathematical formalism to a
minimum; formulae are often therefore replaced by text or dia-
grams. On the reader’s side this will require, above all, a degree of
patience and the desire to understand. I have made no attempts to
replace Special Relativity by an easier caricature of itself. Rather, I
have followed the dictum often attributed to Einstein: ‘Make things
as simple as possible, but no simpler’.

To be more precise, the required level of mathematical profi-
ciency is that of a well educated 16 year old. I use elementary
algebra, geometry, and trigonometry; the exponential function
appearing just once. Elementary calculus (i.e. integration and dif-
ferentiation) is not required to understand any of the displayed
formulae, but in some rare cases it has been more or less implicitly
used in their derivation.
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The objectives of my presentation are fourfold: To be faithful
regarding the foundations; to be up to date, especially regarding
the experimental status; to be compact; and, as previously men-
tioned, to be accessible to the non-expert. Even though there is a
vast literature on the subject of Special Relativity, I believe only few
texts exist which attempt to meet these challenges simultaneously.
It is clearly a matter of compromise. Whether I found the right
balance is for the reader to decide.

Last, but not least, I wish to thank Oxford University Press for
their excellent cooperation and, in particular, Sönke Adlung for his
enthusiasm for this project.

Freiburg, November 2004 Domenico Giulini
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Origin and significance of
Special Relativity

The year 1905 is commonly known as Einstein’s miraculous year.
In that year, the just 26 year old patent clerk Albert Einstein
(1879–1955)—at this time still a scientific nobody—published five
seminal papers in the prestigious German physics journal Annalen
der Physik, each of which had a major impact on the future develop-
ment of physics. (A book containing all five papers in English trans-
lation appeared a few years ago [1], now also available as an e-Book.)

In the first paper he proposed his light-quantum hypothesis and
used it to explain the photoelectric effect, which brought him the
Nobel prize for the year 1921 (received in 1922). Out of the five
papers from that year, this is the only one which Einstein himself
explicitly ranked as ‘very revolutionary’. The second paper was his
PhD thesis, in which he derived an analytical relation between the
true size of the molecules of a dissolved substance and the viscos-
ity of the solution. Due to its various applications, in particular in
petrochemistry, this paper led the citation list of all Einstein papers,
at least until the 1980s. The third paper deals with the statistical the-
ory of heat, which Einstein had independently developed and which
he used here to explain the phenomenologically well established,
but theoretically poorly understood, Brownian motion as statistical
fluctuation phenomenon. (By ‘Brownian motion’ one understands
the irregular jittering motion of microscopically small particles in
liquid suspensions.) This lent decisive observational evidence to the
statistical theory of heat, which at that time was still fairly controver-
sial due to its fundamentally atomistic approach. The fourth paper
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carries the title ‘On the Electrodynamics of Moving Bodies’ and
contains essentially what we now call Special Relativity, henceforth
simply abbreviated to ‘SR’. Finally, the fifth paper is an addendum
to the fourth and contains on less than three printed pages the deriv-
ation of probably the most famous formula of physics: E = mc2.

SR is a theoretical framework and not so much a theory of
a well defined domain of phenomena, though it owes its exist-
ence to such a theory, as is already apparent from the original
title given above. The electrodynamics of moving bodies was one
of the big issues in experimental as well as theoretical physics
of the late 19th and early 20th century, which found itself increas-
ingly entangled in difficulties, up to plain inconsistencies, until
Einstein cut the Gordian Knot in a surprising fashion. Despite the
indubitable ingenuity of Einstein’s solution, it would be quite inap-
propriate to assign all credits for this development to him alone.
Retrospectively, SR seems palpably close in 1905, after all the pre-
liminary works of Voigt, Hertz, FitzGerald, Lorentz, Larmor, and
Poincaré. But apparently it needed an unprejudiced newcomer to
take the final step. This step did not consist in a still more refined
improvement on that part of the theory which connects to the phe-
nomena, but rather in a fundamental scrutinization of apparently
well established notions concerning space and time, like ‘distance’,
‘duration’, and ‘simultaneity’.

Since all physical processes take place in space and time, the
revision of space-time concepts initiated by Einstein eventually
affects all of physics. Hence, even though SR owes its existence
to specific issues in electrodynamics, it is not logically tied to it.
Except for gravity, which is described by General Relativity, all fun-
damental interactions—electromagnetism, the strong or nuclear
interaction, and the weak interaction—are nowadays described by
theories which obey the axioms of SR. In particular this is true for
the so called ‘Standard Model’ of elementary particles, in which all
interactions but gravity are mathematically combined. Without SR
modern high-energy particle physics would be unthinkable.

But not only in particle physics, which is somewhat remote
from everyday experience, is SR of fundamental importance. For
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example, the modern technologies of geodesy and navigational
systems are essentially based upon the principles of SR, in partic-
ular upon the universality of the velocity of light. By this one means
that the velocity of light measured by an observer is independent of
the state of motion of either the source or the observer. A modern
example is given by the satellite-based navigational system GPS
(Global Positioning System), which allows the determination of
one’s position from the travel-times of electromagnetic signals sent
out by the satellites. The universality of the velocity of light is cru-
cial in order to unambiguously convert these times into lengths
and hence positions. It can hardly be overstressed in what a fun-
damental fashion this universality contradicts the firmest views on
space-time measurements taken upto and into the 20th century:
How can a propagation process have unchanging velocity, even if
one approaches or flees it at arbitrary speeds?

For us, whose intuitive understanding of space-time relations
have been developed and trained in everyday life, certain results
of SR have undeniably certain paradoxical aspects to it. Here we
wish to strictly distinguish between ‘paradoxical’, meaning ‘being
against a held opinion’, and ‘contradictory’ in the logical sense: SR
does not contain any logical inconsistencies; it just doesn’t concur
with all our expectations, which are based on extrapolations. Phys-
ically this situation arises due to the almost fantastic magnitude of
the velocity of light, whose exact value in units of kilometre (km)
per second (s) is given by

c = 299 792.458 km/s. (1.1)

(The exactness being simply due to the fact that since 1983 the ‘kilo-
metre’ is defined in terms of the ‘second’ and the stated value for c.)
This enormous velocity is far bigger than all velocities of material
bodies we encounter in daily life. Indeed, up to the astronomical
measurements of the second half of the 17th century, it was even
undecided whether light might not propagate instantaneously, i.e.
with infinite speed. And it required the much refined experimental
technology of the 19th century to allow measurements of the speed
of light over terrestrial distances. It is therefore absolutely sufficient



4 Origin and significance of Special Relativity

for our daily life to approximate this velocity by infinity. The click
of the switch of a torch and the visual impression of its entire light
cone are, to a very good approximation, simultaneous events. But,
as we will see, the actual finiteness of the speed of light and its rôle
as an upper limit for all signal velocities enforces a deep revision of
our intuitive notions concerning space-time relations. In particu-
lar, the notion of simultaneity of spatially separated events needs to
be revised in order for it to make any operational sense in situations
where the velocities involved are no longer negligible compared to
the velocity of light. At this point it is important to keep in mind
that this revision was born out of a real crisis in the foundations
of physics, which emerged from experimental facts on one hand
and the theoretical notions and their relations on the other. Up to
now the space-time concepts of SR have proved extremely useful
in understanding physical processes in the absence of gravitational
effects. In this realm SR has passed the modern precision test with
much bravura and shows no signs so far of any deviations.
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Historical developments

2.1 The dualistic concept of matter in the
19th century

In 1687 Isaac Newton’s (1643–1727) Philosophiae Naturalis Principia
Mathematica, nowadays simply called ‘The Principia’, appeared in
print in London. In this monumental work, which influenced the
physical discipline of mechanics like no other ever since, Newton
laid down a physical theory in mathematical terms which allowed
him to describe the motion of heavenly bodies within the very same
formalism as terrestrial motions. Quite generally, Newton speaks
of ‘bodies’, which eventually one has to think of as being built from
infinitely small, infinitely tough, and never changing parts, which
themselves are taken to require no further explanation. With this
concept of ‘point masses’, as they are now called, Newtonian mech-
anics is able to reduce the motion of complex configurations of such
point masses to their simple laws of motion, taking into account the
forces between them. A simple though somewhat idealized hypo-
thesis for such mutual forces leads to the notion of the ‘rigid body’,
in which each point mass is held in constant position relative to
the others, even if external forces are applied. The spatial config-
uration of such an ideal rigid body is fully characterized by just six
numbers, three for the position of some preferred point of it, like
e.g. the centre of mass, and three for the rotational freedom about
this point. Clearly such a concept is really to be thought of as an
approximation, which is valid as long as the external forces (e.g.
gravitational forces) which might act on the extended body are of a
much smaller strength than the binding forces which keep the point
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masses in place (e.g. electrostatic forces). Otherwise the body will
deform and eventually disintegrate. This reductionist programme
proves extremely useful and leads to an immense wealth of applica-
tions, covering the dynamics of a bicycle and planetary motions
alike. So if one asks to what material entities Newtonian mechanics
is in principle applicable, the answer will be that everything quali-
fies that can be thought of as being composed of such elementary
point masses. If one adopts the viewpoint of naive atomism, one
might even conjecture all physical phenomena to be eventually
reducible to the laws of mechanics.

Really all? Newton also investigated optical phenomena and
ventured some hypotheses on the nature of light and its laws
of propagation and interaction with matter (in his ‘Opticks’ from
1704). But he was not able to formulate a consistent system of
concepts and laws comparable to his Principia. In fact, Newton
assumed light to also consist of particles which could be acted
upon by forces, like the gravitational force (which Newton thought
could explain the phenomenon of refraction). But this particle the-
ory of light was overturned in the 19th century in favour of the
competing notion of light as a wave. This was essentially due to
the wonderful experiments of Thomas Young (1773–1823), which
proved unambiguously that light interferes, that is, that superposi-
tions of light beams not only result in enhancements of intensities,
but sometimes also in attenuations or even total cancellations.
This phenomenon cannot be explained within a particle theory, in
which superpositions of particle beams will clearly always result
in enhancements of local particle densities.

But if light is a wave, that is, a propagating oscillation process,
one must ask what it is that is oscillating there. In analogy to
water waves on the surface of a lake, in which the water molecules
oscillate vertically in space, light should correspond to the oscilla-
tion of some hypothetical medium which was termed the ‘ether’.
This ‘ether’ should then be able to penetrate all materials in which
light can propagate, like e.g. water or glass which, after all, have
quite a significant density. Moreover, it has been known since the
measurements of the Danish astronomer Ole Rømer (1644–1710),
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performed in the years 1672–76, that the velocity of light is given
by an enormous value, which Rømer first quoted as 220 000 kilo-
metres per second, which is 3/4 of the exact value (1.1) that we
know today and which lies pretty close to 300 000 kilometres per
second. This extreme value already makes it clear that the analogy
between light waves on one hand and waves of deformations of an
elastic material on the other will meet substantial difficulties. It is
known that the speed of elastic waves grows proportional to the
square-root with the strength of the material. As a consequence,
the ether’s mechanical strength would come out quite fantastic-
ally, far beyond that of any known material. On the other hand,
as already mentioned, the ether was at the same time required to
easily penetrate other material and cause no hindrance to planetary
motions. Obviously these requirements do not seem to fit together
very well.

In spite of these incompatible properties people maintained the
idea of an ether of some sort, albeit without any underlying phys-
ical understanding of it. In the absence of any consistent theory of
the ether, not only did the wave theory of light seem to be without
physical basis, but also it seemed incomprehensible how forces
could act over large spatial distances without the assumption of
some medium that could physically mediate actions of force. New-
ton, too, was convinced that such a medium must exist, despite the
fact that he made no such suggestions in his Principia, where he
merely described the precise actions (at a distance) of gravitational
forces without contemplating any mechanisms of their transport.
But Newton was more frank in his letters. A wonderful passage
in one of this famous letters to Robert Bentley, dated February 25

1692/3, reads as follows [2]:

Tis unconceivable that inanimate brute matter should (without ye mediation of
something else wch is not material) operate upon & affect other matter wthout
mutual contact; as it must if gravitation in the sense of Epicurus be essential &
inherent in it. And this is one reason why I desired you would not ascribe innate
gravity to me. That gravity should be innate inherent & essential to matter so
yt one body may act upon another at a distance through a vacuum wthout



8 Historical developments

the mediation of any thing else by & through wch their action of force may be
conveyed from one to another is to me so great an absurdity that I believe no
man who has in philosophical matters any competent faculty of thinking can
ever fall into it.

Clearly, the same could be said of electric forces, which were much
studied at the end of the 18th century by the French physicist
Charles Augustin de Coulomb (1736–1806), who proposed a force
law for electric point charges—nowadays known as Coulomb’s
law—in full analogy to Newton’s gravitational law.

In 1873 a comprehensive and powerful theory for all electro-
magnetic phenomena was published by the Scotsman James Clerk
Maxwell (1831–1879), who was guided by the more intuitive ideas
of the English chemist and experimental physicist Michael Faraday
(1791–1867). In order to describe spatial distributions of actions of
force Faraday developed the idea of ‘field lines’, which he separ-
ately associated to electric and magnetic actions. At the beginning
this might have just been a trick to visualize the spatial distribu-
tion of electric and magnetic forces that would be exerted if electric
test charges and test currents were placed at various positions in
space. But Faraday took a further logical step in taking these field
lines more seriously. He endowed them with physical reality, inde-
pendent of the presence of any test charges and current. Thereby
he introduced a new reality concept into physics: the electric and
magnetic field. To each point in space one associates an electric
and magnetic vector, that is, a direction and a strength. If one
accepts this idea, the question is how these fields distribute in
space and change in time, depending on the external charges and
currents. In particular, it now makes sense to ask for the electric and
magnetic fields at locations without charges and currents, i.e. in
‘vacuum’. These questions are fully answered by Maxwell’s mathe-
matical formalism, whose physical meaning is based, as we wish to
stress again, on Faraday’s concept of fields. The mathematical the-
ory itself is of great structural beauty. In particular, it implies that
in case of time dependent field configurations electric and mag-
netic fields mutually depend on each other. This dependence is
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so intimate that it is more appropriate to simply speak of a unified
electromagnetic field, which now has six components (three electric,
three magnetic) per space point at any given time. We will later see
that SR makes it manifestly impossible to perform an absolute split
between electric and magnetic components.

One of the most impressive achievements of Maxwell’s theory
was the prediction of electromagnetic waves which could propagate
in vacuum. The speed of propagation is also predicted by the theory
and turns out to be equal to the speed of light. This suggested that
light might be nothing else but an electromagnetic wave and that
the laws of optics, like the laws of refraction and reflection, are dedu-
cible within Maxwell’s theory, a hope that was brilliantly realized
during the late 19th century. These achievements, plus the sen-
sational experiments undertaken in 1888 by Heinrich Hertz, who
produced and verified the existence and propagation of electro-
magnetic waves in the laboratory, firmly established Maxwell’s
theory. With it the notion of a field as fundamental local phys-
ical entity was accepted, though it was not yet regarded as a fully
emancipated form of matter.

Even Maxwell did not free himself from the idea of an ether.
How should one understand the notion of a field at some point at
which there are neither charges and currents nor any other form
of matter? What does it mean to assign a ‘field vector’ to a ‘point’
without any material identity? How can it then be ‘attached’? Or
put differently: If the field is a quantity of state, whose state are we
then talking about?

In fact, Maxwell tried to think of the ether in terms of a mech-
anical model; cf. Fig. 2.1. His own theory of the electromagnetic
field would then merely be some sort of coarse grained descrip-
tion, valid for phenomena on scales much larger than the typical
scales of structures in the ether, like the ‘ether vortices’. In that
respect Maxwell’s theory would then be somewhat analogous to
the phenomenological theory of gases, developed also by Maxwell
and after him Ludwig Boltzmann (1844–1906) and Josiah Willard
Gibbs (1839–1903). They succeeded to reduce typical notions, like
‘temperature’ or ‘pressure’, to mechanical notions by assuming a
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Fig. 2.1 Adaptation of a sketch by Maxwell concerning his mechanical
interpretation of an ether.

gas to be nothing else than a large number of tiny and fast moving
molecules. Figure 2.1 is an adaptation of Maxwell’s own drawing,
showing his mechanical model of the ether. Magnetic fields are
produced by ‘molecular vortices’, which are mutually held in posi-
tion through charged particles, just like the ring in a ball-bearing is
held in place by the balls. Different rotation speeds of neighbouring
vortices then result in transport of charges. Other scientists after
Maxwell had similar ideas upto and into the 20th century. Even
Hertz, who once said that ‘Maxwell’s theory are Maxwell’s equa-
tions’, devoted the final years of his all too short life to an attempt
to give a new and modern analytic formulation of mechanics resting
on an axiomatic basis. His hope was that by eliminating dispens-
able and unclear notions (like, as he thought, that of a ‘force’!) the
whole setup could be made more rigorous and hence more con-
trollable, and that this would help to eventually describe the ether
in a modernized mechanical formalism. But except for an admir-
ably clearly written book, published only posthumously, this and
all other programmes to reduce the ether to the laws of mechanics
never succeeded.
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Consequently a dual notion of matter prevailed upto and into
the 20th century. On one hand it comprised the localized ‘bodies’
of all sorts, which also carried the attribute of inertia and grav-
ity, and which were therefore called ‘ponderable’ (i.e. ‘weighable’).
On the other hand there was the ether, spread throughout space
including the interiors of bodies, which was the carrier of elec-
tromagnetic fields and, in particular, light. The gravitational field,
too, was thought to be anchored within the ether, though by that
time there was no fully developed theory of the gravitational field
comparable to Maxwell’s formalism.

2.2 The principle of relativity in mechanics

A central notion in Newtonian mechanics is that of a force (despite
Hertz). Quite generally one many say that on one hand Newtonian
mechanics is about deducing types of motion from known actions
of forces, and on the other about deducing laws of forces from
observed types of motions. This works through Newton’s equation
force = mass × acceleration, which formally reads:

�F = m�a. (2.1)

Here the arrow over F and a indicate the vectorial, i.e. directed,
nature of the quantity. A force and an acceleration have not only
a strength, also called the ‘norm’ or ‘magnitude’ of the vector, but
also a direction. Equation (2.1) then says that the acceleration is
parallel to the force and that its strength equals 1/m times that of
the force. Relative to a reference system one can fully characterize
a vector by three numbers together with the physical unit. These
are called the components of the vectorial quantity. Changing the
reference system results in a change of components.

According to this, forces are the causes of accelerations, that is,
changes of velocities. Since both quantities are vectors, this holds
not only with respect to the magnitude but also with respect to
the directions. For example, swinging the hammer in a circular
orbit at a constant rate still continuously changes the direction of
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its velocity, though not the magnitude. As a result the acceleration
momentarily points perpendicular to the velocity and this is why
the athlete needs to exert a strong pull.

The Newtonian formula (2.1) now implies that in the absence
of forces accelerations must vanish, that is, velocities must be con-
stant. Since the velocity is a vector, denoted by �v, this means that its
magnitude as well as its direction remains constant if no external
forces are acting. This is just the statement of the law of inertia:

Lawof inertia A force-free body remains at rest or in a state of rectilinear
and uniform motion.

We add that according to Newton’s formula any rectilinear and
uniform motion is compatible with the absence of forces. The mag-
nitude and direction of the velocity can be freely chosen. Also the
position that the body takes at fixed time, say t = 0, is totally
undetermined by the law. In particular, we have

Mechanical principle of relativity Two identical physically closed
systems whose relative motion is rectilinear and uniform are indis-
tinguishable with respect to mechanical observables of the individual
systems.

The insight into the validity of this principle predates Newton’s
Principia of 1686. It was beautifully pictured by Galileo Galilei
(1564–1642) in his ‘Dialogue Concerning the Two Chief World
Systems’ of 1632. There, on the second day, Galileo’s alter ego, the
Florentine patrician Filipo Salviati, explained it as follows:

Shut yourself up with some friend in the main cabin below decks on some large
ship, and have with you there some flies, butterflies, and other small flying
animals. Have a large bowl of water with some fish in it; hang up a bottle that
empties drop by drop into a narrow-mouthed vessel beneath it. With the ship
standing still, observe carefully how the little animals fly with equal speed to all
sides of the cabin. The fish swim indifferently in all directions; the drops fall
into the vessel beneath; and, in throwing something to your friend, you need
throw it no more strongly in one direction than another, the distances being
equal; jumping with your feet together, you pass equal spaces in every direction.
When you have observed all these things carefully (though there is no doubt
that when the ship is standing still everything must happen this way), have the
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ship proceed with any speed you like, so long as the motion is uniform and not
fluctuating this way or that. You will discover not the least change in all the
effects named, nor could you tell from any of them whether the ship was moving
or standing still.

Note that in this example it is essential that all physical compon-
ents of the system are taken alike by the translational motion, in
particular also the air that is enclosed by the vessel. Precisely for
this reason the experiments are to be performed ‘below decks’.
If the portholes were opened so that the air could stream through,
the butterflies would of course no longer show an isotropic velo-
city distribution relative to the ship but rather follow preferably the
direction of the airflow. We will come back to this picture when
discussing the relativity principle in electromagnetism.

At this point we wish to comment on a fundamental aspect in
connection with the conventional phrasing of the law of inertia as
given above, which is not often expressed sufficiently explicitly.
This formulation does not contain any information with respect to
which reference system the inertial (i.e. forceless) motion is to be
rectilinear and with respect to what timescale it is to be uniform. For
example, inertial motion is certainly not along straight lines with
respect to a reference system that is rigidly attached to the body of
the Earth. In the same fashion, it is in no way uniform with respect
to a clock whose rate changes in time relative to a ‘normal’ clock.
Such a clock would not necessarily be useless, as long as its rate is
well defined and reproducible. For example, up to the 15th century
it was quite customary to divide the day, i.e. the time between dawn
and sunset, and the night, i.e. the time between sunset and dawn,
each into 12 mutually equal day and night hours, respectively. Dur-
ing summer time day hours were then longer than night hours and
vice versa during winter time. Moreover this difference depended
on the geographic latitude. There still exist old mechanical clocks
at various places along the coast of the Baltic sea with two faces
painted on top of each other, one being divided into the day-night
hours just mentioned, which are called ‘temporal hours’, and the
other into the ‘equinoctial hours’, as they were then called, which
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are the ones familiar to us today. To come back to the law of inertia
we may ask: how do we know that the uniformity expressed there
is meant with respect to the equinoctial scale and not with respect
to the temporal scale? The succinct answer to this is that otherwise
the law of inertia would not be true! The point being that the above
formulation of the law of inertia is strictly speaking incomplete,
and should be completed as follows:

Law of inertia (completed) A force-free body remains at rest or in a
state of rectilinear and uniform motion, if the spatial reference system
and the time scale is chosen appropriately.

In other words, the law of inertia asserts the existence of pre-
ferred reference systems and time scales with respect to which
inertial motion is rectilinear and uniform. Following a suggestion
of Ludwig Lange’s (1863–1936) [3] such reference systems and time
scales are called inertial systems and inertial time scales. These are by
no means uniquely determined by the law of inertia. A time scale
remains inertial if to each of its values a fixed value is added or
if each value is multiplied by the same (non-zero) number. A ref-
erence system remains inertial if it is shifted by a fixed amount,
rotated by a fixed amount, or put into rectilinear motion with con-
stant speed. The last operation is called a velocity transformation or
simply a ‘boost’, whose analytic expression we wish to state expli-
citly. Let the spatial reference system be analytically represented
by an orthogonal coordinate system K whose axes we denote, as
usual, by x, y, and z. Let t be the time measured in this reference
system. Let K ′ be a second coordinate system whose axes x′, y′, and
z′ are pairwise parallel to the corresponding axes of K , and which
moves with velocity v along the x-axis of K such that at t = 0 the
two systems coincide. The inertial time t′ measured in K ′ is taken
identical to t. Then we have (see Fig. 2.2)

x′ = x − vt, y′ = y, z′ = z, t′ = t. (2.2)

This means that an event whose space-time coordinates with
respect to K are (x, y, z, t) has the space-time coordinates
(x − vt, y, z, t) with respect to K ′. Generally, such formulae which
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Fig. 2.2 Relation between the coordinates (x, y) and (x′, y′) of a point •
at time t, with respect to the coordinate systems K and K ′, respectively.
K ′ is moving at constant speed v relative to K in the x-direction. The third
dimension (z-coordinate) is suppressed.

relate coordinates and time scales of different inertial systems
are called transformations. The transformation (2.2) is called a
Galilei transformation. We wish to deduce an apparently self-evident
consequence of it, namely the law for the addition of velocities.
To do this we imagine a projectile, which relative to K ′ moves
with the constant velocity �u′ = (u′

x , u′
y , u′

z). This is analytically
described by

x′ = u′
xt′, y′ = u′

yt′, z′ = u′
zt′. (2.3)

Inserting these expressions for x′, y′, and z′ into (2.2) and solving
for x, y, and z yields

x = (u′
x + v)t, y = u′

yt, z = u′
zt, (2.4)

from which we read off the projectile’s velocity �u relative to K :

ux = u′
x + v, uy = u′

y , uz = u′
z. (2.5)
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This is the classical and intuitively seemingly obvious law of
addition of velocities. It merely states that velocities are to be added
vectorially, i.e. componentwise. But here it is important to add the
remark that this plausible rule is by no means forced upon us by
mere logic. The operation of velocity addition is defined physically
and need not necessarily be represented by the simple mathemat-
ical operation of vector addition. That this is the case in the present
context is a non-trivial statement about Newtonian mechanics. We
will see that in SR this simple rule gets replaced by something
much more complicated.

The temporal development of simple processes can be conveni-
ently depicted in so-called space-time diagrams. These contain a
time axis in addition to the spatial coordinates, which is usually
depicted in a vertical upward direction. The unique fixing of a point
in space-time, also called an ‘event’, then needs three space and
one time coordinate, i.e. four number-valued data. In that sense
one says that space-time is four dimensional. The motion in time
of a point through space is represented by a directed line in space-
time, which one calls the particle’s world line. The world lines of
force-free particles will be straight if and only if the coordinates
refer to an inertial reference system and an inertial time scale,
in which case the whole four-dimensional spatio-temporal refer-
ence system is likewise simply termed ‘inertial’. The slopes (i.e.
the tangent function of the angle) of these straight lines against the
vertical then equal the velocities in that reference system. Figure 2.3
shows the world lines of two scattering particles A and B. Before
the collision event particle A moves along the x-axis in a positive
direction and particle B with equal speed in the opposite direction.
At time t = tZ and location x = xZ an elastic collision takes place
after which the particles separate with the same speeds in oppos-
ite directions. Since the particles exchange no forces except at the
collision point–-in particular, they are assumed uncharged—their
world lines are straight except for the point of interaction where
they suffer a kink. Such elementary and well localized interactions
serve for physicists as an operational approximation to what mathe-
maticians call a ‘point’ in space-time or simply an ‘event’. To be
sure, no real physical event really defines a mathematical point,
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Fig. 2.3 Scattering of two particles A and B in a space-time diagram. The
collision event has space-time coordinates xz and tz.

but rather a small region of finite extent, as depicted in Fig. 2.3 by
the shaded region where the particles meet. But it is nevertheless
useful and, under defined conditions, also admissible to think of
points as being also physically determined, even if this can at best
only be true in an approximate sense. As a side remark we add
that even though there is no complete theory of quantum gravity as
of today, a heuristic combination of the fundamental principles of
quantum theory with general relativity strongly suggest that there
exist fundamental lower bounds for localizability in space and time.
These are given by the so-called Planck length, �P, and Planck time,
tP, which are expressible in terms of other, more familiar funda-
mental constants, the velocity of light c, Planck’s constant �, and
Newton’s constant G:

�P =
√

�G

c3
= 1.62 · 10

−35m, (2.6)

tP =
√

�G

c5
= 5.40 · 10

−44s. (2.7)
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Such fantastically short lengths and times are by many orders of
magnitude way out of the reach of present achievable resolutions
in particle physics. One therefore takes the point of view that, as
long as one keeps well away from these scales, it is an admissible
idealization to identify fundamental physical events with points.
This clearly proves extremely convenient for the mathematical
description.

Equation (2.2), which gives the algebraic expression for the
Galilei transformations, can now easily be interpreted geometr-
ically, as depicted in Fig. 2.4. To understand this, recall that the
t-axis is defined to be the set of all events whose space coordinate
x equals zero, i.e. the world line of the space point x = 0. All lines
parallel to it are the world lines of other fixed space points. Likewise,
the x-axis is the set of events at time t = 0 (i.e. mutually simul-
taneous) and all lines parallel to it are the mutually simultaneous
events for other values of time. Therefore, the t′-axis of the system
K ′ which moves relative to K is just the world line of x′ = 0. It
moves with velocity v in the positive x direction, which means that

t

t = t�

x�
x, x�

x

vt

vt

a

a

t�

Fig. 2.4 Geometric interpretation of a Galilean transformation. The
event • has coordinates (x, t) with respect to K and (x′, t′) with respect to K ′.
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the t′-axis is inclined with respect to the t-axis by some angle α. On
the other hand, the x′-axis is identical to the x-axis, for points which
are simultaneous in K are also simultaneous in K ′ and vice versa.
This is just expressed by the last equation of (2.2). This seemingly
obvious assumption is an expression of an absolute (meaning inde-
pendent of the inertial system) notion of simultaneity. We stress
that this rests on an assumption and not on any logical necessity.
We will see that SR replaces this absolute by a relative notion of
simultaneity, which depends on the state of motion of the inertial
system. This will result in modified transformation formulae for
which, in contrast to Fig. 2.4, the x′-axis no longer coincides with
the x-axis.

In order to prevent possible misinterpretations at this point, we
wish to stress that in principle we are totally free to use any spatial
reference systems and time scales. There is nothing ‘unphysical’
or even forbidden about non-inertial systems. Inertial systems are
merely preferred by the laws of nature, since with respect to them
the laws acquire a particular simple form. Only with respect to iner-
tial systems and time scales is Newton’s law given in the simple
form (2.1). In non-inertial systems there would be additional terms
in it, which take account of the ‘inertial forces’, like the Coriolis
force or the centrifugal force. To master concrete situations this
flexibility in one’s choice of reference systems proves extremely
convenient. For example, for terrestrial situations it is convenient
to use spatial coordinates which are rigidly connected to the Earth’s
body and a ‘clock’ whose hand is the Earth’s rotation angle against
the Sun, measured from some fixed longitude (e.g. Greenwich).
This system is not inertial for various reasons: the spatial system
certainly not because of the Earth’s intrinsic rotation. Also, the time
scale is not inertial since the rotation speed of the Earth against
the Sun is not uniform, mainly due to the annual variation in the
separation of the Earth to the Sun, but also due to other intrinsic
effects, like tidal friction, which let the Earth’s rotation speed vary
even with respect to the most distant astrophysical objects, like
quasars. It needs the framework of General Relativity, and in par-
ticular the inclusion of the gravitational field, in order to be able
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to put the equations of motions into a form that holds equally in
all reference systems. In this fashion the logically somewhat dis-
satisfying distinction between ‘real’ and ‘inertial’ forces can also be
overcome. In SR, however, this distinction as well as the special
status given to inertial systems is maintained.

2.3 Is the relativity principle valid in
electrodynamics?

If the electromagnetic field is to be understood as a function of
state of an ether, then the ether must be present wherever one
detects the electromagnetic field, in particular in the interior of
ordinary ‘ponderable’ matter. There it will suffer some interaction
with that matter. One may, e.g. envisage a difference of the ether
density inside and outside matter, which might explain the dif-
ference in properties of the electromagnetic field, like, e.g. the
various propagation speeds of electromagnetic waves including
light. For example, it is known in the theory of elasticity that the
propagation speed is inversely proportional to the square-root of
the material’s density. By analogy this might mean that the dimin-
ished speed of light within materials is due to a higher density
of the ether (somewhat counter-intuitive to the naive expectation
that the ether gets displaced by ordinary matter). Such a theory was
indeed attempted quite early by the French physicist Augustin Jean
Fresnel (1788–1827).

Quite generally, the speed of light (more precisely, its phase
velocity; see Sect. 5.3) in materials is written as

cm = c

n
, (2.8)

where c is the speed outside any ponderable matter (i.e. ‘in
vacuum’), and where n denotes the ‘index of refraction’ for the
material in question. To be precise, one has to add that cm as well
as c are meant relative to the local rest frame of the ether. (Here
and below we shall understand the word ‘motion’ as applied to the
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ether always in some coarse-grained sense that averages over the
small vortices which according to Maxwell’s ideas are the causes of
certain electromagnetic fields.) If one moves relative to the ether
one expects the ‘ether-wind’ to carry the wave preferably into the
direction in which the wind blows. In other words, the speed of
light should depend on the direction, i.e. be anisotropic. But this
sounds as if the principle of relativity cannot be extended to electro-
magnetism, because measuring the speed of light in all directions
would allow one to deduce one’s state of motion relative to the
ether. Is it then true that the principle of relativity is violated in
electromagnetism? An answer to this question can only be given
by the theory of electrodynamics of moving bodies.

Let us recall Salviati’s (i.e. Galileo’s) description of the relativity
principle in mechanics. As we stressed in our discussion there, it
was essential that all components of the physical system particip-
ated alike in the uniform translational motion of the ship. This is
why going ‘below decks’ was essential in order to prevent the air
from flowing through, which would otherwise give away the ship’s
state of motion. In electrodynamics the rôle of the air is taken up
by the ether. Would the ether just waft through ordinary matter,
so that ‘going below decks’ is no option in electrodynamics? If yes,
there could be no relativity principle in electromagnetism. Hence
the all-important question is, whether and how the ether is dragged
along by the motion of matter.

2.4 Experiments, contradictions, and consequences

During the last three centuries many experiments have been per-
formed in connection with the questions just raised. Here we
wish to discuss those classic ones which are directly concerned
with light propagation. These were complemented by others which
looked more closely into the detailed behaviour of electric and
magnetic fields in moving media and which are equally import-
ant. The reason why we restrict attention to optical experiments
is that they can be described in sufficient detail without entering
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the electromagnetic theory proper. Hence it should be kept in mind
that more involved investigations support the arguments given and
conclusions drawn here.

2.4.1 Aberration
First we turn to the phenomenon of aberration, which we illustrate
in Fig. 2.5. If one observes a fixed star by a telescope, the light
emitted by the star has to pass both the eyepiece at the rear end
and the lens at the front end of the telescope. In case the telescope
and the star are both at rest relative to the ether, the situation is
as depicted in the left picture of Fig. 2.5, where eyepiece, lens and
star form a straight line. In contrast, the right pictures depict a
situation where the telescope now moves to the right and perpen-
dicular to the original line of vision relative to the star. The star is
taken to be at rest relative to the ether. If we assume that there is
no dragging of the ether by the telescope, then one has to tilt the
telescope into the direction of motion in order for the light ray to

* *

a

vt

ct

Fig. 2.5 The phenomenon of aberration.
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pass the lens and the eyepiece. The first picture on the right shows
the telescope at the time where a particular light phase hits the
lens, the second at the time where this phase just escapes the eye-
piece. Within this time interval, τ , in which the starlight travelled
from the lens to the eyepiece, the telescope has moved a distance
vτ to the right. Hence we must tilt the telescope by a definite angle
α in order for the lens and the eyepiece to lie on the same ver-
tical light ray when considered a time interval τ apart. Since light
travels along the vertical rays with speed c, the vertical separation
between lens and eyepiece equals cτ . Hence we get the following
relation between the tangent of the tilting angle α and the velocities
v and c:

tan α = v
c

. (2.9)

This relation was already used in 1728 by the English astronomer
James Bradley (1673–1762), who had just discovered the effect
of aberration three years earlier, in order to determine the speed
of light c by measuring aberration angles. He observed a fixed
star in a direction almost perpendicular to the ecliptic (the plane
defined by the orbit of the Earth) so that the line of sight would be
nearly perpendicular to the velocity of the Earth. The Earth’s velo-
city, v, on its nearly circular orbit is given by 2πAU/year, where
AU is the so-called Astronomical Unit, which denotes the (aver-
aged) distance between the Earth and the Sun. For example, taking
the (rounded) modern value AU = 150 million kilometres, we
obtain v close to 30 kilometres per second. On the other hand,
the aberration angle measured by Bradley is about 20

′′, where ′′
denotes arc-seconds, corresponding to 10

−4 radians. The resolu-
tion achieved by Bradley was about 1

′′. Since for small angles we
can approximate the tangent by its argument measured in radians,
we have from (2.9) that c = v/α. Putting in the numbers we get
c = 3 · 10

8 m/s. Bradley obtained a value remarkably close to this
(see below).

During the course of a year the axis of a telescope looking at a
fixed star describes a cone of opening angle 20

′′ (measured from
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the axis to the cone). It is important to realize that this angle is
much larger than the largest annual parallax, which is 0.76

′′ for
our closest neighbour (Proxima Centauri, distance 4.22 light years)
and hence outside the resolution of Bradley’s instruments. Also,
aberration differs from parallax in that the latter decays with dis-
tance. In fact, Bradley observed the star γ Draconis (a red giant
and the brightest star in the constellation of the Dragon, one of the
four stars forming its head) whose distance to us is about 100–130

light years. He measured the apparent annual variation in pos-
ition and from that the aberration angle. Then he used (2.9) to
obtain the remarkably accurate value of 1/10186 for v/c, which
differs by slightly more than one per cent from the modern value
1/10060. Using the most accurate value for AU available to him
to calculate v, he finally determined c with much improved accur-
acy as compared to that obtained by Rømer 50 years earlier (cf.
Sect. 5.1). In particular Bradley’s method gave an independent
proof for the finiteness of the speed of light which finally convinced
the remaining (if any) critics. Also, it can be viewed as the first
direct evidence for the motion of the Earth, since the first success-
ful and accurate measurements of star parallax were performed
110 years later by the German astronomer and mathematician
Friedrich Wilhelm Bessel (1784–1846) in Königsberg (then Eastern
Prussia).

Central to the question of a possible ether drag is not so much
Bradley’s determination of c, but the fact that we can test (2.9),
given the value for c from independent measurements. The deriva-
tion of (2.9) makes it clear that this relation is only valid if the ether
within the telescope is not significantly dragged along. If there was
a complete drag there would certainly be no aberration. Since the
interior of the telescope consists mainly of air-filled space, except
for the lenses, it was thought that filling the telescope with water
might enhance the drag and hence diminish the aberration. This
experiment was indeed performed in 1871 by the English astro-
nomer George Biddell Airy (1801–1892), but no such influence of
water was seen.
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2.4.2 Fizeau’s experiment
Another experiment of great historical interest and some ingenu-
ity is that performed in 1851 by the French physicist Armand
Hippolyte Fizeau (1819–1896). Fig. 2.6 is a sketch of this exper-
iment in a slightly modified form. A source L sends light to a
half-silvered mirror T which separates the beam into two compon-
ents. One component consists of the light reflected by T . It gets
reflected by the mirrors S1, S2, and S3 in chronological order before
it returns back to T , where parts of it get reflected to the observer
B. (The part that by passing T runs back to L does not interest
us.) The other component consists of the light that passes through
T and then travels the rectangle counterclockwise, i.e. reflections
take place at S3, S2, and S1 in chronological order until the light
finally passes T to reach the observer B. (Again the light reflected
at T to run back to L does not interest us.) In B the observer has
some suitable arrangement to measure the interference pattern
produced by the two superposed components. On the horizontal
parts of its route the light passes along the interior of a pipe whose
walls are made of glass and which contains a liquid of refractive

S1 S2

S3T
L *

B

Fig. 2.6 Optical paths in Fizeau’s experiment.
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index n (indicated in grey in Fig. 2.6). This liquid can be set into
flowing motion as indicated by the arrows.

By the geometry (U-shape) of the pipe the light component that
travels round the rectangle in a clockwise fashion will, within the
pipe, always run parallel to the flow direction of the liquid. For
the counterclockwise travelling component the light travels anti-
parallel to the flow of the liquid. If the flowing liquid would cause
an ether drag it would accelerate the first (clockwise travelling)
component in the pipe and decelerate the second. The idea now is
to first observe the interference fringes when the liquid is at rest.
Then one sets the liquid in motion and observes whether and how
the interference fringes shift. Such a shift should exist if there is
an ether drag, since then the first component takes less and the
second more time to complete the circuit. Fizeau used water as
the filling for the pipes and indeed found a characteristic shift of
the interference fringes which he interpreted as due to the drag-
modified propagation speeds of light in the tube. If c/n denotes
the speed of light in the liquid and relative to it, and v the speed
of the flow relative to the laboratory system, then one may express
the speed of light in the liquid relative to the laboratory as

c′ = c

n
+ vϕ. (2.10)

Here ϕ denotes the so-called ‘drag coefficient’. It parametrizes the
degree to which the liquid drags the ether. For ϕ = 1 the drag
is complete and for ϕ = 0 there is no drag at all. Fizeau could
represent his results by the following formula, which had already
been suggested by Fresnel on the basis of his (wildly speculative)
ether theory:

ϕ = 1 − 1

n2
. (2.11)

Fizeau used n = 1.33 corresponding to water. Much later, 1914–19,
the Dutch physicist Pieter Zeeman (1865–1943) carefully repeated
Fizeau’s experiments and also replaced the streaming liquid by
solid bodies made of glass or quartz in order to attain higher values
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of n. He found full agreement with (2.11) if dispersion (see below) is
negligible, as has been assumed so far. He also verified an improved
version of (2.11) that takes into account dispersion.

In connection with (2.11) there are three points worth contem-
plating. First, that there is a drag at all, i.e. that ϕ �= 0. Second,
that the drag is not complete, i.e. that ϕ �= 1. Third, that the drag
depends on the refractive index (and nothing else). For gases n is
very close to one, like n = 1.00014 for air, whereas for solids it
lies between 1·5 for glass and 2·4 for diamond. Having said this,
we must not suppress the fact that the n-dependence of the ether
drag causes severe theoretical difficulties. This has to do with the
existence of ‘dispersion’, i.e. the dependence of n on the light’s
wavelength. Hence, strictly speaking, the refractive index is not
a number uniquely associated with the material in question, but
rather a function of the wavelength. The above cited numbers are
then reference values evaluated at some fixed wavelength, here
within the visible spectrum, where the variation of n upon the
wavelength is small. Still such dependencies lead to familiar vis-
ible effects, like the rainbow, where dispersion is responsible for
the decomposition of white light into its spectral colours. Applied to
relation (2.11) this means that the degree of drag depends on the col-
our, which seems to contradict the whole idea that there is only one
ether being dragged and that this ether carries the light waves of all
frequencies.

Despite this and other objections, the incompleteness of the
ether drag had for a long time been seen as proof for the existence
of the ether. How otherwise should one understand the apparent
fact that light can travel in one and the same material with different
velocities: with velocity c/n if the material is at rest with respect to
the ether and with velocity

c′ − v = c

n
− v

n2
, (2.12)

if it is moving in the direction of the light ray with velocity v
relative to the ether? Does this not clearly show the effect of an
‘ether-headwind’? It is admitted that the velocity (2.12) of light
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relative to the streaming liquid has not been directly measured in
Fizeau’s experiment, but only the velocity relative to the laboratory.
However, a simple application of the law for the addition of velocit-
ies, (2.5), seems to unambiguously lead from (2.10) to (2.12). The
theory of SR will later unmask this as erroneous. But for the time
being this was regarded as indubitable. Hence it should be possible
to measure directly variations in the speed of light depending on
the state of motion relative to the ether.

2.4.3 The Michelson–Morley experiment
In 1879 Maxwell made an interesting and fairly obvious sugges-
tion to directly measure the velocity of the solar system relative
to the ether. He pointed out that Rømer’s method (see Sect. 5.1)
measured the speed of light along the Earth’s orbital diameter
in a particular direction, namely that pointing from Jupiter to
the Sun. Since the orbital period of Jupiter is about 12 years,
Maxwell suggested comparing many Rømer-like measurements
performed over an extended period that included at least half a
Jupiter revolution, i.e. six years. These would yield the speed of
light in different directions, including diametrically opposite ones.
(Here one assumes that the direction of the ether wind relative to
the solar system is approximately constant within this six years.) A
non-vanishing ether flow should then result in a periodic modula-
tion of the measured speed. As function of time the period would be
12 years.

The interesting aspect of this suggestion is that it is relatively
independent of any assumption concerning the possible drag of the
ether caused by the Earth’s atmosphere or any parts of the experi-
mental arrangements. This is because the by far dominant part of
the light path from Jupiter to Earth lies outside those structures.
But unfortunately this experiment must fail for reasons that lie in
an inherent inaccuracy of Rømer’s method and the actual orders
of magnitude involved (which were partly unknown to Maxwell).
Let us explain this: Today we know that typical relative velocities
of stars in our galaxy are given by a few hundred kilometres per
second. For example, our solar system orbits our galactic center
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at a speed of approximately 220 km/s. Hence we would natur-
ally not expect the speed of the solar system relative to the cosmic
ether to be significantly less. A variation of the speed of light by
that amount results in timing variations of signals of at most two
seconds over the distance from Jupiter to us. But the ‘signals’ used
by Rømer’s method are the eclipses of Io (the innermost Galilean
moon of Jupiter) caused by Io entering Jupiter’s shadow. This pro-
cess of entering the shadow is not a sudden event but a process that
observationally can be resolved in time with an accuracy of about
a minute. Hence we are almost two orders of magnitude above
the required timing resolution. Even if one achieved the extremely
optimistic resolution for the Io eclipse of 10 seconds, one could still
not determine ether velocities below 500 km/s, which is certainly
not sufficient.

The first real experimental breakthrough with respect to
the required accuracy was achieved in 1887 by the American
experimentalists Albert Abraham Michelson (1852–1931) and
Edward Morley (1836–1923) [4], who repeated an experiment that
Michelson had already performed with considerably lesser accuracy
in 1881 at the Astrophysical Observatory at Potsdam near Berlin.
First, by mistake, Michelson overestimated the expected effect by
a factor of two. Correcting this, his findings were just of the same
order as the experimental errors, so that his experiment remained
inconclusive. This was substantially improved on by the second ver-
sion of 1887. See [5] for more on the interesting history concerning
these experiments.
Figure 2.7 depicts the basic idea of the experimental setup of

Michelson and Morley, which like in Fizeau’s experiment, is based
on an interferometer. Here, too, the source L sends a beam of light
on to a half-silvered mirror T which decomposes the incoming
beam into two components of approximately equal intensity. The
component which is depicted horizontally in Fig. 2.7 travels the
distance l1 to a mirror S1 where it is reflected back to T and there
finally (partly) reflected to the observer B. (The part passing T and
reaching L does not interest us.) The vertical component travels the
distance l2 until the mirror S2 reflects it back to T where parts of
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Fig. 2.7 The experiment of Michelson and Morley.

it pass T and reach the observer B. (Again, the part being reflected
back to L does not interest us.) At B an appropriate arrangement
allows to observe the interference patterns of the two superposed
components. The optical setup is mounted on a thick stony base
that floats in a basin filled with liquid mercury, so as to be able
to rigidly rotate the whole optical component with the smallest
possible mechanical disturbances.

The whole setup is firmly attached to the surface of the Earth
and therefore fully participates in its motion, which is essentially
composed of its diurnal spinning revolutions and its annual orbital
revolutions around the Sun. According to Fizeau’s result (2.11) one
would not expect any measurable ether drag caused by the Earth’s
atmosphere (n ≈ 1 for gases). Hence one would expect an ether
wind to blow just above the Earth’s surface. Its speed should not be
less than the orbital speed of the Earth relative to the Sun, at least not
on average over a year’s time. The Michelson–Morley experiment
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now tests whether the difference between the travel times (forth
and back) along the two arms depends on the orientation of the
apparatus. According to the ether theory a definite dependence
should be expected, as the following discussion shows.

We describe the process from the rest system of the ether. For
simplicity we also assume the velocity relative to the ether, v, to be
in the horizontal direction, pointing from T to S1. In other words,
the ‘ether wind’ blows from the right at speed v. Hence light travels
from T to S1 at speed c − v and backward at speed c + v relative to
the apparatus. The travel forth and back in the horizontal direction
takes time

T1 = l1
c − v

+ l1
c + v

= 2l1
c

γ 2, (2.13)

where here and in the sequel we use the abbreviations

β = v
c

and γ = 1√
1 − v2/c2

. (2.14)

γ is called the gamma-factor belonging to the velocity in ques-
tion. Sometimes we will explicitly indicate the velocity parameter
on which gamma depends and write, e.g. γ (v). This will prevent
confusion if more than one velocity parameter is involved in the
discussion.

In order to calculate the travel time in the vertical direction, i.e.
from T to S2 and back, we take a look at Fig. 2.8. The couple of
mirrors consisting of T and S2 moves in a horizontal direction
as the light travels from T to S2. In Fig. 2.8 T , S2 denotes that
pair at the time the light hits T ; T ′, S′

2
at the time it hits S2; and

finally T ′′, S′′
2

at the time it returns to T . By τ we denote the time
interval the light needs to travel from T to S2. In this time interval
S2 has moved by an amount vτ . Likewise, during the travel from
S2 back to T , the half-silvered mirror T has itself moved by the
same amount vτ from T ′ to T ′′. Since TT ′S′

2
and S′

2
T ′T ′′ are right

angled triangles, the Pythagorean theorem implies for the given
length that c2τ 2 = l2

2
+ v2τ 2, which can be easily solved for τ ,
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Fig. 2.8 Optical path in the transverse direction, seen from the rest system
of the ether.

which is just half the vertical travel time T2. Hence we have

T2 = 2τ = 2l2
c

γ . (2.15)

Note that this differs from (2.13) only in that γ (cf. 2.14) enters
linearly here but quadratically there.

Let us specialize to the case where the source emits monochro-
matic light of frequency ν. A fixed phase of light that travelled along
the horizontal arm is seen at B with a delay T1 − T2 as compared
to the same phase that travelled along the vertical arm. In other
words, it arrives with a delay of

N = ν(T1 − T2) (2.16)

number of phases. This is seen as a fixed interference pattern at
B. Turning the interferometer by 90 degrees in, say, a clockwise
direction exchanges the rôles of the horizontal and vertical arm
respectively. The ether wind is now blowing in the direction from
S2 to T whereas the line TS1 is now perpendicular to the ether
wind. By a simple repetition of the argument above we obtain the



Experiments, contradictions, and consequences 33

travel times T ′
1

and T ′
2

along the arms TS1 and TS2, respectively,
after rotation:

T ′
1

= 2l1
c

γ and T ′
2 = 2l2

c
γ 2. (2.17)

The number N ′ of phases by which the light that travels over S1 is
delayed with respect to the light that travels over S2 is now given by

N ′ = ν(T ′
1
− T ′

2). (2.18)

Hence the difference N − N ′ just corresponds to the number of
interference fringes seen shifting at B in the process of a 90 degree
rotation of the apparatus. If we express the frequency ν by the
wavelength λ = c/ν, we obtain


N = N − N ′ = 2
l1 + l2

λ
γ (γ − 1) ≈ l1 + l2

λ
β2, (2.19)

where the second expression on the right hand side is valid
approximately for small values of β (cf. 2.14), that is, for velocities v
small compared to the velocity of light. Note that β enters quadratic-
ally which means that for small β this effect is strongly suppressed
as compared to effects linear in β, like aberration (2.9). Setting
v = 30 km/s for the orbital motion of the Earth and c = 3·10

5 km/s
for the velocity of light one has β = 10

−4 and β2 = 10
−8. This

means that quadratic effects are smaller by a factor of ten thou-
sand as compared to linear ones. Michelson and Morley used equal
arm lengths of effectively 11 metres optical length (through repet-
itive reflections they multiplied the geometric length) and light of
wavelength 5900 Å (Å = Ångström = 10

−10 m) which is of a yel-
low colour. Hence they expected to see a shift in the interference
fringes of 
N = 0.37. Their resolution was high enough to meas-
ure 
N = 0.01 so that the expected effect was almost 40 times
larger than this.

The surprising result was that, within this accuracy, no effect was
seen at all. For the ether theory this could only mean that the velocity
of the ether wind was much smaller—at least 40 times—than the
orbital velocity of the Earth. But even if by sheer chance the Earth
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was at rest relative to the ether during the days the experiment was
performed, one would just have to wait for 6 months and repeat it
with an oppositely directed orbital velocity of the Earth. The relative
velocity between ether and Earth should then be around 60 km/s.
The experiment was indeed repeated at different times of the year
but the result turned out to be always null.

Daring explanations were offered to explain these null results. It
was, e.g. argued that perhaps the lower layers of the atmosphere
could nevertheless show some dragging effect (contrary to Fizeau’s
result) or, more seriously, that such a dragging could be provided by
the material of the heavy walls of the laboratory, by which the experi-
ment was protected from any disturbances from the outside world.
Anticipating the historical development, we mention that Dayton
Miller (1866–1941), a former collaborator of Morley’s, repeated the
experiment in 1921. He positioned his interferometer in a hardly
shielded little hut on top of Mount Wilson, so as to enable the
ether wind to waft through as unhindered as possible. And indeed,
he reported a positive (non-null) result, against the predictions
of SR, the theory of which had then already existed for 16 years!
Einstein, who was in the USA at this time, commented on this
with his now famous ‘subtle is the Lord, but he is not malicious’.
And he was quite right. Subsequent runs of the experiment could
not confirm any positive result and it is now believed that Miller’s
first result was just based on an experimental error. Max Born
(1882–1970), a lifelong friend of Einstein’s and master of theoret-
ical optics and SR, visited Miller’s laboratory in 1925/26 and ‘was
shocked by the shaky arrangements’, as reported by his wife. In his
own words:

I found it [the experimental arrangement] shaky and unreliable; the smallest
movement with one’s hands or a cough made the interference fringes so fidgety
that there was no way to read off their position. After that I didn’t believe a
word of his experiments. From my stay in Chicago in the year 1912 I knew of the
reliability of Michelson’s own apparatuses and the accuracy of his measurements.

As a consequence of the (intended) poor protection from outside
influences, the accuracy achieved by Miller was indeed much worse
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than that of the original 1887 Michelson–Morley experiment. A
tenfold improvement in accuracy over the original experiment
was first achieved in 1930 by Georg Joos (1894–1959) in Jena
(Germany). He too found no effect of an ether wind. Modern
experiments improve on this by many orders of magnitude; see
Sect. 5.6.

2.4.4 The FitzGerald–Lorentz deformation hypothesis
Hardly two years after the experiment of Michelson and Morley a
half-page note appeared in the American science journal Science
entitled ‘The Ether and the Earth’s Atmosphere’. The author was
the Irish physicist George Francis FitzGerald (1851–1901), who
proposed the following seemingly outrageous hypothesis to explain
the null result of the Michelson–Morley experiment: any motion of
a body through the ether universally affects its geometric dimen-
sions. Here ‘universally’ means that it affects all materials alike,
independent of their physical or chemical state, just depending on
the magnitude of their velocity relative to the ether. This sugges-
tion went unnoticed until three years later when, in 1892, the Dutch
physicist Hendrik Antoon Lorentz (1853–1928), apparently inde-
pendently, proposed a concretization of the same idea. In fact, such
an hypothesis was not as outrageous as it first might have appeared
if one assumed an atomistic viewpoint, in which the constitution
of a solid was exclusively determined by the electrostatic forces
between its elementary constituents (atoms, molecules). In 1888

Oliver Heaviside (1850–1925) deduced from Maxwell’s equations
that the electric field of a spherical charge distribution in motion
is ‘squashed’ in the direction of motion as compared to the field
of a charge at rest, see Fig. 3.15. Recall that in those days it was
assumed that Maxwell’s equations refer to the ether’s rest system
so that ‘moving’ and ‘at rest’ make good sense. According to this
one could conjecture that all bodies shrink their geometric size in
the direction of their velocity relative to the ether by the same factor
that describes the squashing of the electric field. It was of course
not known whether all forces in materials were finally reducible
to electromagnetic ones. But that was at least a natural hypothesis
which lent a certain plausibility to what originally merely seemed to
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be a purely ad hoc assumption by FitzGerald and Lorentz. A more
detailed and interesting account of this story is given in [6].

To demonstrate that the FitzGerald–Lorentz hypothesis does
indeed explain the null result of the Michelson–Morley experiment,
we first assume the whole arrangement of Fig. 2.7 was at rest relat-
ive to the ether. In that state the arm lengths are denoted by l0

1
and

l0
2
. We now assume that if the whole setup is put into a state of

motion, all lengths in the direction of motion are scaled by a factor
of A and all lengths transversal to it by a factor of B. A and B just
depend on the magnitude v of the relative velocity with respect to
the ether, and nothing else. This means that all materials in all
states are affected alike. That a moving body ‘changes length’ is
always meant relative to a yardstick which itself is at rest relative to
the ether. If the moving object is measured with an equally moving
yardstick, no such change is seen, since, by hypothesis, both are
affected alike. In the following all lengths are therefore understood
to be measured with yardsticks at rest relative to the ether. If l1 and
l2 denote the arm lengths in the state of motion before the appar-
atus is rotated, and l′

1
and l′

2
the lengths of the physically same arms

after rotation, we should have, according to the hypothesis,

A = l1
l0
1

= l′
2

l0
2

and B = l2
l0
2

= l′
1

l0
1

. (2.20)

This is now used in expressions (2.13) for T1 and (2.15) for T2 to
re-express l1 and l2 by Al0

1
and Bl0

2
, respectively. The same is done

in expressions (2.17) for T ′
1

and T ′
2
, where one first has to rename

l1 and l2 as l′
1

and l′
2

according to our notation used here. Having
done that, one obtains instead of (2.19) for the number of shifted
interference fringes during rotation:


N = 2
l0
1

+ l0
2

λ
γ (γ A − B). (2.21)

This shows that a null result, i.e. 
N = 0, of the Michelson–Morley
experiment can be explained by further imposing the following
relation between the longitudinal deformation factor A and the
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transversal deformation factor B:

Aγ = B. (2.22)

The last expression in brackets on the right hand side of (2.21)
then vanishes. In particular, it would be sufficient—though not
necessary—to take B = 1 and A = 1/γ . This corresponds to a lon-
gitudinal contraction and no transversal deformation. This is the
case that emerged from electrodynamics on account of Heaviside’s
calculations mentioned above. We will see that SR too will predict
precisely that longitudinal contraction, however without involving
any ether theory. But we stress again that on account of the
Michelson–Morley experiment alone only the quotient of A and
B is fixed. To fix the actual values of A and B one has to involve
two more experiments, like e.g. the Kennedy–Thorndike and Ives–
Stilwell experiments. These will be discussed in Sects. 5.4 and 5.5,
respectively.
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Foundations of Special Relativity

The foregoing discussion should have made clear the state of
tension in which physics found itself at the end of the 19th
century. This was already felt by the young and bright Einstein.
Shortly before his death he remembered his short but happy year
(1895–1896) as a pupil of the school in the small city of Aarau
(Switzerland), in whose liberal atmosphere the ‘saucy Swabian’
(according to a classmate) felt much more at home than in the
authoritarian Gymnasium at Munich (Germany).

During that year in Aarau the following question came to my mind: If one
follows a light wave at the speed of light, one would be confronted with a time-
independent wave field. But such a thing does not seem to exist. This was the
first childish gedanken experiment in connection with Special Relativity.

Maxwell’s theory indeed predicted electromagnetic waves, but
always at an invariant propagation speed outside matter. So, as
long as one believed an ether to exist, one had to assume Maxwell’s
equations to be valid exclusively in the rest system of the ether.
For if they were also valid in other inertial systems, for example
that one that chased after a light wave at the speed of light, then,
as Einstein remarked, the moving observer should see a standing
light wave, which must be a solution of Maxwell’s equations. But
the latter is definitely not the case.

Actually, we already know that our intuition is very probably play-
ing a trick on us here, because we implicitly implied the validity of
the classical law (2.5) for addition of velocities when we assumed
that for the moving observer the light wave was standing. However,
the experiments of Fizeau and Michelson–Morley strongly suggest
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that processes concerning the propagation of light do not obey this
law. (Note that the experiments discussed in Sect. 5.2 post-date
SR.) This was certainly known to Einstein at the time he conceived
SR, though it is likely that he knew of the Michelson–Morley
experiment only indirectly, e.g. through Lorentz’s then famous
monograph of 1895 [7], entitled ‘Inquiry into a Theory of Electrical
and Optical Phenomena in Moving Bodies’. Among other experi-
ments, the Michelson–Morley experiment is discussed in the last
section of this book, which is entitled ‘Experiments, the results
of which cannot be explained offhand’. Here Lorentz discusses
the deformation hypothesis (cf. Sect. 2.4.4) that enforces such an
explanation. Lorentz also points out that, assuming all molecu-
lar forces to be of electromagnetic origin, the deformation would
merely be a longitudinal contraction without transversal change,
but at the same time admits that this is (in 1895) a physically
unwarranted hypothesis. An interesting portrayal of Einstein’s own
recollections, concerning the impact that the Michelson–Morley
experiment had on the formation of SR, is given in [8].

Characteristic of Einstein’s scientific thinking was his finely
developed sensitivity for conceptual imbalances. For him, the even-
tual elimination of such difficulties were mandatory, ranking no
less in priority than the elimination of plain experimental con-
tradictions. In fact, in his original SR paper [9], Einstein did not
mention or cite a single experiment explicitly. Only an incidental
and unspecific remark concerning ‘experiments’ is made (see the
quotation below). Instead, Einstein devotes his entire opening para-
graph to the discussion of the seemingly harmless phenomenon
of electromagnetic induction, which is well known from electrical
engineering—being the basis of any electric engine—and which
is still today one of the favourite themes in high-school physics.
To demonstrate the point Einstein emphasizes, take a look at the
U-shaped (with open end to the right) piece of wire, depicted in
Fig. 3.1. Perpendicular to the plane of the paper is a magnetic
field that pierces the plane in the region marked by the symbols
⊗ in an upward direction. If the conductor moves relative to the
magnetic field in the direction of the arrow, a voltage is induced
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Fig. 3.1 Induction of a voltage in a conductor (wire) that moves relative to
a magnetic field.

at its ends whose signs are as indicated. Einstein now points out
that, according to the then current interpretation of electromagnetic
theory, the explanation of this phenomenon is strongly dependent
on whether one regards the magnetic field or the conductor as
the moving part, even though the phenomenon itself is perfectly
symmetric. Note that in an ether theory such a distinction makes
good sense, since there is the ether’s rest frame with respect to
which ‘motion’ can be defined. If the magnetic field is moving,
i.e. time dependent, Maxwell’s equations predict an electric field
being induced inside and outside the conductor, which is so dir-
ected that the electrons move to the lower end, thereby causing an
electron shortage at the upper end (and hence a positive voltage)
and an electron abundance at the lower end (and hence a negative
voltage). Conversely, if the magnetic field is at rest, i.e. time inde-
pendent, Maxwell’s equations predict that there is no electric field,
neither inside nor outside the conductor. Rather, the electrons of
the conductor material will now feel a force due to their motion rel-
ative to the magnetic field. This force is called the ‘Lorentz force’.
It points in a direction which is perpendicular to the magnetic field
and at the same time perpendicular to the velocity of the charge
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relative to the magnetic field, thereby obeying the right-hand rule.
Hence, in our case, it points in an axial direction along the wire,
thereby causing the electrons to move to the lower end. As a result,
the same voltage as before is obtained. After having outlined this,
Einstein ends his introductory section as follows [9]:

Examples of this sort, together with the unsuccessful attempts to discover any
motion of the Earth relative to the ‘light medium’, suggest that the phenomena
of electrodynamics as well as of mechanics possess no properties correspond-
ing to the idea of absolute rest. They suggest rather that […] the same laws of
electrodynamics and optics will be valid for all frames of reference for which the
equations of motion hold good. We will raise this conjecture (the purport of which
will hereafter be called the ‘Principle of Relativity’) to the status of a postulate,
and also introduce another postulate, which is only apparently irreconcilable
with the former, namely, that light is propagating in empty space with a definite
velocity c which is independent of the state of motion of the emitting body. […]
The Introduction of a ‘luminiferous ether’ will prove to be superfluous inasmuch
as the view here to be developed will not require an ‘absolutely stationary space’
provided with special properties, nor assign a velocity-vector to a point in empty
space in which electromagnetic processes take place.

The theory to be developed is based—like all electrodynamics—on the kinematics
of the rigid body, since the assertions of any such theory concern relationships
between rigid bodies (coordinate systems), clocks, and electrodynamic processes.
Insufficient consideration of this circumstance lies at the root of the difficulties
which the electrodynamics of moving bodies presently encounters.

On the subsequent pages Einstein shows that a precise redefini-
tion of kinematical quantities is sufficient to establish the principle
of relativity also in electrodynamics and at the same time recon-
cile it with the universality of the speed of light! Thereby the ether
becomes conceptually dispensable and, in that sense, physically
abolished.

3.1 The notion of simultaneity

We measure the length of a body at rest by comparing it with a
yardstick. More precisely, we put equidistant marks on the yardstick
and read off first one, and then the other bounding mark. The
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number of marks in between, plus one, is then the length of the
body in the chosen units. But how would we proceed if the body
was moving relative to the yardstick? An obvious way would be to
read off the marks simultaneously from the yardstick at the moment
the body passes it. But the crucial point here is that the two events
where the two marks are read off are spatially separated. This means
that one needs to employ some definition of simultaneity of spa-
tially separated events in order to give this procedure a well defined
meaning.

It is important to realize that even the most elementary state-
ments concerning motion refer to simultaneous events. Saying
that a train arrives at time t at a particular train station, x, means
that the event of arrival at x and the event where the station clock
strikes t are simultaneous. For this to be a meaningful statement
the clock and train need to be at a close distance. If the clock closest
to the train is at a distance d, we see its hands at the time they were
when the light that we now see left the clock; that is, a time d/c
earlier than now. In order to not miss the train this delay should
not exceed, say, one minute. This implies that the clock should
be within a distance of 18 million kilometres. Whereas this clearly
sounds like a ridiculous constraint as far as train journeys are con-
cerned, it does become important for much larger velocities and
smaller time scales. If the duration of a ‘train’ stop is of the order of
nanoseconds (10

−9 s) the maximal distance a clock may be located
at is already down at 30 centimetres. And, finally, it is clear that the
timing of processes that move close to the velocity of light require
strictly local definitions of time, since here the retardation times
d/c are just of the same order of magnitude as the typical durations
one wishes to measure.

Let now K be an inertial reference system. Attaching identical
copies of a clock to each point of K does not yet define a notion of
‘time’. This is simply because the clocks need to be synchronized
in order to speak of ‘the same time’ at different locations. Only
after synchronization does it make sense to assert that a clock at
position A and another clock at position B show the same time t, if
their hands are in identical configurations showing t. An obvious
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and conceptually simple procedure for synchronization is to move
a ‘transport clock’ successively to each point in space and, while
being at the same point, synchronize it with the local clock. The
pointwise synchronization just consists in putting the hands of
both clocks simultaneously (at the same point in space) to the same
position. The transport itself has to be done sufficiently carefully
in order not to upset the clock’s rate through mechanical disturb-
ances. Clearly, for widely separated clocks, this procedure is hardly
feasible. Einstein therefore suggests an alternative method which
avoids the transport of clocks. Rather, the locally fixed clocks are
synchronized by the exchange of light signals. More precisely, the
synchronization of clock B with clock A then proceeds as follows.
A light signal is sent from A to B, where it will be instantaneously
reflected back to A. Let t(1)

A and t(2)
A denote the simultaneous read-

ings of A with the events of emission and re-absorption, and tB
the reading of B simultaneous with the event of receiving the
light from A. Now, B is said to be synchronized with A if and
only if

tB = t(1)
A + t(2)

A

2
. (3.1)

This is clearly the same as saying that the travel time from A to B
is the same as the travel time back from B to A. Therefore, another
equivalent condition is this: consider two light signals, one sent at
tA from A to B, the other at tB from B to A. The clocks at A and
B are synchronized, if and only if the light signals simultaneously
pass the midpoint of the segment AB.

It is of central importance to realize that this room for convention
indeed exists, i.e. that there are no facts of experience, logically
independent of clock synchronization, which further restrict this
freedom. The only synchronization-independent statement that we
can make about the velocity of light is to measure, by a single clock,
the time it needs for a round trip. If d is the distance between A and
B, then the mean velocity of the light on its way from A to B and
back is given by 2d/(t(2)

A − t(1)
A ). The one-way velocities from A to
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B, or B to A, are not defined without stipulating a synchronization
procedure.

The meaning of a synchronization procedure is precisely to allow
the definition of simultaneity of spatially distant events, by reducing
it to assertions concerning the simultaneity of equilocal events:

Definition of simultaneity Two events at spatially separated locations
A and B are called simultaneous, if the locally simultaneous clock
readings of synchronized clocks at A and B are identical.

In this way, Einstein’s synchronization procedure leads to a notion
of simultaneity of events, i.e. space-time points, that obeys the
following laws:

(1) Every event is simultaneous to itself.
(2) If p is simultaneous to q then q is simultaneous to p.
(3) If p is simultaneous to q and q is simultaneous to r , then p is

simultaneous to r .

Quite generally, a relation between pairs of points taken from
some arbitrary set is called an ‘equivalence relation’ if it sat-
isfies (1)–(3). Conditions (1)—called reflexivity—and (2)—called
symmetry—are natural for any notion of simultaneity, though one
may also envisage non-symmetric generalizations. Condition (3)—
called transitivity—is necessary in order to generalize the notion of
pairwise simultaneity to the notion of mutual simultaneity of sets
containing more than two events. In particular, the following is
quite easily seen to hold true for any simultaneity relation that sat-
isfies (1)–(3): Let Rp and Rq be the sets of events simultaneous to the
events p and q, respectively, i.e. their ‘equivalence classes’. Then Rp

and Rq are either disjoint (have no point in common) or identical. In
other words, two simultaneity classes cannot intersect in a proper
subset. Therefore, Einstein’s definition of simultaneity partitions
space-time into mutually disjoint sets, each containing mutually
simultaneous events. The converse is also obviously true, namely
that any partitioning into mutually disjoint sets defines an equiva-
lence relation. These conditions therefore should be expected from
any workable definition of simultaneity, though relaxations may be
considered, in particular concerning transitivity.
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Now, the all-important point is this: The synchronization proced-
ure discussed so far applies to clocks at rest in a particular inertial
system of reference K . Hence the resulting notion of simultaneity
is tied to K . Suppose we repeat the synchronization procedure with
clocks at rest in a different system, K ′, where K ′ moves uniformly
relative to K . Would this give rise to a different notion of simul-
taneity on space-time? More precisely: would the two equivalence
classes Rp and R′

p of points simultaneous to the same event p, one
time determined according to the K -simultaneity and the other
according to the K ′-simultaneity, be different sets? The answer is
in the affirmative. Einstein’s definition of simultaneity is a relative
one, that is, dependent on the state of motion of the inertial system
in which all the clocks rest. This dependence is then inherited by
all derived notions, like, e.g. that of a length (as discussed above).
This will be discussed in some detail in the next section.

Finally we wish to comment on a point of some conceptual
importance. The fact that one usually adopts Einstein’s definition
of synchrony and simultaneity does not imply that other defini-
tions would be somehow unphysical or inconsistent. Alternative
definitions of synchrony are conceivable, which would lead to
other notions of simultaneity. Here we note in passing that the
already mentioned synchronization by clock-transport turns out
to be equivalent to Einstein’s definition in a well defined slow-
transportation limit. This is explicitly demonstrated in Sect. 5.7.
However, Einstein’s synchrony is preferred because of a number
of nice properties. In particular, it respects the principle of relativ-
ity. To see what is meant by this we note that Einstein’s definition
of synchrony can not only be applied to clocks at rest, but also to
clocks moving at the same uniform velocity. For example, being
at rest in K , one may synchronize the clocks resting in K ′ by the
very same procedure as outlined above using light signals, now
between moving clocks. But the universality of the speed of light
now implies that this will be just identical to the ordinary Einstein
synchronization in K ′. Hence, whatever the common uniform velo-
city of a family of clocks is, their Einstein synchronization is always
achieved by the very same prescription in terms of light signals.
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This would definitely be false if instead of light other signals were
used, whose propagation speed relative to an observer depends on
his state of motion. This is why light is so special. The preferred
rôle played by Einstein synchrony can also be characterized in a
more mathematical fashion [10].

3.2 Lorentz transformations

Let K ′ be an inertial system that moves relative to K at constant
speed v in the x direction. Both systems carry along families of
identical clocks, one at each spatial coordinate position, which
are synchronized according to Einstein’s prescription. We ask for
the transformation rules that now replace (2.2). There we identi-
fied the time parameter t with the inertial time scale reading of a
clock and implicitly assumed that this reading could be instantan-
eously communicated to all points in space. This is how in (2.2) we
(almost trivially) arrived at t = t′. Respecting the physical facts, we
now wish to interpret t and t′ according to Einstein’s definition of
simultaneity.

We first consider a rod (e.g. a yardstick) resting in K ′ as observed
from K . Here and in the rest of this book it is convenient to plot ct
(rather than just t) on the vertical axis, where c is the vacuum speed
of light. This endows the unit on the time axis with the physical
dimension of a length, like that on the spatial axes. We further agree
that these units should be the same, so that world lines of light rays
are depicted at an inclination of 45 degrees. In Fig. 3.2 the world
lines of the leading and trailing end of the rod are depicted by solid
lines, whereas the world line m of its midpoint is dotted. Point A on
the world line of the trailing end is taken as the origin (x = 0, t = 0)

of K . � denotes the world line of a light signal that at time t = 0

is sent off from x = 0 along the positive x-axis. It intersects m at
M. Point E on the world line of the rod’s leading end is uniquely
determined by the condition that a light signal that is sent off at E
in the negative x direction also intersects m at M. This, according
to Einstein’s definition, is just the condition for the events A and E
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Fig. 3.2 Moving rod.

to be simultaneous with respect to time t′ in K ′. The construction
of E suffices to determine the x′-axis, which by its very definition
consists of all points simultaneous (in K ′) to the event A at the origin
(suppressing, as usual, the y- and z-axes). But being a straight line,
the x′-axis is determined by two points. The location of the ct′-axis
is obvious anyway, since it is just given by the world line of the
spatial coordinate x′ = 0. In our picture it coincides with the world
line of the rod’s trailing end and has a slope against the ct-axis of
tan α = v/c.

We now show that the angle between the x′-axis and the x-axis
is also given by α. For this we regard the top picture of Fig. 3.3,
in which we now represent the x′- and ct′-axes. We prolong the
segment EM and denote its intersection points with the four axes
by C, B, E, D. Being the prolongation of a world line of a light signal,
it intersects the x- and ct-axes at 45 degrees, as indicated at C and
D. The two world lines of the rod’s ends are clearly parallel, so that
ME and MB are equal in length; hence the pair BC and DE is also
equal in length. This implies that the two shaded triangles ABC
and ADE on the bottom picture of Fig. 3.3 are congruent—they
can be transformed into each other by a reflection along �. So �
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Fig. 3.3 Deriving the Lorentz transformations.

is also bisecting the angle between the x′- and ct′-axes of K ′. Now
we impose the condition that the speed of light measured in K ′ is
also given by c. It immediately implies that the physical unit-length
must be represented by the same geometric interval-length along
the x′- and ct′-axes. Note that this does not mean that the physical
unit-length is represented on the x′, ct′-system of axes by the same
geometric interval-lengths as for the x, ct-system. We will soon see
that they must, in fact, be chosen differently.
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From here it is a straightforward matter to contemplate the
algebraic expressions that will replace (2.2). First we recall that
the transformation formulae must be linear in the coordinates,
for otherwise they would not transform inertial motions—given
by straight lines—to inertial motions. Moreover, in K , the x′-axis
is characterized by ct = x tan α and the ct′-axis by ct = x/ tan α,
where tan α = β = v/c. The first of these equations must result
from the transformation formulae by setting t′ = 0, the second by
setting x′ = 0. Hence the sought-for analytical expressions must
look like

x′ = γ (x − β ct) and ct′ = γ (ct − β x). (3.2)

Here γ is some yet undetermined factor which may—and will—
depend on v, though only on its modulus, since otherwise a
direction would be preferred. This factor precisely regulates the
ratios of interval-lengths that represent the physical unit-length. It
has to be the same factor in both equations of (3.2), since these
interval-lengths are the same on the time and spatial axes, as
we have just shown. So any transformation corresponding to a
velocity v must be of that form. In particular this applies to the
transformation back from K ′ to K , where we must replace v by
−v. (It seems intuitively clear, and can also be proven rigorously
from first principles, that if K ′ moves relative to K at velocity v
along the x-axis, then K moves relative to K ′ at velocity −v along
the x′-axis.) Solving (3.2) for x and ct and using this condition
shows that γ , as function of v, is just given by expression (2.14).
Moreover, along the same lines one may show that the y and z
coordinates, which we have neglected so far, transform trivially,
i.e. as in (2.2). This is because they could at most be scaled accord-
ing to y′ = κy and z′ = κz, where again κ may only depend on
the modulus of v. Again the inverse transformation must be of
the same form so that we get κ2 = 1 and hence κ = 1 (κ = −1

corresponds to a rotation by 180 degrees around the x-axis, which
we do not consider at this point). To sum up, this yields the so-
called Lorentz transformations, which in SR replace the old Galilei
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transformations:

x′ = x − vt√
1 − v2

c2

, y′ = y, z′ = z, t′ = t − v
c2 x√

1 − v2

c2

. (3.3)

For small values of v compared to the speed of light, i.e. ratios v/c
small compared to one, these approximate (2.2). For larger values
of v the deviations from (2.2) are, however, significant. In particu-
lar one should note that v in the Lorentz transformations is always
less than c, for otherwise the analytical expressions in (3.3) become
meaningless, due to the expression under the square-root in the
denominator turning zero or negative. For the Galilei transforma-
tions such a restriction of the range of v would not be consistent,
since the law for the addition of velocities (2.5) allows one to pro-
duce any arbitrary high velocity from the addition of sufficiently
many small ones. In contrast, the restriction does make sense for
Lorentz transformations, since they also imply a self-consistent
modification of the addition law. This will be discussed below.

In the K ′ system, the coordinate values are such that, by
definition, the line segment connecting the origin with the point
(x′ = 1, t′ = 0) represents a physical unit-length. According to
(3.2) the latter point has coordinates (x = γ , ct = βγ ) with respect
to K . These satisfy x2 − (ct)2 = 1, which describes a hyperbola
which in Fig. 3.4 is represented by the upper curve. The physical
unit-length on the x′-axis is therefore given by the point where
the hyperbola intersects the x′-axis. In full analogy, the physical
unit of time—here measured in length—on the ct′-axis is given
by the point where the positive ct′-axis intersects the hyperbola
c2t2 − x2 = 1, which in Fig. 3.4 is represented by the lower curve.
Note that according to standard Euclidean geometry the geomet-
ric lengths of the physical unit-intervals on the x′- and ct′-axes are
given by x2 + (ct)2 = γ 2(1 + β2) (Pythagorean theorem), which
is certainly larger than one. This is why these intervals look longer
in our space-time diagrams, like e.g. in Fig. 3.4, since we intuit-
ively always apply Euclidean distance measures to our drawings on
paper. But these have no direct physical significance. The physical
times measured by ideal clocks and rods obey the rules given above.
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Fig. 3.4 Unit spatial lengths and times in K and K ′ for β = 0.5. The
coordinates refer to the (x, ct)-system.

This does not mean that we may not use Euclidean geometry for
our geometric discussions of space-time diagrams. It merely means
that when it comes to reading off physical times and lengths from
these diagrams, we may not naively identify them with Euclidean
distances. Instead we have to use the rules given above, according
to which unit lengths lie on hyperbolas rather than circles. One
may, in fact, endow space-time with another ‘geometry’ in which
the physical lengths and times are more directly represented. This
is further discussed in Sect. 5.10.

3.3 Time dilation and length contraction

3.3.1 Time dilation
Consider a clock at rest in K ′, say at x′ = 0, as seen from K . Relative
to K it moves at velocity v in the x direction. At time t = 0 its location
and reading is x = 0 and t′ = 0, respectively. At time t its location
is vt and its reading follows from the last equation in (3.3):

t′ = t ·
√

1 − v2

c2
. (3.4)
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Compared to the time t, that is defined by clocks at rest in K , the
reading of the moving clock lags behind by a factor of 1/γ . This
is called time dilation. It is sometimes simply expressed by saying
‘moving clocks slow down’. But this phrase is potentially mislead-
ing and should not be taken too literally. In that respect we stress
again that all clocks involved are assumed to be physically identical.
If one carefully slowed down the translational motion of the mov-
ing clock and put it next to any of the resting clocks they would run
at the same rate. Evidently, due to the relativity principle, the very
same statements must hold if we look at the whole situation from
K ′. Now the clock located at x = 0 moves relative to K ′ at velocity
−v along the x′-axis. The reading of this clock also lags behind by
a factor of 1/γ compared to the time t′ that is defined by the clocks
resting in K ′. This is called the reciprocity of time dilation.

The situation is depicted in Fig. 3.5, where C and C′ represent
world lines of clocks at rest in K and K ′ respectively. The clocks are
adjusted to show the same time at their meeting event O. Events A
on C and A′ on C′ are such that the same time has elapsed on both
clocks since O. In K events A and B′ are simultanous so that A′ is
reckoned later than A. On the other hand, in K ′, events A′ and B
are simultaneous so that A is reckoned later than A′.

C C 9

A9

B9
B

O

a

a

A

Fig. 3.5 Reciprocity of time dilation.
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At first sight the statement of reciprocity may appear contradict-
ory, like saying that if we take a clock at rest in K and a clock at
rest in K ′, each runs slower than the other one. This would clearly
be nonsense and is not what is said here. Note that in the first case
we compared the reading of a single clock at rest in K ′ with the
readings of many—at least two—clocks resting in K . Conversely,
in the second case, we compared the reading of a single clock at
rest in K with the readings of many—at least two—clocks resting
in K ′. Hence the sets of clocks involved in these two cases differ.

To put this important point even more explicitly, we denote by C1

and C2 two clocks at rest in K , and by C′
1

and C′
2

two clocks at rest in
K ′. Their world lines are depicted in Fig. 3.6. The events where the
various world lines cross are denoted by A, B, D, and E. For reas-
ons of pictorial simplicity we have arranged the relation between
the distances of the clocks in their respective rest systems in such

C�1 C�2 C1

A

D B

E

t� = 12:45

t = 13:00

t = 12:30

t = 12:00

t� = 12:00

t� = 12:00

C2

Fig. 3.6 Reciprocity of time dilation involves more than two clocks.
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a way that the event where C1 meets C′
1

is simultaneous in K to the
event where C2 meets C′

2
. (As will become clear after the discussion

of length contraction, this means that the distance of both couples
are the same when measured in K . In other words, the distance
between C′

1
and C′

2
measured in K ′ is longer by a factor of γ than

the distance between C1 and C2 measured in K .) The picture cor-
responds to a value of γ = 3/2, i.e. v/c approximately equals 0.75.

An observer resting in K compares the readings of both clocks,
C1 and C2, with those of a single clock resting in K ′, say C′

2
. At

the event A the clock C′
2

meets C1 and both are adjusted to read
12:00. Then C′

2
meets C2 at the event B and C2 reads 12:30. This

last reading is also arbitrarily set by choosing the common rate
of all clocks appropriately. This being done, all other readings are
determined. The reading of C′

2
at B is 12:20, corresponding to a

factor of 1/γ = 2/3 by which the moving clock lags behind. Now
we take the position of an observer resting in K ′. He compares his
clocks C′

1
and C′

2
with a single clock at rest in K , say C1. Event A

again denotes the meet of C1 and C′
2

where both clocks read 12:00.
At the event D clock C1 reads 12:30 whereas clock C′

1
reads 12:45,

again corresponding to a factor 1/γ = 2/3 by which the moving
clock, which is now C1, lags behind. Note that the first statement,
asserting the ‘lagging behind’ of C′

2
as compared to the time t in K ,

involves the clocks C1, C2, and C′
2
, whereas the second statement,

asserting the ‘lagging behind’ of C1 as compared to time t′ in K ′,
involves the clocks C′

1
, C′

2
, and C1. This we summarize in Table 3.1.

3.3.2 Length contraction
Similar to the statements just made for measurements of time
intervals are those that apply to lengths. Again we consider a rod

Table 3.1

Event Happening Time t of K Time t′ of K ′

A clock C1 meets clock C′
2

12:00 12:00

B clock C2 meets clock C′
2

12:30 12:20

D clock C1 meets clock C′
1

12:30 12:45

E clock C2 meets clock C′
1

13:00 13:05
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in K ′ whose end points rest at x′ = 0 and x′ = l′. Its length in
K ′ is defined with respect to the yardsticks that also rest in K ′ and
is therefore just given by l′. With respect to K the rod moves at
velocity v along the x-axis. Its ‘length’ with respect to K is defined
to be the spatial distance between two simultaneous positions of
its end points. Here ‘distance’ is understood to be measured with
yardsticks resting in K and ‘simultaneous’ is meant with respect
to the time t defined in K . For example, one may choose t = 0 so
that the position of the rod’s left end is x = 0. The simultaneous
position x = l of the right end is obtained from the first equation
of (3.3) by setting x′ = l′ and t = 0:

l = l′ ·
√

1 − v2

c2
. (3.5)

Hence with respect to the length measure defined in K the rod is
shorter by a factor of 1/γ , as compared to its length in K ′. Note
that again we may assume all yardsticks and rods to be physically
of the same constitution. If one slowed down the rod and placed
it next to an equivalent one that rests in K there would be no dif-
ference in length. By the principle of relativity it is also true that
a rod resting in K appears shorter by the same factor when meas-
ured from K ′. Again this may sound contradictory at first, since
it seems to claim that of two physically equivalent rods resting in
K and K ′, respectively, each is shorter than the other one. This
would indeed be nonsensical if ‘being shorter’ referred both times
to the very same notion of length. But again this is not the case
in the situation at hand. In the first situation, length refers to the
distance between simultaneous positions of the rod’s end points
with respect to simultaneity in K (t-time), in the second case with
respect to simultaneity in K ′ (t′-time). These two notions of length
differ in the operational sense. We will illustrate this point shortly
by means of space-time diagrams.

The state of affairs expressed in (3.5) is called length contrac-
tion (alternatively Lorentz or Lorentz–FitzGerald contraction). It is
often summarized by saying that ‘moving bodies shrink in length’
(in the direction of motion). Again, as follows from the reciprocity
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Fig. 3.7 World surface of a rod resting in K .

of length contraction, this should be properly understood in order
to avoid confusion.

Let us now interpret the length contraction by means of the space-
time diagram in Fig. 3.7. Let there be a (idealized one-dimensional)
rod of length l resting in K . The world lines of its two ends are �1

and �2. The shaded surface consists of all events at which the rod
‘exists’, meaning that at this time and spatial location there is some
matter element of the rod. This set of events is called the rod’s ‘world
surface’. Those points of this surface which are simultaneous in K
at t = 0 form the interval AB. One may call this one-dimensional
set of points the ‘rod at time t = 0’. By an equivalent argument
the interval DC may, with the same right, be called ‘the rod at time
t′ = 0’. Note that although DC appears longer than AB by a factor
of 1/ cos α = √

1 + β2 in our picture, it corresponds, in fact, to a
physical length shorter by a factor of 1/γ . As discussed above, this
is because on the x′-axis the intervals corresponding to the phys-
ical unit-length are longer by a factor of γ

√
1 + β2 as compared to

such intervals on the x-axis. A space-time viewpoint of the world
therefore suggests that the length contraction is a mere effect of pro-
jection (from four-dimensional space-time into three-dimensional
space), similar to those effects of perspective that are familiar from
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two-dimensional pictures of three-dimensional objects. There the
three-dimensional geometry is absolute, given the body, but the
two-dimensional projections vary according to the line of sight.
Here, in SR, the four-dimensional world is absolute, but its splitting
into space and time and therefore the three-dimensional projec-
tions into ‘things at a time’ are relative, depending on the state of
motion of the observer.

Finally, as promised, we interpret the reciprocity of the length
contraction by means of a simple space-time diagram. In Fig. 3.8
the world surfaces of two rods, R and R′, are shown as they present
themselves in the rest system K of R. The rods are chosen to be
of the same length in their respective rest systems, so that in our
picture the horizontal section across R′ is shorter by a factor of
1/γ than the horizontal section across R. In the picture γ is again
chosen to be 3/2, corresponding to a velocity approximately 75% of
the velocity of light; hence tan α ≈ 0.75 or α ≈ 37

◦. The lines S and
S′ correspond to simultaneous events in K (constant t-time) and K ′
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(constant t′-time), respectively. Hence the events A, B, and C are
simultaneous in K whereas A, D, and E are simultaneous in K ′. The
intervals AC and AB correspond to the lengths of R and R′, respect-
ively, as measured in K . Obviously AB is shorter than AC. On the
other hand, the intervals AD and AE correspond to the lengths of
R and R′, respectively, as measured in K ′. Now AD is obviously
shorter than AE. One may easily prove that the ratios of the shorter
to the longer interval length is the same in both cases, namely 1/γ .

3.4 Addition of velocities

In this section we wish to discuss the modification that the old law
(2.5) for the addition of velocities receives in SR. We have already
seen that the old law would be inconsistent with the transformation
formulae (3.3), which become mathematically singular for speeds
greater than or equal to c. To deduce the new law, we think of a pro-
jectile which moves relative to K ′ with a velocity �u′ = (u′

x , u′
y , u′

z).
The analytical expression for its motion is again given by (2.3).
Introducing this into (3.3) one obtains expressions of the form
x = uxt, y = uyt, and z = uzt, where

ux = u′
x + v

1 + u′
xv/c2

, uy = u′
y ·

√
1 − v2/c2

1 + u′
xv/c2

, uz = u′
z ·

√
1 − v2/c2

1 + u′
xv/c2

.

(3.6)

This is a surprisingly complicated law, totally different from the
usual addition of vectors, except that it approximates vector addition
in the limit of small v/c. Indeed, this new addition law defines
an operation which constructs three new velocity components �u
relative to K out of the three components for the velocity �u′ relative
to K ′ and the three components for the velocity �v of K ′ relative to
K . We denote this operation by ⊕, i.e. we write �u = �v ⊕ �u′. It is not
hard to see that this operation is neither commutative nor—what
is worse—associative. That means that we generally neither have
�v1 ⊕ �v2 = �v2 ⊕ �v1 nor �v1 ⊕ (�v2 ⊕ �v3) = (�v1 ⊕ �v2) ⊕ �v3, as we are
used to from ordinary addition.
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It is quite easy to deduce from (3.6) that the modulus of �u is
always smaller than c, given that this is true for �u′ (it holds for �v in
any case). Hence it is impossible to get equal to, or even above, the
velocity of light by successively adding velocities smaller in mod-
ulus than c. For example, adding together half the velocities of
light in the x direction according to the first formula in (3.6) does
not result in c but 4/5c, as one easily verifies. Now, every inertial
system can be obtained from a given one by some application of a
Lorentz transformation of the form (3.3), a translation, and a spatial
rotation. But the latter two have no effect on the modulus of velo-
cities. This implies that the modulus of the velocity of a projectile
is less than c in any inertial system if this holds in at least one. In
particular, a ‘rest system’ can always be found for such a projectile.

Similar statements hold for moduli greater than c, since (3.6)
also implies that the modulus of �u exceeds c if that of �u′ does (the
modulus of �v is, as always, still less than c). Here it is even possible
to formally produce infinite velocities. For example, consider a fic-
titious process propagating in K ′ with superluminal speed u′

x > c
in the x direction. Its velocity relative to K will turn out to be infin-
ite, according to (3.6), if K is chosen such that v = −c2/u′

x . Note
that the minus sign says that K ′ moves relative to K in the direction
of the negative x-axis, so that K follows the signal. This says that
running after a superluminally propagating projectile enhances
rather than diminishes its relative speed, until it becomes infinite
at a critical (subluminal) running speed at which the denominat-
ors of (3.6) become zero. Running still faster, though always less
than c, makes the relative projectile’s velocity change sign, since
now the the denominators in (3.6) turn negative. The projectile
now approaches the observer at superluminal velocities! All that
sounds of course pretty fantastic and merely indicates that, within
SR, all processes that rely on causal relationships cannot propag-
ate at superluminal velocities. These, in particular, comprise those
processes which can be used for the transmission of information
and/or energy, that is, all processes which one may use for the
propagation of signals. But note that this does not imply the absence
of any kind of superluminal velocities. For more discussion on this
point see Sect. 5.3.
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Finally we present a simple but convincing application of the
addition law for velocities to Fizeau’s experiment that we discussed
in Sect. 2.4.2. Let K ′ be the rest system of the medium within the
tube, relative to which light travels along the x′-axis at speed u′

x =
c/n. Let, further, K be the laboratory system relative to which the
medium flows at speed v along the x-axis. Then the first equation
in (3.6) predicts the speed ux at which the light propagates in the
laboratory system K :

ux = v + c/n

1 + v/(cn)
≈ c

n
+ v

(
1 − n−2

)
. (3.7)

Here the ≈ symbol indicates an approximation, which consists of
neglecting terms that are suppressed relative to those written down
by a factor of v/c, or higher powers thereof. In Fizeau’s and related
experiments v was smaller than 10 metres per second, which means
that v/c is smaller than 3 · 10

−8. Hence the above approximation
is fully justified. Now note that (3.7) is just identical to (2.10) and
(2.11). The somewhat mysterious ‘dragging coefficient’ thus turn
out to be a simple consequence of the new addition law, and not an
expression of a complicated interaction between matter and some
hypothetical ether.

3.5 Causality relations

We have seen that within the kinematical framework of SR no
causal dependencies may propagate faster than by the speed of
light. Here we wish to give a geometric interpretation of this
important consequence by means of space-time diagrams. Such
a representation was not included in Einstein’s original paper of
1905. It goes back to the mathematician Hermann Minkowski
(1864–1909), who in his famous address ‘Space and Time’ of
1908 [11] first pointed out the usefulness of this representation
technique. In his honour space-time diagrams are therefore some-
times also called Minkowski diagrams. Minkowski also made
other seminal contributions to SR that led to its modern powerful
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Fig. 3.9 Light cone and domains of causal dependence of the event •.

mathematical formulation, which, however, we shall not make use
of in this book.

Let K be an inertial system whose (ct, x)-axes are depicted in
Fig. 3.9. Again two dimensions (the y- and the z-axis) are sup-
pressed. Hence the wave front of a flash of light that sparked off
at x = 0, t = 0 is represented by the two world lines denoted by
�+, one each for the propagation along the positive and negative
x-axis, respectively. The union of these two half-lines is called the
future light-cone �+ of the event O = (x = 0, ct = 0) (depicted
by • in our picture). It consists of all points in space-time that can
receive light from O. It is called a ‘cone’ since if one adds a fur-
ther spatial dimension one obtains a three-dimensional space-time
diagram which can be obtained from our two-dimensional version
through rotation about the ct-axis. The surface so generated by �+
is a two-dimensional cone whose vertex lies at O; see the figure
used as frontispiece on Page ii. After addition of one more space
dimension one finally obtains a three-dimensional cone in four-
dimensional space-time, which is clearly much harder to visualize.
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The light cone contains all events that can be reached by a light sig-
nal originating from O. The inner domain of the cone, K+, depicted
in a lighter shading, consists of all events that can be reached from
O by processes that propagate subluminally. This is because the
coordinates (ct, x) of this domain precisely satisfy the condition
|x| < ct. The region K+ is called the chronological future of O. The
union of K+ with the future light cone is called the causal future of
O, since it just consists of all events that O can causally influence,
either by subluminal or luminal propagation.

Similarly one considers the light rays which at time t = 0 meet at
x = 0. The union of these half-lines, �−, is called the past light cone
of O. It consists of all points of space-time which can send light
signals to O. Its interior domain, K−, depicted in a darker shading,
contains all points which can reach O by processes that propagate
subluminally. It is called the chronological past of O. The union of
K− and the past light cone is called the causal past of O. It consists
of all events that can causally influence O.

The third region of interest is that outside the causal future and
past of O. It consists of all events that can neither be causally influ-
enced by O nor themselves causally influence O. For this reason it
is called the causal complement of O. The existence of such causal
complements is a direct consequence of a finite upper bound for
all signal velocities and a new feature that SR introduces into our
space-time concepts. For events lying in the causal complement
of O it makes no absolute sense to say that they happened before
or after O. This is because a Lorentz transformation can make the
new x′-axis any straight line through O in its causal complement.
Hence for any event E in the causal complement of O there exist an
inertial system K ′ in which E is assigned a smaller value of t′ than
O, but likewise there also exists an inertial system K

′′
in which E

is assigned a larger t
′′

value than O. In K ′ event E would be said to
happen after O, using inertial time t′, in K

′′
the time order would

be just opposite with respect to inertial time t
′′
. This is illustrated

in Fig. 3.10. Note that the situation regarding time orders is totally
different in the causal future and past of O. Any inertial observer
agrees that events in K+ happen after and events in K− before O.
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Fig. 3.10 Events E in the causal complement of • have no Lorentz-invariant
relative time order.

3.6 Aberration and Doppler effect

The addition law (3.6) also predicts that the modulus of �u equals
c if and only if the modulus of �u′ equals c. This holds independ-
ently of �v, whose modulus, we recall, is always less than c. This
is immediate from the very definition of the Lorentz transforma-
tions, one of whose two axioms were that the velocity of light should
be the same in all inertial systems. Hence only the direction and
frequency of a light ray may vary from one to another inertial
observer, depending on the relative velocity between observer and
light source. These velocity-dependent variations of directions and
frequencies are called aberration (cf. Sect. 2.4.1) and Doppler effect
respectively. Their laws will now be derived.

3.6.1 Aberration
We consider a light source, L, resting in the x′y′-plane of the inertial
system K ′. An observer is situated at the origin of K ′ who receives
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and analyses the light being sent to him from L. Let α′ be the angle
enclosed between the x′-axis and the line connecting the observer
to L (i.e. his line of sight). Light emanating from L travels along this
line at speed c in the opposite direction, i.e. from L to the observer.
Hence the x′-component of its velocity is given by u′

x = −c cos α′.
Let us now assume that there is a second observer at the origin
of the inertial system K , relative to which K ′, and hence L, moves
with velocity v along the x-axis. The phenomenon of aberration now
boils down to the statement that even though at time t = t′ = 0

both observers are at the same space point, they nevertheless do
not measure the light as coming from the same direction. To put
this quantitatively, let α be the angle between the line of sight along
which the observer in K sees L and his x-axis. The x-component of
the light-signal’s velocity in K is likewise given by ux = −c cos α.
Note that here we made use of the universality of the speed of light.
Inserting these expressions for ux and u′

x into the first equation (3.6)
immediately yields an expression relating the cosines of α and α′
in a v-dependent fashion (β and γ are as in (2.14)):

cos α = cos α′ − β

1 − β cos α′ . (3.8)

This is already the relativistic aberration formula. Sometimes it is
more convenient to rewrite it in terms of the tangents (instead of
the cosines) of half the angles:

tan α
2

= tan α′
2

·
√

1 + β

1 − β
. (3.9)

Since the tangent of α/2 is a monotonic function of α within the
relevant domain between 0

◦ (source directly moving away from
observer) and 180

◦ (source directly approaching the observer), it is
easy to tell straightaway the qualitative behaviour of (3.9). Imagine
a spaceship which moves with increasing speed toward some fixed
star S. Let S′ be the star (suppose there is one) diametrically opposite
to S on the celestial sphere. We take S and S′ to be the poles of that
sphere. Then, as the spaceship’s speed increases, the astronaut
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will see the stars moving away from S′ and toward S, along the
meridians that connect the poles S′ and S of his celestial sphere.
The poles themselves remain fixed.

3.6.2 Doppler effect
We now turn to the Doppler effect. We assume the source L to
emit monochromatic light of frequency v′, as measured in the rest
system K ′ of L. This means that the time interval measured in K ′
(i.e. t′-time) between two equal phases of light is given by τ ′ = 1/v′.
Due to time dilation (3.4), this corresponds to the longer interval
τ = γ τ ′ in K (i.e. t-time). During this time the distance between
L and the observer at the origin of K increases by the amount
vτ cos α. The light phase sent off from L at the end of the interval
τ must therefore travel this extra distance and hence arrives with
a delay of βτ cos α as compared to the light phase sent off just at
the beginning of the time interval. (To obtain the last expression
we again used the universality of the speed of light.) This delay
has to be added to τ in order to get the period of the light wave as
measured by the observer in K . Finally, since the frequency is just
the inverse of the period, we obtain the following expression for
the frequency measured by the observer in K :

v = v′

γ (1 + β cos α)
. (3.10)

This is the special-relativistic law for the Doppler effect. Because of
aberration, it is important to be aware that this formula assumes a
different form if written in terms of the angle α′ instead of α. The
difference is a second order effect in v/c and becomes crucial for
the transverse Doppler effect that we discuss below. Here we have
chosen to write the law in terms of α, since this is the angle that
the observer in K measures between his direction of sight and the
velocity of L. In contrast, α′ would be the angle that a co-moving
observer at the position of the source L would measure between
the emitted light ray that travels toward the origin of K and the
velocity of K relative to K ′. The corresponding relation is obtained
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by replacing cos α in (3.10) by the expression (3.8). It will be stated
and used later; see (3.19).

Except for the appearance of γ expression (3.10) was already
part of ‘pre-relativistic’ physics. There it was derived just as above,
even though we used the universality of the speed of light. But,
in fact, the only assumption we actually used was that the velo-
city of light was isotropic and of modulus c in K . Hence if we
identify K as the rest system of a medium (air, water) in which
wave propagation takes place, our derivation above applies almost
verbatim to sound or water waves. Only the initial argument con-
cerning the factor γ is now simply omitted and c is interpreted
as the propagation velocity of waves in the specific medium under
consideration. Formula (3.10) without γ therefore also gives the
correct expression for sound or water waves, whenever the source
moves relative to the medium and the observer is at rest. In the
opposite case, where the source is at rest and the observer moves
with respect to the medium, one would have obtained a slightly
modified expression in which the factor (1+β cos α) in the denom-
inator of (3.10) would be replaced by a factor (1 − β cos α) in the
numerator. Hence the Doppler effect for waves in media depends
not only on the relative velocity between source and observer, but
also on their absolute velocity relative to the medium. This would
therefore also be the case in an ether theory of light without time
dilation. It is the essence of SR to have overcome this distinction.
Accordingly, equation (3.10) only depends on the relative state of
motion between observer and source. There is no reference to a
hypothetical ether system which would be distinguished by being
the only system in which the velocity light did not depend on the
direction.

An important special case of (3.10) is given for the case where
the observational direction is perpendicular to the velocity of the
source, i.e. where α = 90

◦, so that cos α = 0. Then (3.10) reduces to

v = v′ ·
√

1 − v2

c2
. (3.11)
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Here the difference between v and v′ is solely given by the γ -factor,
whose existence at this point is exclusively due to time dilation. The
frequency shift at perpendicular observational directions is called
the ‘transverse Doppler effect’. Already in 1907 Einstein suggested
experimentally verifying the appearance of γ in (3.10), and hence
the existence of time dilation, through direct observation of the
transverse Doppler effect [12]. But this was only achieved much
later (1938) in the experiment of Ives and Stilwell, which we will
discuss in Sect. 5.5. Finally we come back to our previous remark
concerning aberration and the different rôles that α and α′ play in
the law for the Doppler effect. If instead of α we had set α′ equal to
90

◦, which according to (3.8) is equivalent to setting cos α = −β,
we would have obtained the inverse factor on the right-hand side of
(3.11). Hence observing a moving light source perpendicular to its
direction of motion results in a ‘red-shifted’ (i.e. lower) frequency
by a factor of 1/γ , whereas the light that the source emits perpen-
dicular to the direction of motion of the observer reaches him at a
‘blue-shifted’ (i.e. higher) frequency by a factor of γ . Only the first
case is usually referred to as the ‘transverse’ Doppler effect.

3.7 Length contraction and visual appearance

The visual appearance of an object is given by the light signals that
simultaneously enter the eye of the observer or the lens of his photo-
graphic device. But the different parts of an extended body vary in
distance to the observer’s eye. Hence the parts further away must
send their light earlier than the closer lying parts. What an inertial
observer sees are therefore not the mutually simultaneous (with
respect to his inertial time) parts of the object. On the other hand,
the geometry of a body is defined by the simultaneous positions of
its parts. This is how we defined the ‘length’ of a body for which we
derived length contraction. What, then, does a moving body look
like? Can we see the length contraction at all?

In general, the determination of the apparent shape of a body is
a very complicated analytical problem. But we can simplify matters
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Fig. 3.11 Visual impression of a moving cube. The observer is located in
the paper plane far below the cube.

considerably by restricting attention to a body whose extent is
small in comparison to its distance to the observer. In this case
we may, in a first approximation, treat all light rays from the body
to the observer’s eye as parallel. Furthermore we assume that at the
moment of observation the direction of sight from the observer to
the object is perpendicular to the velocity of the latter. This corres-
ponds to α = 90

◦ (like in the transverse Doppler effect) so that (3.8)
implies cos α′ = β. But α′ is just the angle between the light rays
emitted by the object and the direction of the moving observer, i.e.
the negative x′-axis. Hence the object does not show its 90◦ side-
view to the observer but rather a slightly rotated one. The rotation
angle is ϕ = 90

◦ − α′, which satisfies sin ϕ = β and cos ϕ = 1/γ .
Besides a rotation, the object may also appear deformed. To

clarify this in a simple example we further assume the object to be
a cube, the top-view of which we depict in Fig. 3.11. The observer,
who is not represented in the picture, is located in the plane of the
paper a good distance below the cube. The cube’s edge length at
rest is l. Light emitted from its far left corner, D, needs to travel a
distance l farther than light from A before both reach the observer.
Hence it must be emitted a time interval l/c earlier in order to
reach the observer’s eye at the same time as the light emitted from
A. At this earlier time the cube was located a distance vl/c = lβ
further to the left. Hence the observer can actually see the side-edge
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AD as projection of length lβ perpendicular to his line of sight. Its
appearance is as if the cube were rotated by an angle ϕ, where
sin ϕ = β. Because of length contraction, the observer sees the
edge AB (all points of which are taken to have the same distance
from the observer in our approximation) with length l/γ = l cos ϕ,
again as if the cube where rotated by the angle ϕ. This means that
the observer sees a rotated but undeformed cube. If there were no
length contraction, so that the observer were to see AB with length
l, he would have the impression of a rectangular solid of length γ l,
height and depth l, seen rotated by an angle ϕ. The somewhat ironic
punchline of this is that because of length contraction we see the
cube rotated and undeformed rather than rotated and prolonged.

The general laws for visual images are far more involved, in
particular if the object dimensions are not small compared to the
object’s distance. But one may still rigorously prove that the image
of a moving ball is still a ball and not, as one might naively think, an
oblate spheroid. Moving balls or spheres do not look contracted in
their direction of motion. The general proof of this is explained in
Sect. 5.8. It seems strange that the distinction between the visual
appearance of a body on one side, and the geometric shape as
defined by the simultaneous positions of the parts of the body on
the other, was not recognized for a long time. The first seems to
have been Anton Lampa in 1924 [13], but his paper apparently went
unnoticed until recently. In 1959 essentially the same observations
were made again in greater detail by James Terrell [14] and, in the
special case of the moving sphere, by Roger Penrose [15]. Instruct-
ive and amusing animations can be found on the INTERNET,
e.g. [16, 17].

3.8 Mass, momentum, and kinetic energy

Mechanics is conceptually deeply linked with our notions of space
and time. Any modifications of the latter, as, e.g. brought about by
SR, will necessarily also affect mechanics. This will be explained in
some detail in this section.
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A central theorem in Newtonian mechanics states the conser-
vation of momentum. In the special case of two colliding bodies
it takes the following form. Let �u1 and �u2 be the velocities of two
bodies before collision. After an elastic collision the velocities have
changed and are now given by �v1 and �v2, respectively. The bodies
may mutually exchange any kind of forces, but we assume that
no external forces act on the system. The theorem then states that
there are two numbers (together with a physical dimension, like
‘kilogram’), m1 and m2, so that

m1�u1 + m2�u2 = m1�v1 + m2�v2. (3.12)

The quantities m1 and m2 are associated with the individual bodies
and are independent of their states of motion. Hence (3.12) is a
universal law that for given initial velocities �u1 and �u2 restrict the
possible outcomes �v1 and �v2. The quantities m1 and m2 are the
(inertial) masses of the bodies which govern their inertial beha-
viour, like, e.g. the centrifugal force. The product of mass times
velocity is called the ‘momentum’ of the body. Equation (3.12)
states that the sum of all momenta before collision equals the sum
of all momenta after collision, i.e. that momentum is conserved.
We also recall that Newtonian force is, strictly speaking, defined
as the time rate of change of momentum, i.e. its time derivative.
Replacing momentum by the product of mass times velocity, and
assuming the mass to be constant in time, leads back to the well
known equation (2.1).

We now ask: what in SR is the expression for momentum as a
function of mass and velocity? We do not yet know the answer, but
we can uniquely deduce it through the requirement of momentum
conservation. That is, we define momentum so as to be conserved
in time. Moreover, for small velocities the new expression for
momentum should approximate the Newtonian one, given by the
product of mass times velocity. On the other hand, it is also easy to
show that (3.12) cannot be strictly valid in SR. Hence the Newtonian
expression for momentum truly has to be modified in order to save
the law of momentum conservation into SR. An obvious strategy
is to assume the validity of (3.12) under the relaxation that m1 and
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m2 may also depend on the respective velocities. This dependence
should just involve the moduli of the velocities in order not to prefer
any direction in space. We therefore assume the momentum �p of
a body, moving with velocity �u, to be given by an expression of the
form m(u)�u, where m(u) is a yet unknown function of the modulus
u of �u. We now show that this function is uniquely determined by
the requirement of momentum conservation. For the time being,
and merely for convenience, we follow some old fashioned ter-
minology and continue to call m the ‘mass’, even though it is no
longer a fixed number. We will explain the modern terminology
below.

Again we introduce two inertial systems, K and K ′, where K ′
moves relative to K at speed v in the x direction. At t = t′ = 0 both
coordinate systems coincide. We consider the elastic scattering of
two physically identical spherical bodies A and B. Let this scatter-
ing be arranged as follows. Before the scattering event, A moves
relative to K at speed w on the negative y-axis in a positive (upward)
direction, whereas B moves relative to K ′ at the same speed on
the positive y′-axis in a negative (downward) direction. Note that
both speeds refer to different inertial systems. The timing of these
motions is such that at time t = t′ = 0 the bodies collide at the
(then coinciding) origins of K and K ′. At this moment (and only
then) the bodies mutually exchange forces whose direction must be
along the line connecting the centres of the bodies at this moment,
i.e. along the (then coinciding) y- and y′-axes. We assume the colli-
sion to be totally elastic, which means that no deformations of the
bodies take place and hence no energy is lost. This implies that after
collision the moduli of the velocities are the same as before with
exactly inverted direction. Hence, after collision, A moves relative
to K on the negative y-axis at speed w in a negative (downward)
direction and B moves relative to K ′ on the y′-axis with the same
speed in the positive (upward) direction.

Let us now describe the whole process relative to system K . Here
A has the velocities as stated above. To obtain the velocities of B
relative to K we have to use the rules (3.6). Before collision we get
ux = v and uy = −w/γ ; after collision ux = v and uy = w/γ . This
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Fig. 3.12 Collision of A and B as reckoned from system K .

is summarized in Fig. 3.12, where the velocities before collision are
marked by solid arrows, after collision by dashed arrows. The thin
arrows signify the just cited horizontal and vertical components of
B’s velocities, which just add to the velocity vectors as indicated.
The modulus of the velocity vectors is given by

u =
√

v2 + (w/γ )2. (3.13)

Since the mass is assumed to be a function of the modulus of the
velocity only, it follows that the masses of A and B do not change
during the collision process. For A it is given by m(w) and for B by
m(u), where u stands for the expression in (3.13). The x-component
of total momentum is just that due to B, which is obviously con-
served. For A as well as for B we have that the y-component after
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collision is just the negative of its value before collision. It follows
that this is also true for their sum. But the sum should be pre-
served, i.e. be the same before and after collision. Hence the value
of the sum must be zero: m(u)w/γ − m(w)w = 0. Momentum
conservation in the present example is therefore equivalent to

m(u) = γ m(w), (3.14)

where u stands again for the expression in (3.13). This equation
must hold true for all values of v and w (recall the v-dependence of
γ ). Hence, in particular, it must hold for arbitrary small values of
w and, by continuity, also for w = 0. In this limiting case u equals
v and we get (writing out γ explicitly)

m(v) = m0γ = m0√
1 − v2/c2

, (3.15)

where we set m0 = m(0). This is a unique prediction of m as a
function of speed. We obtained it from (3.14) by going through
a limiting case. But one may now straightforwardly verify that it
indeed solves (3.14) in full generality.

We are now ready to write down the expression for momentum
in SR:

�p = m(v)�v = m0γ �v = m0

�v√
1 − v2/c2

. (3.16)

The quantity m0 denotes the mass at zero speed. It is there-
fore called the ‘rest mass’. It is this quantity which most
closely characterizes the ‘amount of substance’. In that respect
it resembles the Newtonian mass more closely than our mass
function (3.15), though in the next section we will see that m0

does vary with the internal state of the body. A Newtonian read-
ing of (3.16) suggests calling that quantity ‘mass’ that multiplies
�v, i.e. m(v). This used to be standard terminology in older text-
books. It is suggestive for Newtonian intuition, in that it explains
the impossibility to accelerate a body to or beyond the speed
of light by its unboundedly increasing mass. In daily life this
increase of mass is absolutely negligible. For example, a speed
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of 200 kilometres per hour would result in a fractional mass
increase of 10

−14. A doubly-supersonic flight pushes this up by
two orders of magnitude. But this still makes a minute effect
of one in a billion (British) or trillion (American); in any case,
one in 10

12.
The situation is entirely different in elementary particle physics

(cf. Sect. 4.3). Here, in the extreme case, γ -factors of more than a
thousand are reached, which means that the mass also increases
by that factor. This enormous variability makes it clear that this
notion of mass is not suitable to intrinsically characterize element-
ary particles. Here, in elementary particle physics, it is therefore
much more natural to identify the ‘mass’ of a particle with its
rest mass. This now corresponds to the generally adopted way of
speaking.

It is a routine calculation, using elementary calculus, to deter-
mine the kinetic energy as a function of velocity, once momentum
as a function of velocity is determined. To understand this, we recall
that the force that one needs to apply in order to accelerate the body
is just given by the time derivative of the body’s momentum. On
the other hand, the work done during the acceleration process is
given by the integral over the force along the path along which
the body moves. Because of energy conservation, the work done,
starting from zero velocity, is numerically the same as the kinetic
energy of the body after acceleration. Starting from (3.16), this
leads to

Ekin = m0c2(γ − 1) = m0c2

(
1√

1 − v2/c2
− 1

)
. (3.17)

As expected, the kinetic energy grows unboundedly if the speed
approaches c. For small speeds one has γ ≈ 1 + v2/2c2 and
hence Ekin ≈ 1

2
m0v2, which is just the Newtonian expression.

Figure 3.13 compares the plots for the Newtonian (solid curve)
and special relativistic (dashed curve) expressions of kinetic energy,
here measured in units of the rest energy m0c2.
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Fig. 3.13 Kinetic energy as a function of speed according to Newtonian
mechanics (solid curve) and special relativistic mechanics (dashed curve).

3.9 Probably the most famous formula in all of
physics

The next volume of Annalen der Physik to that in which Einstein
published his work on special relativity contains a small supple-
ment to this paper, hardly three pages long, entitled ‘Does the
inertia of a body depend on its energy content?’ [18]. Here ‘energy
content’ refers to purely internal energy, not kinetic energy. That
kinetic energy contributes to inertia is already clear from the velo-
city dependence of the mass (3.15). This can be made more explicit
by writing the mass as a function of the kinetic energy:

m = m0 + Ekin

c2
. (3.18)
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The following argument of Einstein’s aims to also connect the rest
mass m0 with the energy content of the body. We consider a body
A that rests in the inertial system K ′. At time t′ = 0 it emits
energy in the form of light. To simplify the ensuing discussion
we will use the quantum theoretic picture, according to which the
energy of light is concentrated into spatially localized ‘quanta’, or
‘photons’ as they are now called. This light-quantum hypothesis
was introduced by Einstein in the same year 1905, but not used by
him in the present context. So let us assume that two photons of
equal frequency ν′ (measured in K ′) are emitted in diametrically
opposite directions by A. According to Einstein’s light-quantum
hypothesis, each photon carries a momentum hν′/c (relative to K ′)
in the direction of propagation. Here h denotes Planck’s constant.
Momentum conservation then implies that the emission of such
a photon causes a recoil (momentum transfer) of equal strength
but opposite direction on to the emitting body. Since two photons
of equal frequency are emitted in opposite directions, both recoils
cancel and A does not change its state of motion relative to K ′,
i.e. stays at rest. Even though the momentum of A relative to K ′
does not change, its energy does. Again the light-quantum hypo-
thesis predicts that each photon carries an energy of hν′ (relative
to K ′). Energy conservation then demands that A loses the amount

E ′ = 2hν′ of energy, as measured in K ′. The upper picture of
Fig. 3.14 shows the emission process relative to K ′.

Now we regard the same process in the inertial system K , relative
to which K ′ moves with velocity v in the x direction. This corres-
ponds to the lower picture of Fig. 3.14. Since A is at rest in K ′
before and after emission, it keeps its velocity v relative to K . The
latter is true despite the fact that the two photon emissions are not
directed oppositely in K . The latter is just a consequence of aberra-
tion and can be easily checked using (3.9). Moreover, the Doppler
effect implies that the frequencies of the two photons differ in K . To
see this quantitatively, it is more convenient in the present context
to use (3.8) to re-express (3.10) in terms of α′, which is the angle
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Fig. 3.14 Emission of two photons by a body A: in the upper picture as
reckoned in the rest system K ′ of A; in the lower picture as reckoned from
system K , relative to which A moves with velocity v in the x direction. The
lengths of the arrows are proportional to the frequencies. Frequencies and
angles change according to Doppler shift and aberration.
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measured in K ′. This leads to

v = v′γ (1 − β cos α′), (3.19)

which allows us to determine the frequencies ν1 and ν2 measured
in K as a function of the angles α′

1
and α′

2
measured in K ′. The

point being, that the latter two just differ by 180
◦, so that cos α′

1
=

− cos α′
2
. The total energy 
E = hν1 +hν2 of the photons in K now

equals


E = γ
E ′. (3.20)

To be sure, we require that this process obeys the law of energy
conservation as reckoned from both systems K and K ′. Let Ei and Ef
denote the total (kinetic plus inner) energy of A in K before (i) and
after (f) the emission process. Let E ′

i and E ′
f be the corresponding

quantities in K ′. Then we must have

Ei = Ef + 
E,

E ′
i = E ′

f + 
E ′.
(3.21)

By its very definition, the kinetic energy of A in K before emis-
sion must equal the difference Ei −E ′

i . The corresponding equation
holds after emission. Subtracting the second from the first equa-
tion in (3.21) and using (3.20) yields the following expression for
the difference of the kinetic energies before and after emission:


Ekin = 
E ′(γ − 1). (3.22)

We now compare this with the general expression (3.17) for kinetic
energy. Recall that A’s velocity does not change during the emission
process. Hence a change of its kinetic energy can only be brought
about by a change 
m0 of its rest mass. According to (3.16), the
latter will then cause a change in the kinetic energy of the form

m0c2(γ − 1). This is just of the same form as the right-hand side
of (3.22). Writing now 
E0 instead of 
E ′ for the variation of A’s
energy in its rest system, we obtain by comparison


E0 = 
m0c2. (3.23)
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For completeness we remark that instead of energy conservation
we could have used momentum conservation to obtain the same
result. One may show that A suffers a recoil in K corresponding to
a momentum transfer in the x direction of 
px = −γ (
E ′/c2)v.
Since v stays constant, the rest mass must have diminished by

m0 = 
E ′/c2.

This answers the question that Einstein posed in the title of his
paper in the affirmative. The rest mass, and hence the inertial
mass, depends on the internal energy of the body. An increase of
internal energy by an amount 
E also increases the rest mass by

E/c2. Note that the argument is totally independent of the form
in which this energy is stored within the body. Taken together with
the already established connection (3.18) between inertial mass and
kinetic energy, this leads to the statement that any change in energy,
whether it be internal or external (kinetic), corresponds to a change
in the inertial mass, and vice versa. Note that the rest mass of
an extended piece of matter is defined as its mass, as measured
in the rest system of its centre of mass. The rest mass receives
contributions from all constituents of the body, including their
kinetic, potential, chemical, and other energies. For example, the
rest mass of a piece of metal will depend on its temperature, since
temperature stands for an average of the kinetic energies of the
atoms and molecules.

Eventually this leads to an identification of the notions of ‘iner-
tial mass’ and ‘energy’, whose physical definitions did not at first
depend on each other. Hence, after fixing the otherwise undeter-
mined additive constant for energy such that E = 0 for m = 0,
(3.18) and (3.23) may be summed up in a formula for the total
(internal plus kinetic) energy, known to almost everybody:

E = mc2. (3.24)

This equation is totally general and applies to all physical systems.
Knowing the total energy we can calculate the total inertial mass
and vice versa. Note that a separation of mass into rest mass and
kinetic energy, like in (3.18), only makes sense for systems which
can be assigned a collective velocity, like for movable bodies. Then
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we may write m = m0γ , as in (3.15). Alternatively we may express
E in terms of the momentum (3.16) rather than the velocity. This
leads to the following relation

E2 = p2c2 + m2
0
c4. (3.25)

This formula is of central importance in Relativistic Quantum
Mechanics and Quantum Field Theory and much used in atomic
and elementary particle physics. We will come back to this
in Sects. 4.1 and 4.3. The relation (3.25) between energy and
momentum is the same in all inertial systems. This is a con-
sequence of the fact that under Lorentz transformations both quant-
ities get mixed in a way that is identical to the transformation rules
for time and space coordinates. This will be discussed in Sect. 5.9.

On a quantitative level, the most remarkable property of (3.24)
is the magnitude of the factor c2 that converts masses into ener-
gies. Expressed in units of square metres per square seconds, it is
roughly given by 10

17! This is the number you have to use in order
to convert a mass in units of kilograms into an energy in units of
joules. For example, the kinetic energy of a luxury limousine of
a mass of two tonnes at a speed of 200 kilometres per hour cor-
responds to a tiny mass of only 3.4 · 10

−8 grams. This enormous
magnitude of c2 becomes important in nuclear physics, where it
explains the high energy yield of nuclear fission and nuclear fusion.
We will come back to this in Sect. 4.2.

3.10 Electrodynamics: Invariance of Maxwell’s
equations

We have seen how SR implies certain changes to be made in the
formalism of mechanics. These changes can be understood as con-
sequences of the requirement that the equations of motions be
invariant under Lorentz transformations (instead of Galilei trans-
formations). This, in fact, would have been the shortest, though
rather formal, route to special-relativistic mechanics. This axio-
matic approach is the most commonly adopted one in modern
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textbooks. Now, in contrast to Newtonian mechanics, Maxwell’s
equations are not invariant under Galilei transformations. This
has for a long time been the mathematical origin of the belief
that electrodynamics would be incompatible with the principle of
relativity. But we now understand that this is based on the hid-
den assumption that the change of inertial systems, which are
physically defined, is mathematically implemented by Galilei trans-
formations. For a long time this was thought to be self-evident.
But, as Einstein showed, this is based on a prejudice concerning
the physical meaning of space-time measurements. The physically
correct implementation of the principle of relativity must be via
Lorentz transformations.

Now, the important point is that Maxwell’s equations are already
Lorentz invariant. Hence, according to Einstein, they already do
satisfy the principle of relativity. It is interesting to note that
this mathematical result per se was established before Einstein
by Lorentz (1904) and Poincaré (1905). This, by the way, is the
reason the Lorentz transformations carry their name. In fact, sim-
ilar wave-propagation equations to those that appear in Maxwell’s
theory where already shown to be Lorentz invariant by the mathem-
atician Woldemar Voigt (1850–1919) in 1887. But nobody before
Einstein connected these results to the principle of relativity. In
particular nobody took the transformation of the time coordinate
as anything else but a formal manipulation, disconnected from any
physical notion of time.

That Maxwell’s equations are Lorentz invariant means the fol-
lowing. Let K and K ′ be two inertial systems whose coordinates
are (x, y, z, t) and (x′, y′, z′, t′), respectively. Then there is a unique
Lorentz transformation (including rotations and translations in
the general case), L, that transforms the first into the second
set of coordinates. Let �E and �B be electric and magnetic fields,
measured with yardsticks and clocks in K and expressed as func-
tions of the coordinates of K . We assume these fields to satisfy
Maxwell’s equations in K . Then there exists a unique transforma-
tion, (�E, �B) → (�E ′, �B′), such that the new fields satisfy Maxwell’s
equations in K ′. Here �E ′ and �B′ are the electric and magnetic
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fields, measured with yardsticks and clocks in K ′ and expressed
as functions of the coordinates in K ′.

As an example we wish to write down the transformation formu-
lae for the electromagnetic fields in case K ′ moves relative to K at
speed v in the x direction, where, as usual, both systems coincide
at t = t′ = 0. Then the space-time coordinates transform as in (3.3)
and the fields as follows (we express the fields in K as functions of
the fields in K ′):

Ex = E ′
x , Ey = γ (E ′

y + vB′
z), Ez = γ (E ′

z − vB′
y),

Bx = B′
x , By = γ (B′

y − v
c2 E ′

z), Bz = γ (B′
z + v

c2 E ′
y).

(3.26)

A remarkable property of these equations is that electric and
magnetic fields mutually transform into each other. Hence the
split between electric and magnetic components of the electro-
magnetic field depends on the observer’s state of motion. No
absolute distinction between ‘electric’ and ‘magnetic’ exist any-
more. Let, for example, the field in K ′ be purely electric (�B′ = �0)

and pointing in the z′ direction with constant strength E ′
z. An

observer at rest in K will then not only measure an electric field
in the z direction of enhanced strength γ E ′

z, but perpendicular
to it also a constant magnetic field in the y direction of strength
By = −γ vE ′

z/c2.
This is precisely the effect which lifts the apparent dichotomy

in the explanation of electric induction, which Einstein emphas-
ized so much right at the beginning of his original paper on SR.
Once Maxwell’s equations are recognized to be applicable in all
inertial systems, we can now use them either in the rest system
of the magnet or the rest system of the moving conductor (wire).
The absolute split between electric and magnetic, which existed
as long as one believed the ether system to be the only one where
Maxwell’s equations apply, is now gone! Let us again take a look
at Fig. 3.1. Let the y direction point upward within the plane of the
paper and the z direction toward the reader, perpendicular to the
plane of the paper. The rest system K ′ of the magnet then contains
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Fig. 3.15 Coulomb field of a point charge in various states of motion.
From left to right: at rest and with velocities 0.5, 0.7, and 0.8 in units of
c. Depicted are the vectors of the electric field, evaluted on the surface of
the small sphere of constant radius (measured in the laboratory system K )
about the central charge.

a constant magnetic field in the z′ direction of strength B′
z in the

region marked by the ⊗ symbols. Now we switch to the rest system
K of the conductor. According to (3.26), it contains an electric field
in the y direction of strength Ey = γ vB′

z. This is precisely the field
that the law of induction would predict by solving Maxwell’s equa-
tions in K . But Lorentz invariance of Maxwell’s equations spares
us the trouble of doing this calculation. We can predict the result
straightaway by doing the much easier job of solving Maxwell’s
equations in K ′ and then transform the result to K following the
rules (3.26). This shows that Lorentz invariance can also be put to
great practical use.

Finally we consider the electric field of a (positive) point charge.
Let K ′ be its rest system with the charge at the origin. In K ′ the
electric field is given by attaching to each point of space a radial
outward pointing vector, whose length is inversely proportional to
the square of the distance to the charge. Depicting a few of these
vectors at constant angular separation and fixed radial distance
leads to the first picture in Fig. 3.15. We are interested in the ana-
logue of this picture in K , relative to which the charge moves with
velocity v in the x direction. Transforming the first picture accord-
ing to (3.26) leads to an unchanged horizontal component of the
electric field, whereas the transverse component gets multiplied
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Fig. 3.16 Ionization power of a charged particle as a function of its kinetic
energy.

(enhanced) by the factor γ . The additional magnetic field does
not interest us now. But this is not yet the sought-for analogue
because the footpoints of these vectors now no longer lie on a
sphere of radius r . Length contraction squashes the original sphere
horizontally by a factor of 1/γ , so that the field vectors we have
obtained now are those evaluated on that ellipsoid. Correcting for
this, i.e. evaluating the field truly on a sphere in K , we get an
additional weakening of the horizontal components by γ −2 due
to the electric field’s 1/r2 fall-off. Hence, in total, we get a field
whose vertical components are enhanced by a factor γ and whose
horizontal components are weakened by a factor of γ −2. This we
depict in Fig. 3.15 for the velocities v = 0.5c, v = 0.7c, and
v = 0.8c. The enhancement of the vertical component has dir-
ect experimental consequences. It is responsible for the growing of
the ionization power of very fast moving electric particles in media.
Without the relativistic effect one would expect a decay with the
particle’s velocity, due to the shorter time it now spends in the
vicinity of the matter atom. The qualitative behaviour is plotted
in Fig. 3.16. On the horizontal axis we plotted γ −1, i.e. the kinetic
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energy in units of the rest energy m0c2, and on the vertical axis
the energy transfer per unit path length, which is a direct measure
for the ionization power. There is an obvious turnaround at about
γ = 3, which corresponds to a speed of about 95% of the speed of
light.



•4 •

Further consequences and
applications of Special Relativity

4.1 Atomic physics

Atomic physics is essentially based on Quantum Mechanics.
Quantum Mechanics makes essential use of the variables that
describe positions and momenta (rather than velocities). The start-
ing point for the determination of atomic energy spectra is the
quantum mechanical transcription of the energy conservation
equation, which in the ‘non relativistic’ situation is the famous
‘Schrödinger equation’. Schrödinger’s equation is based on the
Newtonian relation between energy and momentum of a particle
of mass m0, given by E = p2/2m0. In special relativistic mechanics,
this relation is replaced by (3.25), which approximates the former
for momenta that are small compared to mc, but also implies
significant deviations from it for larger momenta. In Quantum
Mechanics these deviations give rise to ‘relativistic corrections’ to
the ‘non-relativistic’ (i.e. based on the Schrödinger equation) energy
levels. A second ‘relativistic’ correction stems from the transforma-
tion rule (3.26), which predicts a magnetic field in the rest system
of the electron that moves in the electric field of the atomic nuc-
leus. This magnetic field interacts with the magnetic moment of
the electron, thereby producing extra energy contributions.

The simplest and lightest atom is that of hydrogen. It merely
consists of a single positively charged proton (the nucleus) and a
single electron, of equal and opposite charge, orbiting the nucleus.
Here the electron reaches velocities up to 0.7% of the velocity
of light. Relativistic corrections, which are of the order of v2/c2,
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are therefore expected on the scale of 5 · 10
−5. Well-developed

techniques in quantum mechanical perturbation theory allow us
to calculate these corrections. In leading order the sum of both
effects mentioned above gives the following ‘relativistic’ corrections
to the energy levels of hydrogen, labelled by the principal quantum
number n and total (orbital plus spin) angular momentum j:


Enj = E1

α2

n3

(
3

4n
− 1

j + 1

2

)
. (4.1)

Here E1 = 13.61 eV is the unperturbed energy of the ground state
(the tightest bound state) and α ≈ 1/137 is the so-called ‘fine-
structure constant’. (eV denote the energy unit ‘electron volts’.)

These corrections are called the ‘fine structure’ of the energy
levels of hydrogen. Next to the principal quantum number n
they also explicitly depend on the quantum number j for angu-
lar momentum, in contrast to the unperturbed levels which
merely depend on n. This means that different states of the atom,
which according to Schrödinger’s equation have the same energy
(so-called energetically ‘degenerate’ states), now turn out to be, in
fact, energetically different. This is sketched in Fig. 4.1 for the
three lowest lying states, n = 1, 2, 3, of hydrogen. To the left of
the vertical line we have put the uncorrected levels, as predicted by
Schrödinger’s equation. To the right we see the corrected levels.
Note that one level on the left may consist of several degenerate
atomic states. Hence one level may, after correction, split into
several levels, depending on its value for total angular momentum j.
For technical reasons of presentation the distances between the
levels are not drawn to scale. In particular, we strongly contracted
the vertical distances between levels of different n so that the cor-
rections appear strongly exaggerated. It is apparent that all levels
shown are lowered and degeneracies between levels of equal n but
different j are lifted. The numbers written just below the lowered
levels denote (
Enj/E1) · 10

6, that is, the energy shift in units of a
millionth of the uncorrected ground-state energy.
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n = 3

n = 2

j = 5/2 –0.16

j = 3/2 –0.49

j = 1/2 –1.47

j = 3/2 –0.83

j = 1/2 –4.16

j = 1/2 –13.32

n = 1

Fig. 4.1 Lowest energy levels of the hydrogen atom.

Finally we note for completeness that there are further, though
still smaller, corrections to the energy levels of atoms. These, on one
hand, stem from effects of Quantum Electrodynamics (Lamb shift),
and on the other hand, from taking into account the interaction
of the nucleus with the magnetic field produced by the moving
electron. The latter gives rise to the so-called ‘hyperfine structure’.

4.2 Nuclear physics

Atomic nuclei are made of electrically positively charged protons
and electrically neutral neutrons. They are almost of the same
mass—in fact, the neutron is heavier than the proton by one part
in a million. Together they are called nucleons. The number A of
protons plus neutrons is the ‘mass number’, whereas the num-
ber of protons alone, Z, is called the ‘atomic number’. It is the
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latter number that determines the position of the corresponding
element in the periodic table. The nucleus itself is named after
its corresponding chemical element. Nuclei with equal Z but dif-
ferent A, i.e. the same number of protons but different number
of neutrons, are called ‘isotopes’. To precisely characterize a par-
ticular isotope of an element E one attaches the mass and atomic
numbers in the form A

ZE. For example, standard helium, consisting
of two nucleons of each sort, is denoted by 4

2
He.

A configuration of protons and neutrons could not stay together
if there were no force acting against the electrostatic repulsion of
the like charged protons. This force is called the strong or nuclear
force. That there exists a stable bound state means that the energy of
the compound system is less than the energy of its parts in isolation.
The difference is called the binding energy. Atomic physicists know
binding energies per electron up to some two-digit electron volts
(compare the 13.6 eV for the ground state of hydrogen, mentioned
above). Binding energies in nuclear physics, however, lie on the
order of a few MeV (MeV, a million electron volts) per nucleon, so
roughly a hundred-thousand times larger.

According to the universal relation E = mc2 this binding energy,
too, corresponds to a mass. This implies that the bound configura-
tion has a mass that is less than the sum of the masses of its
constituents. This is generally known as the ‘mass defect’ of bound
systems. Due to the large conversion factor, c2, mass defects are
often too small to be of any significance. This is different for nuclear
binding energies, which are sufficiently strong to cause measurable
mass defects of nuclei. Here one has to recall that masses of nuclei
can, in fact, be determined to better than one part in a million,
whereas typical mass defects are of the order of a few per cent of
a nucleon mass. For example, the helium nucleus, also known as
the α-particle, which is composed of two protons and two neutrons,
has a mass that is less than the sum of two proton and two neutron
masses by three per cent of a nucleon mass. This corresponds to a
total binding energy of almost 30 MeV, that is, 7 MeV per nucleon.

The binding energy per nucleon grows with the mass number
of the nucleus and reaches a maximum of almost 8.8 MeV for the
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Fig. 4.2 Binding energy per nucleon as a function of the mass number.

most tightly bound nuclei. Ordered according to increasing binding
energy, the three most tightly bound ones are given by the follow-
ing iron and nickel isotopes: 56

26
Fe, 58

26
Fe, and 62

28
Ni. For still higher

mass numbers the binding energies per nucleon fall off gently.
This is plotted in Fig. 4.2. Roughly speaking this means that up to
mass number A ≈ 60 energy is gained by nuclear fusion, that is
composition of lighter nuclei into heavier ones. On the other hand,
beyond A ≈ 60, energy is gained by fission, that is decomposition
of heavy nuclei into lighter ones. This, too, is depicted in Fig. 4.2.
Stars gain their radiation energy from nuclear fusion. Our Sun, for
example, radiates approximately 4·10

26 joules per second. This cor-
responds to an equivalent of 4.4 million tonnes which the Sun loses
in mass every second. That mass is taken from the nuclear binding
energy and radiated away through fairly complicated processes, in
the course of which four hydrogen nuclei 1

1
H (protons) eventually

combine into one helium nucleus 4
2
He, leaving two positrons (the

antiparticle of the electron) and two neutrinos. Each of these pro-
cesses sets free the energy equivalent of approximately the mass
defect of 4

2
He, that is 30 MeV. Hence one needs a rate of 10

38 such
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processes per second to fuel the current radiation power of the Sun.
This costs the Sun 4 · 10

38 hydrogen nuclei per second. Given that
roughly 70% of the Sun’s mass is provided by hydrogen and that
the Sun’s total mass is 2 · 10

30 kg, we can estimate the number of
hydrogen nuclei in the Sun to be of the order of 10

57. If all of that
could be burned into helium, the Sun would be able to keep up
its present radiation power for at most 70 billion (7 · 10

10) years.
A more detailed analysis shows that the future life of our Sun will
be shorter than this by slightly more than a factor of ten. This is
partially due to the fact that the Sun will not completely burn its
hydrogen fuel, and partly due to the fact that the burning rate will
increase toward the end. In fact, the Sun is expected to shine for
another 6 billion years from now. Likewise it also follows that the
hydrogen to helium fusion process is sufficiently effective to have
let the Sun shine at its current radiation power in the last 4–5 bil-
lions years without burning out. How this might be possible was
considered a big mystery up to and far into the 20th century (see,
e.g. the lucid account in [19]).

Note that it is not SR that physically explains why the binding
energies of nuclei are as big as they are. Rather this is done by the
theory of the strong interaction—Quantum Chromodynamics. But
it was, and still is, the special relativistic mass defect that gave the
first and effective means to determine the binding energy without
knowing anything about such a theory.

Another early application of E = mc2 was made after nuclear
fission was found in 1938. The natural question then was how
much energy would be released in the fission of a single uranium
nucleus. It was realized that the mass of the uranium nucleus was
bigger than the sum of the masses of the fission products, barium
and krypton. Already in 1939 this was correctly interpreted as an
(inverse) mass defect. Einstein’s formula then immediately led to
an energy release per uranium nucleus of roughly 200 MeV. This
made it all too clear what an enormous energy reservoir uranium
was. The issue of August 15th 1939 of a big Berlin newspaper con-
tained an article by a young German physicist, Siegfried Flügge,
who illustrated this magnitude in energy gain in the following
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manner: if all the uranium contained in a cubic metre of uranium
oxide (U3O8) underwent fission, it would supply sufficient energy
to lift up one cubic kilometre of water to an altitude of 27

kilometres above ground. More drastically: it would be sufficient
to ‘hurl’ the Berlin Wannsee (a fairly big lake near Berlin) into the
stratosphere!

4.3 Elementary particle physics

The by far largest and also most important realm of applications
for SR is undoubtedly high-energy elementary particle physics. Its
methods and concepts would be unthinkable without SR. Here the
consequences of SR reach from simple corrections concerning the
dynamics of fast moving particles to profound revisions concerning
our very notion of ‘matter’. Let us start with two examples of the
first kind.

• The relativistic relation (3.16) between momentum and velo-
city leads to an increase of the centrifugal force with orbital
velocity that is stronger by a factor of γ than that derived from
Newtonian mechanics. This needs to be taken into account in
the design of particle accelerators. As an example consider a
particle of rest mass m0 and electric charge e that is injected
at velocity v perpendicular to the field lines of a constant mag-
netic field. The special relativistic equations of motion predict
that the particle will move on a circular orbit of radius

R = γ
m0v
eB

. (4.2)

In contrast, the Newtonian equations of motion predict the
smaller radius that one obtains from (4.2) by dropping
the factor γ . If one were to design the radius of curvature
of the accelerator’s vacuum tubes according to the Newtonian
prediction, the particle beam would hopelessly ‘understeer’
and run straightaway into the tube’s outer boundary. As an
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extreme case we mention the Tevatron ring at Fermilab, in
which protons reach energies of 1 TeV = 10

12eV. The pro-
ton’s rest energy, m0c2, is just below 1 GeV = 10

9 eV, so that
γ -factors of a thousand are reached!

• Time dilation and length contraction are everyday occurrences
in particle physics. A classic example is given by muons (or
µ-mesons). These are particles of the same electric charge
as electrons or positrons but 207 times heavier, correspond-
ing to a rest energy of 106 MeV. However, muons are highly
unstable particles: they rapidly decay with a mean lifetime
τµ of only 2.2 microseconds (10

−6 s) into an electron or
positron, a µ-neutrino, and an e-antineutrino. Muons are, for
example, produced when highly energetic cosmic rays collide
with atoms in the upper layers of the Earth’s atmosphere, typic-
ally at 15–20 kilometres altitude. But even if the muon travelled
with the speed of light, it should not get much further than
c ·τµ = 660 metres before decay. Certainly it should not be able
to reach the surface of the earth. But here experimentalists still
detect a muon flux of about one muon per minute per square
centimetre, which corresponds to a significant fraction of all
muons. How can this be? The explanation is twofold, depend-
ing on whether one takes the point of view of an observer on
Earth or in the rest system of the muon. Relative to the observer
on Earth the muon-clock is slow by a factor of 1/γ . But only
according to the latter clock does the muon decay with mean
lifetime τµ = 2.2 · 10

−6. According to the clock on Earth, the
mean lifetime appears stretched by a factor γ . So, according
to SR, the observer on Earth reckons the average atmospheric
penetration depth of muons to be γ cτµ = γ · 660 m. Typ-
ical energies for the muons are of the order of 20 GeV, which
makes a γ -factor of almost 200. This fully explains the muon
detection rate on the Earth. Alternatively, the same situation
may be described in the rest system of the muon. Now the
mean lifetime is not dilated. Instead the muon’s distance to the
surface of the Earth suffers a length contraction by a factor of
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1/γ . The result concerning the fraction of muons that reaches
the Earth is the same. Fully analogous considerations hold
for lifetimes and ranges of particles in accelerators, where, as
already mentioned, γ -factors of about 1000 are reached.

We now wish to touch upon a very fundamental point, where
the impact of SR drastically changes our very concept of ‘matter’.
The naive interpretation of the term ‘elementary particle’ is that of
an everlasting piece of matter—an object—that cannot be decom-
posed by physical means and that obeys simple laws of motion.
The assumption of the existence of such elementary objects is usu-
ally connected with the hope to be able—eventually—to reduce
the complex phenomena in nature to simple laws that govern the
motions of such objects and the ways in which they may combine
into larger ones. Such a reductionist programme is attractive for
its logical clarity and the potentially high explanatory power. Sub-
scribing to it means to set out and (1) identify these objects, and
(2) find their laws of motion and how they interact with each other.

Special Relativity irreversibly puts an end to this programme,
at least if understood in the strict and somewhat naive way just
outlined. This is because SR denies the existence of everlasting
stable objects. The equivalence of mass and energy, expressed in
E = mc2, allows various transformations between particles of dif-
ferent kinds. It even allows particles to be created out of purely
unstructured energy, like the kinetic energy of an already existing
particle, or some radiation energy. This is almost as if they appeared
out of nothing, as long as the energy balance and some other exist-
ing conservation laws, which we did not mention so far, permit
the deal.

At this point equation (3.25) plays a crucial rôle. Since it is
quadratic in E (unlike its Newtonian counterpart) it allows two solu-
tions for the energy, given the particle’s momentum and mass.
The negative-energy solution corresponds to the antiparticle for
the particle that is described by the positive-energy solution. The
existence of antiparticles can be seen as direct consequence of com-
bining SR with quantum physics. The first experimental evidence
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in this direction came with the detection of the positron in 1931,
after it had been predicted by Paul Dirac (1902–1984) in 1928 on
the basis of his Lorentz-invariant generalization of Schrödinger’s
equation. (Actually Dirac first thought that his ‘other solution’
should be identified with the already known proton. But being
1836 times heavier than the electron, that was incompatible with
his equation, which demands particle and antiparticle to be of equal
mass.)

To be sure, such mutations between particles of all sorts cannot
be just arbitrary. There are a number of conservation laws that all
dynamical processes involved must respect. Next to energy these
concern momentum, electric charge, and also some other charges
as well. But there is still a great variety of ‘channels’ along which
mutation processes can occur. Hence, in principle, the concept
of everlasting elementary objects, first conceived by the ancient
atomists in the 5th century bc, seems irreversibly gone.

As an example of such a mutation between different forms of
matter we take a look at Fig. 4.3. It shows the twofold transforma-
tion of a highly energetic photon (‘γ -ray’) into an electron–positron
pair in a bubble chamber. Since bubble chambers only show the

A B

e–

e–

e–
e+

e+

C

Fig. 4.3 Bubble chamber traces of a twofold production of electron–
positron pairs by a γ -ray.
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traces of electrically charged particles, the photon cannot be seen.
It enters the chamber from the lower left direction and remains
invisible until it produces a pair consisting of one electron (e−) and
one positron (e+) at the position marked A. Perpendicular to the
plane of the picture and pointing towards the reader is a magnetic
field that forces negatively charged particles onto left-, and posit-
ively charged particles onto right-hand bends. The large curvatures
(small radii) of the upper and lower particle traces emerging from
A indicate small velocities, according to (4.2). The third trace that
emerges from A and runs to B on a light left-hand bend corres-
ponds to a much faster electron that already existed at A and was
hit very hard by the incoming photon. This now highly energetic
electron in turn emits a photon at B, which, invisibly, runs to C
where it produces yet another electron–positron pair. This latter
e−e+ pair is more energetic than the first one, as one easily infers
from the smaller curvatures of their traces.

Today’s concept of ‘matter’ differs quite drastically from the more
naive ones that prevailed upto and into the 20th century. It is based
on more abstract concepts of relativistic Quantum Field Theory.
In particular, the notion of a ‘particle’ gets absorbed into the notion
of a ‘quantum field’, which is a structure that extends through-
out space-time. The fields are the fundamental entities of the
theory, whereas particles correspond to some (quantized) excita-
tions of these fields, which do have certain spatially localizable
properties. A separation of all particles into those which are ‘ele-
mentary’ and those which are not is neither necessary nor does
it seem to be natural anymore. There is also nothing that would
correspond to the classical idea of the vacuum, i.e. a space devoid
of any matter. Quantum fields are always there and cannot just
be set to ‘zero’. They make themselves felt anywhere at any time
through typical quantum fluctuations of physical quantities, like
energy. Although their contribution in absolute value to the total
energy in a fixed volume cannot be calculated in a meaningful way
(the mathematical expressions for these fluctuation contributions
formally diverge, even if the considered volume is finite), they do
give rise to physically measurable effects concerning the value of
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energy differences, which can be calculated. Recently this ‘vacuum
fluctuation energy’ became a fundamental issue in connection
with the measured accelerated expansion of the Universe. This is
because such an accelerated expansion can only be driven by very
special kinds of gravitating matter, whose internal pressure needs
to be exceptionally high and negative, as compared to its energy
density. No known matter on Earth shows such a strange beha-
viour. But the energy–pressure relation that the theory predicts for
the vacuum fluctuations of quantum fields does. The unfortunate
fact is that even though the energy density, ρ, and the pressure,
p, share the right relation, namely p = −ρ, both quantities can-
not be predicted in absolute value, as already mentioned. This is
because, as it stands, the theory predicts quantum fluctuations
to exist at arbitrarily high frequency scales in any volume, how-
ever small, which sum to an infinite energy contribution. In other
words, the value of the energy density due to vacuum fluctuations
comes out to be infinite, which, physically speaking, is sheer non-
sense. It is generally expected that the theory ceases to be correct at
the smallest scales, certainly beyond the Planck scales (2.6), (2.7),
where quantum gravity effects are expected to provide a dynamical
regulating mechanism that damps out the highest frequency con-
tributions (higher than the ‘Planck frequency’ νP = 1/tP). But even
if in the above calculation one cuts off (by hand) all fluctuations cor-
responding to energies (= frequency ·h) higher than, say, 100 GeV
(Fermi scale), which is well within the reach of modern accelerators
and at which modern theories are also well tested, one still obtains
a quantum-fluctuation energy density that is above the cosmolog-
ically measured one by 52 orders of magnitude! So presently it
seems hopeless to ‘explain’ the Universe’s accelerated expansion
as being driven by vacuum fluctuations.

Further fundamental consequences of SR in Quantum Field
Theory are the so-called ‘Spin-Statistics Theorem’ and the ‘PCT
Theorem’. The first entails a strict correlation between the spin
(intrinsic angular momentum in units of �) of the particle
and the type of statistics it obeys. The second requires the
combination of certain operations to be a fundamental symmetry,
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even though the individual operations are not. The operations
are: space reflection (P), charge conjugation (C), and time
inversion (T).

4.4 Daily physics: navigational systems

Navigational systems serve to determine one’s position on Earth.
This is done through the determination of the distances to several
known reference points. For example, when at sea, it is usually suf-
ficient to know the distances to two coastal cities. These determine
two circles, one around each city, with generally two intersection
points, one at sea, the other on land. If both intersection points
lie at sea and one has no other hint as to which might be the
right one, a further distance to a third reference point is needed.
In three-dimensional space two distances determine two spheres
which generically intersect in a circle. A third distance then gener-
ically selects two points, which is often sufficient; for example, if
one of the points is not on the surface of the Earth.

In modern navigational systems, like the the GPS (global posi-
tioning system) of the US Department of Defense, or its Russian
counterpart GLONASS (global navigation satellite system), the ‘ref-
erence points’ are satellites that orbit the Earth on accurately known
trajectories. The GPS space segment consists of at least 24 satellites
in six almost circular orbits whose radii are all close to 20 thousand
kilometres. The orbits have a relative inclination of 56 degrees, so
that at least four satellites can be ‘seen’ from any (obstruction free)
location on Earth at any time. The distances to the satellites are
determined via travel times of electromagnetic signals, sent out by
the satellites and collected by receivers carried by the users. These
times are converted into distances by multiplying them by the speed
of light. At this point it is absolutely crucial that the speed of light
does not depend on the emitter’s, i.e. the satellite’s, state of motion.

In one nanosecond (10
−9s) light travels a distance of 30 centi-

metres. Hence the travel times must be determined to an accuracy
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of 100 nanoseconds in order to achieve a localization precision of
30 metres. Suppose the clocks in the satellites can be adjusted at
most every 24 hours. Then its daily (= 86 400 s) deviation must
not exceed 100 nanoseconds. In other words, its relative error tol-
erance must be better than or equal to 100 · 10

−9/86 400 ≈ 10
−12.

In fact, the atomic clocks mounted on the satellites, and certainly
those used on Earth, beat this limit by one or more orders of
magnitude.

In order to measure one-way travel times, it is necessary to relate
all clock readings to a globally defined ‘time’, which comprises
the satellite clocks as well as all the GPS clocks on Earth. This
global time corrects for the systematic differences in the clock rates.
There are many effects which contribute to such relative changes
of clock rates. Clearly, the ones of interest to us here are the special
relativistic effects, though they are not the dominant ones. They are
also intimately related, and of comparable order, to other effects
caused by the Earth’s gravitational field. Even though, in principle,
the latter need to be described in the context of General Relativity,
which is outside the scope of this book, we can give a somewhat
simplified description.

Relativistic effects dominantly concern a systematic deviation of
clock rates between the group of clocks stationed on the surface
of the Earth on one hand, and the group of clocks mounted on
satellites on the other. The latter suffer a time dilation according to
SR. But due to the Earth’s gravitational field there is another effect
that works in the opposite direction. This is because the two groups
of clocks are located in regions of different gravitational potential.
Let φE and φS denote the gravitational potentials on the surface of
the Earth (sea level, say) and at the altitude of the satellite orbits,
respectively. Let 
tE and 
tS be the intervals by which the indi-
vidual readings of the clocks on Earth and on board the satellites,
respectively, proceed if the global time advances by one unit. Then
General Relativity predicts that the clock at the lower gravitational
potential advances less than the clock at higher potentials. Their
relative deviation according to this effect is denoted by �Grav. More
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precisely, in leading order we have

∑
Grav

= 
tS − 
tE

tE

= φS − φE

c2
= RG

RE
− RG

RS
. (4.3)

Here RE is the Earth’s radius and RS the radius of the circular
satellite orbit. In the last step we also used the fact that the grav-
itational potential above the Earth’s surface (i.e. for r > RE) is of
the form φ(r) = −GME/r , where G is Newton’s constant and ME

the mass of the Earth. As an abbreviation we also introduced the
quantity RG = GME/c2. It re-expresses the mass ME in terms of
a length, the so-called ‘gravitational radius’ of ME, just by mul-
tiplying it with the constant G/c2, the physical dimension of which
is length-over-mass. For the Earth this gravitational radius corres-
ponds to 4.4 millimetres. (Its meaning in General Relativity is the
following: if you want to turn the Earth, or any other body, into a
black hole, you have to compress it into a volume whose diameter is
of the order of its gravitational radius; cf. Sect. 4·6.) Since RS > RE,
the right-hand side of (4.3) is positive. This means that the gravit-
ational effect wants the satellite clocks to run ahead of the clocks
stationed on Earth.

The relative deviation in clock readings according to time dilation
is denoted by �SR. According to (3.4) it is given (in leading order
of v2/c2) by

∑
SRT

= 
tS − 
tE

tE

= − v2

2c2
= − RG

2RS
, (4.4)

where v is the velocity of the satellites relative to the surface of the
Earth. In the last step we used the law of energy conservation for
the satellite to eliminate v in favour of the gravitational potential.
This makes (4.4) formally similar to (4.3). The total effect is given
by the sum of these two effects:

∑
=

∑
Grav

+
∑
SRT

= 
tS − 
tE

tE

= RG

RE
− 3

2

RG

RS
. (4.5)
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Fig. 4.4 Total relative deviation between satellite clocks and clocks on the
surface of the Earth, due to relativistic effects, as a function of the satellite’s
orbital radius.

We see that the special relativistic time-dilation effect dominates
for satellite orbits below 1.5 times the radius of the Earth; that is,
9500 kilometres of radius or 3180 kilometres of altitude above the
Earth’s surface. Hence, for low-lying orbits, the orbiting clocks lag
behind clocks on Earth. This is, e.g., the case for the Space Shuttle.

In contrast, for orbits above 1.5 RE, the gravitational effect domin-
ates and clocks on Earth lag behind satellite clocks. This is the case
for the GPS and GLONASS systems. Figure 4.4 depicts the total
effect, �, as a function of the circular orbit’s radius RS. For the GPS
we have RS = 4.2 RE = 2.66 · 10

7 m, so that �SRT = −0.83 · 10
−10

and �Grav = 5.25·10
−10. These deviations lie above the sensitivities

of modern atomic clocks by about five orders of magnitude.
Failing to correct a relative deviation between the satellite

clocks on one hand, and the clocks on Earth on the other, would
within six hours accumulate to deviations of five millionths of
a second. In turn, this would result in positioning errors of
about a kilometre. This would render the navigational system
totally useless for, e.g. daily traffic navigation. This example
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clearly shows that relativistic effects are already part of our
daily life.

4.5 Science fiction: travel to distant stars?

We have seen above that time dilation allows decaying particles
to travel distances much larger than the distance light can reach
within the particle’s lifetime. This sounds paradoxical at first, as if
the particle was claimed to travel faster than light. But this is clearly
not the case. There is no contradiction, because the lifetime refers
to the time measured in the rest system, K ′, of the particle, whereas
the time that one multiplies the velocity with in order to calculate
the distance is measured in the laboratory system, K . What is true
for particles and their lifetimes also applies to living organisms,
humans in particular. Sufficiently fast spacecraft should therefore
enable the crew to explore regions in the Universe more remote
than, say, 100 light years. Can this really be true?

Let us consider a concrete example. Suppose we built a spaceship
whose engines can provide sufficient thrust to uphold a constant
acceleration of a′ = 10 m/s2. This acceleration is just the same as
that due to gravity on the surface of the Earth. The crew should
therefore feel perfectly comfortable. More precisely, the quantity
a′ refers to the acceleration measured in the instantaneous rest
system of the spaceship. Now consider a particular moment at
which K ′ is the instantaneous rest system. During the time interval
dt′ (measured in K ′) the spaceship acquires a velocity increment
(also measured in K ′) of dv′ = a′ dt′. Let K be the rest system of the
Earth (which here we may treat as an inertial system). As measured
in K it is impossible that the spaceship accelerates at a constant rate,
since this would imply that it reaches superluminal speeds within
a finite time, an impossibility according to SR. In fact, measured in
K , dt′ corresponds to the larger time interval dt = γ dt′ and dv′ to
the smaller velocity increment dv = γ −2 dv′. This last equation is
obtained by adding to the instantaneous velocity v(t) the increment
dv′ according to the rule (3.6), keeping only the terms linear in dv′.
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Hence the acceleration of the spaceship relative to K is given by
a = dv/dt = γ −3(v) a′, which decreases with time (as it must do),
since v increases and a′ is constant. Using elementary calculus,
this equation can now be integrated once to give the velocity v
as a function of t, and once more to give the position x also as
a function of t. The solution, v(t), can then be used to integrate
dt′ = dt/γ (v(t)), which yields t′ as a function of t, or vice versa.

We skip the details of the calculation and directly jump to the
solution. We are interested in the following analytic expressions:
(1) the travelled distance (measured in K ) as a function of the time
t′ that has passed in the spaceship, (2) time t of K as a function of
time t′, and (3) the γ -factor as a function of x. We let the spaceship
start at time t = 0 at position x = 0 with initial velocity v = 0.
The solution contains the parameter a′ in the combination c/a′,
which has the physical dimension of time and is approximately
given by one year. (The precise value is 0.95 years. In order to
make c/a′ exactly one year, one chooses a′ = 9.5 m/s2.) Hence
the analytic expressions assume their simplest form if we agree to
understand the times t and t′ as being measured in years and the
distance x in light years. In this way we can treat these parameters
as dimensionless. The solution now reads as follows:

x = cosh(t′) − 1, t = sinh(t′), γ = x + 1. (4.6)

Here cosh and sinh are the functions called hyperbolic cosine
and hyperbolic sine, respectively. They bear the following simple
relations to the probably more familiar exponential function:

cosh(t′) = 1

2
(et′ + e−t′), sinh(t′) = 1

2
(et′ − e−t′). (4.7)

For large arguments the hyperbolic cosine and sine essentially grow
exponentially. Hence (4.6) shows that after a few years the travelled
distance x grows essentially exponentially in time t′ that one meas-
ures on board the spaceship! In contrast, x as a function of time t
measured on Earth grows approximately linearly after a few years,
because then the spaceship travels practically at the constant speed
of light. Note in particular the strong growth of γ , which is linear
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Table 4.1

Destination Distance [ly] Duration t′ [y] Duration t [y] γ

Edge of solar system 5.5 l-hours 13 days 13 days 1.0006

Star Proxima Centauri 4.22 2.33 5.12 5.22

Star Vega 26 3.98 26.98 27

Our galactic centre 2.6 · 104 10.86 2.6 · 104 2.6 · 104

Andromeda galaxy 2.9 · 106 15.57 2.9 · 106 2.9 · 106

Virgo cluster 6 · 107 18.60 6 · 107 6 · 107

Remotest quasar 1.3 · 1010 23.98 1.3 · 1010 1.3 · 1010

in x and hence asymptotically exponential in t′. To illustrate these
results Table 4.1 lists some astronomical destinations, their dis-
tances from Earth in light years (ly) ignore the travel times t and t′
in years (y), and the γ -factor that is reached at the destination.

The results for t′, highlighted in bold face, seem to indicate that in
less than 25 years we could quite comfortably cruise right through
the entire known Universe. Unfortunately this conclusion does
not survive closer scrutiny. This is not to say that there is anything
wrong with what we have said so far, but it is definitely not the whole
story. For example: consider a journey to our closest neighbouring
star, Proxima Centauri. Just before we reach the destination, our
space ship moves at γ = 5 (corresponding to 98% of the speed of
light). Suppose now we encounter a tiny dust grain whose mass is
a millionth of a gram. This dust grain had better be absorbed by a
dust-shield, since otherwise it will certainly cause severe damage to
the equipment (and possibly us). If it gets absorbed it transfers its
whole energy and momentum to the dust-shield. Its kinetic energy
is m0c2(γ − 1), that is four times its rest energy; cf. (3.17). This
makes four-hundred million joules (4·10

8 J), which corresponds to
the kinetic energy of a Rolls-Royce luxury limousine, of approxim-
ately three tonnes weight, at twice supersonic speed! How should
one protect oneself from such a bombardment?

Even more questionable is the realization of an engine that can
provide the required acceleration over such an extended period.
Note that γ − 1 is the kinetic energy in units of the rest energy;
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cf. (3.17). On reaching γ = 5 the engine must have converted
80% (i.e. 4/5) of the original total mass into kinetic energy, which
seems technically totally out of reach. As we have seen in Sect. 4.2,
nuclear reactions turn mass into energy at an efficiency of at most
a few per cent. Hence the engine can certainly not be based on
nuclear energy. In principle, up to 100% efficiency can be reached
by letting matter annihilate the same amount of antimatter. If the
hard γ -rays that are produced during annihilation could then be
reflected into one direction, the recoil of the γ -rays could then
provide the necessary thrust. But no ‘mirror’ is known to exist that
can reflect γ -rays. Moreover, how should one ever be able to store
large amounts of matter and antimatter in the same spaceship,
given that they may nowhere be in contact except for the burning
chamber, for otherwise they would immediately annihilate? The
answers seem to be known only to science fiction authors. Seri-
ously, there is not the slightest evidence that we will ever make it
even to our nearest neighbouring star, Proxima Centauri, let alone
cruise the Universe.

4.6 Outlook on General Relativity

As emphasized many times, the physical validity of SR is limited to
all those phenomena in which gravity can be neglected. If gravity
gets involved, we have to resort to the theory of General Relativity.
Being a generalization of SR, it is possible to understand, at least
qualitatively, some of the characteristic features that distinguish
General Relativity from Newtonian gravity within the framework
of SR through a careful admixture of some heuristic ideas. This we
wish to do in this section.

One of the most spectacular predictions of General Relativity is
that of gravitational collapse. Roughly speaking it says that suffi-
ciently compressed masses will inevitably collapse to form black
holes. Whatever material they may be made of, no internal pres-
sure can ever stop this collapse. The exact value of the critical radius,
below which the collapse of a mass M necessarily sets in, depends
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a little on the type of matter, but it is always of the order of the
gravitational radius RG = GM/c2 that we already encountered in
Sect. 4·4. The gravitational radius of the Earth is 4.4 millimetres,
as already mentioned; that for the Sun is 1.5 kilometres.

In Newtonian physics we can always balance the inwardly dir-
ected gravitational pull of a star’s atmosphere by letting the star
contract sufficiently, though, not endlessly. The point being that,
upon contraction, the outwardly directed internal pressure grows
faster than the gravitational pull, thereby eventually leading to a
cancellation. This is different in General Relativity, which predicts
a stronger than Newtonian increase of the gravitational pull in
the contraction phase. To some extent, the reason for this is of
special relativistic origin. More precisely, it has to do with the pre-
diction of SR that a body put under material stresses has a larger
inertial mass than the same amount of matter without stresses.
This will be shown below. Given that, we only need to add one
basic principle of General Relativity, according to which inertial
and gravitational masses are universally proportional to each other
(‘universally’ meaning that the constant of proportionality is the
same for all types of matter; it can hence be set to 1 by an appro-
priate choice of units). It follows that material stresses add to the
gravitational field of the body.

This gives rise to the following collapse scenario. Consider a
cloud of initially almost pressureless gas that starts to contract
under its own gravitational pull. The decrease in volume pushes
up the gas pressure. Pressure is a special form of material stress
that adds to the gravitational field of the material and hence to
the gravitational pull. This additional pull causes further contrac-
tion of the star, beyond the point where a Newtonian equilibrium
is reached. But this further contraction causes still higher pres-
sures, and therefore, in turn, still higher gravitational pull. This
process now iterates. Under certain circumstances this might have
the effect that the gravitational pull grows faster than the internal
gas pressure. Then no equilibrium exists and the star inevitably
collapses. The stationary end product of such a collapse will be a
black hole.
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Fig. 4.5 Moving rod under tension.

It remains to understand that SR indeed predicts that material
stresses add to the inertial mass of a body. This we do by means
of a special example depicted in Fig. 4.5. Consider a homogeneous
cylindrical rod of length l′ and cross-section q′ that rests along the
x′-axis in system K ′. As always, K ′ moves relative to K with velocity
v in the x direction, such that both systems coincide at t = t′ = 0.
The world line of the rod’s trailing end is just the ct′-axis, that of
its leading end is denoted by �. Now assume some mechanism by
means of which two equal and opposite (inwardly) directed forces
are simultaneously (in K ′) applied to the two ends of the rod. Let
the forces start to act at t′ = 0. It is obvious that these forces will
not set the rod into motion relative to K ′, since in K ′ they start
to act simultaneously with equal strength but opposite directions.
Figure 4.5 now shows the same process relative to K . The acting
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forces are depicted by the arrows. The crucial point is that now
the forces do not start to act simultaneously on both ends with
respect to time t. Rather, the pushing force starts to act on the
trailing end at t = 0, whereas the counteracting force starts to act
on the leading end at the later time t = l′γ v/c2. This immediately
follows from the Lorentz transformation (3.3) by setting x′ = l′
and t′ = 0. In the meantime the observer in K reckons the rod
to be one-sidedly pushed in the direction of motion with a force
of strength F = F ′. This equality means that longitudinal forces
are measured with the same strengths in K and K ′. This follows
from the first transformation rule for forces, (5.39), to be derived
later, by specializing it to �u′ = 0 since the rod rests in K ′. Hence,
reckoned from K , there is a transfer of longitudinal momentum
of 
p = F ′l′γ v/c2. But this additional momentum does not lead
to any increase in the velocity of the rod. Hence its inertial rest-
mass must have increased by 
m0 = F ′l′/c2. Since, in K ′, q′l′ is
the volume of the rod and F ′/q′ = p′ is the pressure (force per
unit cross-section), one may also say that the rest-mass density
increased by p′/c2.

This is precisely the pressure term that appears in addition to the
ordinary mass term as a source for the gravitational field in General
Relativity. In particular, it appears as a contribution of the radial
stresses in the so-called Oppenheimer–Volkov equation, which
governs the equilibrium configurations of spherically symmetric
stars. Moreover, this term also plays a crucial rôle in cosmology,
where thrice it (the sum of the stresses over all spatial directions) is
added to the mass density in the so-called Friedmann equations that
govern the expansion of the Universe on the largest scales. Here it
is not the pressure of ordinary matter, which is far too small, that
takes dynamical influence, but there is the so-called ‘dark energy’,
sometimes also referred to as the ‘cosmological constant’ �, which
has the meaning of a constant (in space and time) positive-energy
density, ρ�, and associated to it a very large negative pressure,
p� = −ρ�. The relevant combination for the Friedmann equations
is ρ� + 3p�, which equals −2ρ�. Recent cosmological measure-
ments of various kinds led to the conclusion that approximately
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70% of all gravitating energy is in the form of a cosmological con-
stant, whereas only one-sixth of the remaining 30% (i.e. 5% in total)
is localized in ‘normal matter’, i.e. atoms that make up the world
around us. The question of what the remaining 5/6 of the non-
cosmological-constant matter may be is known as the ‘dark-matter
problem’, whose answer is still open to speculation. In any case, it
now seems reasonably well established that the current state of the
Universe is one of accelerated expansion, driven by the negative
pressure p�. This leaves unanswered the question of what the ori-
gin of a cosmological constant of that size might be (known as the
‘dark-energy problem’), which is currently felt to be one of the most
challenging problems in theoretical physics. Compare the remarks
made at the end of Sect. 4.3.
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Closer encounters with special
topics

5.1 Ole Rømer’s measurement of the velocity of light

The first reliable measurement of the speed of light which, in
particular, proved it to be finite, was performed by the Danish
astronomer Ole Rømer in the years 1672–76. The basic idea is
reported to go back to Giovanni Domenico Cassini (1625–1712)
and will be described in this section.

In 1610 Galileo Galilei discovered the four largest moons of the
planet Jupiter, which he called the ‘Medicean Stars’. Beginning with
the innermost, they are now called Io, Europa, Ganymede, and
Callisto. They can quite easily be seen using a good pair of field
glasses. Today 59 additional Jovian moons are known to exist, all of
which are considerably smaller than the four Galilean ones. In fact,
48 of them have a diameter of less than 10 kilometers. The Galilean
moons have nearly circular orbits (eccentricities of a few times 10

−3)
whose inclination against Jupiter’s equator is also very small. This
is particularly true for Io, whose orbital inclination is a tiny 0.04

◦.
(Jupiter’s orbital plane has an inclination against the ecliptic—the
orbital plane of the Earth—of 3.1◦.) The periods of the four Galilean
moons lie between 1.769 days for Io and 16.689 days for Callisto.
More precisely, these are the so-called sidereal periods, after which
Io and Jupiter bear the same geometric relation to the fixed star.

Rømer measured the orbital periods of Io and discovered an
apparent regular variation whose period was one year. He (and
Cassini) correctly interpreted this as an effect caused by the finite-
ness of the speed of light. In phases where the Earth approached
Jupiter, Io’s periods seems to be smaller, and larger in period where
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the separation between Jupiter and the Earth increased. In order to
make such a statement concerning Io’s periods, Rømer had to come
up with some operational means to decide, from the standpoint of
the Earth, when Io had gone ‘once around’ Jupiter. In other words,
he had to ‘mark’ a particular point on Io’s orbit. Rømer’s solution
was to consider that orbital point where Io enters the shadow cast
by Jupiter on its far side, as seen from the Sun. The correspond-
ing eclipse of Io is clearly an event that can quite easily be located
in time by an observer on Earth. But note that this does not quite
coincide with the sidereal period of Io. The period measured by
Rømer is that after which Io, Jupiter, and the Sun (rather than the
fixed stars) bear the same geometric relation. It is called the synodic
period and differs from the sidereal period due to Jupiter’s orbital
motion around the Sun. Since the latter is in the same direction as
Io’s motion around Jupiter, the synodic period exceeds the sider-
eal period by a small amount. Roughly speaking, after one sidereal
period of Io, Jupiter has advanced by a small amount along its orbit,
which Io needs to catch up with in order to come into the same rel-
ative geometric configuration with respect to the Sun and Jupiter.
More precisely, the relative excess of Io’s synodic over its sidereal
period is given by the ratio of Io’s to Jupiter’s sidereal periods. This
fraction is approximately 1.7/12 ·365 ≈ 4 ·10

−4, so that the synodic
period of Io exceeds its sidereal one by just about a minute.

For a more detailed discussion we consider Fig. 5.1, where we
represent the three orbits—Earth around the Sun, Jupiter around
the Sun, and Io around Jupiter—as if they were in a common plane.
This approximation is allowed in the present context. As an example
we depicted a phase in which the Earth approaches Jupiter. Let E0

be the position of the Earth and T0 the time reading on Earth where
the first Io eclipse is registered. At this time the distance between
the Earth and Jupiter is l0 (and with sufficient approximation also
between the Earth and Io). Now one waits for n more eclipses of Io
to occur. Let En and Tn be the Earth’s position and time at which this
nth further eclipse is seen on Earth. At this time the distance from
the Earth to Jupiter is ln. Hence, in the meantime, the distance has
changed by ln−l0, mainly due to the orbital motion of the Earth (and
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Fig. 5.1 Rømer’s experiment to measure the speed of light.

a little due to Jupiter’s orbital motion). This difference is negative
since ln is smaller than l0. If τ denotes the synodic period of Io, we
have

Tn = T0 + nτ + ln − l0
c

. (5.1)

The third term on the right-hand side takes into account the change
in the travel time of light due to the changing distance between the
Earth and Jupiter. Formula (5.1) is now read as an equation in the
two unknowns: τ , the synodic period of Io, and c, the velocity of
light. The idea is then to apply (5.1) to two different measurements,
so as to obtain two equations for two unknowns. In the first meas-
urement one counts the total number, N , of Io eclipses during
the time the Earth goes once around the Sun and returns to the
same configuration with respect to the Sun and Jupiter. This is
called the synodic period of Jupiter and corresponds to 399 days.
It is longer than the sidereal year of the Earth because of Jupiter’s
orbital motion (now the Earth has to catch up with Jupiter). In this
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case we have l0 = lN so that (5.1) gives an expression for τ :

τ = 399 days

N
. (5.2)

In the second measurement one counts the number, N ′, of Io
eclipses during half a synodic period of Jupiter, beginning, say, with
the position E0 where the Earth has the largest distance to Jupiter.
(Here we cheat a little, because Jupiter is hardly visible if the line
of sight to Jupiter runs close to the Sun. For the sake of an easy
argument we shall neglect this point.) After 399/2 days the Earth
is closer to Jupiter by an amount that corresponds to the Earth’s
orbital diameter. By definition, the (mean) orbital radius of the
Earth is a so-called astronomical unit, AU, which is approximately
given by 150 million kilometres. Hence l0 − lN ′ is given by 300

million kilometres. Applying (5.1) to this second case leads to an
equation for the difference of N ′ synodic periods of Io to half a
synodic period of Jupiter:

N ′τ − 399

2
days = 2 AU

c
. (5.3)

Inserting the value for τ from the first measurement allows us to
compute the left side of this equation. Modern measurements give
approximately 17 minutes. Hence one can conclude that light needs
17 minutes, or 1020 seconds, to travel a distance of two astronom-
ical units. In other words, in one second light travels approximately
the thousandth part of 2 AU = 300 million kilometres, that is, 300

thousand kilometres. Originally Rømer obtained only 3/4 of that
value because of observational errors in the timing of the eclipses
and also because he did not know the exact value for the astronom-
ical unit (which was measured by Cassini in 1672 using the parallax
of Mars).

The main result was not so much the precise value for c, but
rather that from now on one knew with certainty that the speed of
light is finite. In those days no refined methods existed to measure
very short time intervals. Hence one had to resort to astronomical
methods in order to provide measurable travel times of light. It
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was not before 1849, 170 years after Rømer’s measurements, that
Fizeau used terrestrial methods to measure c. He obtained a value
that was just 5% above the exact one cited in (1.1).

5.2 The independence of the velocity of light from
the state of motion of the source

In an ether theory, light corresponds to elastic waves in a real
medium, the ether, just like sound corresponds to waves in air
or water. If the classical ether theory is correct, light should always
have the same velocity relative to the ether (neglecting dispersion
phenomena for the moment), independently of the state of motion
of the source. As an alternative to the ether theory, it was suggested
that the emission of light corresponds somehow more to a ballistic
process, in which light should always have the same velocity relat-
ive to the emitting agent. At first sight this idea seems to fit more
into a particle picture of light, which was already overturned in the
19th century. But there was indeed a way to also incorporate the
ballistic idea into a wave theory. Such a theory was developed by
the Swiss physicist Walter Ritz in 1909 (five years after the publica-
tion of SR!), who essentially took Maxwell’s equations (in integral
form) and made a few rather bold formal changes that led to the
desired (from his point of view) changes in wave propagation. His
motivation, shared by many of his contemporary physicists, was to
overcome the special relativistic notion of time and to return to the
classical notion of absolute time.

According to Ritz’s theory, as well as all other so-called ‘emission
theories’, the velocity of light relative to a spatially fixed observer
depends on the state of motion of the emitting agent. This predic-
tion can be tested on astronomical objects, as was first pointed out
in 1913 by the Dutch astronomer Willem de Sitter (1872–1934) [20].
Let us illustrate his idea by means of Fig. 5.2. Consider a double-
star system in which two stars orbit their common centre-of-mass.
To keep the discussion simple, we assume one companion to
be significantly heavier than the other one, so that its location
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Fig. 5.2 De Sitter’s experiment.

practically coincides with the centre of mass. Accordingly, Fig. 5.2
shows one star resting in the centre, and another star that revolves
around it counter-clockwise on a circular orbit with velocity v. An
observer B is positioned at a distance d in the orbital plane of the
system, observing the double-star system in his telescope. The dist-
ance d is assumed much larger than the orbital diameter of the
double-star system. If the orbiting star is at position P1 it directly
heads toward the observer. Emission theories predict that light sent
from P1 approaches the observer at a higher speed than c, in con-
trast to SR. We denote this speed by c + kv, where k is a parameter
that interpolates between SR (k = 0) and Ritz’s theory (k = 1).
k may be thought of as parametrizing the degree to which the velo-
city of the source adds to the velocity of the emitted light. The time
light travels from P1 to the observer B is given by T1 = d/(c + kv).
Similarly, at P2 the star directly moves away from the observer.
Light emitted from P2 approaches the observer at speed c − kv.
Its travel time is now given by T2 = d/(c − kv). Since we assumed
d to be much larger than the orbital diameter, P1 and P2 are almost
diametrically opposite orbital points. (This does not come out very
well in our drawing, since we greatly exaggerated the orbital dia-
meter in relation to d.) Hence, assuming a strictly circular orbit,
the star takes the same time from P1 to P2 as it takes from P2 to P1,
namely half its period, T/2. (We denote the period by T .) But this
is not what is seen by the observer B. For suppose at time t = 0
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the star is at P1. Then B sees that event at the later time t = T1.
At time t = T/2 the star is at P2. This event is seen by B at time
t = T/2 + T2. Hence the travel time from P1 to P2, as seen and
measured by B, is given by

T12 = T

2
+ T2 − T1 ≈ T

2
+ k

2vd

c2
, (5.4)

which is longer than the ‘true’ semi-period T/2. Here ≈ indicates
an approximation where second and higher powers in v/c are neg-
lected (we are just interested in the leading order). Similarly, the
observed travel time from P2 to P1 is

T21 ≈ T

2
− k

2vd

c2
, (5.5)

which is shorter than the ‘true’ semi-period T/2. According to these
results the observer should see a fairly irregular motion, in which
the star takes more time to traverse the semi-circle P1P2 pointing
toward the observer, and less time for the complementary semi-
circle P2P1. It might even happen that light sent from P1 in the
nth cycle catches up the light sent before from P2 in the (n − 1)st
cycle. Indeed, spectroscopic observations allow us to determine v
via the Doppler shift of spectral lines. d can be measured inde-
pendently. In many cases the correction term 2vd/c2 turns out to
be of the same order as, or even bigger than, the semi-period T/2.
But even for such systems no anomalous orbital motion was ever
detected.

From his observational material de Sitter already concluded that
the parameter k must be smaller than 1/2000, which would clearly
refute Ritz’s theory. But it was also argued, quite correctly, that his
observations do not warrant this conclusion, the reason being as
follows: de Sitter exclusively used light in the optical part of the elec-
tromagnetic spectrum. The interaction of interstellar matter with
electromagnetic waves in that frequency range is sufficiently strong
for the light to have undergone several (in the mean) absorption
and re-emission processes on its way from the star to the observer.
But then, according to the emission theory, the additional velocity
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of the emitted light would not be that of the orbiting star but rather
the mean velocity of the interstellar medium. But the latter should
be constant relative to the Earth, so that none of the effects described
above should occur, in agreement with actual observations.

For this reason de Sitter’s experiments were repeated in 1977,
this time using X-ray binary systems. These are double-star systems
in which one companion is a ‘pulsar’, that is a star that periodically
sends electromagnetic pulses in the X-ray regime, which lies at
much higher frequencies than the optical regime. The point being
that the interaction between interstellar matter and X-rays is so
much smaller that it gives rise to almost no absorption process
(on average) on the way to the observer. Now de Sitter’s original
argument does indeed apply. But this time, too, no anomalous
orbital motion was seen. These results now put a very stringent
upper bound on the value of k [21]:

|k| < 2 · 10
−9. (5.6)

There are also terrestrial experiments involving fast moving
particles emitting light. But so far these could not improve on the
bound set by (5.6).

5.3 Do superluminal velocities exist?

If posed in that generality, the question has to be answered by a clear
‘yes’. Special Relativity puts the upper limit c only for propagation
speeds of particular processes. These include the motions of mater-
ial bodies and, more generally, all processes which, in principle,
can be used to transmit signals. To be sure, for this statement to
make unambiguous physical sense one would have to give a clear-
cut definition of ‘signal’, which we will not attempt here. In any
case, is should be clear from the discussion in Sect. 3.5 that super-
luminal signal propagation will lead to severe difficulties with the
causality relations imposed by SR, whatever the precise definition
of signal may be.
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Fig. 5.3 The origin of apparent superluminal velocities.

Let us first consider an example taken from modern astronomy.
It serves to illustrate the fact that it is easy to create the visual
impression of superluminal propagations, even though neither
light nor any of the bodies involved propagate faster than c.
In Fig. 5.3 we sketch a situation in which some luminous material
object propagates along a straight line G with velocity v, thereby
approaching an observer B at some acute angle α. Let P1 be the
position of the object at time t1. At this moment its distance to the
observer is given by d1. Light emitted at P1 reaches the observer
at the time t(B)

1
= t1 + d1/c, according to SR (independent of

the velocity of the source). Consider a small time interval, 
t,
in which the body moves from P1 to P2. Now the distance to
the observer is d2. Light emitted at P2 reaches the observer at
time t(B)

2
= t1 + 
t + d2/c. The time interval that the observer

measures between these two light signals is therefore given by

t(B) = t(B)

2
− t(B)

1
= 
t − (d1 − d2)/c. Now, the crucial point

is that d2 is smaller than d1. Explicitly we have, up to higher than
linear terms in 
t:

d2 = d1 − v
t cos α. (5.7)

This means that the signal sent at P2 has a shorter travel time to
the observer than the signal sent at P1. The observer thus sees the
object propagating from P1 to P2 within a time interval 
t(B) that is
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shorter than 
t. For small 
t we have in the linear approximation,
using (5.7),


t(B) = 
t − (d1 − d2)/c = 
t(1 − β cos α). (5.8)

Here we again wrote β for v/c. During this time interval the
observer sees the object passing a distance D = v
t sin α per-
pendicular to his line of sight. This corresponds to an apparent
transverse visual velocity of

vB = D


t(B)
= c · β sin α

1 − β cos α
. (5.9)

It is easy to see that the factor multiplying c on the right-hand side
is unbounded from above. For fixed β and variable α it assumes
its maximum at cos α = β. The corresponding maximal value is
vmax

B = γ v, which diverges if v tends to c.
Today many astronomical examples of this effect are known.

A particularly impressive one is given by the galaxy M87 [22], which
is located in the Virgo cluster at a distance of approximately 60 mil-
lion light years from us. There are two jets of highly accelerated
gas emerging from the central region of this galaxy, pointing in
opposite directions perpendicular to the galactic plane. The visual
velocity vB of the jet stream is six times c. They are possibly gener-
ated by a supermassive black hole that is conjectured to reside in
the centre of M87. The actual velocity, v, of the gas jet is estimated
to be at most 0.98 c. For more details, see e.g. [23].

We now wish to turn to some more fundamental aspects in con-
nection with superluminal speeds, whose non-observance has in
recent years led to some turmoil in the daily press. Let us start
with the following general statement, that it is not an entirely
obvious matter to assign a single characteristic velocity to an exten-
ded physical entity. If this entity is a body, we may try to define
it through the velocity of its centre of mass. But let it be said
in passing that ‘centre of mass’ is not an entirely unproblematic
notion in relativistic kinematics. This general remark is particu-
larly true if the entity is a wave. There are many possibilities to
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assign a velocity to a wave, none of which is obviously distinguished.
Mathematically, a general wave is obtained by superposing pure
sinusoidal waves of different frequencies and infinite extent. This
is called Fourier composition, after the French mathematician Jean
Baptiste Joseph Fourier (1768–1830). Each Fourier component,
also called a partial wave, has a fixed frequency and wavelength.
Their phases propagate with a well defined velocity, called the
phase velocity. For light waves it is given by c/n, where n is the
index of refraction of the medium in which the light propag-
ates. However, n generally also depends on the frequency of the
light wave, a phenomenon known as dispersion (cf. Sect. 2.4.2).
More precisely one speaks of normal/anomalous dispersion if n
grows/decays with increasing frequency. It is clear that a single
sinusoidal wave of infinite extent and no further structure cannot
be used for transmitting signals. Hence SR does not rule out phase
velocities greater than c. And, indeed, situations where n < 1

frequently occur.
By adding purely sinusoidal waves one can modulate structures

(humps, wave packets) which can be mathematically assigned a
centre. The centre moves with the so-called group velocity. In a
restricted sense, such wave packets can be used for the transmis-
sion of signals. The restriction is a result of dispersion, that is,
different phase velocities for the partial waves, which quite literally
leads to ‘dispersions of the wave packets’. This is where the notion
of dispersion receives its name from. Signal transmission works
as long as the structure of the wave packet is sufficiently stable
against dispersion, at least for the time of transmission. On the
other hand, signal transmission is clearly out of the question if
dispersion lets the wave packet decay within a time in which its
centre has just moved a single packet width. This is a very import-
ant though somewhat subtle point. Purely formally we can always
define a centre of the wave packet, however spread it might be, and
calculate its velocity. But only in regimes of sufficiently small dis-
persion can this velocity be identified with a physical signal velocity!
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This has led to the confusion alluded to above, since the group
velocity can, in fact, become larger than c, but only in regimes
where dispersion is too strong for physical signal transmission.
Disregarding this point has sometimes led to claims that signals
(and even whole Mozart symphonies) had been transmitted faster
than light, and that hence SR had been falsified. But this is definitely
not true.

An obvious transmission of a signal is achieved by sending a
wave packet whose amplitude is non-zero only for a finite time
interval. Here we might think, for example, of the Morse alpha-
bet, where single letters are separated by finite time intervals of
absolute silence. (‘Absolute silence’ may also be understood as a
purely stochastically fluctuating background, as e.g. in Quantum
Electrodynamics.) How fast can a single letter of that alphabet be
transmitted? A natural velocity to be assigned to such a letter is
the front velocity. This is the velocity by which the foremost (in
the direction of propagation) non-zero amplitude propagates. The
front velocity is the most natural candidate to be identified with a
physical ‘signal velocity’.

Finally there is the energy velocity by which energy is transmitted
in the wave field. It is not necessarily identical with any of the
aforementioned velocities.

Phase and group velocities exceeding c do not constitute a contra-
diction to SR. This would be different for front or energy velocities.
Any of them exceeding c would pose severe problems for SR. But so
far there are absolutely no signs to this effect, neither experimental
nor theoretical. Figure 5.4 shows the typical behaviour of all these
velocities in the ‘dangerous’ frequency region where anomalous
dispersion occurs. We plotted the ratio c/u as a function of the
frequency, where u is any of the four velocities discussed here.
For phase and group velocities this quotient may become less than
one, but always stays above the line c/u = 1 if u is the front or
energy velocity. For more information on the topic of this section,
see [24].
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Fig. 5.4 Typical behaviour of different velocity types around the region of
anomalous dispersion (critical frequency v0).

5.4 The Kennedy–Thorndike experiment

The negative result of the Michelson–Morley experiment shows the
isotropy of the speed of light, that is, its independence from the
orientation of the interferometer. To be precise, it shows the inde-
pendence for the mean velocity, averaged over both directions in
the arm of the interferometer. This clearly speaks against the exist-
ence of an ether, but does not prove it. For this one would have
to prove that no measurements whatsoever of the speed of light
could disclose a somehow preferred frame of reference. For nota-
tional simplicity we continue to call this hypothetically preferred
frame the ‘ether system’, even though we do not need to think of a
material ether as being the actual cause of this preference. To say
it once more, the Michelson–Morley experiment shows that the
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speed of light measured by some observer does not depend on the
direction of the observer’s velocity relative to the ether system. But
it does not show that it is independent of the magnitude as well.
This is achieved by the experiment performed by Roy Kennedy and
Edward Thorndike in 1932 [25], which we will now discuss.

The basic equipment is again an interferometer of the type used
by Michelson and Morley; cf. Sect. 2.4.3. But this time, for rea-
sons that will become clear soon, the lengths of the two arms are
chosen to differ significantly. (In the original Michelson–Morley
experiment they were approximately equal.) Also, in the Kennedy–
Thorndike experiment, one is not interested whether shifts of inter-
ference fringes occur during rotations of the apparatus. Rather, one
looks out for such shifts in the course of a much longer time, dur-
ing which the apparatus has changed the magnitude of its velocity
relative to the ether system appreciably. To see how such a change
comes about, we recall that the velocity �v of the apparatus relative
to the ether system can be decomposed into three components:

1. The velocity �vR of the apparatus relative to the centre of the
Earth, due to its daily rotation.

2. The velocity �vE of the Earth’s centre relative to the Sun, due
to its annual orbital motion.

3. The velocity �vS of the Sun relative to the ether system.

Hence we have

�v = �vR + �vE + �vS. (5.10)

Kennedy and Thorndike assumed the magnitude of �vS to be sig-
nificantly larger than the magnitudes of the other components,
comparable to the then largest known relative velocities of astro-
nomical objects of a few hundred kilometres per second. Today
we know that our solar system orbits the galactic centre at a speed
of approximately 220 kilometres per second. Much higher relative
velocities between galaxies have also been observed. What, then,
would be a plausible value for the magnitude of �vS?

Here modern cosmology gives a strong hint. The whole Universe
is filled with a faint background of radio waves, peaked about
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a wavelength of 2 millimetres. It is called the cosmic microwave
background radiation. Such a space-filling radiation defines a pre-
ferred system of reference, namely that in which the radiation looks
isotropic. Hence one may define one’s velocity ‘relative to the radi-
ation’. Our velocity has, in fact, been measured by the satellite
COBE (cosmic background explorer) in the early 1990s, which took
precise data of the power spectrum of this radiation in various dir-
ections. The result was that our solar system moves relative to the
radiation with a velocity of 380 kilometres per second. (This velocity
is directed almost oppositely to our velocity relative to the galactic
centre, which means that the latter moves relative to the radiation by
600 kilometres per second.) In the rest system of the radiation the
spectrum is very closely (up to one part in 10

5) that of a black body
of temperature 2.73 degrees Kelvin. Modern big-bang cosmology
relates the origin of this radiation to the evolutionary phase where
free electrons and nuclei combined into stable atoms under the
emission of light. From that time on—approximately 300 000 years
after the big bang—the interaction of light with matter is strongly
suppressed and the Universe becomes ‘transparent’. These fun-
damental considerations make the rest system of the microwave
background radiation a strong candidate for the identification of
a hypothetical ether system, though, strictly speaking, there is no
logical necessity in this. Accordingly we take the magnitude of �vS

to be 380 kilometres per second.
In the course of 12 hours �vR changes to −�vR, whereas the other

components of �v stay nearly constant. The daily variation of the
squared velocity,

v2 = (�vR + �vE + �vS)2, (5.11)

is then given by


v2 = 4�vR · (�vE + �vS). (5.12)

In the same fashion �vE changes to −�vE within 6 months, whereas
�vS stays constant and the precise timing can be chosen such that
�vR returns to its initial value (though this does not really matter,
due to the much larger modulus of �vS). This produces an annual
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variation of the squared velocity, given by


v2 = 4�vE · (�vR + �vS). (5.13)

Recall that the (expected) modulus of �vS (380 km/s) is consider-
ably larger than the moduli of �vE (30 km/s) and �vR (0.46 km/s at
the equator). Hence expressions (5.12) and (5.13) are essentially
dominated by the projections of �vS into the equatorial plane of
the Earth and the ecliptic, respectively. The Kennedy–Thorndike
experiment puts restrictions on the magnitude of these projections.

According to (2.16) and (2.13), (2.15), the difference in the
number of phases along both interferometer arms is given by

N = νγ
2(γ l1 − l2)

c
. (5.14)

Now we invoke the general deformation hypothesis (cf. Sect. 2.4.4),
which explained the negative result of the Michelson–Morley
experiment. Accordingly, we replace the lengths l1 and l2 in (5.14)
by Al0

1
and Bl0

2
, respectively, which merely express the general

deformation hypothesis (2.20). Then we invoke the relation (2.22),
which expresses the result of the Michelson–Morley experiment.
The latter we use in the form A = B/γ to eliminate A in favour of
B. This leads to

N = νγ B
2(l0

1
− l0

2
)

c
. (5.15)

Here the factor γ on the right-hand side is a function of v2, as
written down explicitly in (2.14). A daily or annual variation of this
squared velocity as in (5.12) or (5.13) should therefore also result
in a corresponding variation of N according to (5.15), and hence
to an observable shift in the interference pattern. Since this shift
is proportional to the difference l0

1
− l0

2
, the arm lengths had to be

chosen as different as possible. However, the Kennedy–Thorndike
experiment did not reveal any significant effect. More precisely,
the data for the daily variation led to an average modulus of 24 kilo-
metres per second for the projection of �vS into the equatorial plane
of the Earth. The data for the annual variation gave a corresponding
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value of 15 kilometres per second for the ecliptic projection of �vS.
These values lie more than one order of magnitude below those
expected from an ether drift. Moreover, taking into account all pos-
sible errors, this result is shown to be compatible with a null result.
This is supported by the fact that the determined average directions
for �vS’s equatorial and ecliptic projections enclose an angle of 123

degrees, which certainly does not speak for a systematic ether drift.
Admittedly, all this sounds like a rather imprecise measurement.
But one should not forget that the experimental demands were
quite exceptional, and so were the achievements to meet them. The
main challenge was to keep the delicate experimental environment
extremely stable over many days and even months! For example,
the experimenters succeeded in restricting temperature variations
to the order of millidegrees during the whole period of data taking,
against the natural daily and long term variations.

From their experiment, Kennedy and Thorndike concluded that
N (cf. 5.15) would not depend on v2 at all. Moreover, they assumed
B = 1, even though they knew (as stated explicitly in their paper)
that this does not follow from the experiment of Michelson and
Morley. This assumption led them to conclude from (5.15) that the
combination νγ must be a v2-independent quantity, which we call
ν′. Hence they obtained

ν = ν′/γ = ν′ ·
√

1 − v2

c2
. (5.16)

Recall that the frequency ν denotes the number of oscillation peri-
ods within one unit of time measured with clocks in the ether
system K . But the light source rests in system K ′ and its frequency
is defined with respect to the clocks that rest in K ′. (Kennedy and
Thorndike used light where λ′ = 5461 Å, corresponding to a green
line of mercury.) But then (5.16) just corresponds to the statement
of time dilation, where ν′ is the fixed frequency of the source in
K ′. Hence the null result of the Kennedy–Thorndike experiment
is indeed implied by time dilation and B = 1. However, Kennedy
and Thorndike concluded the logical converse of this, namely that
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their experiment implied time dilation. (This attitude is already
expressed by the title of their paper, reading ‘Experimental Estab-
lishment of the Relativity of Time’.) But this would be logically
correct only if B = 1 had already been experimentally established,
rather than merely assumed, and this was not the case at the time
(1932) Kennedy and Thorndike presented their results. For this
reason we merely deduce from their experiment that (5.15) leads
to the more general (i.e. logically weaker) conclusion

ν = ν′/γ ·B, (5.17)

where ν′ is velocity independent. In the next section we will discuss
the experiment of Ives and Stilwell, performed six years after that
of Kennedy and Thorndike, which independently, and now truly,
led to (5.16). Using this, we may then employ the result (5.17) of
Kennedy and Thorndike to conclude B = 1.

5.5 The Ives–Stilwell experiment

In 1938 Herbert Ives and G. R. Stilwell performed an experiment
[26] which was designed to test the relativistic Doppler effect, as
given by formula (3.10). More precisely, they aimed to verify the
occurrence of the factor γ in the denominator. This factor is a
consequence of time dilation and therefore a genuine effect of
SR, whereas the other dependencies expressed by this formula
are just the same as in ‘pre-relativistic’ physics (cf. the discussion
in Sec. 3.6.2). Already in 1907 Einstein [12] suggested testing the
occurrence of γ through the transverse Doppler effect (3.11). But
this idea had to be given up soon for the following reason. The trans-
verse Doppler effect is of second order in β = v/c. This means that
in a perturbation expansion in β, the leading term is quadratic.
In contrast, the longitudinal Doppler effect is of first order in β

and hence generically much larger, at least as long as the velocit-
ies involved are not very close to c. According to (3.10) any small
deviation δ90 of the observing angle α from 90

◦ leads to admixtures
of the longitudinal Doppler effect which will immediately ‘swamp
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out’ the transverse effect. Note that these admixtures are in leading
order also proportional to the deviation angle δ90 (see below). But
such small deviations are hardly avoidable. For example, even the
finest pencil of fast moving molecules has a small opening angle
due to residual transverse velocities. Hence some of the molecular
rays will not exactly be seen at 90

◦. These suffice to spoil the direct
experimental observation of the transverse Doppler effect.

This problem was overcome by Ives and Stilwell. Instead of trying
to observe at right angles in order to isolate the γ dependence, they
observed at 0

◦ and 180
◦. To see why this solves the problem, we

first have to rewrite (3.10) in terms of wavelengths, since this is
what Ives and Stilwell actually observed (not frequencies). This is
easily done using ν = c/λ and ν′ = c/λ′:

λ = λ′γ (1 + β cos α). (5.18)

Now setα equal 0◦ and 180
◦ and call the corresponding wavelengths

λ0 and λ180 respectively. We get

λ0 = λ′γ (1 + β) and λ180 = λ′γ (1 − β). (5.19)

It is now easy to see how to eliminate the linear term in β and
isolate the γ dependence. One simply takes the mean:

1

2
(λ0 + λ180) = γ λ′. (5.20)

Without time dilation the mean wavelength would be just that in
the rest system of the light source. But taking into account time
dilation from SR enhances the mean value by a factor of γ . This is
what Ives and Stilwell measured.

To be sure, here too one needs to take into account possible
deviations δ0 and δ180 from the exact values α = 0

◦ and α = 180
◦,

respectively. These give rise to additive correction terms on the
right-hand side of (5.20), of which the leading term reads:

−(δ2
0

− δ2
180

)
βγ λ′

2
. (5.21)

Let us compare this to the above-mentioned correction for an
observation at α = 90

◦. At exactly 90
◦ (5.18) leads to λ = γ λ′.
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At α = 90
◦ + δ90 the right-hand side receives a correction of

−δ90βγλ′. (5.22)

Both corrections are linear in β. This is what makes them potenti-
ally fatal. However, (5.21) is quadratic in the small deviation
parameters whereas (5.22) is again linear. This quadratic suppres-
sion of the deviation angle turned out to be sufficient to make the
experiment of Ives and Stilwell work.

Ives and Stilwell used atomic hydrogen as moving emitters of
electromagnetic radiation. More precisely, they used the second
spectral line of the so-called ‘Balmer series’ (after the Swiss physi-
cist and mathematician Johann Balmer (1825–1898)). This line is
usually denoted by Hβ and has a wavelength of 4861 Å, corres-
ponding to a blueish-green colour. To produce hydrogen atoms in
motion they first accelerated H+

2
and H+

3
ions by some voltage and

then turned the ions into excited atomic hydrogen by neutralization
and subsequent dissociation. Accordingly, the hydrogen atoms in
the beam came in two different velocities of ratio

√
3/

√
2, depend-

ing on whether the hydrogen atom originated from an H+
3

or H+
2

ion. The accelerating voltage was varied in the interval between
6788 and 18 356 volts, producing β factors (velocities in units of c)
of at most 4.4 ·10

−3 for the fast component stemming from H+
2

. At
these velocities the transverse Doppler effect makes relative correc-
tions of at most 10

−5 or, in absolute terms, given the wavelength
above, this corresponds to almost 5 · 10

−2 Å. In contrast, the lon-
gitudinal Doppler effect makes relative corrections of at most β,
which in absolute terms corresponds to 21 Å. The factor by which
the transverse Doppler effect is suppressed against the longitudinal
one is β/2 = 2.2 · 10

−3. Nevertheless, Ives and Stilwell achieved
a relative accuracy of 5 · 10

−7, corresponding to 2.5 · 10
−3 Å in

absolute terms.
The story acquires an ironic twist through the remark that Ives

and Stilwell actually did not believe in SR. To be sure, they did
believe that (5.18) was the right description of the Doppler effect,
but they understood it in the context of the old ether theory of
Lorentz and Larmor. This theory, together with the hypotheses that
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relative motion with respect to the ether causes length contractions
and, in addition, time dilations, is operationally indistinguishable
from SR. They do not differ in any predictions concerning observa-
tions. Rather they differ in their content concerning non-observable
structures, i.e. the ether. Also, whereas length contraction and
time dilation are clear consequences of unambiguous operational
definitions of length and time in SR, they cannot be deduced in
the Lorentz–Larmor theory, but have to be put in ‘by hand’. This is
simply because that ‘theory’ is merely a set of loosely connected
assumptions without an actual basis. There is no real dynam-
ical theory of some ‘ether’ from which conclusions concerning
its interaction can be unambiguously deduced. Hence it has less
explanatory power and, in that sense, cannot compete with SR.

5.6 The current experimental status of Special
Relativity

So far we have encountered three historical experiments which
relate SR to the world of physical phenomena. These were

MM: The Michelson–Morley experiment, testing a possible
dependence of the speed of light on the direction of the
relative velocity with respect to a hypothetically preferred
reference system K0 (usually called the ‘ether system’ or
‘ether frame’).

KT: The Kennedy–Thorndike experiment, testing a possible
dependence of the speed of light on the modulus of the
relative velocity with respect to a hypothetically preferred
reference system K0.

IS: The Ives–Stilwell experiment, testing the time dilation of
moving clocks.

In modern terminology one calls any experiment by one of these
compound names, usually in the abbreviated form MM, KT, and IS,
if it tests the associated aspects. This is done irrespective of whether
the modern counterparts of these experiments bear any closer
resemblance to the actual historic ones, which is often not the case.
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A very important concept for the theoretical description of such
experiments is given by test theories. Generally speaking, these
are theories which allow one to incorporate and parametrize pos-
sible violations of the aspects and predictions in question. For
this one needs to make some plausible assumptions about the
nature of the expected deviations. Only those deviations will then be
parametrized and tested. A test then results in constraints—usually
upper bounds—on these parameters. More abstractly one may say
that in the ‘space of all possible theories’ test theories paramet-
rize certain (finitely many and hopefully cleverly chosen) directions
which are then exposed to experimental scrutiny. Note that the
experiments, then, make no statement about the other directions
in ‘theory space’. It is important to understand that any quantitative
statement about the degree of validity of a theory is of that kind.

Applying this general idea to SR, it has been convincingly argued
that any ‘reasonable’ violation of SR is parametrized by a three
parameter family of test theories [27, 28]. Moreover, the parameters
are uniquely fixed by the results of the three types of experiments
mentioned above. It is for this reason that we focused attention on
these three types. Special Relativity is precisely one member of this
three-parameter family, corresponding to null results for the MM
and KT experiments, and to the value (2.14) for the time dilation
factor γ tested by the IS experiment. In this sense we can identify
the experimental status of SR with the status of the MM, KT, and IS
experiments. A fairly complete—though not quite up to date—list
of the types of experiments that were performed in connection with
SR can be found in [29].

The various test theories in our three parameter class differ, in
particular, in their prediction of how the velocity of light depends
on the observer’s state of motion relative to the (hypothetically)
preferred system. This aspect is labelled by two parameters, A and
B. The general expression for the velocity of light is then written in
the form:

c(v, θ) = c0

(
1 + A

v2

c2
0

+ B
v2

c2
0

sin2 θ

)
. (5.23)
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Here c0 is the velocity of light in the preferred (ether-) system K0.
v and θ label the modulus and direction of the observer’s velocity
relative to K0. Here a possible azimuthal dependence was excluded
for simplicity: as long as no dependence on θ shows up in any
experiment, no azimuthal dependence needs to be considered in
the first place. A and B now parametrize this dependence on v and θ .
B = 0 implies isotropy of the velocity of light. If, in addition, A = 0,
then c is also independent of v. The MM and KT experiments
therefore set upper bounds to B and A respectively. Quite generally,
KT experiments turn out to be less accurate than MM experiments.
In modern versions the estimated relative errors in KT experiments
are larger by at least two orders of magnitude. This is basically a
direct consequence of the fact that during a KT experiment the
relative change in the modulus of the velocity (5.10) is much less
than is the relative change of its direction, measured, e.g. by cos θ ,
during a MM experiment.

Technological progress in material sciences and laser physics
have recently stimulated new and powerful MM, KT, and IS experi-
ments of greatly enhanced precision. Currently the best MM and
KT experiments give (see [30] for MM and [31] for KT; the results
are to be understood at the level of one standard deviation, i.e. 84%
confidence level)

MM:

c

c0

= 4.3 · 10
−15 ⇒ |B| < 3.7 · 10

−9, (5.24)

KT:

c

c0

< 1.6 · 10
−12 ⇒ |A| < 10

−6. (5.25)

Here 
c is the variation of c which derives from the measured
variation of frequencies. Using (5.23) then allows one to deduce
the given upper bounds for the moduli of A and B, under the
assumption that v = 380 km/s. We cannot give a fair account
of these high-technology experiments at this point. Let it merely
be mentioned that the interferometer of MM and KT is now real-
ized on a much smaller scale, using cryogenic optical resonators,
which are throughout kept at the temperature of liquid helium
(−269 degrees Celsius). Refined laser techniques produce highly
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stable resonance frequencies and hence a long-term stability of
the physical conditions. In fact, the stability is so good that the
experimenters decided not to let any device rotate the interfer-
ometer in their laboratory, which will always cause mechanical
disturbances, but rather to wait a couple of hours until its orienta-
tion (with respect to the hypothetical preferred frame) had been
changed by the Earth’s own rotation. See [32] and [33] for more
information on their experiments.

The third parameter of our test theories parametrizes the pos-
sible deviations of the factor γ of time-dilation from that given by
(2.14). Hence one replaces γ according to

γ → γ (1 + α(β2 + 2 �β0 · �β)). (5.26)

Here �β = �v/c and �v is the velocity of the moving clock relative to
the observer and �β0 = �v0/c, where �v0 is the velocity of the observer
relative to the ether system. Currently the best result is given by [34]

|α| < 2.2 · 10
−7. (5.27)

Let us say a few words on this fascinating modern version of the
Ives–Stilwell experiment, performed at the heavy-ion storage ring
of the Max-Planck-Institute at Heidelberg (Germany). The moving
‘clocks’ are atomic transitions in singly-ionized atoms of lith-
ium, 7Li+, accelerated to an average speed of 19 000 kilometres
per second, which corresponds to 6.3% of the velocity of light.
The method employed may be called ‘high resolution saturation
spectroscopy’, for reasons explained below.

Simple Doppler spectroscopy would consist of tuning a laser to
be in resonance with a certain two-level atomic transition of the
moving ion. Let the resonance frequency, as measured in the ion’s
rest frame, K ′, be ν0 (here we prefer to write ν0 rather than ν′,
which would be suggested by our systematics.). At resonance the
laser induces a transition to the excited state. Subsequently the ion
returns to the ground state under emission of light, a process which
we here wish to refer to as fluorescence (by some abuse of termino-
logy). It is the occurrence of this characteristic fluorescence light,
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which is verified by photomultipliers, that signals that the reson-
ance frequency has been found. Now let the ion (system K ′) move
relative to the laboratory (system K ) at velocity v in the x direction.
Let the laser beam also point in the same direction, i.e. following
the ion. Then the laser frequency, as measured in the laboratory,
has to be tuned above the resonance frequency, since the light, as
seen by the ion, suffers a Doppler shift toward lower frequencies.
More precisely, according to (3.10) (setting ν′ = ν0), the laser has
to be tuned to ν = ν0γ (1 + β). This is schematically shown in
Fig. 5.5. Knowing the resonance frequency and the velocity of the
ion, γ can be experimentally measured.

But this is not what is done in the experiment of the Heidelberg
group, the reason being that particle velocities are much harder
to control than laser frequencies. Hence the idea is to measure
a velocity-independent quantity. In saturation spectroscopy, this
is achieved as follows: We again consider the two-level system,
but now two lasers are used to excite the ions in the beam. One
laser points parallel and the other anti-parallel to the direction
of the ion beam, as schematically pictured in Fig. 5.6. The line

v = v0g(1 + b) v0

v

Fig. 5.5 Simple Doppler spectroscopy.

v

v

v = v0g (1+ b) v = v0g (1 – b)v0

Fig. 5.6 Double Doppler spectroscopy.
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width of the lasers is only 1/3000 of the Doppler width of the
velocity distribution of the ions (1 MHz versus 3 GHz). Hence
the two lasers will generally be in resonance with ions from differ-
ent, non-overlapping velocity classes. The mean beam-velocity is
now so adjusted to have a maximal fluorescence yield from, say,
the parallel laser, which is of fixed frequency. This makes sure
that the parallel laser is in resonance with the ions around the
centre of the velocity distribution. In addition, the laser’s intensity
is turned up to reach saturation in ion excitations. This means that
any further increase of its intensity will not significantly increase
the fluorescence yield. Now the other laser, which is tunable in
its frequency, is switched on. Initially, its frequency, as seen by
the ions, does not match that of the first laser. Hence it will
excite ions from a different velocity class within the beam. The
fluorescence yields from both lasers now simply add, since the
light comes from different ions. The second laser’s intensity is
also held at saturation, so that their common fluorescence yield is
about twice that of any one of them. Now the second laser’s fre-
quency is tuned to excite the same velocity class of ions as the first
laser. This frequency is found by looking for a dip in the fluores-
cence yield. The dip occurs because both lasers are at saturation
intensity and now share the same ions. Hence the fluorescence
yield drops back to a level not significantly higher than that of a
single laser. This is depicted in Fig. 5.7. Let the laser frequencies,
as measured in the laboratory (System K ), be ν1, for the paral-
lel pointing laser, and ν2 for the anti-parallel pointing one. That
both are in resonance with the atomic transition of frequency ν′
in the rest system of the ion means that ν1 = ν0γ (1 + β) and
ν2 = ν0γ (1 − β), according to (3.10) (again writing ν0 for ν′).
Hence

ν1 · ν2

ν2
0

= γ 2(1 − β2) ≈ (1 + 2α(β2 + 2 �β0 · �β)), (5.28)

where in the last step we replaced γ by the right-hand side
of (5.26), neglecting terms of higher than linear order in α.
The numerator of the quotient on the left side of this equa-
tion is the desired velocity-independent quantity that is actually
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Fig. 5.7 Dip in fluorescence yield at double resonance in saturation
spectroscopy.

measured. The rest-system transition frequency, ν0, is known from
independent measurements up to relative errors of about 2 · 10

−9,
which gives the denominator. Note also that the quadratic term in β

dominates the right-hand side of (5.28), as long as the ion velocity,
here given by β · c = 6·3 · 10

−2 · c, is considerably larger than the
(assumed) velocity β0 · c against the ether system. This is certainly
the case if the latter is identified with the rest system of the cosmic
background radiation, where β0 · c = 380 km/s = 1.3 · 10

−3 · c.
Making this assumption, measurements [34] of the left hand side
of (5.28) led to (5.27). More information on the experimental setup
may be found at [35].

Let us also point out that there is also a certain fundamental
aspect in the coincidence of the factor of time dilation with γ =
1/

√
1 − β2. It can be shown that this is precisely the necessary

and sufficient condition for Einstein synchrony to be identical with
that given by slow clock-transport; see [28]. In particular, these two
synchronization prescriptions are compatible within SR. This will
be explained in the next section.



Synchronization by slow clock-transport 137

5.7 Synchronization by slow clock-transport

In Sect. 3·1 we already mentioned the possibility of synchroniz-
ing the clocks in some inertial system by means of a master clock,
UT. That clock would be moved through all of space such that, at
each point, the local clock can be synchronized with it. Since this is
obviously a rather impractical way of doing things, we decided for
Einstein’s synchronization based on the exchange of light signals.
On the other hand, clock transport has the advantage of being con-
ceptually rather simple and clear cut, since it does not rely on much
more than the existence of clocks (and a moving agent), whereas
Einstein’s definition brings in the laws of light propagation in the
limiting case of geometric optics. In this section we will show that,
as far as SR is concerned, these definitions are equivalent.

Let us therefore consider a clock UT initially at rest with respect
to the inertial system K ′. We assume the clocks of K ′ to be Einstein-
synchronized, thus giving rise to the globally defined time t′ of K ′.
Now we start to move UT along the x′-axis with velocity u′ relative
to K ′. We adjust UT so that it shows time zero at x′ = 0 and t′ = 0.
Due to time dilation, UT’s reading is retarded compared to time
t′ by a factor of 1/γ (u′). (Recall that γ is always understood as a
function of some velocity, as introduced in (2.14). Since in this
section we need to consider the γ -factors for various velocities at
the same time, we shall explicitly write down the arguments to
prevent confusion.) In order to get from x′ = 0 to x′ = l′, the
clock UT needs the t′-time l′/u′. Hence its own reading at x′ = l′
is l′/(u′γ (u′)), which makes a retardation of

l′

u′ · (
1 − 1/γ (u′)

) ≈ u′l′

2c2
. (5.29)

Here the ≈ stands for equality up to powers in u′ higher than the
first (linear approximation). We see that the discrepancy between
the local t′-time and the reading of UT can be made arbitrarily small
by choosing the transport velocity u′ of UT. This is sometimes
expressed by saying that UT reads the time t′ of K ′ in the limit of
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‘infinitely small’ transport velocities relative to K ′. This is what is
meant by ‘slow transport’ in the header of this section.

What needs to be shown is that the last statement is shared
by every inertial observer, i.e. that it satisfies the relativity prin-
ciple. Let us investigate concretely what this entails. Suppose K is
another inertial system relative to which K ′ moves with velocity v
in the x direction. The clocks of K are also assumed to be Einstein-
synchronized, thus giving rise to the global time t. As usual, we
choose the axes of K and K ′ to coincide for t = t′ = 0. The velocity
u of UT relative to K is given by the addition law (3.6):

u = u′ + v
1 + u′v/c2

≈ v + u′γ −2(v). (5.30)

Again ≈ denotes the linear approximation in u′. At time t the clock
UT is at position x = ut relative to K . At this moment its reading
is given by

t/γ (u) reading of UT, (5.31)

as follows from time dilation. On the other hand, using the Lorentz
transformations (3.3), we can calculate the time t′ of K ′ that
corresponds to time t and position ut relative to K :

t′ = γ (v)(t − vut/c2) = t γ (v)(1 − vu/c2). (5.32)

The non-trivial requirement now is that this equals the clock’s
reading (5.31) in the linear approximation in u′. Equating these
expressions then shows that we must have

γ −1(u) ≈ γ (v)(1 − vu/c2), (5.33)

where u on both sides stands for the expression in (5.30). Expanding
both sides of (5.33) to linear order in u′ indeed shows equality.

Hence all inertial observers agree that the two synchronization
procedures in K ′ lead to the same notion of time t′ in K ′. This is
by no means obvious and tied to specific properties of the Lorentz
transformation, which entered explicitly on the right-hand side of
(5.33), and also on the left-hand side through its expression for time
dilation. In fact, as already mentioned, it has been shown in [28]
that a necessary and sufficient condition for the equivalence of slow
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clock-transport with Einstein synchronization is the coincidence of
the factor for time dilation with the special relativistic value.

5.8 Aberration and conformal transformations

In Sect. 3.6 we discussed the special relativistic law of aberra-
tion. There we found that the functional relation between the
angles assumes its simplest form if expressed in terms of the tan-
gents of half the angles, as stated in (3.9). This fact has a deeper
mathematical interpretation which we now wish to explain. This
interpretation will then immediately lead to a general proof of the
fact that the visual image of a fast moving spherical body is again
spherical and not contracted, as was already stated in Sect. 3.7.
Figure 5.8 is the schematic representation of an observer loc-

ated at B, who receives a light ray (dashed line) at an angle of
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Fig. 5.8 Aberration as conformal transformation.



140 Closer encounters with special topics

incidence, α, with respect to the x-axis. The observer is at the centre
of an imaginary sphere, S, sometimes called the ‘observer sky’ of
B, the diameter of which is chosen to be of unit length. Every
light ray received by the observer intersects this sphere at some
unique point. Moreover, to every point of S we can uniquely asso-
ciate a light ray whose point of intersection is the given one. Hence
the association of light rays received by B with points on S is a
unique and invertible one. In technical terms, it is a bijection. For
example, in Fig. 5.8, the given light ray (dashed line) corresponds
to the point s. Abstractly speaking, we may identify the set of all
light rays received by B with the set of points on S. This is quite ana-
logous to what happens in a planetarium, where our natural visual
impression of stars and planets is imitated by light spots projected
on the hemispherical ceiling.

We will now introduce an alternative projective representation,
the so-called ‘stereographic projection’, which will lead to the
sought for interpretation. We start by selecting some antipodal
pair of points p and q on S; see Fig. 5.8. At q we attach the plane E
that is tangential to S. We can now project any point s of S, other
than p, on to E. This we do by letting the image point of the projec-
tion, s′, be the unique intersection point of the line through p and
s with E. This prescription defines a unique map from all points
of S, except p, to E. Conversely, it is obvious that any point of E
is the image of some uniquely determined point on S (without p).
This map from S to E is called the stereographic projection of S
with projection centre p. The stereographic projection allows one
to uniquely identify all but one light rays received by B with points
on E. The one exceptional light ray, which is not represented on
E, is that which meets S at p, i.e. where the angle of incidence
α is 180

◦.
Let us now choose q, the antipodal point of p, as the origin of E.

The crucial observation is now that a light ray of incidence angle
α corresponds, via stereographic projection, to a point on E whose
distance to the origin is just tan(α/2). This follows immediately
from Fig. 5.8 and elementary Euclidean geometry. Indeed, since
the segments pB and sB are equally long, the angles of the shaded
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triangle at p and s must also be equal. Hence their sum equals twice
the angle at p, which in turn must be equal to 180

◦ minus the angle
at B. The latter difference is obviously α, hence the angle at p is
α/2, as already anticipated in Fig. 5.8. Recalling that the diameter
of S had been chosen to be the unit length, this shows that eq has
length tan(α/2), as was to be shown.

We now consider an observer B′ moving relative to B at velocity v
along the x-axis. At time t = 0 both observers are at the origin of S.
At this particular moment we can do all constructions mentioned
so far in connection with observer B also for the second observer
B′. The angle of incidence measured by B′ will be denoted by α′.
The quantities tan(α/2) and tan(α′/2) are now the distances in
the common plane of both stereographic projections. The law of
aberration (3.9) now simply states that these distances are scaled
by the factor

√
(1 − β)/(1 + β). This scaling map is a linear radial

contraction (for β > 0; for β < 0 it is a dilation). This is what
the law of aberration boils down to in the stereographic-projection
representation.

Scaling maps are similarity transformations. In particular, they
preserve angles. Generally a transformation is called ‘conformal’
if it preserves angles, even if it is not linear. For example, the ste-
reographic projection is conformal, meaning that any two curves
on S, which intersect at some angle, are mapped to curves on E
intersecting at the same angle. Moreover, the stereographic projec-
tion has the following nice property, whose proof we omit: it maps
circles on S not intersecting p to circles on E; circles intersecting
p are mapped to straight lines. The converse of this is also true.
It follows that discs on S not containing p are mapped to discs on
E. This is because the boundary of a disc κS on S is a circle, whose
image on E is then also a circle. But the latter circle must be the
boundary of κE , the image of κS under the stereographic projection.
Hence κE is also a disc.

Using this we can immediately deduce that spherically shaped
bodies in motion do not appear contracted but still spherical, as was
already announced in Sect. 3.7. The argument is this: consider a
spherically shaped body at rest with respect to observer B. Light rays
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originating at the body and ending at B intersect S in a round disk,
κS, of circular boundary. That disc represents the two-dimensional
image actually seen by the observer. We wish to prove that B′ also
sees a round rather than a squashed disc. For this we simply apply
the law of aberration in the form given above. So let κE be the image
of κS on E under stereographic projection. As we just explained,
it is also a disc. Now apply to κE the scaling map corresponding
to aberration. Let the result be κ ′

E . This, too, will be a disc, since
scalings map circles to circles and hence discs to discs. Finally apply
the inverted stereographic projection to κ ′

E . The result is a disc κ ′
S

on S. By construction, the map κS → κ ′
S corresponds to the law of

aberration. Since it is a composition of conformal maps it is itself
conformal. It maps the visual impression of B to that of B′. This
shows that B′, too, sees a disc.

5.9 Transformation formulae for momentum,
energy, and force

In Sect. 3.2 we explicitly stated how space and time coordinates
transform under the special Lorentz transformation corresponding
to a boost in the x direction. The relevant formulae were presented
in (3.3). We also deduced the corresponding transformation rules
for velocities, given in (3.6). In this section we wish to complete
these by deriving the transformation laws for momentum, energy,
and force.

We recall the expression (3.16) for momentum and (3.24)
together with (3.15) for the total energy of a moving body of rest
mass m0. We assume the body moves at velocity �u′ relative to an
inertial system K ′. Its momentum and energy relative to K ′ are
then given by

�p′ = m0γ (u′) �u′ and E ′ = γ (u′)m0c2 (5.34)

respectively. (As usual, u′ denotes the modulus of �u′.) Let K be
an inertial system, relative to which K ′ moves at velocity v along
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the x-axis. Using the formulae (3.6) for the addition of velocities,
we can immediately determine the velocity �u of the body relative
to K . Direct computation shows that the γ -factor for this combined
velocity satisfies

γ (u) = γ (u′)γ (v)(1 + u′
xv/c2). (5.35)

Relative to K , the momentum and energy of the body are given by

�p = m0γ (u)�u and E = γ (u)m0c2 (5.36)

respectively. Using (5.35), they can be re-expressed in terms of
�p′ and E ′ as given by (5.34). This leads directly to the sought for
transformation rules (for brevity, we now write again γ (v) = γ ):

px = γ (p′
x + vE ′/c2), py = p′

y , pz = p′
z,

E = γ (E ′ + vp′
x). (5.37)

Comparing (5.37) with the inverse of (3.3) shows that the tuples
(E/c, �p) and (ct, �x) transform in the same fashion under boost trans-
formations. This is clearly also true for spatial rotations, but not
for space-time translations, under which E and �p stay invariant.
Moreover, using (5.37), one easily shows that

E2/c2 − �p · �p = E ′2/c2 − �p′ · �p′. (5.38)

Hence the value of these expressions is invariant under the special
Lorentz transformation considered here (boost in the x direction).
But it is easily seen to be also invariant under spatial rotations
(under which the energy and the squared momentum are separ-
ately invariant) and under space-time translations (under which
energy and momentum—without squaring—are also separately
invariant). Hence the difference between E2/c2 and the squared
momentum is a fully Lorentz invariant quantity. To determine its
value we might just evaluate it in the system where the momentum
vanishes (centre-of-mass system). There its energy is just m0c2

(cf. (3.24)), so that the value of the expressions in (5.38) is given by
m2

0
c2. This is essentially what we already found in (3.25).
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Let us now turn to the transformation law for the force. Here we
recall that the Newtonian force relative to K and K ′ is given by the
rate of change of momentum �p and �p′ with respect to time t and t′,
respectively. The increment dt of time t can be expressed through
the increment dt′ of time t′ by using the Lorentz transformation,
t = γ (t′ + vx′/c2). Here x′ is the location of the body in K ′, so that
we have to set x′ = u′

xt′. This leads to dt = γ (1+vu′
x/c2)dt′. Finally

we recall that, by the principle of energy conservation applied in
system K ′, the change dE ′ of the energy E ′ in the time interval
dt′ must equal the work done by the force �F ′ during dt′. This
gives dE ′/dt′ = �F ′ · �u′. Now, taking the time derivative of the for-
mulae (5.37) for momentum immediately implies the following
transformation rules for the (Newtonian) forces

Fx = F ′
x + v

c2
�F ′ · �u′

1 + vu′
x/c2

, Fy = F ′
y

γ
(
1 + vu′

x/c2
) , Fz = F ′

z

γ
(
1 + vu′

x/c2
) .

(5.39)

As usual, the inverse relations of (5.37) and (5.39) are obtained by
exchanging primed and unprimed quantities and at the same time
replacing v by −v.

5.10 Minkowski space and the Lorentz group

In Sect. 3.3 we have learned certain rules about how to determine
separation lengths of pairs of events in space and time. For example,
given two events O and E, such that E is in the causal complement
of O, like e.g. in Fig. 3.10, we can find an inertial reference system,
K ′, in which O and E are simultaneous (happen at the same time t′
of K ′). Hence we can define the space-time distance between O and E
by their spatial distance in K ′. Likewise, if E is in the chronological
past or future of O, i.e. can be reached from O by subluminal
propagation, then we can find a system K ′ with respect to which O
and E are equilocal (happen at the same spatial position (x′, y′, z′)
of K ′). In this case we can define the space-time distance between O
and E through the time separation (times c) in K ′.
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The rules for calculating these distances were stated in Sect. 3.3.
However, a simple and far reaching observation allows us to do this
in a far more elegant way. This we shall explain below. It is due
to the mathematician Hermann Minkowski [11], whom we already
encountered in connection with causality structures in Sect. 3.5.
Minkowski’s idea was to endow space-time with a generalization of
what mathematicians call a distance function, or a metric for short.
Let us briefly recall a few notions concerning metrics.

Quite generally, a metric is a real-valued function d(p, q) of two
arguments, where p and q denote two points of the space that is to be
endowed with this metric d. The number d(p, q) is to be interpreted
as the distance between p and q. Now, traditionally, a metric has to
satisfy the following three axioms:

1. d(p, q) = d(q, p), for all p and q. This is called the
symmetry of d.

2. d(p, q) = 0 if and only if p = q.
3. d(p, r) + d(r , q) ≥ d(p, q) for all p, r , and q. One says that

d obeys the triangle inequality. (Think of p, r , and q as the
vertices of a triangle and of d(p, q), for example, as the length
of the edge joining p and q.)

For example, the three-dimensional real vector space R
3 is usually

endowed with the familiar ‘Euclidean metric’, given by

d(�x1, �x2) =
√

(�x1 − �x2) · (�x1 − �x2)

=
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (5.40)

where �x1 = (x1, y1, z1) and �x2 = (x2, y2, z2). This metric clearly
satisfies the three axioms above. Note that the Euclidean metric is
invariant under spatial translations:

�x �→ �x + �a, (5.41)

and spatial rotations

�x �→ R · �x. (5.42)
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Here �a is a fixed translation vector and R is a so-called ‘orthogonal’
3 × 3 matrix. In algebraic terms, orthogonality means that the
transposed matrix R is the inverse of R, i.e. R · R = 1, where 1

is the unit matrix. This is identical to the condition that orthogonal
transformations leave the Euclidean scalar product invariant. This
means that theR-transformed vectors have the same scalar product
as the untransformed ones. For later comparison, we note this
condition in the following form:

R · 1 · R = 1. (5.43)

It is not hard to show that (5.41) together with (5.42) are the only
inhomogeneous linear (inhomogeneous meaning that translations
are included) transformations of R

3 that preserve the Euclidean
distance (5.40). (In fact, a much stronger result holds, namely that
any map of R

3 to itself that preserves Euclidean distance, is of
the form stated. Note that here neither affine linearity nor even
continuity need to be assumed a priori. This follows from a fam-
ous theorem due to Beckman and Quarles [36].) This means that
the Euclidean distance function fully characterizes all those trans-
formations which can be obtained by composing translations with
rotations. They are therefore called ‘Euclidean motions’.

Now we return to space-time. As stated above, Minkowski’s
idea was to endow four-dimensional space-time (not just three-
dimensional space) with some distance function, that could be
used to fully characterize Lorentz transformations in a way sim-
ilar to the characterization of Euclidean motions by the Euclidean
distance function. In fact, we have already given the prescription
for this distance function above. It assigns the simultaneous spa-
tial distance in case the points are in the causal complement of
each other, and the equilocal time separations (times c) in case the
points are in the chronological future and past of each other. What
remains to do is to bring this definition into a more convenient
form. In fact, as Minkowski observed, its mathematical expression
in any inertial reference system turns out to be surprisingly simple.
To see this, let (ct1, �x1) and (ct2, �x2) be the coordinates of O and E
with respect to the system K , and likewise (ct′

1
, �x′

1
) and (ct′

2
, �x′

2
) the

coordinates of the same events with respect to K ′. Let, as usual, K ′
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be moving with respect to K at speed v in the x direction. Then
the primed coordinates can be expressed in terms of the unprimed
ones by the Lorentz transformation as given in (3.3). From this it
is easy to prove that

c2(t1 − t2)
2 − (�x1 − �x2) · (�x1 − �x2)

= c2(t′
1
− t′2)2 − (�x′

1
− �x′

2) · (�x′
1
− �x′

2). (5.44)

This difference of squares is obviously also invariant under space-
time translations, where t �→ t + b for some real number b and
�x transforms as in (5.41). Moreover, it is invariant under spatial
rotations as in (5.42), which leave time invariant. But any general
inhomogeneous Lorentz transformation is a composition of a boost
in the x direction, a spatial rotation, and a space-time translation.
Hence the expression (5.44) is, in fact, invariant under all general
inhomogeneous Lorentz transformations.

Now, if O and E are in the causal complements of each other,
and the system K ′ is such that t′

1
= t′

2
, the right-hand side of (5.44)

is just minus the square of the spatial distance in K ′. If, on the
other hand, O and E are in the chronological future and past of
each other, we can choose K ′ such that �x′

1
= �x′

2
and the right-hand

side of (5.44) is just the square of the time distance of the two events
in K ′. Together this implies that the space-time distance measure
defined at the beginning of this section can be expressed in any
system K in the following simple form:

d(O, E) =
√

|c2(t1 − t2)2 − (�x1 − �x2) · (�x1 − �x2)|. (5.45)

Expression (5.45) is usually referred to as the ‘Minkowskian dis-
tance’ between O and E. It looks almost like a straightforward
generalization of the Euclidean distance function (5.40) to four
dimensions, were it not for the crucial relative minus sign (instead
of plus) between the squares of the time and space intervals. For this
reason we had to take the modulus of the quantity under the square
root, since otherwise it may become negative. Moreover, whereas
this new distance function is also symmetric, d(O, E) = d(E, O),
it ceases to satisfy the usual axioms 2. and 3. stated above. So
the generalizations allowed by Minkowski indeed do make a big
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difference. For example, for any event E on the light cone of O the
Minkowskian distance according to (5.45) is zero. Furthermore,
consider a triangle in space-time two sides of which are segments
of light rays. Then these sides have zero Minkowskian length, in
clear violation of the triangle inequality.

Since taking the modulus of a quantity erases the information
about its sign, it is more appropriate to consider the square of
the distance function (5.45) without taking its modulus. Hence we
define

D(O, E) = c2(t1 − t2)
2 − (�x1 − �x2) · (�x1 − �x2). (5.46)

This is usually called the Minkowskian squared distance, though
this is slightly misleading, since, having dropped the moduli signs,
it is not the square of any real number (it may assume negative
values). Nevertheless, D is a useful object to consider, since its
values now reveal certain information on the causal relations of its
arguments. Except for the trivial case where O = E, there are three
further cases to be distinguished:

1. D(O, E) < 0; it follows that E is in the causal complement of
O and O in the causal complement of E. One says that the
points O and E are space-like separated.

2. D(O, E) > 0; it follows that E is either in the chronological
future or in the chronological past of O. Likewise, O is in the
chronological past or future of E, respectively. One says that
points O and E are time-like separated.

3. D(O, E) = 0 and O �= E; it follows that E is either on the
future or past light cone of O. Likewise, O then lies on the
past or future light cone of E, respectively. One says that O
and E are light-like separated.

Let O be a given point which we choose as origin of the coordin-
ate system. We consider all points E for which D(O, E) = 1. Its
coordinates are (ct, �x), where �x stands for (x, y, z). We write r2 for
�x · �x. Then the coordinates satisfy

ct = ±
√

r2 + 1. (5.47)
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Fig. 5.9 Hyperboloids of all points of unit time-like Minkowskian distance
(left) and unit space-like distance (right) to the origin. The slits are just for
better visual impression.

This defines a two-sheeted hyperboloid, both sheets of which
comprise all points of unit time-like Minkowskian distance to the
origin. The left picture of Fig. 5.9 represents them in a three-
dimensional space-time version, where we suppressed one space
dimension (z-coordinate). The upper sheet corresponds to the plus
sign in (5.47), consisting of all points which lie in the chronolo-
gical future of the origin, and the lower sheet corresponds to the
minus sign, where all points lie in the chronological past of the
origin. The first case corresponds to the upper curve of Fig. 3.4,
after suppression of one more spatial dimension (y-coordinate).

Next we consider all events E for which D(O, E) = −1. E’s
coordinates now satisfy

r =
√

c2t2 + 1. (5.48)

It describes a one-sheeted hyperboloid, all points of which are
space-like separated a unit length away from the origin O. It is
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shown in the right picture of Fig. 5.9, where again one spatial
dimension (z-axis) is suppressed.

Together, these hyperboloids of Fig. 5.9 are the analogues in
Minkowskian geometry of the single unit-sphere in Euclidean
geometry. We have seen above that Euclidean motions preserve
the Euclidean distance and that Lorentz transformations preserve
the Minkowski distance. We also mentioned that the Euclidean
motions are the only transformations of space that preserve the
Euclidean distance. Now, this is also true for the Lorentz trans-
formations. In fact, any linear inhomogeneous transformation
that preserves the Minkowski distance (or, equivalently, its square
(5.46)) must be a composition of the following transformations:
a boost in the x direction (3.3), a spatial rotation (5.42), and a
space-time translation. Note that in this case it is well motivated
to a priori assume the transformations to be linear inhomogen-
eous, since these are the most general ones that transform straight
lines, representing inertial motion, to straight lines. But for com-
pleteness we also mention that, as in the Euclidean case, we may
significantly strengthen the mathematical statement. In fact, any
bijection of R

4 (space-time) that, together with its inverse, pre-
serves the Minkowskian distance (here it would even suffice to
restrict either to time-like or space-like distances) must be a com-
position of the transformations just listed. This is a consequence
of a famous theorem of Alexandrov’s; see e.g. [37] for a compre-
hensive account. It seems to be the closest analog in Minkowskian
geometry to the theorem of Beckman and Quarles in Euclidean
geometry, though the latter did not require the hypothesis of
bijectivity.

A purely mathematical treatment of SR most conveniently starts
with the Minkowskian geometry and motivates the Lorentz trans-
formations in the fashion just described. A powerful vector calculus
can then be built on this structure, that resembles, to a certain
extent, the vector calculus in R

3. With respect to an inertial frame,
a point in space-time can then be associated with a four com-
ponent vector X = (ct, �x), simply called a ‘four-vector’. A scalar
product, traditionally denoted by the Greek letter η, between pairs
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of four-vectors can then be defined as follows:

η(X1, X2) = c2t1t2 − �x1 · �x2. (5.49)

It is readily shown to be invariant under Lorentz boosts (3.3) and
spatial rotations, and hence under all linear Lorentz transforma-
tions. If � denotes the 4 × 4 diagonal matrix diag(1, −1, −1, −1),
this invariance under a Lorentz transformation, given by the 4 × 4

matrix L, takes the form

L · � · L = �. (5.50)

This is the analogue in Minkowskian geometry of the orthogonality
relation (5.43) in Euclidean geometry. Note that the only difference
is that the unit matrix 1 gets replaced by the matrix �. One may
then say that the general inhomogeneous Lorentz transformation
is given by

X �→ L · X + A (5.51)

where L obeys (5.50) and where A = (b, �a) is some four-vector for
the space-time translation. The square of the Minkowski distance
between events O and E, which are represented by the four vectors
X1 and X2 with respect to some inertial reference system, is then
given by

D(O, E) = η(X1 − X2, X1 − X2). (5.52)

This equation makes sense, since the right-hand side is invariant
under all simultaneous transformations of X1 and X2 according to
(5.51). Therefore it only depends on the space-time points O and E
and not on the way they are coordinatized.

We shall write (A, L) for a transformations of the form (5.51).
Such transformations can clearly be composed. We write composi-
tion as simple juxtaposition with the transformation on the right as
the one that acts first. For example, a simple calculation shows that
composing (A2, L2) (acting first) with (A1, L1) (acting second) gives

(A, L) = (A1, L1)(A2, L2) = (A1 + L1 · A2, L1 · L2). (5.53)
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Now recall that mathematicians call any set G a ‘group’, if there
exists an operation, called ‘multiplication’, that assigns to any
ordered pair (g1, g2) of elements from G their product, g1g2, such
that the following axioms are satisfied:

G1: The multiplication is associative, i.e. g1(g2g3) = (g1g2)g3 for
all g1, g2, g3 in G.

G2: There exists a (necessarily unique) so-called neutral element
e in G, such that eg = ge = g for all g in G.

G3: For each element g there exists a (necessarily unique) so-
called inverse element g−1 in G such that gg−1 = g−1g = e.

It is straightforward to check that the set of Lorentz transformations
(5.51) form a group if multiplication is defined to be composition,
as in (5.53). To see this, first note that the matrix L = L1 · L2 satis-
fies (5.50) if L1 and L2 separately do: write down (5.50) for L1 and
multiply this relation with L2 from the right and L

2
from the left.

Hence composition is an operation in the set of inhomogeneous
Lorentz transformations. Furthermore, associativity follows from
the associativity of matrix multiplication, the neutral element is
(0, 1), and the inverse of (A, L) is (A, L)−1 = (−L−1 · A, L−1). Note
that L−1 also satisfies (5.50) if L does. To see this, take the inverse
and then the transpose of (5.50), and use the fact that � is invariant
under this operation. This proves that the set of all transformations
(5.51), where L obeys (5.50), form a group under composition. This
group is called the ‘general inhomogeneous Lorentz group’. It has
two obvious subgroups. One is the group of all translations, given
by the set of elements of the form (A, 1). The other is the group of
general homogeneous Lorentz transformations, given by the set of
all elements of the form (0, L) where L satisfies (5.50). These two
groups work together in the multiplication law (5.53), which defines
what is called the ‘semi-direct product’ of the translation group with
the general homogeneous Lorentz group. The group property of
Lorentz transformations was first established by Poincaré.

Minkowski’s geometric formulation lies at the heart of modern
technical presentations of SR. It elegance and power are unsur-
passed. But is should not be forgotten that this ‘geometry of
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space-time’ is to be understood as ‘physical geometry’. This means
that in the first place it refers to spatial-temporal relations of real
physical systems (objects), and not to abstract mathematical points.
It is not a priori given to us, but derives from the dynamical rules
(equations of motion) that these physical systems obey. This was
how the Lorentz group was found in the first place: as a symmetry
group of Maxwell’s equations. Here one may recall the opening
words of Minkowski’s famous address to the 80th Assembly of
German Natural Scientists and Physicians, where he, for the first
time, presented his ideas to a wider audience [11]:

Gentlemen! The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their strength.
Their tendency is a radical one. Henceforth space by itself, and time by itself,
are doomed to fade away into mere shadows, and only a kind of union of the
two will preserve independence.
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Glossary

Aberration: Apparent change of the direction of light due to a
relative motion between observer and light source.

Arcminute, arc second, and radian: The 360th part of the full circle
is a (angular) degree (denoted by ◦). The 60th part of a degree
is an arc minute (denoted by ′) and the 60th part of that is an
arc second (denoted by ′′). The 2π

360
-fold of an angle, measured in

degrees, is its measure in radians.

Dispersion: The phenomenon of the frequency dependence of the
index of refraction.

Doppler effect: Modulation of the frequencies of wave phenom-
ena due to (relative) velocities between sources and receivers.
Named after the Austrian physicist Christian Johann Doppler
(1803–1853).

Ecliptic: The plane in space in which the Earth orbits the Sun.

Ether: Outdated concept of a hypothetical medium, supposed to
be the carrier for light and generally all electromagnetic fields.
Failed attempts to reveal any motion relative to the ether by
means of physical experiments, together with the extension
of the principle of relativity beyond the realm of mechanics,
triggered Special Relativity. The idea of an ether is inconsist-
ent with Special Relativity, as long as it gives rise to physically
preferred systems of reference (e.g. the ether’s rest frame).

Event: Physical process that is strongly localized in space and
time. In the idealized (and somewhat unphysical) limit of
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infinite localization an event is identified with a point in
space-time.

Field: Association of a (physical) quantity to each point in space-
time. This quantity can be a number (plus physical unit), like,
e.g. for the temperature field, a vector, like in the case of a force
field, or many vectors, like in the case of the electromagnetic
(electric plus magnetic) field.

Field theory:A theory in which the fundamental physical quantities
are fields. Maxwell’s theory of electromagnetism is such a field
theory. Typically field theories describe physical systems with an
infinite number of degrees of freedom.

Galilei transformations: Mappings of space-time onto itself which
implement the principle of relativity in Newtonian mechanics.
These mappings in particular preserve the relation of being sim-
ultaneous, i.e. events which carry the same label of time will
continue to do so after the mapping (the label itself might have
changed). This means that Galilean transformations preserve
absolute simultaneity.

Inertial system: Denotes originally a spatial reference system relat-
ive to which force-free mass points move along straight lines.
In modern contexts also used in connection with space-time
reference systems, where the time scale must then also be an
inertial one. The world lines of force-free mass points are then
also straight.

Inertial timescale: Measure of time, relative to which force-free
mass points move uniformly, i.e. move equal distances in equal
time intervals.

Interference: Phenomenon of local amplification as well as
attenuation of the amplitude of superposed waves.

Lorentz invariance: Being invariant under Lorentz transforma-
tions. An equation is called Lorentz invariant, if the Lorentz
transformations map solutions to solutions.

Lorentz transformations:Mappings of space-time onto itself which
implement the principle of relativity in Einstein’s adaptation of
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Newtonian mechanics, Maxwell’s electrodynamics, and all other
fundamental theories of interactions, except gravity.

Physical dimension: The unit by which a physical quantity is meas-
ured, like metre, second, kilogram, or any combination thereof
obtained from multiplication and division.

Principle of relativity: Demands the dynamical laws to be the same
in all inertial reference systems. Hence no inertial reference sys-
tem is dynamically distinguished within the set of all inertial
reference systems.

RelativisticQuantumMechanics:Adaptation of ordinary Quantum
Mechanics in order to render it Lorentz invariant. The result is
physically and mathematically inequivalent to ordinary (Galilean
invariant) Quantum Mechanics.

Relativistic Quantum Field Theory: Lorentz invariant quantum
theory of fields, like Quantum Electrodynamics—the quantized
version of Maxwell’s theory.

Simultaneity: Needs to be defined for spatially separated events,
usually through some procedure to synchronize a spatial dis-
tribution of clocks. Otherwise there is no spatially extended
notion of ‘time’ with respect to which ‘equality’ can be asser-
ted. The phrase ‘relativity of simultaneity’ largely refers to this
dependence on a synchronization procedure.

Space-time diagram: Diagrammatic representation of a (physical)
process in space and time, usually with reference to special
systems, like inertial ones.

Test theory: A general class of theories containing free parameters
(or entire functions), which for special values of these paramet-
ers reduce to the theory (here SR) to be tested. Test theories
are needed in order to make meaningful quantitative statements
concerning the experimental status of a theory.

Time:What one reads off clocks.

World line/surface etc: Represents the motion of a point
(extensionless object) or a line (one-dimensional extension) etc.
in a space-time diagram.



Symbols, units, constants

Throughout we use SI units, based on the metre (m) for length,
the second (s) for time, and the kilogram (kg) for mass.

β velocity parameter β = v/c
γ dilation factor (γ -factor) γ = γ (v) = 1/

√
1 − v2/c2

km kilometre (length) km = 10
3 m

AU astronomical unit (length) AU=149 587 870 km

ly light year (length) ly = 9.454 · 10
12 km

Å Ångstrøm (length) Å = 10
−10 m

J Joule (energy) J = kg · m2 · s−2

eV electron volts (energy) 1 eV = 1.60210 · 10
−19 J

MeVmega-electron-volts (energy) 10
6 eV

GeV giga-electron-volts (energy) 10
9 eV

c speed of light in the vacuum c = 299 792.458 m · s−1

h, � Planck’s constants h = 2π · � =
6.626 · 10

−34 J · s
α fine-structure constant α = 1/137.036



Picture Credits

Fig. 2.1 R. Sexl and H. Urbantke. Relativity, Groups, Particles.
Springer Verlag (Vienna, 2001). There printed as
frontispiece.

Fig. 3.16 J.D. Jackson, Classical Electrodynamics, second edition,
John Wiley & Sons, New York (USA), 1975. There
Fig. 13.4 p. 629.

Fig. 4.2 Taken from internet page
hyperphysics.phy-astr.gsu.edu/hbase/nucene/
nucbin.html

Fig. 4.2 Background picture taken from internet page:
www.cerncourier.com/main/article/
43/6/14/1/cernbub3_7-03

Fig. 4.4 N. Ashby: Relativity in the Global Positioning System.
Living Reviews lrr-2003-1. There figure 2. Online avail-
able via
relativity.livingreviews.org/
Articles/lrr-2003-1

Fig. 5.4 W. Panofsky und M. Phillips, Classical Electricity and
Magnetism, second edition, Addison-Wesley (Reading
Mass., 1962). There Fig. 22·4 p. 414.

Fig. 5.7 From the PhD-thesis of Guido Saathoff, University of
Heidelberg 2003. Courtesy of Dr Guido Saathoff.

www.cerncourier.com/main/article/43/6/14/1/cernbub3_7-03
www.cerncourier.com/main/article/43/6/14/1/cernbub3_7-03


Index

aberration 22–4, 63–5, 76, 139–41,
158

and conformal transformations
141–2

Airy, George Biddell 24

Alexandrov’s theorem 150

Annalen der Physik 1, 75

antiparticles 94–5

atomic number 88

atomic physics
applications of special relativity in

86–8

Balmer series 129

Balmer, Johann 129

Beckman and Quarles theorem 146,
150

Bessel, Friedrich Wilhelm 24

big bang 124

binding energy 89–90, 91

black holes 105, 106, 119

Boltzmann, Ludwig 9

boost see velocity transformation
Born, Max 34

Bradley, James 23, 24

Brownian motion 1

Cassini, Giovanni Domenico 110

causality relations 60–3

clock synchronization 45

by clock-transport 42–3, 137–9

Einstein’s 43–4, 45, 137

clocks 13, 42

clocks, satellite
relative deviation from clocks on

Earth 99–101

clock-transport, slow 45, 136, 137–8

COBE
see cosmic background explorer

conformal transformations
and aberration 141–2

Coriolis force 19

cosmic background explorer 124

cosmological constant 108–9

cosmological microwave background
radiation 123–4, 136

Coulomb’s law 8

dark energy
see cosmological constant

dark-matter problem 109

de Coulomb, Charles Augustin 8

de Sitter, Willem 114

de Sitter’s experiment 114–5, 116,
117

deformation hypothesis 7, 39, 125

Dialogue Concerning the Two Chief
World Systems 12

Dirac, Paul 95

dispersion 27, 120, 121, 158

distance function
see metrics

‘Does the Inertia of a Body Depend on
its Energy Content?’ 75



164 Index

Doppler effect 65–7, 76, 158

longitudinal 127, 129

transverse 67, 127–8, 129

Doppler spectroscopy 133, 134

γ draconis 24

drag coefficient 26, 60

earth orbital velocity 33–4

Einstein synchrony 43–4, 45–6, 136

Einstein, Albert 1, 2, 34, 38, 39, 81,
82, 127

Nobel prize 1

PhD thesis 1

electric fields 8–9, 82, 83–5

see also electromagnetic fields
electric forces 8

electrodynamics of moving bodies
1–2, 21

electromagnetic fields 9, 20, 82

electromagnetic induction 39–40

electromagnetism 2, 21

electron-positron pairs 95–6

elementary particle physics
applications of special relativity in

92–8

elementary particles 94, 96

emission theories 114, 115, 117

energy content 75

effect on inertia of a body 75–9

energy velocity 121

equinoctial hours 13–4

equivalence relation 44

ether 6–7, 11, 20–1, 38, 41, 124, 158

‘Ether and the Earth’s Atmosphere,
The’ 35

ether system 66, 82, 122–3, 124, 130

ether theory 26, 31, 33, 40, 114,
129–30

ether velocity 33–4

ether vortices 9

ether wind 21, 30–1, 32, 33, 35

ether’s rest frame 20, 40, 158

Euclidean distance 50, 51, 146, 150

Euclidean distance function 146,
147

Euclidean geometry 51, 150, 151

Euclidean metric 145

Euclidean motions 146, 150

event 14, 16–7, 44, 56, 62, 144,
158–9

Faraday, Michael 8

field lines 8

field theory 159

fine structure 87

FitzGerald, George Francis 2, 35

FitzGerald-Lorentz deformation
hypothesis 35–7

Fizeau, Armand Hippolyte 25, 26

Fizeau’s experiment 25–8, 30, 38

application of addition law of
velocities to 60

Flügge, Siegfried 91

force, transformation laws for 144

Fourier component 120

Fourier composition 120

Fourier, Jean Baptiste Joseph 120

Fresnel, Augustin Jean 20, 26

Friedmann equations 108

front velocity 121

galaxy M87 119

Galilean transformations 14–5,
18–9, 49–50, 81, 159

Galilei, Galileo 12, 110

general relativity 2, 19, 99, 100, 105

geodesy 3

Gibbs, Josiah Willard 9

global navigation satellite system 98,
101

global positioning system 3, 98–9,
101

GLONASS
see global navigation satellite

system



Index 165

GPS
see global positioning system

gravitational collapse 105–6

gravitational force 7–8

group velocity 120, 121

Heaviside, Oliver 35

hydrogen 86, 87, 91

hydrogen, atomic 129

hyperfine structure 88

high resolution saturation
spectroscopy 133, 134–5

Hertz, Heinrich 2, 9, 10

inertia
effect of energy content on 75–9

inertial mass 79

impact of material stress on
107–8

inertial system 14–5, 19, 42, 59, 159

inertial timescale 14–5, 159

‘Inquiry into a Theory of Electrical and
Optical Phenomena in Moving
Bodies’ 39

interferometer 29, 32, 34, 122, 123,
125, 133

Io 29

orbital periods 110–1

IS experiment
see Ives-Stilwell experiment

isotopes 89

Ives, Herbert 127

Ives-Stilwell experiment 37, 67,
127–30, 131

modern version 133, 134–6

Joos, Georg 35

Jupiter moons 110

Kennedy, Roy 123

Kennedy-Thorndike experiment 37,
122–7, 130, 131, 132

kinetic energy
as a function of velocity 74–5

mass as a function of 75–9

KT experiment
see Kennedy-Thorndike

experiment

Lamb shift 88

Lampa, Anton 69

Lange, Ludwig 14

law of addition of velocities 15–6,
28, 38–9, 63

modification of 58–9

application to Fitzeau’s
experiment 60

law of energy conservation 78, 100

law of inertia 12, 13, 14–20

length contraction 54–8, 93, 130

reciprocity of 55, 57–8

and visual appearance 67–9

light propagation 21–2

light, velocity of 7, 27–9

isotropy 122

Rømer method of measurement
28, 110–4

universality of 3–4, 45, 65

light, wave theory of 6–7

light-quantum hypothesis 1, 76

Lorentz boosts 151

Lorentz contraction
see length contraction

Lorentz force 40–1

Lorentz group 152–3

Lorentz invariance 81, 83, 95, 159

Lorentz transformations 46–51, 59,
62, 63, 80, 81, 138, 142, 146,
147, 150, 151, 152, 159–60

Lorentz, Hendrik Antoon 2, 35, 39,
81

Lorentz-FitzGerald contraction
see length contraction

Lorentz-Larmor theory 129–30



166 Index

magnetic fields 8–9, 10, 82

see also electromagnetic field
mass 71, 72, 73–4

as a function of kinetic energy
75–9

mass defect 89, 91

mass number 88, 89–90

mathematical point 16–8

matter 94, 96

dualistic concept of 11

Max-Planck-Institute (Heidelberg)
133

Maxwell, James Clerk 8, 9, 28

Maxwell’s equation 35, 38, 40, 114,
153

invariance of 80–5

Maxwell’s mathematical formalism
theory 8–9

mechanical principle of relativity
12–3

Medicean Stars 110

metrics 145, 146

Michelson, Albert Abraham 29

Michelson-Morley experiment
29–34, 36, 37, 38, 39, 122–3,
130, 131, 132

Miller, Dayton 34

Minkowski diagrams
see space-time diagrams

Minkowski, Hermann 60, 145, 153

Minkowskian distance 147–50, 151

Minkowskian geometry 150, 151,
152–3

Minkowskian squared distance 148

MM experiment
see Michelson-Morley experiment

molecular vortices 10

momentum 70

conservation of 70–3, 76, 79

in special relativity 70, 73

transformation laws for 142–3

Morley, Edward 29

‘moving clocks slow down’
see time dilation

muons 93

detection rate on Earth 93–4

µ-mesons
see muons

navigational systems 98

applications of special relativity in
3, 98–102

neutrons 88, 89

Newton, Isaac 5, 7

Newton’s constant 17

Newtonian force 70, 144

Newtonian gravity 105, 106

Newtonian mass 73

Newtonian mechanics 5–6, 11–2,
70, 92

nuclear fission 91–2

nuclear physics
applications of special relativity in

88–92

Oppenheimer-Volkov equation 108

orbiting clocks
see clocks, satellite

partial wave
see Fourier component

particle accelerators 92

particle theory of light 6

PCT theorem 97–8

Penrose, Roger 69

phase velocity 120, 121

phenomenological theory of gases
9–10

Philosophiae Naturalis Principia
Mathematica

see Principia, The
photoelectric effect 1

photons 76, 95–6

Planck constant 17, 76

Planck length 17

Planck scales 97



Index 167

Planck time 17

Poincaré, Jules Henri 2, 81, 152

point masses 5–6

positrons 93, 95, 96

Principia, The 5, 6, 7, 12

principle of relativity 160

in electromagnetism 20–1, 41

in mechanics 11–20, 21

protons 88, 89, 95

Proxima Centauri 24, 104, 105

pulsar 117

quantum chromodynamics 91

quantum electrodynamics 88

quantum field theory 80

quantum fields 96–7

quantum gravity 17

quantum mechanics 86

reference system 11, 13, 19–20

see also inertial systems
relativistic corrections 86–7

relativistic quantum field theory
96–7, 160

relativistic quantum mechanics 80,
160

rest mass 74, 75, 79

rigid body 5–6

Ritz theory 114, 115–6

Ritz, Walter 114

Rømer, Ole 6–7, 110

scaling maps 141, 142

Schrödinger’s equation 86, 87, 95

sidereal periods 110

signal transmission 120–1

simultaneity 2, 4, 19, 41–6, 160

solar system 124

speed of 28–9

space travel
applications of special relativity in

102–5

space-time diagrams 16, 50–1, 56,
57, 60, 160

space-time distance 144, 146

space-time relations 2, 3–4

special relativity 1–2, 20, 57, 79–80,
130–1

applications 2–4

in atomic physics 86–8

in elementary particle physics
92–8

in navigational systems 98–102

in nuclear physics 88–92

in space travel 102–5

spin-statistics theorem 97

star parallax 24

stereographic projection 140, 141

Stilwell, G. R. 127

Sun
radiation power of 90–1

superluminal velocities 117–22

synodic period 111

time dilation 51–4, 93, 100–1,
126–7, 136, 138–9

reciprocity of 53–4

temporal hours 13

Terrell, James 69

test theories 131, 133, 160

Tevatron ring 92

Thorndike, Edward 123

tidal friction 19

timescale 14, 19

see also inertial timescale
transformation laws

for force 144

for momentum 142–3

transformations 15, 150, 151

Universe
accelerated expansion of the 97,

108–9

uranium 91–2



168 Index

vacuum 96

fluctuation energy 96–7

velocity transformation 14

Virgo cluster 119

Voigt, Woldemar 2, 81

world line 16, 17, 46, 47, 53, 56, 160

world surface, rod’s 55–6

Young, Thomas 6

Zeeman, Pieter 26–7


	Page_Cover.pdf
	Page_i.pdf
	Page_ii.pdf
	Page_iii.pdf
	Page_iv.pdf
	Page_v.pdf
	Page_vi.pdf
	Page_vii.pdf
	Page_viii.pdf
	Page_1.pdf
	Page_2.pdf
	Page_3.pdf
	Page_4.pdf
	Page_5.pdf
	Page_6.pdf
	Page_7.pdf
	Page_8.pdf
	Page_9.pdf
	Page_10.pdf
	Page_11.pdf
	Page_12.pdf
	Page_13.pdf
	Page_14.pdf
	Page_15.pdf
	Page_16.pdf
	Page_17.pdf
	Page_18.pdf
	Page_19.pdf
	Page_20.pdf
	Page_21.pdf
	Page_22.pdf
	Page_23.pdf
	Page_24.pdf
	Page_25.pdf
	Page_26.pdf
	Page_27.pdf
	Page_28.pdf
	Page_29.pdf
	Page_30.pdf
	Page_31.pdf
	Page_32.pdf
	Page_33.pdf
	Page_34.pdf
	Page_35.pdf
	Page_36.pdf
	Page_37.pdf
	Page_38.pdf
	Page_39.pdf
	Page_40.pdf
	Page_41.pdf
	Page_42.pdf
	Page_43.pdf
	Page_44.pdf
	Page_45.pdf
	Page_46.pdf
	Page_47.pdf
	Page_48.pdf
	Page_49.pdf
	Page_50.pdf
	Page_51.pdf
	Page_52.pdf
	Page_53.pdf
	Page_54.pdf
	Page_55.pdf
	Page_56.pdf
	Page_57.pdf
	Page_58.pdf
	Page_59.pdf
	Page_60.pdf
	Page_61.pdf
	Page_62.pdf
	Page_63.pdf
	Page_64.pdf
	Page_65.pdf
	Page_66.pdf
	Page_67.pdf
	Page_68.pdf
	Page_69.pdf
	Page_70.pdf
	Page_71.pdf
	Page_72.pdf
	Page_73.pdf
	Page_74.pdf
	Page_75.pdf
	Page_76.pdf
	Page_77.pdf
	Page_78.pdf
	Page_79.pdf
	Page_80.pdf
	Page_81.pdf
	Page_82.pdf
	Page_83.pdf
	Page_84.pdf
	Page_85.pdf
	Page_86.pdf
	Page_87.pdf
	Page_88.pdf
	Page_89.pdf
	Page_90.pdf
	Page_91.pdf
	Page_92.pdf
	Page_93.pdf
	Page_94.pdf
	Page_95.pdf
	Page_96.pdf
	Page_97.pdf
	Page_98.pdf
	Page_99.pdf
	Page_100.pdf
	Page_101.pdf
	Page_102.pdf
	Page_103.pdf
	Page_104.pdf
	Page_105.pdf
	Page_106.pdf
	Page_107.pdf
	Page_108.pdf
	Page_109.pdf
	Page_110.pdf
	Page_111.pdf
	Page_112.pdf
	Page_113.pdf
	Page_114.pdf
	Page_115.pdf
	Page_116.pdf
	Page_117.pdf
	Page_118.pdf
	Page_119.pdf
	Page_120.pdf
	Page_121.pdf
	Page_122.pdf
	Page_123.pdf
	Page_124.pdf
	Page_125.pdf
	Page_126.pdf
	Page_127.pdf
	Page_128.pdf
	Page_129.pdf
	Page_130.pdf
	Page_131.pdf
	Page_132.pdf
	Page_133.pdf
	Page_134.pdf
	Page_135.pdf
	Page_136.pdf
	Page_137.pdf
	Page_138.pdf
	Page_139.pdf
	Page_140.pdf
	Page_141.pdf
	Page_142.pdf
	Page_143.pdf
	Page_144.pdf
	Page_145.pdf
	Page_146.pdf
	Page_147.pdf
	Page_148.pdf
	Page_149.pdf
	Page_150.pdf
	Page_151.pdf
	Page_152.pdf
	Page_153.pdf
	Page_154.pdf
	Page_155.pdf
	Page_156.pdf
	Page_157.pdf
	Page_158.pdf
	Page_159.pdf
	Page_160.pdf
	Page_161.pdf
	Page_162.pdf
	Page_163.pdf
	Page_164.pdf
	Page_165.pdf
	Page_166.pdf
	Page_167.pdf
	Page_168.pdf



